SOLJTHOLS

CHAPTER I

13.1. We have $\left|\Phi_{m}(s)-\Phi_{n}(s)\right| \leq\left\|\Phi_{m}-\Phi_{n}\right\|$ for $\operatorname{Re}(s)=0$. Thus for every $\varepsilon>0$ there exists an N such that $\left|\Phi_{m}(s)-\Phi_{n}(s)\right|<\varepsilon$ whenever $m>N, n>N$ and $\operatorname{Re}(s)=0$. Accordingly, the sequence $\left\{\Phi_{n}(s)\right\}$ is a uniformly convergent sequence of continuous functions for $\operatorname{Re}(s)=0$. Thus $\lim _{n \rightarrow \infty} \Phi_{n}(s)=\Phi(s)$ exists for $\operatorname{Re}(s)=0$ and $\Phi(s)$ is a continucus function of s for $\operatorname{Re}(s)=0$. (We have $\left|\Phi(s)-\Phi_{n}(s)\right|<\varepsilon$ if $n>$ in and $\operatorname{Re}(s)=0$.

First, we shall prove that $\Phi(s) \varepsilon \underset{m}{R}$. Let us choose an increasing sequence of positive integers $n_{1}, n_{2}, \ldots, n_{j}, \ldots$ such that $\left\|\Phi_{n}-\Phi_{r_{j}}\right\|<1 / 2^{i}$ if $n>n_{j}$. Then $\mid \Phi_{n_{j+1}}-\Phi_{n_{j}} \|<I / 2^{j}$ for $j=1,2, \ldots$, and this implies that

$$
\sum_{j=k}^{\infty}\left\|\Phi_{n_{j+1}}-\Phi_{n_{j}}\right\|<1 / 2^{k-1}
$$

for $k=1,2, \ldots$. By making use of Lemma 3.2 we can conclude that

$$
\Phi(s)-\Phi_{n_{k}}(s)=\sum_{j=k}^{\infty}\left[\Phi_{n_{j+1}}(s)-\Phi_{n_{j}}(s)\right] \varepsilon \underbrace{R}_{m}
$$

and

$$
\left\|\Phi-\Phi_{n_{k}}\right\| \leqq \sum_{j=k}^{\infty}\left\|\Phi_{n_{j+J}}-\Phi_{n_{j}}\right\|<1 / 2^{k-1}
$$

for $k=1,2, \ldots$. Since $\Phi_{r_{k}}(s) \varepsilon \underset{m}{ }$ and $\Phi(s)-\Phi_{n_{k}}(s) \varepsilon{ }_{m}$, it follows that $\Phi(s) \in \mathrm{R}$.

If $n>n_{k}$, then we have

$$
\left\|\Phi-\Phi_{n}\right\| \leqq\left\|\Phi-\Phi_{n_{k}}\right\|+\left\|\Phi_{n_{k}}-\Phi_{n_{1}}\right\|<\frac{1}{2^{k-1}}+\frac{1}{2^{k}}=\frac{3}{2^{k}}
$$

for $k=1,2, \ldots$. This implies that $\lim _{n \rightarrow \infty}\left\|\Phi-\Phi_{n}\right\|=0$. So we can conclude that the space R is complete.
13.2. Let

$$
a_{n}(s)=\sum_{k=-\infty}^{\infty} a_{k}^{(n)} s^{k} \varepsilon A \text { and }\left\|a_{n}\right\|=\sum_{k=-\infty}^{\infty}\left|a_{k}^{(n)}\right|<\infty
$$

for $n=1,2, \ldots$. By assumption, for every $\varepsilon>0$ there exists an N such that

$$
\cdot\left\|a_{m}-a_{n}\right\|=\sum_{k=-\infty}^{\infty}\left|a_{k}^{(m)}-a_{k}^{(n)}\right|<\varepsilon
$$

if $m>N$ and $n>N$. This implies that for each $k(k=0, \pm 1, \pm 2, \ldots)$ $\left|a_{k}^{(m)}-a_{k}^{(n)}\right|<\varepsilon$ if $m>N$ and $n>N$, that is, $\left\{a_{k}^{(n)} ; n=1,2, \ldots\right\}$ is a Cauchy sequence. Thus the limit $\lim _{n \rightarrow \infty} a_{k}^{(n)}=a_{k}$ exists for each $k=$ $0, \pm 1, \pm 2, \ldots$. Now for any fixed K we have

$$
\sum_{k=-K}^{K}\left|a_{k}^{(m)}-a_{k}^{(n)}\right|<\varepsilon
$$

if $m>N$ and $n>N$. Let $m \rightarrow \infty$. Then we obtain

$$
\sum_{k=-K}^{K}\left|a_{k}-a_{k}^{(n)}\right| \leqq \varepsilon
$$

S-3

for $n>N$ and for any K. Let $K \rightarrow \infty$. Then we obtain

$$
k=\sum_{-\infty}^{\infty}\left|a_{k}-a_{k}^{(n)}\right| \leqq \varepsilon
$$

for $n>N$. Since $\left|a_{k}\right| \leq\left|a_{k}-a_{k}^{(n)}\right|+\left|a_{k}^{(n)}\right|$, i.t follows that

$$
\sum_{k=-\infty}^{\infty}\left|a_{k}\right| \leq \varepsilon+\sum_{k=-\infty}^{\infty}\left|a_{k}^{(n)}\right|<\infty .
$$

Accordingly, if

$$
a(s)=\sum_{k=-\infty}^{\infty} a_{k} s^{k},
$$

then $a(s) \varepsilon A$ and $\left\|a-a_{n}\right\| \leqq \varepsilon$ if $n>N$. This implies that $\lim _{n \rightarrow \infty}\left\|a-a_{n}\right\|=0$. So we can conclude that the space $\underset{m}{A}$ is complete. $\mathrm{n} \rightarrow \infty$
13.3. We observe that $\Phi(s)=E\left\{e^{-S n}\right\}$ where η has the density function $f(x)=e^{-|x|} / 2$ for $-\infty<x<\infty$. Thus $\Phi(s) \varepsilon \underset{m}{R}$ and

$$
\Phi^{+}(s)=\underset{\sim}{E}\left\{e^{-s \eta^{+}}\right\}=\frac{1}{2}+\frac{1}{2} \int_{0}^{\infty} e^{-s x-x} d \dot{x}=\frac{1}{2}\left(1+\frac{1}{1+s}\right)
$$

for $\operatorname{Re}(s)>-1$.

In this case we can also apply (5.8) with $0<\varepsilon<1$ to obtain

$$
\Phi^{+}(s)=\frac{s}{2 \pi i} \int_{C_{\varepsilon}^{+}} \frac{\Phi(z)}{z(s-z)} d z=\frac{s}{2 \pi i} \int_{C_{\varepsilon}^{+}} \frac{d z}{z(s-z)\left(1-z^{2}\right)}
$$

for $\operatorname{Re}(s)>\varepsilon>0$. In the right half-plane $\operatorname{Re}(z)>0$, the integrand
$s-4$
has two poles $z=s$ and $z=1$, and by Cauchy's theorem of residues (see e.g. W. Osgood [23 p. 162.]) we obtain that

$$
\Phi^{+}(s)=\frac{1}{1-s^{2}}-\frac{s}{2(1-s)}=\frac{1}{2}\left(1+\frac{1}{1+s}\right)
$$

for $\operatorname{Re}(s)>0$.

If we apply formula (5.1), then we obtain that

$$
\begin{aligned}
\Phi^{+}(s) & =\frac{1}{2}+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi i} \int_{L_{\varepsilon}} \frac{d z}{z(s-z)\left(1-z^{2}\right)}= \\
& =\frac{1}{2}+\lim _{\varepsilon \rightarrow 0} \frac{s}{\pi} \int_{\varepsilon}^{\infty} \frac{d y}{\left(1+y^{2}\right)\left(s^{2}+y^{2}\right)}= \\
& =\frac{1}{2}+\frac{s}{\pi\left(1-s^{2}\right)} \int_{0}^{\infty}\left[-\frac{1}{s^{2}+y^{2}}-\frac{1}{1+y^{2}}\right] d y= \\
& =\frac{1}{2}+\frac{s}{1-s^{2}}\left[\frac{1}{2 s}-\frac{1}{2}\right]=\frac{1}{2}\left(1+\frac{1}{1+s}\right)
\end{aligned}
$$

for $\operatorname{Re}(s)>0$.
13.4. Since $\Phi(s)=\underset{m}{E}\left\{e^{-s v_{m}}\right\}$ where

$$
\left.\underset{m^{\prime}}{P} v_{m}=m-2 j\right\}=\binom{m}{j} p^{j} q^{m-j}
$$

for $j=0,1, \ldots, m$, it follows that $\Phi(s) \varepsilon \underset{m}{R}$. If we write

$$
\Phi(s)=\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j} e^{-(m-2 j) s}
$$

and apply T^{\prime} term by term, then we obtain that

$$
\begin{aligned}
\Phi^{+}(s) & =\sum_{2 j<m}\binom{m}{j} p^{j} q^{m-j} e^{-(m-2 j) s}+\sum_{2 j \geqslant m}\binom{m}{j} p^{j} q^{m-j}= \\
& =1+\sum_{2 j<m}\binom{m}{j} p^{j} q^{m-j}\left[e^{-(m-2 j) s}-1\right]
\end{aligned}
$$

The same result can be obtained by using formula (5.1). Accordingly, if $\operatorname{Re}(s)>0$, then

$$
\begin{aligned}
\Phi^{+}(s) & =\frac{1}{2} \Phi(0)+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi i} \int_{L_{\varepsilon}} \frac{\Phi(z)}{z(s-z)} d z= \\
& =\frac{1}{2} \Phi(0)+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi i} \int_{L_{\varepsilon}}\left[\frac{\Phi(i y)}{s-i y}-\frac{\Phi(-i y)}{s+i y}\right] \frac{d y}{y}= \\
& =\frac{1}{2} \Phi(0)+\lim _{\varepsilon \rightarrow 0} \frac{s}{\pi} \int_{\varepsilon}^{\infty} \frac{s \operatorname{Im}[\Phi(i y)]+y \operatorname{Re}[\Phi(j y)]}{\left(s^{2}+y^{2}\right) y} d y .
\end{aligned}
$$

Thus we obtain that

$$
\Phi^{+}(s)=\frac{1}{2}+\frac{s}{\pi} \sum_{j=0}^{m}\left(j_{j}^{m}\right) p^{j} q^{m-j} \int_{0}^{\infty} \frac{s \sin (2 j-m) y+y \cos (2 j-m) y}{\left(s^{2}+y^{2}\right)} d y
$$

for $\operatorname{Re}(s)>0$. If we take into consideration that

$$
\int_{0}^{\infty} \frac{\cos a y}{s^{2}+y^{2}} d y=\frac{\pi e^{-a s}}{2 s} \text { and } \int_{0}^{\infty} \frac{\sin a y}{\left(s^{2}+y^{2}\right) y} d y=\frac{\pi\left(1-e^{-a s}\right)}{2 s^{2}}
$$

for $a \geqq 0$ and $\operatorname{Re}(s)>0$, then it follows that

$$
\Phi^{+}(s)=\frac{1}{2}+\sum_{2 j<m}\binom{m}{j} p^{j} q^{m-j}\left[e^{-(m-2 j) s}-\frac{1}{2}\right]+\sum_{2 j>m}^{\frac{1}{2}}+\sum_{j}^{2}\left(m_{j}^{m}\right) p^{j} q^{m-j}
$$

which is in agreement with the previous result.

S-6
13.5. Since $\Phi(s)=E\left\{e^{-s \eta}\right\}$ where

$$
P\{\eta \leqq x\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u,
$$

it follows that $\Phi(s) \varepsilon R$ and

$$
\begin{aligned}
\Phi^{+}(s) & =E\left\{e^{-s n^{+}}\right\}=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty-s x-\frac{x^{2}}{2}} d x= \\
& =\frac{1}{2}+\frac{e^{s^{2} / 2}}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{1}{2}(s+x)^{2}} d x=\frac{1}{2}+\frac{e^{s^{2} / 2}}{\sqrt{2 \pi}} \int_{s}^{\infty} e^{-u^{2} / 2} d u .
\end{aligned}
$$

If we introduce the function

$$
w(s)=\frac{e^{s^{2} / 2}}{\sqrt{2 \pi}} \int_{0}^{s} e^{-u^{2} / 2} d u
$$

for any complex s, then we can write that

$$
\Phi^{+}(s)=\frac{1+e^{s^{2} / 2}}{2}-w(s)
$$

for any complex s. We note that the function $w(\sqrt{2} i s) \sqrt{\pi} / i$ has been tabulated by K. A. Karpov [17].
13.6. Let ξ be a nonnegative random variable for which $E\left\{e^{-s \xi}\right\}=$ $\phi(s)$ if $\operatorname{Re}(s) \geqq 0$. Let $\underset{m}{P}\{\theta \leqq x\}=1-e^{-\lambda x}$ for $x \geqq 0$, and $\underset{m}{P}\{\theta \leqq x\}=0$ for $x<0$. Then

$$
E\left\{e^{-s \theta}\right\}=\frac{\lambda}{\lambda+s}
$$

$s-7$
for $\operatorname{Re}(s)>-\lambda$. If ξ and 6 are independent, then

$$
E\left\{e^{-S(\xi-\theta)}\right\}=\frac{\lambda \phi(S)}{\lambda-S}
$$

for $0 \leqq \operatorname{Re}(s)<\lambda$. Accordingly,

$$
\mathrm{T}\left\{\frac{\lambda \phi(s)}{\lambda-s}\right\}=\underset{\sim}{E}\left\{e^{-s[\xi-\theta]^{+}}\right\}
$$

for $\operatorname{Re}(s) \geq 0$.

$$
\begin{aligned}
& \text { If } x \geq 0 \text {, then } \\
& E\left\{e^{-s[\xi-\theta]^{+}} \mid \xi=x\right\}
\end{aligned}=\lambda \int_{0}^{x} e^{-s(x-u)-\lambda u} d u+\lambda \int_{x}^{\infty} e^{-\lambda u} d u=-1 . \begin{array}{ll}
\frac{\lambda e^{-s x}-s e^{-\lambda x}}{\lambda-s} \text { for } s \neq \lambda \\
& =\left\{x e^{-\lambda x}+e^{-\lambda x} \text { for } s=\lambda\right.
\end{array} .
$$

Hence

$$
\underset{\sim}{E}\left\{e^{-s[\xi-\theta]+}\right\}= \begin{cases}\frac{\lambda E\left\{e^{-S \xi}\right\}-s E\left\{e^{-\lambda \xi}\right\}}{\lambda-s} & \text { if } s \neq \lambda, \\ \lambda E\left\{\xi e^{-\lambda \xi}\right\}+\underset{\sim}{E}\left\{e^{-\lambda \xi}\right\} & \text { if } s=\lambda,\end{cases}
$$

and $\operatorname{Re}(s) \geqq 0$.

Finally,

$$
\mathbb{T}\left\{\frac{\lambda \phi(s)}{\lambda-s}\right\}= \begin{cases}\frac{\lambda \phi(s)-s \phi(\lambda)}{\lambda-s} & \text { if } s \neq \lambda \\ \phi(\lambda)-\lambda \phi^{\prime}(\lambda) & \text { if } s=\lambda,\end{cases}
$$

and $\operatorname{Re}(s) \geqq 0$. The same result can be obtained by applying formula (5.8).
13.7. Let $q=\lambda+$ it where λ and τ are real numbers. Since

$$
\int_{0}^{\infty} e^{-q x+s x} d x=\int_{0}^{\infty} e^{-\lambda x} e^{-j \cdot \tau x+s x} d x=\frac{I}{q-s}
$$

for $\operatorname{Re}(s)=0$, we can write that

$$
\frac{1}{\lambda} E\left\{-e^{-i \tau n-s(-\eta)}\right\}=\frac{1}{s-q}
$$

for $\operatorname{Re}(s)=0$ where η is a random variable with density function $f(x)=$ $\lambda e^{-\lambda x}$ for $x \geqq 0$ and $f(x)=0$ for $x<0$. This shows at once that $1 /(s-q) \varepsilon \mathrm{R}$. Thus by (5.1)
for $\operatorname{Re}(s)>0$. Since

$$
\left.\operatorname{Ti}^{T} \frac{\Phi(S)}{S-q}\right\}=-\frac{\Phi(0)}{2 q}+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi i} \int_{L_{\varepsilon}} \frac{\Phi(z)}{z(s-z)(z-q)} d z
$$

$$
\frac{1}{(s-z)(z-q)}=\frac{1}{(s-q)}\left[\frac{1}{s-z}-\frac{1}{q-z}\right]
$$

if $s \neq q$ and $z \varepsilon L_{\varepsilon}$, it follows that

$$
\begin{aligned}
& T\left\{\frac{\Phi(s)}{s-q}\right\}=-\frac{\Phi(0)}{2 q}+\frac{1}{(s-q)}\left[\Phi^{+}(s)-\frac{1}{2} \Phi(0)\right]- \\
& -\frac{S}{(s-q) q}\left[\Phi^{+}(q)-\frac{1}{2} \Phi(0)\right]=\frac{1}{(s-q)}\left[\Phi^{+}(s)-\frac{S}{q} \Phi^{+}(q)\right]
\end{aligned}
$$

for $\operatorname{Re}(s)>0$ and $s \neq q$. For $\operatorname{Re}(s) \geqq 0$ we obtain. the formula to be proved by continuity.
13.8. Let ξ be a nonnegative random variable for which $E\left\{e^{-S \xi}\right\}=$ $\phi(s)$ if $\operatorname{Re}(s) \geqq 0$. Let $P\{\theta \leqq x\}=1-e^{-\lambda x}$ for $x \geqq 0$ and $P\{\theta \leqq x\}=$ 0 for $x<0$. Then

S-9

$$
E\left\{e^{-s \theta}\right\}=\frac{\lambda}{\lambda+s}
$$

for $\operatorname{Re}(s)>-\lambda$. If ξ and θ are independent, then

$$
E\left\{e^{-s(\theta-\xi)}\right\}=\frac{\lambda \phi(-s)}{\lambda+s}
$$

for $-\lambda<\operatorname{Re}(s) \leq 0$, and

$$
\left.\operatorname{Tr} \frac{\lambda \phi(-s)}{\lambda+s}\right\}=\underset{m}{E}\left\{e^{-s[\theta-\xi]^{+}}\right\}=1-\frac{\phi(\lambda) s}{\lambda+s}
$$

for $\operatorname{Re}(s)>-\lambda$. For if $x \geqslant 0$, then

$$
\begin{aligned}
\underset{m}{E}\left\{e^{-s[\theta-\xi]^{+}} \mid \xi\right. & =x\}=\lambda \int_{0}^{x} e^{-\lambda u} d u+\lambda \int_{x}^{\infty} e^{-s(u-x)-\lambda u} d u= \\
& =1-e^{-\lambda x}+e^{-\lambda x} \frac{\lambda}{\lambda+s},
\end{aligned}
$$

and unconditionally we have

$$
\mathrm{m}^{E\left\{e^{-s[\theta-\xi]^{+}}\right\}=1-\phi(\lambda)+\phi(\lambda) \frac{\lambda}{\lambda+s}}
$$

for $\operatorname{Re}(s)>-\lambda$. The same result can also be obtained by using formula (5.9).

Note. If $\Phi(s) \varepsilon R$, and $\Phi^{+}(s)=T\{\Phi(s)\}$, then we can write that

$$
T\{\Phi(-s)\}=\Phi(-s)-\Phi^{\dagger}(-s)+\Phi(0)
$$

for $\operatorname{Re}(s)=0$. This follows from the following identity

S-10

$$
e^{-s[-x]^{+}}=e^{s x}-e^{s[x]^{+}}+1
$$

which holds for any s and real x.

Thus we can deduce the solution of Problem 13.8 from the solution of Problem 13.6 if $\operatorname{Re}(s)=0$ and by analytic continuation we can obtain the solution for $\operatorname{Re}(s) \geqslant 0$ too.
13.9. Let ξ be a nonnegative random variable for which $E\left\{e^{-s \xi}\right\}=\phi(s)$
if $\operatorname{Re}(s) \geqq 0$. Let

$$
\underset{\sim}{P\{\theta \leqq x\}}=\left\{\begin{array}{cl}
1-\sum_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} & \text { if } x \geq 0, \\
0 & \text { if } x \leq 0,
\end{array}\right.
$$

Then

$$
E\left\{e^{-s \theta}\right\}=\lambda^{m} /(\lambda+s)^{m}
$$

for $\operatorname{Re}(s)>-\lambda$.
If ξ and θ are independent, then

$$
E\left\{e^{-s(\xi-\theta)}\right\}=\lambda^{m} \phi(s) /(\lambda-s)^{m}
$$

for $0 \leqq \operatorname{Re}(s)<\lambda$, and

$$
\mathrm{T}^{\mathrm{T}}\left\{\frac{\lambda^{\mathrm{m}} \phi(s)}{(\lambda-s)^{m}}\right\}=E\left\{\mathrm{e}^{-s[\xi-\theta]^{+}}\right\}
$$

for $\operatorname{Re}(s) \geqslant 0$.

$$
\text { If } x \geq 0 \text {, then }
$$

$$
\begin{aligned}
& E\left\{e^{-s[\xi-\theta]^{+}} \mid \xi=x\right\}=\frac{\lambda^{m}}{(m-1)!} \int_{0}^{x} e^{-s(x-u)-\lambda u} u^{m-1} d u+\sum_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!}= \\
& \frac{\lambda^{m} e^{-s x}-e^{-\lambda x} \sum_{j=0}^{m-1} \frac{x^{j}}{j!}\left[\lambda^{m}(\lambda-s)^{j}-\lambda^{j}(\lambda-s)^{m}\right]}{(\lambda-s)^{m}} \\
& \begin{array}{ll}
e^{-\lambda x} \sum_{j=0}^{m} \frac{x^{j}}{j!} & \text { for } s \neq \lambda,
\end{array}
\end{aligned}
$$

Hence

$$
\min ^{E\left\{e^{-s[\xi-\theta]^{+}}\right\}} \cdot \begin{cases}\lambda^{m} \phi(s)-\sum_{j=0}^{m-1} \frac{(-I)^{j} \phi(j)}{j!}(\lambda) \\ \left.\frac{(\lambda-s)^{m}}{m}(\lambda-s)^{j}-\lambda^{j}(\lambda-s)^{m}\right] \\ \sum_{j=0}^{m} \frac{(-1)^{j} \lambda^{j} \phi_{\phi}(j)}{j!} & \text { if } s \neq \lambda, \\ & \text { if } s=\lambda,\end{cases}
$$

and $\operatorname{Re}(s) \geq 0$. The same result can be obtained by using formula (5.8).
13.10. If we use the same notation as in the solution of Problem 13.9, then we can write that

$$
\mathbb{T}^{T}\left\{\frac{\lambda^{m} \phi(-s)}{(\lambda+s)^{m}}\right\}=E\left\{e^{-s[\theta-\xi]^{+}}\right\}
$$

for $\operatorname{Re}(s) \geqq 0$. If $x \geqq 0$, then we have

$$
\begin{aligned}
& E\left\{e^{-s[\theta-\xi]^{+}} \mid \xi=x\right\}=\int_{0}^{x} e^{-\lambda u} \frac{(\lambda u)^{m-1}}{(m-1)!} \lambda d u+\int_{x}^{\infty} e^{-s(u-x)-\lambda u} \frac{(\lambda u)^{m-1}}{(m-1)!} \lambda d u \\
& \quad=1-\sum_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!}+\sum_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!}\left(\frac{\lambda}{\lambda+s}\right)^{m-j} .
\end{aligned}
$$

Hence it follows that

$$
T\left\{\frac{\lambda^{m} \phi(-s)}{(\lambda+s)^{m}}\right\}=I-\sum_{j=0}^{m-1} \frac{(-1)^{j} \lambda_{\lambda^{j}}(j)}{j!}(\lambda)\left[1-\left(\frac{\lambda}{\lambda+s}\right)^{m-j}\right]
$$

for $\operatorname{Re}(s) \geqq 0$.
13.11. In this case we can write that

$$
\gamma(s)=\frac{\pi_{m-1}(s)}{\underset{\substack{m}}{j=1}\left(s+\alpha_{j}\right)}
$$

for $\operatorname{Re}(s) \geq 0$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leq m-1$. Since $|\gamma(s)| \leq 1$ for $\operatorname{Re}(s) \geq 0$, it follows that $\operatorname{Re}\left(\alpha_{j}\right)>0$ for $j=1,2, \ldots, m$. By formula (5.8) we have
for $\operatorname{Re}(s)>\varepsilon>0$ where ε is a sufficiently small positive number. In the right half-plane $\operatorname{Re}(z)>0$, the integrand has poles $z=s$ and $z=\alpha_{j} \quad(j=1,2, \ldots, m)$. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are distinct and, $s \neq \alpha_{j}$ $(\mathrm{j}=1,2, \ldots, \mathrm{~m})$, then by Cauchy's theorem of residues we obtain that

$$
T\{\phi(s) \gamma(-s)\}=\phi(s) \gamma(-s)+\sum_{j=1}^{m} \frac{s \phi\left(\alpha_{j}\right) \pi_{m-1}\left(-\alpha_{j}\right)}{\left(s-\alpha_{j}\right) \alpha_{j}} \frac{1}{\prod_{i \neq j}\left(\alpha_{j}-\alpha_{i}\right)}
$$

for $\operatorname{Re}(s) \geqq 0$ and $s \neq \alpha_{j}(j=1,2, \ldots, i n)$.

If the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are not distinct, then we can also apply Cauchy's theorem of residues to obtain $T\{\phi(s) \gamma(-s)\}$.
13.12. As in the solution of Problem 13.11 we can write that

$$
\gamma(s)=\frac{\pi_{m-1}(s)}{\prod_{j=1}^{m}\left(s+\alpha_{j}\right)}
$$

for $\operatorname{Re}(s) \geqq 0$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leq m-1$ and $\operatorname{Re}\left(\alpha_{j}\right)>0$ for $j=1,2, \ldots, m$.

- By (5.1) we have

$$
T\{\Phi(s) \gamma(-s)\}=\frac{\Phi(0) \gamma(0)}{2}+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi_{i}} \int_{L_{\varepsilon}} \frac{\Phi(z) \pi_{m-1}(-z)}{z(s-z)\left(\alpha_{1}-z\right) \ldots\left(\alpha_{m}-z\right)} d z
$$

for $\operatorname{Re}(s)>0$. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are distinct and if we use partial fraction expansion in the irtegrand and apply (5.1) repeatedly, then we obtain that

$$
\begin{gathered}
\underset{m}{T}\{\Phi(s) \gamma(-s)\}=\Phi^{+}(s) \gamma(-s)+\sum_{j=1}^{m} \frac{s \Phi^{+}\left(\alpha_{j}\right) \pi_{m-1}\left(-\alpha_{j}\right)}{\left(s-\alpha_{j}\right) \alpha_{j}} \frac{1}{\prod_{i \neq j}\left(\alpha_{j}-\alpha_{i}\right)} \\
\text { for } \operatorname{Re}(s) \geqq 0 \text { and } s \neq \alpha_{j} \quad(j=1,2, \ldots, m) \text { where } \Phi^{+}(s)=T\{\Phi(s)\} \text {. }
\end{gathered}
$$

In general we can write that

$$
T\left\{\Phi(s)_{\gamma}(-s)\right\}=\Phi^{+}(s)_{\gamma}(-s)+\frac{s G_{m-1}(s)}{\left(s-\alpha_{1}\right)\left(s-\alpha_{2}\right) \cdots\left(s-\alpha_{m}\right)}
$$

for $\operatorname{Re}(s) \geqq 0$ and $s \neq a_{j} \quad(j=1,2, \ldots, m)$ where $G_{m-1}(s)$ is a polynomial of degree $\leqq m m-l$. The polynomial $G_{m-1}(s)$ is uniquely determined by the requirement that

$$
z G_{m-1}(z)-\Phi^{+}(z) \pi_{m-1}(-z)=0
$$

whenever $z=\alpha_{j}(j=1,2, \ldots, m)$ and if the number α_{j} occurs r times among $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, then $z=\alpha_{j}$ is a root of multiplicity r of the above equation.
13.13. As in the solution of Problem 13.11 we can write that

$$
\gamma(s)=\frac{\pi_{m-1}(s)}{\prod_{j=1}^{m}\left(s+\alpha_{j}\right)}
$$

for. $\operatorname{Re}(s) \geqq 0$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leq m-1$ and $\operatorname{Re}\left(\alpha_{j}\right)>0$ for $j=1,2, \ldots, m$.

By (5.9) we have

$$
T\{\gamma(s) \phi(-s)\}=1+\frac{s}{2 \pi i} \int_{C_{\varepsilon}^{-}} \frac{\gamma(z) \phi(-z)}{z(s-z)} d z
$$

for $\operatorname{Re}(s) \geqq 0$ where ε is a sufficiently small positive number. In the left half-plane $\operatorname{Re}(z)<0$, the integrand has poles $z=-\alpha_{j}$ for $j=1,2, \ldots, m$. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are distinct, then by Cauchy's theorem of residues we obtain that

$$
\operatorname{T}\{\gamma(s) \phi(-s)\}=1-\sum_{j=1}^{m} \frac{s \phi\left(\alpha_{j}\right) \pi_{m-l}\left(-\alpha_{j}\right)}{\alpha_{j}\left(s+\alpha_{j}\right)} \frac{1}{\prod_{i \neq j}\left(\alpha_{j}-\alpha_{i}\right)}
$$

S-15
for $\cdot \operatorname{Re}(s) \geqq 0$.

If the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are not distinct, then we can also apply Cauchy's theorem of residues to obtain $T\{\gamma(s) \phi(-s)\}$.
13.14. Let $P\{v=j\}=p q^{j}$ for $j=0,1,2, \ldots$. Then $E\left\{S^{\nu}\right\}=$ $p /(l-q s)$ for $|s|<I / q$. If ξ and v are independent, then

$$
E\left\{s^{\xi-v}\right\}=\frac{p s g(s)}{s-q}
$$

for $q<|s| \leqq 1$. Accordingly, we have

$$
\left.\operatorname{II}\left\{\frac{p s g(s)}{s-q}\right\}=\operatorname{Eq}_{m}^{[s-\nu]^{+}}\right\}
$$

for $|s| \leqq 1$. If $k=0,1,2, \ldots$, then

$$
\begin{aligned}
& \operatorname{ma}^{\left[s^{[\xi-v]^{+}} \mid \xi=k\right\}=p \sum_{j=0}^{k} q^{j} s^{k-j}+q^{k+1}=} \\
&= \begin{cases}\frac{p s^{k+1}-(1-s) q^{k+1}}{s-q} & \text { for } \\
& s \neq q \\
(1+k p) q^{k} & \text { for } s=q .\end{cases}
\end{aligned}
$$

If we multiply the above equation by $\underset{\sim}{P}\{\xi=k\}$ and add for $k=0,1,2, \ldots$, then we obtain that

$$
\pi\left\{\frac{p s g(s)}{s-q}\right\}= \begin{cases}\frac{p s g(s)-(1-s) q g(s)}{s-q} & \text { if } s \neq q, \\ g(q)+p q g^{\prime}(q) & \text { if } s=q,\end{cases}
$$

and $|s| \leq 1$. The same result can be obtained by using (11.1.0).
13.15. If we use the same not ation as in the solution of Problem 13.14, then we can write that

$$
\mathrm{E}_{\mathrm{m}}\left\{\mathrm{~s}^{v-\xi}\right\}=\frac{\mathrm{p} g(1 / s)}{1-q s}
$$

for $I \leq|s|<l / q$. Accordingly, we have

$$
\mathbb{M}\left\{\frac{\mathrm{pg}(1 / \mathrm{s})}{1-q s}\right\}=\mathrm{E}\left\{\mathrm{~s}^{[v-\xi]^{+}}\right\}=I-\frac{\mathrm{q} g(q)(1-s)}{1-q s}
$$

for $|s|<1 / q$. For

$$
\begin{aligned}
E\left\{s^{[v-\xi]^{+}} \mid \xi\right. & =k\}=p \sum_{j=0}^{k} q^{j}+p \sum_{j=k+1}^{\infty} q^{j} s^{j-k}= \\
& =1-q^{k+1}+\frac{p q^{k+1} s}{1-q s}
\end{aligned}
$$

wherever $k=0,1,2, \ldots$ and $|s|<1 / q$. If we multiply this equation by $P\{\xi=k\}$ and add for $k=0,1,2, \ldots$, then we obtain the above formula. The same result can also be obtained by using formula (11.12).

Note. If $a(s) \varepsilon A$ and $a^{+}(s)=\Pi\{a(s)\}$, then we can write that

$$
\mathbb{m}\left\{a\left(\frac{1}{S}\right)\right\}=a\left(\frac{1}{S}\right)-a^{+}\left(\frac{1}{S}\right)+a(1)
$$

for $|s|=1$. This follows easily from the following identity

$$
s^{[-k]^{+}}=s^{-k}-s^{-[k]^{+}}+1
$$

which holds for any s and $k=0, \pm 1, \pm 2, \ldots$.

Thus we can deduce the solution of Problem 13.15 from the solution of Problem 13.14 if $|s|=1$ and by analytic contjnuation we can obtain the solution for $|s| \leqq 1$ too.
13.16. Let

$$
\underset{m}{P}\{v=j\}=\binom{m+j-1}{m-1} p^{m} q^{j}
$$

for $j=0,1,2, \ldots$. Then $E\left\{s^{\nu}\right\}=p^{m} /(1-q s)^{m}$ for $|s|<1 / q$. If. ξ and ν are independent random variables, then

$$
E\left\{s^{\xi-v}\right\}=\frac{p^{m} s^{m} g(s)}{(s-q)^{m}}
$$

for $q<|s| \leqq 1$ and

$$
\pi\left\{\frac{p^{m} s^{m} g(s)}{(s-q)^{m}}\right\}=E\left\{s^{[\xi-v]^{+}}\right\}
$$

for $|s| \leqq 1$. If $k=0,1,2, \ldots$, then

$$
E\left\{s^{[\xi-v]^{+}} \mid \xi=k\right\}=p^{m} \sum_{j=0}^{k}\binom{m+j-1}{m-1} q^{j} s^{k-j}+1-p^{m} \sum_{j=0}^{k}\binom{m+j-]}{m-1} q^{i}=
$$

$$
= \begin{cases}\frac{p^{m} s^{m+k}-\sum_{j=0}^{m-1}\left(\begin{array}{c}
m+k \\
j
\end{array} q^{m+k-j}\left[p^{m}(s-q)^{j}-p^{j}(s-q)^{m}\right]\right.}{(s-q)^{m}} & \text { for } s \neq q, \\
\sum_{j=0}^{m}\binom{m+k}{j} p^{j} q^{m+k-j} & \text { for } s=q .\end{cases}
$$

If we multiply this equation by $\mathrm{P}\{\xi=\mathrm{k}\}$ and add for $k=0,1,2, \ldots$, then we obtain that
$m^{m\left\{\frac{p^{m} m^{m} g(s)}{(s-q)^{m}}\right\}}=\left\{\begin{array}{l}\frac{p^{m} s^{m} g(s)}{(s-q)^{m}}-\sum_{j=0}^{m-1} \frac{1}{j!}\left(\frac{d^{j} q^{m} g(q)}{d q^{j}}\right)\left[\frac{p^{m}(s-q)^{j}-p^{j}(s-q)^{m}}{(s-q)^{m}}\right] \text { for } s \neq q: \\ \sum_{j=0}^{m} \frac{p^{j}}{j!}\left(\frac{d^{j} q^{m} g(q)}{d q^{j}}\right) \quad \text { for } s=q,\end{array}\right.$

S-18
and $|s| \leqq 1$.
Note. In the above proof we used the following identity

$$
\sum_{j=0}^{k}\binom{a+j}{b} q^{j} s^{k-j}=\frac{s^{k+1} \sum_{j=0}^{b}\binom{a}{j}(s-q)^{j} q^{b-j}-q^{k+1} \sum_{j=0}^{b}\binom{a+k+1}{j}(s-q)^{j} q^{b-j}}{(s-q)^{b+1}}
$$

which holds if $s \neq q$ and a and b are nonnegative integers. This follows from the relation

$$
\frac{1}{b!} \frac{d^{b}}{d z^{b}}\left(z^{a} \sum_{j=0}^{k}(q z)^{j} s^{k-j}\right)_{z=1}=\frac{1}{b!} \frac{d^{b}}{d z^{b}}\left(z^{a} \frac{s^{k+1}-(q z)^{k+1}}{s-q z}\right)_{z=1}
$$

13.17. If we use the same notation as in the solution of Problem 13.16, then we can write that

$$
E\left\{s^{v-\xi}\right\}=p^{m} g(1 / s) /(1-q s)^{m}
$$

for $1 \leqq|s| \leq 1 / q$ and .

$$
\operatorname{In}_{m}\left\{\frac{\mathrm{p}^{\mathrm{m}} \mathrm{~g}(1 / \mathrm{s})}{(1-\mathrm{qs})^{m}}\right\}=\mathrm{E}_{\mathrm{m}}\left[\mathrm{~s}^{[v-\xi]^{+}}\right\}
$$

for $|s| \leqq 1$. If $k=0,1,2, \ldots$, then

$$
\begin{aligned}
&\left.E^{E\{s} s^{[v-\xi]^{+}} \mid \xi=k\right\}:=p^{m} \sum_{j=0}^{k}\left(\frac{m+j-1}{m-1}\right) q^{j}+q^{m} \sum_{j=k+1}^{\infty}\left(\left(_{m-1}^{m+j-1}\right) q^{j} s^{j-k}=\right. \\
&=1-\sum_{j=0}^{m-1}\left({ }^{m+k}\right) p^{j} q^{m+k-j}+\sum_{j=0}^{m-1}\left(\left(_{j}^{m+k}\right) p^{j} q^{m+k-j}\left(\frac{p s}{1-q s}\right)^{m-j}\right.
\end{aligned}
$$

for $|s|<I / q$ and hence it follows that

$$
\pi\left[\frac{p^{m} g(1 / s)}{(1-q s)^{m}}\right\}=1-\sum_{j=0}^{m-1} \frac{p^{j}}{j!}\left(\frac{d^{j} q^{m} g(q)}{d q^{j}}\right)\left[1-\left(\frac{q s}{1-q s}\right)^{m-j}\right]
$$

for $|s|<1 / q$. The sane result can also be obtained by using formula (11.12).

Note. in the above proof we used the relations

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\binom{m-j-1-1}{m-1} q^{j} s^{j}=\frac{1}{(1-q s)^{m}}, \\
& \sum_{j=0}^{k}\binom{m-j-1}{m-1} q^{j} s^{j}=\frac{1}{(1-q s)^{m}}-\sum_{j=0}^{m-1}\binom{m+k}{j} \frac{(q s)^{m+k-j}}{(1-q s)^{m-j}}
\end{aligned}
$$

and

$$
\sum_{j=k+1}^{\infty}\left(\frac{m-j-1}{m-1}\right) q^{j} s^{j}=\sum_{j=0}^{m-1}\binom{m+k}{j} \frac{(q s)^{m+k-j}}{(1-q s)^{m-j}}
$$

which hold for $|s|<1 / q$.
13.18. We can write that

$$
b(s)=\frac{m_{m-1}(s)}{\prod_{j=1}^{m}\left(I-\beta_{j} s\right)}
$$

for $|s| \leqq 1$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leqq m-1$. Since $|b(s)| \leq 1$ for $|s| \leqq 1$, it follows that $\left|\beta_{j}\right| \leq 1$ for $j=1,2, \ldots, m$. By formula (11.10) we have

$$
\Pi\left\{a(\mathrm{~s}) b\left(\frac{1}{s}\right)\right\}=\frac{1-\mathrm{s}}{2 \pi \mathrm{i}} \int_{\mathrm{C}_{\varepsilon}^{+}} \frac{\mathrm{g}(\mathrm{z}) \mathrm{b}\left(\frac{1}{2}\right)}{(1-z)(\mathrm{s}-\mathrm{z})} d z
$$

for $|s|<l-\varepsilon$ where ε is a sufficiently small positive number. In the unit circle $|z|<l$ the integrand has poles at $z=s$ and $z=\beta_{j}$ for $j=1,2, \ldots, m$. If $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are distinct and $s \neq \beta_{j}(j=1,2, \ldots, m)$, then by Chaucy's theorem of residues we obtain that

$$
\prod_{N}\left\{a(s) b\left(\frac{l}{s}\right)\right\}=a(s) b\left(\frac{l}{s}\right)-\sum_{j=1}^{m} \frac{(1-s) \beta_{j}^{m} a\left(\beta_{j}\right) \pi_{m-1}\left(1 / \beta_{j}\right)}{\left(1-\beta_{j}\right)\left(s-\beta_{j}\right)}-\frac{1}{\prod_{i \neq j}\left(\beta_{j}-\beta_{i}\right)}
$$

for $|s| \leqq 1$ and $s \neq \beta_{j}(j=1,2, \ldots, m)$. If $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are not, distinct, then we car obtain $\pi\left\{a(s) b\left(\frac{1}{s}\right)\right\}$ in a similar way .
13.19. As in the solution of Problem 13.18 we can write that

$$
b(s)=\frac{\pi_{m-1}(s)}{\prod_{j=1}^{m}\left(1-\beta_{j} s\right)}
$$

for $|s| \leq 1$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leq m-1$ and $\left|\beta_{j}\right|<1$ for $j=1,2, \ldots, m$. By (11.12) we have

$$
\pi\left\{a\left(\frac{1}{S}\right) b(s)\right\}=1+\frac{1-s}{2 \pi i} \int_{C_{\varepsilon}^{-}} \frac{a\left(\frac{1}{z}\right) b(z)}{(1-z)(s-z)} d z
$$

for $|s| \leqq l$ where ε is a sufficiently small positive number. In the domain $|z|>1$ the integrand has poles at $z=1 / \beta_{j}$ for $j=1,2, \ldots, m$. If $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are distinct, then by Cauchy's theorem of residues we obtain that

S-21

$$
\prod_{m}\left\{a\left(\frac{1}{S}\right) b(s)\right\}=1-\sum_{j=1}^{m} \frac{(1-s) \beta_{j}^{m} a\left(\beta_{j}\right) \pi_{m-1}\left(1 / \beta_{j}\right)}{\left(1-\beta_{j}\right)\left(1-s \beta_{j}\right)} \frac{1}{\prod_{i \neq j}\left(\beta_{j}-\beta_{i}\right)}
$$

for $|s| \leq 1$. If $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are not distinct, then we can obtain $\Pi\left\{a\left(\frac{1}{s}\right) b(s)\right\}$ in a similar way.
13.20. Let $\left\{v_{n}\right\}$ be a sequence of mutually independent random variables for which $P\left\{\nu_{n}=j\right\}=h_{j}$ for $j=0,1,2, \ldots$ and $n=1,2, \ldots$. Define a sequence of random variables $\xi_{n}(n=0,1,2, \ldots)$ by the recurrence formula

$$
\xi_{n}=\left[\xi_{n-1}+1-v_{n}\right]^{+}
$$

where $n=1,2, \ldots$ and ξ_{0} is a random variable which takes on only nonnegative integers and which is independent of $\left\{\nu_{n}\right\}$. It can easily be seen that $\left\{\xi_{n}\right\}$ is a homogeneous Markov chain with state space $I=\{0,1,2, \ldots\}$ and transition probability matrix. π. Accordingly, we can use the aforementioned representation of $\left\{\xi_{n}\right\}$ in finding the distribution of ξ_{n} for $n=1,2, \ldots$. Iet us introduce the notation

$$
U_{n}(s)=E\left\{s^{\xi} n^{\xi}\right\}
$$

for $n=0,1,2, \ldots$ and $|s| \leqq 1$ and

$$
h(s)=\sum_{j=0}^{\infty} h_{j} s^{j}
$$

for $|s| \leq 1$. Then we can write that

$$
U_{n}(s)=\prod_{m}\left\{U_{n-1}(s) \operatorname{sh}\left(\frac{1}{s}\right)\right\}
$$

for $n=1,2, \ldots$. By Theorem 10.1 we obtain that

S-22

$$
\sum_{n=0}^{\infty} U_{n}(s)_{\rho}^{n}=e^{-\Pi\left\{\log \left[1-\rho \operatorname{sh}\left(\frac{1}{s}\right)\right]\right\}} m_{m} \tilde{U}_{0}(s) \frac{\left.e^{\frac{\rho^{m}\left\{\log \left[1-\rho \operatorname{sh}\left(\frac{1}{s}\right)\right]\right\}}{1-\rho \operatorname{sh}\left(\frac{1}{s}\right)}}\right\}}{1}
$$

for $|s| \leqq 1$ and $|\rho|<1$. If, in particular, $\mathrm{P}_{\mathrm{m}}\left\{\xi_{0}=0\right\}=1$, that is, $\mathrm{U}_{0}(\mathrm{~s}) \equiv 1$, then

$$
\sum_{n=0}^{\infty} U_{n}(s) \rho^{n}=e^{-m\left\{\log \left[1-\rho \operatorname{sh}\left(\frac{1}{s}\right)\right]\right\}}
$$

for $|s| \leq 1$ and $|\rho|<1$.

We observe that if $|\rho|<1$, then the equation

$$
\rho h(z)=z
$$

has exactly one root $z=\delta(\rho)$ in the unit circle $|z|<1$. If we use the notation $N_{n}=v_{1}+v_{2}+\ldots+v_{n}$ for $n=1,2, \ldots$, and $N_{0}=0$, then by Lagrange's expansion we obtain that

$$
[\delta(\rho)]^{k}=\sum_{n=k}^{\infty} \frac{k}{n} p_{m}\left[N_{n}=n-k\right\} \rho^{n}
$$

for $k=1,2, \ldots$ and $|\rho|<1$.

Thus by (12.2) we can write that

$$
1-\rho \operatorname{sh}\left(\frac{1}{s}\right)=g^{+}(s, \rho) g^{--}(s, \rho)
$$

for $|s|=1$ and $|\rho|<I$ where

$$
g^{+}(s, p)=1-s \delta(p)
$$

S-23
for $|s| \leqq 1$ and

$$
g^{-}(s, \rho)=\frac{1-\rho \operatorname{sh}\left(\frac{1}{s}\right)}{1-s \delta(\rho)}
$$

for $|s| \geqq 1$. Hence by (12.13) we have

$$
\sum_{n=0}^{\infty} U_{n}(s)_{\rho}{ }^{n}=\frac{1}{1-s \delta(\rho)} \pi\left\{\frac{U_{0}(s)[1-s \delta(\rho)]}{1-\rho \operatorname{sh}\left(\frac{1}{s}\right)}\right\}
$$

for $|s| \leq 1$ and $|\rho|<1$. If, in particular, $P_{m}\left\{\xi_{0}=0\right\}=1$, then by (12.14) we have

$$
(I-\rho) \sum_{n=0}^{\infty} U_{n}(s)_{\rho}{ }^{n}=\frac{I-\delta(\rho)}{I-s \delta(\rho)}
$$

for $|s| \leqq 1$ and $|\rho|<1$, that is,

$$
\text { (1- }) \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P\left\{\xi_{n}=k \mid \xi_{0}=0\right\} s^{k}{ }_{\rho} n=\frac{1-\delta(\rho)}{1-s \delta(\rho)} \text {. }
$$

Hence

$$
\text { (1- }) \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P\left\{\xi_{n} \geq k \mid \xi_{0}=0\right\} s_{\rho}{ }^{k} n=\frac{1}{1-s \delta(\rho)}
$$

and

$$
\text { (1-p) } \sum_{n=0}^{\infty} P\left\{\xi_{n} \geqq k \mid \xi_{0}=0\right\} \rho^{n}=[\delta(\rho)]^{k}
$$

for $k=0,1,2, \ldots$ and $|\rho|<1$. From this formula we can conclude that if $k=1,2, \ldots$, then

$$
\underset{m}{P}\left\{\xi_{n} \geqq k \mid \xi_{0}=0\right\}=\sum_{j=k}^{n} \frac{k}{j} \underset{m}{P}\left\{N_{j}=j-k\right\}
$$

for $n=k, k+1, \ldots$.

$$
\begin{aligned}
& \text { If } P_{m}\left\{\xi_{0}=i\right\}=1 \text { where } i=0,1,2, \ldots \text {, then } \\
& {[1-s \delta(\rho)] \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P\left\{\xi_{n}=k \mid \xi_{0}=i\right\} s^{k} n=\pi\left\{\frac{s^{i}[1-s \delta(\rho)]}{1-\rho \operatorname{sh}\left(\frac{1}{s}\right)}\right\}}
\end{aligned}
$$

for $|s| \leq 1$ and $|\rho|<I$. If we multiply this equation by w^{i} and add for $i=0,1,2, \ldots$, then we obtain that

$$
\left.[1-s \delta(\rho)] \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} P\left\{\xi_{n}=k \mid \xi_{0}=i\right\} s^{k}{ }_{\rho} n_{w}{ }^{1}=\frac{\pi i}{m} \frac{1-s \delta(\rho)}{(1-s w)\left[1-\rho \operatorname{sh}\left(\frac{1}{s}\right)\right]}\right\}
$$

for $|s| \leq 1,|\rho|<1$ and $|w|<1$. Hence it follows that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} 0 & \sum_{i=0}^{\infty} P\left\{\xi_{n} \geq k \mid \xi_{0}=i\right\} s^{k}{ }_{\rho}{ }_{w} i=\frac{1}{(1-s)(1-\rho)(1-w)}- \\
& -\frac{s}{(1-s)[1-s \delta(\rho)]} M_{m}\left\{\frac{1-s \delta(\rho)}{(1-s w)\left[1-\rho \operatorname{sh}\left(\frac{1}{s}\right)\right]}\right\}
\end{aligned}
$$

for $|s| \leqq 1,|\rho|<1$ and $|w|<1$. By (11.10) we can prove that

$$
m\left\{\frac{1-s \delta(\rho)}{(1-s w)\left[1-\rho \operatorname{sh}\left(\frac{1}{S}\right)\right]}\right\}=\frac{1-\delta(\rho)}{(1-w)(1-\rho)}+\frac{w(1-s)[w-\delta(\rho)]}{(1-w)(1-w S)[w-\rho h(w)]}
$$

The above formulas make it possible to find $P\left\{\xi_{n} \geq k \mid \xi_{0}=i\right\}$ expicicity. If $k=1,2, \ldots$ and $i=0,1, \ldots$, then we have

$$
\left.\left.\underset{m}{P\left\{\xi_{n}\right.} \geqq k \mid \xi_{0}=i\right\}=\operatorname{m}_{m}^{P} N_{n} \leqq n+i-k\right\}+\sum_{j=k^{n}}^{n} P\left\{N_{j}=j-k\right\} P\left\{N_{n-j}>n+i-j\right\}
$$

for $n=1,2, \ldots$.

If $h_{0}>0$ and $h_{0}+h_{1}<1$, then $\left\{\xi_{n}\right\}$ is an irreducible and aperiodic Markov chain with state space $I=\{0,1,2, \ldots\}$. Thus $\lim _{n \rightarrow-\infty} \underset{\sim}{P}\left\{\xi_{n}=k\right\}=P_{k}$ exists for $k=0,1,2, \ldots$ and is independent of the initial distribution. There are two possibilities: either $P_{k}>0$ for $k=0,1,2, \ldots$ and $\sum_{k=0} P_{k}=1$, or $P_{k}=0$ for $k=0,1,2, \ldots$. In finding $\left\{P_{k}\right\}$ we may assume without loss of generality that $\underset{m}{P}\left\{\xi_{0}=0\right\}=1$. Then by Abel's theorem we obtain that,

$$
\sum_{k=0}^{\infty} P_{k} s^{k}=\lim _{\rho \rightarrow+1}(1-\rho) \sum_{n=0}^{\infty} U_{n}(s)_{\rho}^{n}=\frac{1-\delta}{1-s \delta}
$$

where $\delta=\lim _{\rho \rightarrow+1} \delta(\rho)$. Accordingly, $P_{k}=(1-\delta) \delta^{k}$ for $k=0,1,2, \ldots$. We can easily prove that $\delta=0$ if $\alpha \leq 1$, whereas $0<\delta<1$ if $\alpha>1$. CHAPTER II
21.1. Denote by $\tau_{k}=\rho_{1}+\rho_{2}+\ldots+\rho_{k}(k=1,2, \ldots)$ the k-th ladder index for $k=1,2, \ldots$ and let $\tau_{0}=0$. Then $\rho_{1}, \rho_{2}, \ldots, \rho_{k}, \ldots$ are mutually independent and identically distributed random variables. Since $\underset{m}{P}\left\{\zeta_{n}>0\right\}=1 / 2$ for $n=1,2, \ldots$, by Theorem 19.3 we obtain that

$$
E_{n}\left\{z^{\rho_{k}}\right\}=\pi(z)=1-e^{-\frac{1}{2} \sum_{n=1}^{\infty} \frac{z^{n}}{n}}=1-\sqrt{1-z}
$$

for $|z|<1$. Hence

$$
E\left\{z^{\tau_{k}}\right\}=(1-\sqrt{1-z})^{k}=\sum_{j=k}^{\infty} \frac{k}{2 j-k}\binom{2 j-k}{j} \frac{z^{j}}{2^{2 j-k}}
$$

for $|z|<1$, and consequently

$$
P\left\{\tau_{k}=j\right\}=\frac{k}{2 j-k}(\underset{j}{2 j-k}) \frac{1}{2^{2 j-k}}=\left[\binom{2 j-k-1}{j-1}-\left({ }_{j}^{2 j-k-1}\right)\right] \frac{1}{2^{2 j-k}}
$$

for $l \leqq k \leqq j$.

Obviously we have

$$
\underset{\sim}{P}\left\{v_{n} \geq k\right\}=P\left\{\tau_{k} \leqq n\right\}
$$

for $k=0,1,2, \ldots$ and $n=1,2, \ldots$. This implies that

$$
\sim_{m}^{P}\left\{v_{n}=k\right\}=\underset{m}{P}\left\{\tau_{k} \leqq n\right\}-P\left\{\tau_{k+1} \leqq n\right\}=\binom{2 n-k}{n} \frac{1}{2^{2 n-k}}
$$

for $\quad 0 \leqq k \leqq n$.
Note. The power series expansion of $[\pi(z)]^{k}$ can be proved either by mathematical induction if we take into consideration that

$$
[\pi(z)]^{k}=2[\pi(z)]^{k-1}-z[\pi(z)]^{k-2}
$$

for $k=2,3, \ldots$, or by Lagrange's expansion if we take into consideration that $w=\pi(z)$ is the only root of $w^{2}-2 w+z=0$ in the unit circle $|w|<1$ whenever $|z|<1$. The Lagrange's expansion of $[\pi(z)]^{k}$ is as follows:

$$
[\pi(z)]^{k}=\frac{z^{k}}{2^{k}}+\sum_{n=1}^{\infty} \frac{k!}{2^{n} n!}\left(\frac{d^{n-1} a^{k-1} a^{2 n}}{d a^{n-1}}\right) a=z / 2
$$

for $|z|<1$.
21.2. In this case the sequence $\left\{\zeta_{n} ; n=0,1,2, \ldots\right\}$ describes the path of a one-dimensional random walk on the x-axis and $\tau_{k}=k+2 m$ ($m=0,1, \ldots$) if and only if the particle reaches the point $x=k$ for the first time at the $(k+2 m)$-th step. By Lerma 20.3 we have

$$
\begin{aligned}
\underset{\sim}{P}\left\{\tau_{k}\right. & =k+2 m\}=\left[\binom{k+2 m-1}{m}-\binom{k+2 m-1}{m-1}\right] p^{k+m} q^{m}= \\
& =\frac{k}{k+2 m}\binom{k+2 m}{m} p^{k+m} q^{m}
\end{aligned}
$$

for $k=1,2, \ldots$ and $m=0,1,2, \ldots$. The same result can also be obtained by using the reflection principle. See formula (36.49).

We note that by the solution of Problem 21.1 we can write that

$$
E\left\{z^{\tau} k\right\}=z_{m=0}^{k^{k}} \sum_{m+2 m} \frac{k p^{k}}{k+2 m}(\underset{m}{k+2 m})\left(p q z^{2}\right)^{m}=\left[\frac{1-\sqrt{1-4 p q z^{2}}}{2 q z}\right]^{k}
$$

for $k=1,2, \ldots$ and $|z|<1$. This formula can be proved directly as follows. Since

$$
\underset{m}{P}\left\{\mathrm{~T}_{1}=2 m+1\right\}=\frac{p}{2 m+1}\binom{2 m+1}{m}(p q)^{m}=\frac{p}{m+1}\binom{2 m}{m}(p q)^{m}=(-1)^{m} 2 p\left(\frac{1}{2}\left(\frac{1}{2}+1\right)(4 p q)^{m}\right.
$$

for $m=0,1,2, \ldots$, therefore

$$
E\left\{z^{\tau} I_{\}}=2 p z \sum_{m=0}^{\infty}\left(\sum_{m+1}^{\frac{1}{2}}\right)\left(-4 p q z^{2}\right)^{m}=2 p \frac{1-\sqrt{1-4 p q z^{2}}}{4 p q z}\right.
$$

for $|z|<1$, and the relation $\underset{m}{E\{ } z^{\tau} k_{\}}=\left[E\left\{z^{\tau} I_{\}}\right]^{k}\right.$ proves the desired result.

Finally, we note that

$s-27 a$

$$
\left.\underset{N}{P}\left\{\tau_{k}<\infty\right\}=\lim _{z \rightarrow 1-0^{n}} E z^{\tau^{\prime} k}\right\}=\left(\frac{1-|p-q|}{2 q}\right)^{k}= \begin{cases}1 & \text { if } p \geq q, \\ (p / q)^{k} & \text { if } p<q .\end{cases}
$$

21.3. Let $u_{n}(s)=E\left\{s^{\eta_{n}}\right\}$ for $n=0,1,2, \ldots$ and $|s| \leq 1$, and $\gamma(s)=\underset{m}{E}\left\{s^{\xi_{n}}\right\}=p s+q s^{-1}$ for $s \neq 0$. We have $u_{0}(s)=1$ and

$$
u_{n}(s)=\Pi\left\{\gamma(s) u_{n-1}(s)\right\}
$$

for $n=1,2, \ldots$ and $|s| \leq 1$ where Π is defined in Section 9. If $|s|=1$ and $|z|<1$, then we can write that

$$
1-z \gamma(s)=g^{+}(s, z) g^{-}(s, z)
$$

where

$$
g^{+}(s, z)=s-\frac{1+\sqrt{1-4 p q z^{2}}}{2 p z}=s-\frac{2 q z}{1-\sqrt{1-4 p q z^{2}}}
$$

and

$$
\mathrm{g}^{-}(\mathrm{s}, \mathrm{z})=\frac{1-\sqrt{1-4 \mathrm{pqz}}{ }^{2}}{2 \mathrm{~s}}-\mathrm{pz}
$$

satisfy the conditions $\left(a_{1}\right),\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(b_{3}\right)$ in Section 12. By Theorem 12.2 we have

$$
\text { (1-z) } \sum_{n=0}^{\infty} u_{n}(s) z^{n}=\frac{g^{+}(1, z)}{g^{+}(s, z)}=\frac{1-2 q z-\sqrt{1-4 p q z^{2}}}{s-2 q z-s \sqrt{1-4 p q z^{2}}}
$$

for $|s| \leq 1$ and $|z|<1$. Hence

$$
(1-z) \sum_{n=0}^{\infty} p\left\{\eta_{n}=k\right\}_{z}^{k}=\left[\frac{1-\sqrt{1-4 p q z^{2}}}{2 q z}\right]^{k}-\left[\frac{1-\sqrt{1-4 p q z^{2}}}{2 q z}\right]^{k+1}
$$

or

$$
(1-z) \sum_{n=0}^{\infty} P\left\{\eta_{n} \geq k\right\} z^{k}=\left[\frac{1-\sqrt{1-4 p q z^{2}}}{2 q z}\right]^{k}
$$

for $k=0,1,2, \ldots$ and $|z|<1$. Hence by the solution of Problem 21.2 we get

$$
\underset{m}{P}\left\{\eta_{n} \geq k\right\}=\sum_{m=0}^{\left[\frac{n-k}{2}\right]} \frac{k}{k+2 m}\binom{k+2 m}{m} p^{k+m} q^{m}
$$

for $k=0,1,2, \ldots$.
We note that if $T_{k}(k=1,2, \ldots)$ denotes the $k-t h$ ladder index for the sequence $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n}, \ldots$ and ${ }^{T} T_{0}=0$ then we have the obvious relation $P\left\{\eta_{n} \geq k\right\}=P\left\{\tau_{k} \leq n\right\}$ for $n \geq 0$ and $k \geq 0$. Thus $P\left\{\eta_{n} \geq k\right\}$ can also be obtained immediately by the solution of Problem 21.2.
21.4. For $k=1,2, \ldots$ we can write that $\tau_{k}=\rho_{1}+\rho_{2}+\ldots+\rho_{k}$ where $\rho_{1}, \rho_{2}, \ldots, \rho_{k}, \ldots$ are mutually independent and identically distributed random variables. Since

$$
\underset{N}{P}\left\{\tau_{\mathrm{n}}>0\right\}=P\left\{\frac{\zeta_{n}}{\mathrm{n}^{1 / \alpha}}>0\right\}=P\left\{\xi_{1}>0\right\}=1-R_{\alpha}(0)=q
$$

is independent of n, by Theorem 19.3 we obtain that

$$
\operatorname{En}^{\left[z^{\rho_{k}}\right\}=\pi(z)=1-e^{-q} \sum_{n=1}^{\infty} \frac{z^{n}}{n}}=1-(1-z)^{q}
$$

for $|z|<1$. Hence we obtain that

$$
\underset{m}{P}\left\{\rho_{k}=j\right\}=(-1)^{j-1}\binom{q}{j}
$$

for $j=1,2, \ldots$. Since

$$
\underset{\sim}{E}\left\{z^{\tau} k\right\}=\left[1-(1-z)^{q}\right]^{k}=\sum_{r=0}^{k}(-1)^{r}\left(\frac{k}{r}\right)(1-z)^{r q},
$$

it follows that

$$
\left.{\underset{m}{m}}^{P} \tau_{k}=j\right\}=(-1)^{j} \sum_{r=1}^{k}(-1)^{r}\binom{k}{r}\binom{r q}{j}
$$

for $j=1,2, \ldots$. Obviously $P\left\{\tau_{k}=j\right\}=0$ for $j<k$. Accordingly,

$$
\left.{\underset{\sim}{m}}^{P} \tau_{k} \leqq n\right\}=(-1)^{n} \sum_{r=1}^{k}(-1)^{r}\binom{k}{r}\binom{r q-1}{n}=\sum_{r^{r=1}}^{k}(-1)^{r}\left(\begin{array}{l}
k
\end{array}\right)\binom{n-r q}{n}
$$

for $\quad 1 \leqq k \leqq n$.

- We note that by (42.192) we have

$$
q=\frac{1}{2}+\frac{1}{\alpha \pi} \operatorname{arc} \tan \left(\beta \tan \frac{\alpha \pi}{2}\right) .
$$

See also Problem 46.7.

$$
\begin{aligned}
& \text { 21. 5. Since } \underset{m}{P}\left\{\max _{l \leq r \leq n}\left(N_{r}-r\right)<k\right\}=0 \text { if } k<0 \text {, we can write that } \\
& \left.\underset{\sim}{\max \leq n}\left(N_{r^{0}}-r\right)\right\}=\sum_{k=1}^{\infty}\left[1-P\left\{\max _{1 \leq r \leq n}\left(N_{r}-r\right)<k\right\}\right]=
\end{aligned}
$$

and the probabilities in question can be obtained by (20.8) and (20.13). Accordingly, we have

$$
\begin{aligned}
& E\left\{\max _{O \leq K \leq n}\left(N_{r}-r\right)\right\}=E\left\{\left[N_{n}-n\right]^{+}\right\}+\sum_{j=1}^{n-1} \sum_{\ell=0}^{n-j}\left(1-\frac{\ell}{n-j}\right) P\left\{N_{n}-N_{j}=\ell, N_{j}>j\right\}- \\
- & E\left\{\left[n-N_{n}\right]^{+}\right\}+\sum_{j=1}^{n-1} \sum_{\ell=0}^{n-j}\left(1-\frac{\ell}{n-j}\right) P_{m}\left\{N_{n}-N_{j}=\ell, N_{j} \leqq j\right\}+\frac{1}{n} \underset{m}{E}\left\{\left[n-N_{n}\right]^{+}\right\}= \\
= & \sum_{j=1}^{n-1} E\left\{\left[I-\frac{N_{n}-N_{j}}{n-j}\right]^{+}\right\}+E\left\{N_{n}-n\right\}-\frac{(n-1)}{n} \sum_{m}^{E}\left\{\left[n-N_{n}\right]^{+}\right\}= \\
= & \sum_{j=0}^{n-1} E\left\{\left[1-\frac{N_{n}-N_{j}}{n-j}\right]^{+}\right\}+E\left\{N_{n}-n\right\}=\sum_{j=1}^{n} \frac{1}{j} E\left\{\left[j-N_{j}\right]^{+}\right\}+E\left\{N_{n}-n\right\}= \\
= & \left.\sum_{j=1}^{n} \frac{1}{j} E\left[N_{j}-j\right]^{+}\right\}
\end{aligned}
$$

because if $E\left\{\nu_{j}\right\}=\gamma<\infty$, then $\underset{m}{E}\left\{\left[j-N_{j}\right]^{+}\right\}=E\left\{\left\{j-N_{j}\right\}+E\left\{\left[N_{j}-j\right]^{+}\right\}=\right.$ $j(1-\gamma)+E\left\{\left[N_{j}-j\right]^{+}\right\}$for $j=1,2, \ldots, n$. If $\gamma=\infty$, then both sides of the equation to be proved are infinite.
21.6. Now $\max _{0 \leq r \leq n}\left(r-N_{r}\right)$ is a discrete random variable which may take on the integers $0,1, \ldots, n$ only. Thus by (20.17) we have

$$
\begin{aligned}
& \left.=\sum_{k=1}^{n} \sum_{j=k}^{n} \frac{k}{j} \underset{\sim m}{ } P_{j}=j-k\right\}=\sum_{j=1}^{n} \frac{1}{j} \underset{m}{E\left\{\left[j-N_{j}\right]^{+}\right\}} .
\end{aligned}
$$

21.7. We have

$$
\underset{n}{E\left\{n_{n}\right\}}=\sum_{j=1}^{n} \frac{1}{j} E\left\{\zeta_{j}^{+}\right\} .
$$

If $E\left\{\xi_{n}^{+}\right\}=\infty$, then both sides of the above equation are infinite. Let us suppose that $\underset{m}{E}\left\{\xi_{n}^{+}\right\}<\infty$. Then $\underset{m}{E}\left\{n_{n}\right\}<\infty$ for $n=1,2, \ldots$ because, obviously, $\underset{m}{E}\left\{n_{n}\right\} \leqq n \underset{m}{\operatorname{En}}\left\{\xi_{1}^{+}\right\}$. Since by (15.1)

$$
\sum_{n=0}^{\infty} E\left\{e^{-s n_{n} n_{p \rho} n}=\exp \left\{\sum_{k=1}^{\infty} \frac{p}{k}_{k}^{k}\left\{e^{-s s_{k}^{+}}\right\}\right\}\right.
$$

for $\operatorname{Re}(s) \geqq 0$ and $|\rho|<1$, it follows that

$$
\sum_{n=1}^{\infty} E\left\{\eta_{n}\right\} \rho^{n}=\frac{1}{1-\rho} \sum_{k=1}^{\infty} \frac{\rho^{k}}{k} E\left\{\zeta_{m}^{+}\right\}
$$

for $|\rho|<1$. If we form the coefficient of ρ^{n} on the right-hand side,
then we obtain $E\left\{r_{n}\right\}$ which was to be deternined.
We note that in a similar way we can express $E\left\{n_{n}^{r}\right\}$ for $r=1,2, \ldots$ with the aid of the moments $E\left\{\left[\zeta_{j}^{+}\right]^{s}\right\}(s=1,2, \ldots, r$ and $j=1,2, \ldots, n)$.
21.8. Let us introduce the following notation: $P\left\{x_{n} \leqq x\right\}=H(x)$, $P\left\{x_{1}+\ldots+x_{n} \leq x\right\}=H_{n}(x), E\left\{e^{-s x_{n}}\right\}=\psi(s), E\left\{e^{-s n n_{n}}=\Phi_{n}(s)\right.$ and let

$$
\begin{aligned}
a_{k}(\lambda) & =\int_{0}^{\infty} e^{-\lambda u} \frac{(\lambda u)^{k}}{k!}\left[\int_{0}^{u}\left(1-\frac{x}{u}\right) d H_{k}(u)\right] \lambda d u= \\
& =\frac{(-1)^{k-1} \lambda^{k+1}}{k!} \frac{d^{k-1}}{d \lambda^{k-1}}\left(\frac{[\psi(\lambda)]^{k}}{\lambda^{2}}\right)
\end{aligned}
$$

for $k=1,2, \ldots$.
. By Theorem 15.3 we have

$$
\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n}=e^{-T\left\{\log \left[1-\frac{\lambda \rho \psi(s)}{\lambda-s}\right]\right\}}
$$

for $\operatorname{Re}(\mathrm{s}) \geq 0$ and $|\rho|<1$. By the first example in Section 1.8 we can also write that

$$
\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n}=\frac{\lambda[\gamma(\rho)-s]}{\gamma(\rho)[\lambda-s-\lambda \rho \psi(s)]}
$$

where $s=\gamma(\rho)$ is the only root of the equation

$$
\lambda-s-\lambda \rho \psi(s)=0
$$

in the donain $\operatorname{Re}(\mathrm{s}) \geq 0$ whenever $|\rho|<1$.

By Lagrange's exparsion we obtain that

$$
\frac{1}{\gamma(\rho)}=\frac{1}{\lambda}+\frac{1}{\lambda} \sum_{k=1}^{\infty} \rho^{k} a_{k}(\lambda)
$$

for $|\rho|<1$, and consequently

$$
\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n}=\left[1-\frac{s}{\lambda-s} \sum_{k=1}^{\infty} \rho^{k} a_{k}(\lambda)\right] \sum_{j=0}^{\infty}\left(\frac{\lambda \rho \psi(s)}{\lambda-s}\right)^{j}
$$

for $|\lambda \rho \psi(s)|<|s-\lambda|$ and $\operatorname{Re}(s) \geqslant 0$. Hence

$$
\Phi_{n}(s)=\left(\frac{\lambda \psi(s)}{\lambda-s}\right)^{n}-\frac{s}{\lambda-s} \sum_{k=1}^{n} a_{k}(\lambda)\left(\frac{\lambda \psi(s)}{\lambda-s}\right)^{n-k}
$$

for $n=1,2, \ldots, \operatorname{Re}(s) \geq 0$ and $s \neq \lambda$. If we write $s=\lambda-(\lambda-s)$ in front of the sum, then by inversion we obtain that

$$
\underset{\sim}{P}\left\{n_{n} \leqq x\right\}=K_{n}(x)-\sum_{k=1}^{n} a_{k}(\lambda)\left[K_{n-k}^{*}(x)-K_{n-k}(x)\right]
$$

for any x where

$$
K_{n}(x)=\frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} H_{n}(u+x) e^{-\lambda u} u^{n-1} d u \text { and } K_{n}^{*}(x)=\frac{\lambda^{n+1}}{n!} \int_{0}^{\infty} H_{n}(u+x) e^{-\lambda u} u^{n} d
$$

for $n=1,2, \ldots, K_{0}(x)=1$ for $x \geq 0, K_{0}(x)=0$ for $x<0$, and $K_{0}^{*}(x)=1$ for $x \geqq 0, K_{0}^{*}(x)=e^{\lambda x}$ for $x<0$. Here we took into consideration that

$$
=\int_{-\infty}^{\infty} e^{-s x_{d K}}(x)=\left(\frac{\lambda \psi(s)}{\lambda-s}\right)^{n} \text { and } \int_{-\infty}^{\infty} e^{-s x_{n}} d K_{n}^{*}(x)=\frac{\lambda^{n+1}[\psi(s)]^{n}}{(\lambda-s)^{n+1}}
$$

for $n=0,1,2, \ldots$ and $0 \leqq \operatorname{Re}(s)<\lambda$.

If $x<0$, then obviously $P\left\{n_{n} \leqslant x\right\}=0$. Furthermore, $P\left\{\eta_{n}=0\right\}=$ $\lim _{s \rightarrow \infty} \Phi_{n}(s)=a_{n}(\lambda)$.

We can also write down that

$$
\underset{m}{P}\left\{\eta_{n} \leq x\right\}=(-1)^{n} I_{n}(x)+\sum_{k=1}^{n}(-1)^{n-k} a_{k}(\lambda)\left[I_{n-k}^{*}(x)+I_{n-k}(x)\right]
$$

for $x \geq 0$ where

$$
I_{n}(x)=\frac{\lambda^{n-1}}{(n-1)!} e_{0}^{\lambda x} e^{-\lambda y}(x-y)^{n-I_{d H_{n}}(y)} \text { and } I_{n}^{*}(x)=\frac{\lambda^{n} e^{\lambda x}}{n!} \int_{0}^{x} e^{-\lambda y}(x-y)^{n_{d H}}{ }_{n}(y
$$

for $x \geqq 0$ and $n=1,2, \ldots, I_{0}(x)=1$ for $x \geqq 0$ and $I_{0}^{*}(x)=\left(e^{\lambda x}-1\right) / \lambda$

$$
\int_{0}^{\infty} e^{-s x} d I_{n}(x)=\left(\frac{\lambda \psi(s)}{s-\lambda}\right)^{n} \text { and } \int_{0}^{\infty} e^{-s x} d I_{n}^{*}(x)=\frac{\lambda^{n+1}[\psi(s)]^{n}}{(s-\lambda)^{n+1}}
$$

for $\operatorname{Re}(s)>\lambda$, and

$$
\int_{0}^{\infty} e^{-s x+\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} \lambda d x=\left(\frac{\lambda}{s-\lambda}\right)^{n}
$$

for $n=1,2, \ldots$ and $\operatorname{Re}(s)>\lambda$.
21.9. Let us introduce the following notation: $P\left\{x_{n} \leqq x\right\}=H(x)$, $P\left\{x_{1}+\ldots+x_{n} \leqq x\right\}=H_{n}(x), H_{0}(x)=1$ for $x \geqslant 0, H_{0}(x)=0$ for $x<0$ and

$$
F_{n}(x)=\left\{\begin{array}{cl}
1-\sum_{j=0}^{n-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} & \text { for } x \geq 0 \\
0 & \text { For } x<0
\end{array}\right.
$$

Furhtermore, let $E\left\{e^{-s x_{n}}\right\}=\psi(s)$ and $E\left\{e^{-s n_{n}}\right\}=\Phi_{n}(s)$ for $\operatorname{Re}(s) \geq 0$. Since in this case

$$
\underset{m}{E}\left\{e^{-s \theta} n_{\}}=\left(\frac{\lambda}{\lambda+s}\right)^{m}\right.
$$

for $\operatorname{Re}(s)>-\lambda$ and $n=1,2, \ldots$, we can apply the solution of the second example in Section 18 to obtain

$$
\sum_{n=0}^{\infty} \Phi_{n}(s)_{\rho}^{n}=\frac{\lambda^{m}}{(\lambda-s)^{m}-\lambda^{m}{ }_{\rho \psi(s)}} \prod_{i=1}^{m}\left(1-\frac{s}{\gamma_{i}(\rho)}\right)
$$

for $\operatorname{Re}(s) \geq 0$ and $|\rho|<1$ where $s=\gamma_{j}(\rho) \quad(i=1,2, \ldots, m$) are the m roots of the equation

$$
(\lambda-s)^{m}-\lambda^{m} \rho \psi(s)=0
$$

in the domain $\operatorname{Re}(s) \geqslant 0$ whenever $|\rho|<1$.

By forming the Lagrange expansion of the root $\quad \gamma_{i}(\rho)$ for $i=1,2, \ldots, m$ and $|\rho|<1$, we can write that

$$
\prod_{i=1}^{m}\left(1-\frac{s}{\gamma_{i}(\rho)}\right)=\left(1-\frac{s}{\lambda}\right)^{m}+\sum_{r=0}^{m}\left(1-\frac{s}{\lambda}\right)^{r} \sum_{k=1}^{\infty} a_{k, r^{\prime}}(\lambda) \rho^{k}
$$

for any s where $a_{k, r}(\lambda)(k=1,2, \ldots ; r=0,1, \ldots, m)$ are appropriate functions of λ.

- If $\left|\lambda^{m} \rho \psi(s)\right|<\left|(\lambda-s)^{m}\right|$ and $\operatorname{Re}(s) \geq 0$, then obviousiy

$$
\frac{\lambda^{m}}{(\lambda-s)^{m}-\lambda^{m} \rho \psi(s)}=\left(\frac{\lambda}{\lambda-s}\right)^{m} \sum_{j=0}^{\infty}\left(\frac{\lambda^{m} \rho \psi(s)}{(\lambda-s)^{m}}\right)^{j} .
$$

By using these expansions we can conclude that

$$
\Phi_{n}(s)=\left(\frac{\lambda^{m} \psi(s)}{(\lambda-s)^{m}}\right)^{n}+\sum_{r=0}^{m} \sum_{k=1}^{n} a_{k, r}(\lambda)\left(\frac{\lambda}{\lambda-s}\right)^{(n-k+1) m-r}[\psi(s)]^{n-k}
$$

for $n=1,2, \ldots, \operatorname{Re}(s) \geqslant 0$ and $s \neq \lambda$. Hence it follows by inversion that

$$
P_{n}\left\{n_{n} \leq x\right\}=K_{n, m n}(x)+\sum_{r=0}^{m} \sum_{k=1}^{n} a_{k, r}(\lambda) K_{n-k,(n-k+1) m-r}(x)
$$

for any x where

$$
K_{n, j}(x)=\frac{\lambda^{j}}{(j-1)!} \int_{0}^{\infty} H_{n}(u+x) e^{-\lambda u} u^{j-1} d u
$$

for $n=0,1,2, \ldots$ and $j=1,2, \ldots$ and $K_{n, 0}(x)=H_{n}(x)$ for $n=0,1,2, \ldots$. Here we used that

$$
\int_{-\infty}^{\infty} e^{-s x} d K_{n, j}(x)=\left(\frac{\lambda}{\lambda-s}\right)^{j}[\psi(s)]^{n}
$$

for $0 \leqq \operatorname{Re}(s)<\lambda$ and $n=0,1,2, \ldots ; j=0,1,2, \ldots$.

If $\mathrm{x}<0$, then obviousiy $n^{P\left\{n_{n} \leq x\right\}=0 \text {. Furthermore, } P\left\{n_{n}=0\right\}=}$ $\lim _{s \rightarrow \infty} \Phi_{n}(s)=a_{n, m}(\lambda)$.

We can also write down that

$$
{\underset{n}{2}\left\{n_{n} \leqq x\right\}=(-1)^{m n_{n}} I_{n, m n}(x) \div \sum_{r=0}^{m} \sum_{k=1}^{n}(-1)^{(n-k+1) m-r} a_{k, r}(\lambda) I_{n-k,(n-k+1) m-r}(x)}^{(x)}
$$

for $x \geq 0$

$$
I_{n, j}(x)=\frac{\lambda^{j-1} e^{\lambda x}}{(j-1)!} \int_{0}^{x} e^{-\lambda y}(x-y)^{j-1} d H_{n}(y)
$$

for $x \geq 0, n \geq 0, j \geq 1$ and $I_{n, 0}(x)=H_{n}(x)$ for $n=0,1,2, \ldots$. Here we used that

$$
\int_{0}^{\infty} e^{-s . x} d I_{n, j}(x)=\left(\frac{\lambda}{\lambda-s}\right)^{j}[\psi(s)]^{n}
$$

for $\operatorname{Re}(s)>\lambda$ and $n \geq 0, j \geq 0$, and that $\underset{m}{P}\left\{n_{n}=0\right\}=a_{n, m}(\lambda)$.
We note that

$$
\sum_{r=0}^{m} a_{k, r}(\lambda)=0
$$

for $k=1,2, \ldots$ and

$$
\sum_{k=1}^{\infty} a_{k, 0}(\lambda) \rho^{k}=\prod_{i=1}^{m}\left(1-\frac{\lambda}{\gamma_{i}(\rho)}\right) .
$$

21.10. We shall prove that the probability in question depends only on n and k and thus we can denote this probability by $\mathrm{P}(\mathrm{n}, \mathrm{k})=$ $S(n, k) / n$! where $S(n, k)$ is the number of favorable cases. We shall prove that

$$
P(n, k)=\left\{\begin{array}{ccc}
1-\frac{k}{n} & \text { if } 0 \leqq k<n \\
0 & \text { if } k \geq n
\end{array}\right.
$$

If $n=1$, then $P(1,0)=1$ and $P(1, k)=0$ for $k \geqq 1$. Iet us suppose that the above formula is true for every k if n is replaced by $n-1(n=2,3, \ldots)$. We shall prove that it is true for every k and n. Thus by mathematical induction we can conclude that it is true for $r_{1}=1,2, \ldots$ and $k=0,1,2, \ldots$. If $k \geqq n$, then obviously $P(n, k)=0$. Let $0 \leq k<n$. Since the last number drawn may be $k_{i}(i=1,2, \ldots, n)$, we have

$$
S(n, k)=\sum_{i=1}^{n} S\left(n-1, k-k_{i}\right),
$$

or in other words,

$$
P(n, k)=\frac{1}{n} \sum_{i=1}^{n} P\left(n-1, k-k_{i}\right)
$$

If $0 \leqq k<n$, then by the induction hypothesis the right-hand side becomes

$$
P(n, k)=\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{k-k_{i}}{n-1}\right)=1-\frac{k}{n-1}+\frac{k}{n(n-l)}=1-\frac{k}{n} .
$$

This proves that $P(n, k)$ depends only on n and k and that the aformentioned formula is true.

CHAPIER III

27.1. By Theorem 23.1 we have

$$
\underset{M}{P}\left\{\Delta_{n}=j\right\}=\underset{\sim}{P}\left\{\Delta_{j}=j\right\} \underset{\sim}{P}\left\{\Delta_{n-j}=0\right\}
$$

for $0 \leqq j \leqq n$ and by Theorem 24.1 we have

$$
\sum_{n=0}^{\infty} \rho_{n}\left\{\Delta_{n}=n\right\} \rho^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n_{1}}}{n} P\left\{\zeta_{n}>0\right\}\right\}
$$

and

$$
\sum_{n=0}^{\infty} \underset{n}{P}\left\{\Delta_{n}=0\right\} \rho^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P\left\{\zeta_{n} \leqq 0\right\}\right\}
$$

for $|\rho|<1$. Since in our case $\underset{\min }{P}\left\{\zeta_{n}>0\right\}=\frac{1}{2}$
for $n=1,2, \ldots$, it follows that

$$
\sum_{n=0}^{\infty} P_{m}^{P}\left[\Delta_{n}=n\right\} \rho^{n}=\sum_{n=0}^{\infty} P_{m}\left\{\Delta_{n}=0\right\} \rho^{n}=(1-\rho)^{-1 / 2}
$$

for $|\rho|<1$. Thus

$$
\underset{m}{P}\left\{\Delta_{n}=n\right\}=P\left\{\Delta_{n}=0\right\}=\binom{2 n}{n} \frac{1}{2^{2 n}}
$$

and

$$
\underset{\sim}{P}\left\{\Delta_{n}=j\right\}=\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{1}{2^{2 n}}
$$

for $0 \leqq j \leqq n$.
We note that if $\Delta_{n_{1}}^{*}$ denotes the number of nonnegative elements in the sequence $\zeta_{1}, \zeta_{2}, \ldots, r_{r_{2}}$, then obviously $\left.\underset{m}{P} \Delta_{n}^{*}=j\right\}=P\left\{\Delta_{n}=j\right\}$ for $0 \leqq j \leqq n$.

Remark. We can also obtain $\underset{n}{P}\left\{\Delta_{n}=j\right\}$ for $j=0,1, \ldots, n$ in a simpler way. First, we observe that $\underset{\sim}{P}\left\{\Delta_{n}=n\right\}=\underset{\sim}{P}\left\{\Delta_{n}=0\right\}$ for $n=0,1,2, \ldots$.
 and since $\underset{\sim}{P}\left\{\zeta_{r}=0\right\}=0$ for $r=1,2, \ldots, n$, we have $\underset{\sim}{P}\left\{\Delta_{n}^{*}=0\right\}=P\left\{\Delta_{n}=0\right\}$. Thus we can write that

$$
\underset{\sim}{P}\left\{\Delta_{n}=j\right\}=\underset{\sim}{P}\left\{\Delta_{j}=0\right\} \underset{\sim}{P}\left\{\Delta_{n-j}=0\right\}
$$

for $0 \leq \mathrm{j} \leq \mathrm{n}$. Hence

$$
\begin{equation*}
\sum_{j=0}^{n} \underset{\sim}{P}\left\{\Delta_{j}=0\right\} P\left\{\Delta_{n-j}=0\right\}=1 \tag{*}
\end{equation*}
$$

for $n=0,1,2, \ldots$. From this equation we obtain step by step that

$$
\underset{\sim}{P}\left\{\Delta_{n}=0\right\}=\binom{2 n}{n} \frac{1}{2^{2 n}}=(-1)^{n}\binom{-\frac{1}{2}}{n}
$$

for
$\mathrm{n}=0,1,2, \ldots$.
If we multiply (*) by z^{n} and add for $n=0,1,2, \ldots$, then we obtain that

$$
\sum_{n=0}^{\infty} p\left\{\Delta_{n}=0\right\} z^{n}=\frac{1}{\sqrt{1-z}}
$$

for $|z|<1$, and this also yields the above result.
27.2. Since in this case $\underset{m}{P}\left\{\zeta_{n}>0\right\}=q$ for $n=1,2, \ldots$ where

$$
q=\frac{1}{2}+\frac{1}{\alpha \pi} \arctan \left(\beta \tan \frac{\alpha \pi}{2}\right),
$$

in exactly the same way as in the solution of Problem 27.1 we obtain that

$$
\sum_{n=0}^{\infty} \underset{m}{P\left[\Delta_{n}=n\right\} \rho^{n}=(1-\rho)^{-q}}
$$

and

$$
\sum_{n=0}^{\infty} P\left\{\Delta_{n}=0\right\} \rho^{n}=(1-\rho)^{q-1}
$$

for $|\rho|<1$. Thus

$$
\left.\underset{\sim}{P\left\{\Delta_{n}\right.}=j\right\}=\underset{m}{P}\left\{\Delta_{j}=\underset{m}{j\} P}\left\{\Delta_{n-j}=0\right\}=(-1)^{n}\left(\begin{array}{c}
-q
\end{array}\right)(\underset{n-j}{q-1})\right.
$$

for $0 \leqq j \leqq n$.

We note that if Δ_{n}^{*} denotes the number of nonnegative elements in the sequence $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$, then we have $\underset{m}{P}\left\{\Delta_{n}^{*}=j\right\}=\underset{m}{P}\left\{\Delta_{n}=j\right\}$ for $0 \leqq j \leqq n$ because the random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ have a continuous distribution function.
27.3 By Theorem 22.1 we can write that

$$
\underset{\sim}{P}\left\{\Delta_{n}=k\right\}=\underset{\sim}{P}\left\{\Delta_{k}=k\right\} \underset{\sim}{P}\left\{\Delta_{n-k}=0\right\}
$$

for $0 \leq k \leq n$.
Define $\underset{m}{ }\left\{\Delta_{n}=0\right\}=a_{n}(p)$ for $n=0,1,2, \ldots$. Since

S-39a

$$
\begin{aligned}
P\left\{\Delta_{n}=n\right\} & =P\left\{\xi_{1}=1\right\} P\left\{\zeta_{i}-\zeta_{1} \geq 0 \text { for } 1 \leq i \leq n\right\}= \\
& =p \underset{n}{P}\left\{-\zeta_{r} \leq 0 \text { for } 0 \leq r \leq n-1\right\}=p a_{n-1}(q)
\end{aligned}
$$

for $n=1,2, \ldots$, we can write that

$$
p\left\{\Delta_{n}=k\right\}=p a_{k-1}(q) a_{n-k}(p)
$$

for $k=1,2, \ldots, n$. Thus it remains only to determine $a_{n}(p)$ for $n=0,1,2, \ldots$ and $\quad 0<\mathrm{p}<1$.

By the solution of Problem 21.3 we have

$$
a_{n}(p)=p\left\{T_{n}=0\right\}=1-p \sum_{m=0}^{\left[\frac{n-1}{2}\right]}\binom{2 m}{m} \frac{(p q)^{m}}{m+1}
$$

for $n=1,2, \ldots$, and $a_{0}(p)=1$.
Remark. We can also determine $a_{n}(p)$ for $n=0,1,2, \ldots$ and $0<p<1$ as follows. Since

$$
\sum_{k=0}^{n} P\left\{\Delta_{n}=k\right\}=1,
$$

we get

$$
p \sum_{k=1}^{n} a_{k-1}(q) a_{n-k}(p)=1-a_{n}(p)
$$

for $n=1,2, \ldots$ and $a_{0}(p)=1$. If we introduce the generating function

$$
A(z, p)=\sum_{n=0}^{\infty} a_{n}(p) z^{n}
$$

for $|z|<1$ and $0<p<1$, then we get

$$
\mathrm{pz}(1-\mathrm{z}) \mathrm{A}(\mathrm{z}, \mathrm{p}) \mathrm{A}(\mathrm{z}, \mathrm{q})+(1-\mathrm{z}) \mathrm{A}(\mathrm{z}, \mathrm{p})-1=0 .
$$

If we interchange p and q in the above equation, then we obtain that

$$
\mathrm{qz}(1-z) \mathrm{A}(\mathrm{z}, \mathrm{p}) \mathrm{A}(\mathrm{z}, \mathrm{q})+(1-\mathrm{z}) \mathrm{A}(\mathrm{z}, \mathrm{q})-1=0
$$

Consequently, we have

$$
q A(z, p)-\frac{q}{1-z}=p A(z, q)-\frac{p}{1-z}
$$

This implies that

$$
q a_{n}(p)-q=p a_{n}(q)-p
$$

for $n=0,1,2, \ldots$, and

$$
q z(1-z)[A(z, p)]^{2}+(1-2 q z) A(z, p)-1=0 .
$$

Accordingly,

$$
A(z, p)=\frac{\sqrt{1-4 p q z^{2}}-(1-2 q z)}{2 q z(1-z)}
$$

for $0<p<1$ and $|z|<1$. Finally, we obtain that

$$
a_{n}(p)=1-\frac{1}{2 q}+\frac{1}{2 q} \sum_{j=0}^{\left[\frac{n+1}{2}\right]}(-1)^{j}\binom{\frac{1}{2}}{j}(4 p q)^{j}
$$

for $\mathrm{n}=0,1,2, \ldots$ and $0<\mathrm{p}<1$. This is in agreement with the previous result.
27.4. The random variables $v_{1}, v_{2}, \ldots, v_{n}$ are interchangeable random variables taking on nonnegative integers and having sum $v_{1}+\ldots+v_{n}=n$. By Theorem 26.3 we have

$$
\sim_{\sim}^{P}\left\{\Delta_{n}^{*}=j\right\}=\left\{\begin{aligned}
\sum_{i=n-j}^{n-1} \frac{1}{i(n-i)} P\left\{N_{i}=i+1\right\} & \text { for } 1 \leqq j \leqq n-1, \\
1-\sum_{i=1}^{n-1} \frac{1}{(n-i)} P\left\{N_{i}=i+1\right\} & \text { for } j=n,
\end{aligned}\right.
$$

S-40
and evidently

$$
P\left\{N_{i}=i+1\right\}=\left(n_{i+1}\right)\left(\frac{i}{n}\right)^{i+1}\left(1-\frac{i}{n}\right)^{n-i-1}
$$

for $i=1,2, \ldots, n-1$.

Thus we can write that

$$
P\left\{\Delta_{n}^{*}=j\right\}=\frac{1}{n} \sum_{r=1}^{j} \frac{1}{r}\binom{n}{r-1}\left(\frac{r}{n}\right)^{r-1}\left(1-\frac{r}{n}\right)^{n-r}
$$

for $1 \leq j \leqq n$. For $I \leq j \leqq n-1$ this is obvious. For $j=n$ we used that

$$
\sum_{r=1}^{n} \frac{1}{r}\left(\frac{n-1}{r-1}\right)\left(\frac{r}{n}\right)^{r-1}\left(1-\frac{r}{n}\right)^{n-r}=1
$$

for $n=1,2, \ldots$. We note that

$$
P_{m}\left\{\Delta_{n}^{*}=n\right\}=\frac{(n+1)^{n-1}}{n^{n}}
$$

for $n=1,2, \ldots$.
27.5. If we apply Theorem 22.2 to the random variables $\xi_{i}=1-v_{i}$ ($i=1,2, \ldots, n$), then we obtain that

$$
\begin{aligned}
& P_{n}^{P}\left\{\Delta_{n}^{(c)}=j\right\}=P\left\{N_{r}<r-c \text { for } j \text { subscripts } r=1,2, \ldots, n\right\}= \\
& =P\left\{j-N_{j}>r-N_{r}-c \text { for } 0 \leqq r<j \text { and } j-N_{j} \geq r-N_{r}-c \text { for } j \leqq r \leqq n\right\}
\end{aligned}
$$

If $\Delta_{n}^{(c)}=j$ and $j \geqq 1$, then there is an r such that $N_{r}=r-c$. Hence $N_{j} \leq j$ necessarily holds. Consequently, we can write that

$$
\begin{aligned}
& P_{m}\left\{\Delta_{n}^{(c)}=\right.j\}=\sum_{2=0}^{j} P\left\{N_{j}-N_{r}<j-r+c\right. \\
& \text { for } 0 \leq r<j, N_{j}=\ell, N_{r}-N_{j} \geq r-j-c \\
&\text { for } j \leq r \leq n\}= \\
&= \sum_{\ell=0}^{j}\left[P\left\{N_{j}=\ell\right\}-\sum_{i=1}^{j-1}\left(1-\frac{l-i-c}{j-i}\right) P\left\{N_{i}=i+c, N_{j}=\ell\right\}\right] . \\
& {\left[I-\sum_{r=c+1+j}^{n} \frac{c+1}{r-j} \underset{m}{P}\left\{N_{r}-N_{j}=r-c-I \mid N_{j}=\ell\right\}\right] . }
\end{aligned}
$$

In the sum the first factor can be obtained by (20.13) and the second factor by (20.17) . Accordingly, we have

$$
\begin{aligned}
& P_{m}\left\{\Delta_{n}(c)=j\right\}=\sum_{\ell=0}^{j}\left[P\left\{N_{j}=\ell\right\}-\sum_{r=c+1+j}^{n} \frac{c+1}{r-j} P\left\{N_{j}=\ell, N_{r}-N_{j}=r-c-1\right\}\right]- \\
& -\sum_{l=0}^{j} \sum_{i=1}^{j-1}\left(1-\frac{\ell-i-c}{j-i}\right)\left[P_{m}\left\{N_{i}=i+c, N_{j}=\ell\right\}-\sum_{r=c+1+j}^{n} \frac{c+1}{r-j} P_{m}\left\{N_{i}=i+c, N_{j}=\ell,\right.\right. \\
& \left.\left.N_{r}-N_{j}=r-c-1\right\}\right]
\end{aligned}
$$

for $c=0,1, \ldots, n-1$ and $j=1,2, \ldots, n-c$.
34.1. Denote by A_{n} the number of positive partial sums in the sequence $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$, and by Δ_{n}^{*} the number of nonnegative partial sums in the sequence $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$. By Theorem 29.1 we have

$$
\underset{m}{P}\left\{\alpha_{n k}=j\right\}=\sum_{\left.\max (0, j+k-n) \lll m \min (j, k)^{P} \sum_{j}^{P\left\{\Delta_{j}^{*}\right.}=r\right\} P\left\{\Delta_{n-j}=k-r\right\} .} .
$$

By Theorem 23.1 we have
and

$$
\underset{\sim}{P}\left\{\Delta_{\mathrm{n}}=\mathrm{k}\right\}=\underset{\sim}{P\{ }\left\{\Delta_{k}=\operatorname{k}\right\} \underset{\sim}{P}\left\{\Delta_{\mathrm{n}}-\mathrm{k}=0\right\}
$$

$$
\left.\underset{M}{P\left\{\Delta_{n}^{*}\right.}=k\right\}=P\left\{\Delta_{k}^{*}=k\right\} P\left\{\Delta_{n-k}^{*}=0\right\}
$$

for $0 \leqq k \leqq n$. Furthermore, by Theorem 24.1 we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P\left\{\Delta_{n}=n\right\} p^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P\left\{\zeta_{n}>0\right\}\right\}, \\
& \sum_{n=0}^{\infty} P\left\{\Delta_{n}=0\right\} \rho^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P\left\{\left\{\zeta_{n} \leq 0\right\}\right\},\right. \\
& \sum_{n=0}^{\infty} P\left\{\Delta_{n}^{*}=n\right\} \rho^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P\left\{\left\{\zeta_{n} \geqq 0\right\}\right\},\right.
\end{aligned}
$$

and

$$
\sum_{n=0}^{\infty} P\left\{\Delta_{n}^{*}=0\right\} \rho^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P\left\{\zeta_{n}<0\right\}\right\}
$$

for $|\rho|<1$. Accordingly, ${ }_{n}\left\{\alpha_{n k}=j\right\}$ is completely determined by the probabilities $\left.\mathrm{m}_{\mathrm{m}\left\{\zeta_{r}\right.}>0\right\}$ and $\left.\mathrm{P}_{\mathrm{m}} \zeta_{r}<0\right\}$ for $\mathrm{r}=1,2, \ldots, \mathrm{n}$.
34.2. It follows easily from (31.9) that

$$
(1-p) \sum_{n=k}^{\infty} \Phi_{n k}(s)_{\rho} n=\frac{\sum_{n=k}^{\infty} \Phi_{n n}(s) \rho^{n}}{\sum_{n=0}^{\infty} \Phi_{n n}(s) \rho^{n}}
$$

for $\operatorname{Re}(s) \geq 0$ and $|\rho|<1$.

In our particular case, $\Phi_{\mathrm{nn}}(\mathrm{s})=\Phi_{\mathrm{n}}(\mathrm{s})$ is given explicitily for $\operatorname{Re}(\mathrm{s}) \geq 0$ and $n=0,1,2, \ldots$ in the solution of Problem 21.7. Thus by the above formula we can also determine explicitly $\Phi_{n k}(s)$ for $0 \leqq k \leqq n$.

We note that by Theorem 31.2 and by the first example in Section 18 we obtain that

$$
\begin{aligned}
& (1-\omega)(1-\rho) \sum_{n=0}^{\infty} \sum_{k=0}^{n} \Phi_{n k}(s) \rho^{n} \omega^{k}= \\
= & 1-\omega \frac{\gamma(\rho)[\gamma(\rho \omega)-s][\lambda-s-\lambda \rho \psi(s)]}{\gamma(\rho \omega)[\gamma(\rho)-s][\lambda-s-\lambda \rho \omega \psi(s)] .}
\end{aligned}
$$

for $\operatorname{Re}(s) \geqq 0,|\rho|<1,|\rho \omega|<1$ where $s=\gamma(\rho)$ is the only root of the equation

$$
\lambda-s-\lambda \rho \psi(s)=0
$$

In the domain $\operatorname{Re}(s) \geqq 0$ whenever $|\rho|<1$.
40.1. We can write that

$$
p_{n}(a, b)=p p^{*}(n-1, a-1)
$$

for $n=1,2, \ldots$ where

$$
P^{*}(n, j)=p P^{*}(n-1, j-1)+q P^{*}(n-1, j+1)
$$

for $n=1,2, \ldots$ and $-b<j<a, P^{*}(n, a)=P^{*}(n,-b)=0$ for $n=1,2, \ldots$, $P^{*}(0,0)=1$, and $P^{*}(0, j)=0$ for $j \neq 0$. See (37.29). Let

$$
U_{j}(z)=\sum_{n=0}^{\infty} P^{*}(n, j) z^{j}
$$

for $-b \leqq j \leqq a$. Then $U_{a}(z) \equiv U_{-b}(z) \equiv 0$ and

$$
U_{j}(z)=p z U_{j-1}(z)+q z U_{j+1}(z)+P^{*}(0, j)
$$

for $-b<j<a$. Since the equation $q z \omega^{2}-\omega+p z=0$ has two roots

$$
\omega_{1}=\frac{1+\sqrt{1-4 p q z^{2}}}{2 q z} \text { and } \omega_{2}=\frac{1-\sqrt{1-4 p q z^{2}}}{2 q z}
$$

for $z \neq 0$ and $\left|4 \mathrm{pqz} z^{2}\right|<1$, the general solution of the above difference equation can be expressed as

$$
U_{j}(z)=A \omega_{1}^{j}-B \omega_{2}^{j}-\delta(j) \frac{\omega_{1}^{j}-\omega_{2}^{j}}{q z\left(\omega_{1}-\omega_{2}\right)}
$$

where A and B are arbitrary constants and $\delta(j)=0$ for $j \leq 0$ and $\delta(j)=1$ for $j \geq 1$. The requirements $\cdot U_{a}(z)=U_{-b}(z)=0$ yield that

$$
A=\frac{\omega_{1}^{b}\left(\omega_{1}^{a}-\omega_{2}^{a}\right)}{q z\left(\omega_{1}-\omega_{2}\right)\left(\omega_{1}^{a+b}-\omega_{2}^{a+b}\right)} \text { and } B=\frac{\omega_{2}^{b}\left(\omega_{1}^{a}-\omega_{2}^{a}\right)}{q z\left(\omega_{1}-\omega_{2}\right)\left(\omega_{1}^{a+b}-\omega_{2}^{a+b}\right)}
$$

Accordingly we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} p_{n}(a, b) z^{n}=p z U_{a-1}(z)=\frac{p\left(\omega_{1} \omega_{2}\right)^{a-1}\left(\omega_{1}^{b}-\omega_{2}^{b}\right)}{q\left(\omega_{1}^{a+b}-\omega_{2}^{a+b}\right)}= \\
& =(2 p z)^{a}\left\{\frac{\left[1+{\left.\sqrt{1-4 p q z^{2}}\right]}_{b}{ }^{a+\left[1-\sqrt{1-4 p q z^{2}}\right]}\right.}{\left[1+{\left.\sqrt{1-4 p q z^{2}}\right]}_{a+b}^{b}-\left[1-\sqrt{1-4 p q z^{2}}\right]^{a+b}\right.}\right\}
\end{aligned}
$$

for $\left|4 \mathrm{pqz} z^{2}\right|<1$. We can obtain $p_{n}(a, b)$ explicitly either by (37.24) or by (37.25).
40.2. In exactly the same way as in the solution of Problem 40.1 we obtair that

$$
\sum_{n=1}^{\infty} P\{\rho=n\} z^{n}=p z U_{a-1}(z)
$$

for $\left|4 p q z^{2}\right|<1$ where

$$
U_{j}(z)=p z U_{j-1}(z)+q z U_{j+1}(z)+P^{*}(0, j)
$$

for $-\infty<j<a, U_{a}(z) \equiv 0, P^{*}(0,0)=1$ and $P^{*}(0, j)=0$ for $j \neq 0$. Since $\left|U_{j}(z)\right| \leqq 1 /(1-|z|)$ for all $j<a$ and $|z|<1$, it follows that in the general solution $B=0$ and A is determined by the condition $U_{a}(z) \equiv 0$. Thus we obtain that

$$
U_{j}(z)=\frac{\left(\omega_{I}^{a}-\omega_{2}^{a}\right) \omega_{1}^{j}-\delta(j)\left(\omega_{1}^{j}-\omega_{2}^{j}\right) \omega_{I}^{a}}{q z\left(\omega_{1}-\omega_{2}\right) \omega_{I}^{a}}
$$

S-46
for $j<a$ and $\left|4 p q z^{2}\right|<1$. Finally

$$
\sum_{n=1}^{\infty} P\{\rho=n\} z^{n}=\omega_{2}^{a}=\left[\frac{1-\sqrt{1-4 p g z^{2}}}{2 q z}\right]^{a}
$$

for $\left|4 \mathrm{pq} z^{2}\right|<1$. The probabjility $P\{\rho=a+2 m\}$ for $m=0,1,2, \ldots$ is given explicitly by (36.42).
40.3. Let us consider a one-dimensional symmetric random walk. Denote by $\eta_{2 n}$ the position of the particle at the $2 n-t h$ step. Then $\eta_{2 n}$ has the characteristic function
and

$$
Q_{2 n}=\underset{m}{P}\left\{n_{2 n}=0\right\}=\binom{2 n}{n} \frac{1}{2^{2 n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\cos t)^{2 n} d t=\frac{2}{\pi} \int_{0}^{\pi / 2}(\cos t)^{2 n} d t
$$

This relation can also be proved directly. Let us define

$$
I_{k}=\int_{0}^{\pi / 2}(\cos t)^{k} d t
$$

for $k=0,1,2, \ldots$. Then $I_{0}=\frac{\pi}{2}, I_{1}=1$ and by integrating by parts we obtain that

$$
I_{k}=\frac{(k-1)}{k} I_{k-2}
$$

for $k=2,3, \ldots$. Hence

S-47

$$
I_{2 n}=\frac{\pi}{2} \frac{1.3 \ldots(2 n-1)}{2 \cdot 4 \ldots 2 n}=\frac{\pi}{2}\left(\frac{2 n}{n}\right) \frac{1}{2^{2 n}}=\frac{\pi}{2} Q_{2 n}
$$

which is in agreement with the prece, ding formula.

$$
\begin{gathered}
\text { Since } 0<\cos t<1 \text { for } 0<t<\frac{\pi}{2} \text {, therefore } \\
I_{2 n+1}<I_{2 n}<I_{2 n-1}
\end{gathered}
$$

or

$$
\frac{2 n}{2 n+1}<\frac{I_{2 n}}{I_{2 n-1}}<1
$$

for $n=1,2, \ldots$. If we take into consideration that

$$
I_{2 n-1}=\frac{2.4 \ldots\left(\frac{2 n-2)}{3.5 \cdots(2 n-1)}=\frac{\pi}{4 n I_{2 n}}=\frac{1}{2 n Q_{2 n}}, ~\right.}{2} \text {, }
$$

then it follows that

$$
\frac{2 n}{2 n+1}<n \pi Q_{2 n}^{2}<1
$$

which implies the inequalities to be proved.

From the last inequalities it follows that

$$
\frac{4}{\pi}=\lim _{n \rightarrow \infty} 4 n Q_{2 n}^{2}=\lim _{n \rightarrow \infty} \frac{3^{2} \cdot 5^{2} \ldots(2 n-3)^{2}(2 n-1)^{2}}{2 \cdot 4^{2} \cdot 6^{2} \ldots(2 n-2)^{2} 2 n}=\frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \ldots}{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \ldots}
$$

This product representation of $4 / \pi$ was found in 1665 by J. Wallis [66].
40.4. We have

$$
\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) \ldots\left(x-\omega_{n}\right)=a_{0} x^{n}-a_{1} x^{n-1}+\ldots+(-1)^{n} a_{n}
$$

S-48
or

$$
\left(1-x \omega_{1}\right)\left(1-x \omega_{2}\right) \ldots\left(1-x \omega_{n}\right)=a_{0}-a_{1} x+\ldots+(-1)^{n_{n}} a_{n} x^{n}
$$

If $|x|$ is sufficiently small, then we can write that

$$
a_{0}-a_{1} x+\ldots+(-1)^{n} a_{n} x^{n}=e^{\sum_{i=1}^{n} \log \left(1-x \omega_{i}\right)}=e^{-s_{1} x-\frac{s_{2}}{2} x^{2}-\frac{s_{3}}{3} x^{3}-\ldots}
$$

Hence it follows easily the relation to be proved.

We note that by the relation

$$
\begin{aligned}
& s_{1} x+\frac{s_{2}}{2} x^{2}+\frac{s_{3}}{3} x^{3}+\ldots=-\log \left(a_{0}-a_{1} x+\ldots+(-1)^{n} a_{n} x^{n}\right)= \\
& \quad=\sum_{r=1}^{\infty} \frac{\left(a_{1} x-a_{2} x^{2}+\ldots+(-1)^{n-1} a_{n} x^{n}\right)^{r}}{r}
\end{aligned}
$$

we can also express s_{k} with the aid of $a_{1}, a_{2}, \ldots, a_{n}$.
40.5. Denote by $\xi_{1}^{*}, \xi_{2}^{*}, \ldots, \xi_{m}^{*}$ the variables $\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{m}}$ arranged in increasing order of magnitude. In general, we have

$$
\delta_{m}^{+}=\sup _{-\infty<x<\infty}\left[F_{m}(x)-F(x)\right]=\max _{l \leq r \leq m}\left[F_{m}\left(\xi_{\mathrm{r}}^{*}\right)-F\left(\xi_{\mathrm{r}}^{*}\right)\right]
$$

and

$$
\delta_{m}^{-}=\sup _{-\infty<x<\infty}\left[F(x)-F_{m}(x)\right]=\max _{1 \leq r \leq m}\left[F\left(\xi_{\mathrm{r}}^{*}\right)-F_{m}\left(\xi_{\mathrm{r}}^{*}-0\right)\right] .
$$

If $\mathrm{F}(\mathrm{x})$ is a continuous distribution function, then in finding the distributions of δ_{m}^{+}and δ_{m}^{-}we may assume without loss of generality that $\mathrm{F}(\mathrm{x})=\mathrm{x}$ for $0 \leqq \mathrm{X} \leqq 工$. Then $F\left(\xi_{\mathrm{r}}^{*}\right)=\xi_{\mathrm{r}}^{*}$ and $\mathrm{F}_{\mathrm{m}}\left(\xi_{\mathrm{r}}^{*}\right)=\frac{\mathrm{r}}{\mathrm{m}}$ with probability 1 . In this case

S-49

$$
\delta_{m}^{+}=\max _{l \equiv \mathrm{~m}}\left[\frac{r}{m}-\xi_{\mathrm{r}}^{*}\right] \quad \text { and } \quad \delta_{m}^{-}=\max _{1 \leq \mathrm{m} \leq m}\left[\xi_{r}^{*}-\frac{r-1}{m}\right]
$$

If in δ_{m}^{+}we replace ξ_{p}^{*} by $I-\xi_{m+I-r}^{*}$ for $r=I, 2, \ldots, m$, then we obtain a new random variable which has exactly the same distribution as δ_{m}^{+}. This new random variable

$$
\max _{l \leq r \leq m}\left[\xi_{m+l-r}^{*}-\frac{m-r}{m}\right]=\max _{l \leq i \leq m}\left[\xi_{i}^{*}-\frac{i-l}{m}\right],
$$

is evidently δ_{m}^{-}.
40.6. Denote by $\xi_{1}^{*}, \xi_{2}^{*}, \ldots, \xi_{m}^{*}$ the random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{m}}$ arranged in increasing order of magnitude and by $\eta_{1}^{*}, \eta_{2}^{*}, \ldots, \eta_{n}^{*}$ the random variables $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ arranged in increasing order of magnitude. In general we have

$$
\begin{aligned}
\delta_{m, n}^{+} & =\sup _{-\infty<x<\infty}\left[F_{m}(x)-G_{n}(x)\right]=\max _{l \leq r \leq n}\left[F_{m}\left(n_{r}^{*}\right)-G_{n}\left(n_{r}^{*}-0\right)\right] \\
& =\max _{l \leq r \leq m}\left[F_{m}\left(\xi_{r}^{*}\right)-G_{n}\left(\xi_{r}^{*}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{m, n}^{-} & =\sup _{-\infty<x<\infty}\left[G_{n}(x)-F_{m}(x)\right]=\max _{l \leq r \leq n}\left[G_{n}\left(n_{r}^{*}\right)-F_{m}\left(n_{r}^{*}\right)\right]= \\
& =\max _{1 \leq r \leq m}\left[G_{n}\left(\xi_{r}^{*}\right)-F_{m}\left(\xi_{r}^{*}-0\right)\right] .
\end{aligned}
$$

Let us define $v_{r}(r=1,2, \ldots, n+1)$ as the number of variables $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ falling in the interval $\left(n_{r-1}^{*}, \eta_{r}^{*}\right]$ where $n_{0}^{*}=-\infty$ and $n_{n+1}=\infty$. Let $N_{r}=v_{1}+v_{2}+\ldots+v_{r}$ for $r=1,2, \ldots, n+1$. Clearly,
$N_{n+1}=m$. Then $F_{m}\left(n_{r}^{*}\right)=N_{r} / m, G_{n}\left(n_{r}^{*}\right)=r / n$ and $G_{n}\left(n_{r}^{*}-0\right)=(r-1) / n$ with probability I, and we can write that

$$
\delta_{m, n}^{+}=\max _{l \leq r \leq n}\left[\frac{N}{m}-\frac{r-1}{n}\right] \text { and } \delta_{m, n}^{-}=\max _{l \leq r \leq n}\left[\frac{r}{n}-\frac{N_{r}}{m}\right]
$$

If $F(x) \equiv G(x)$ is a continuous distribution function, then v_{1}, v_{2}, \ldots, ν_{n+1} are interchangeable random variables. If in $\delta_{m, n}^{+}$we replace v_{r} by v_{n+2-r} for $r=1,2, \ldots, n$, then we obtain a new random variable which has exactly the same distribution as $\delta_{m, n}^{+}$. This new random variable,

$$
\max _{1 \leq r \leq n}\left[\frac{n-r+1}{n}-\frac{N_{n+1-r}}{m}\right]=\max _{1 \leqq i \leq n}\left[\frac{i}{n}-\frac{N_{i}}{m}\right],
$$

is evidently $\delta_{\mathrm{m}, \mathrm{n}}^{-}$.
40.7. The random variables $\xi_{1}^{*}, \xi_{2}^{*}, \ldots, \xi_{1 n}^{*}$ are the coordinates arranged in increasing order of m points distributed uniformly and independently on the interval $(0,1)$. The random variables $\xi_{1}^{*}, \xi_{2}^{*}, \ldots, \xi_{m}^{*}$ have a joint density function $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=1 / m$! for $0 \leqq x_{1} \leqq x_{2} \leqq \ldots \leqq$ $x_{m} \leqq 1$ and $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ otherwise. We have

$$
P\left\{\xi_{j}^{*} \leqq x\right\}=\frac{m!}{(j-1)!(m-j)!} \int_{0}^{x} u^{j-1}(1-u)^{m-j} d u=\sum_{k=j}^{m}\left(\frac{m}{k}\right) x^{k}(1-x)^{m-k}
$$

for $0 \leqq x \leqq 1$ and $j=1,2, \ldots, m$, and

$$
E\left\{\left(\xi_{j}^{*}\right)^{r}\right\}=\frac{j(j+1) \ldots(j+r-1)}{(m+1)(m+2) \ldots(m+r)}
$$

for $r=1,2, \ldots$. Hence $E\left\{\xi_{j}^{*}\right\}=j /(m+1)$ and $\operatorname{Var}^{\operatorname{Van}}\left\{\xi_{j}^{*}\right\}=j(m+1-j) /(m+1)^{2}(m+2)$.

S-51
Furthermore, we have $\left.\operatorname{Cov}^{\operatorname{Cow}} \xi_{i}^{*}, \xi_{j}^{*}\right\}=i(m+1-j) /(m+1)^{2}(m+2)$ for $1 \leqq i \leqq j \leqq n$. This last result can easily be proved if we take into consideration that $\xi_{1}^{*}, \xi_{2}^{*}-\xi_{1}^{*}, \ldots, \xi_{m}^{*}-\xi_{m-1}^{*}, l-\xi_{m}^{*}$ are interchangeable random variabies with sum 1 . For by this property

$$
\operatorname{Cov}\left\{\xi_{i}^{*}, \xi_{j}^{*}\right\}=\frac{i(m+1-j)}{m} \operatorname{Var}\left\{\xi_{1}^{*}\right\}
$$

if \quad I $i \leqq j \leqq m$.
40.8. The random variables $N_{1}, N_{2}, \ldots, N_{n}$ can be interpreted in the following way. We amange m white balls and n black balls in a row in such a way that all the $\binom{m+n}{m}$ possible arrangements are equally probable. Denote by $N_{i}(i=1,2, \ldots, n)$ the number of white balls preceding the i-th black ball. We have

$$
\underset{m}{P}\left\{N_{i}=j_{i} \text { for } i=1,2, \ldots, n\right\}=\frac{l}{\binom{m+n}{m}}
$$

for $0 \leqq j_{1} \leqq j_{2} \leqq \cdots \leqq j_{n} \leqq m$. Hence it follows that

$$
P\left\{N_{i}=s\right\}=\frac{\binom{i+s-1}{s}\binom{m+n-i-s}{m-s}}{\binom{m+n}{n}}
$$

for $0 \leqq s \leqq m$ and $l \leq i \leqq n$, and

$$
\underset{m}{E}\left\{\left({ }_{r}^{N_{i}}\right)\right\}=\frac{\binom{i+r-1}{r}\binom{m+n}{n+r}}{\binom{m+n}{m}}
$$

for $1 \leqq r \leqq m$. In particular, we have $\underset{m}{E}\left\{N_{i}\right\}=i m /(n+1)$ and
$S-52$

$$
\operatorname{Var}\left\{N_{i}\right\}=\frac{i(n+1-i) m(m+n+1)}{(n+1)^{2}(n+2)}
$$

for $l \leq i \leq n$. Furthermore, we have

$$
\operatorname{Cov}\left\{N_{i}, N_{j}\right\}=\frac{i(n+1-j) m(m+n+1)}{(n+1)^{2}(n+2)}
$$

for $1 \leqq i \leqq j \leqq n$. This last result can easily be proved if we take into consideration that $N_{1}, N_{2}-N_{1}, \ldots, N_{n}-N_{n-1}, m-N_{n}$ are interchangeable random variables with sum m. For this property implies that

$$
\operatorname{Cov}\left\{N_{i}, N_{j}\right\}=\frac{i(n+1-j)}{n} \operatorname{Var}\left\{N_{1}\right\}
$$

for $1 \leqq i \leqq j \leqq n$.
40.9. In finding the joint distribution of δ_{m}^{+}and δ_{m}^{-}we may assume without loss of generality that $F(x)=x$ for $0 \leqq x \leqq 1$. Then by the solution of Problem 40.5 we have

$$
\delta_{\mathrm{m}}^{+}=\max _{1 \leq \mathrm{r} \leq \mathrm{m}}\left[\frac{r}{m}-\xi_{\mathrm{r}}^{*}\right] \text { and } \delta_{\mathrm{m}}^{-}=\max _{1 \leq \mathrm{r} \leq \mathrm{m}}\left[\xi_{\mathrm{r}}^{*}-\frac{\mathrm{r}-1}{\mathrm{~m}}\right]
$$

with probability I and consequently

$$
\underset{m}{P}\left\{\delta_{m}^{+} \leqq x, \delta_{m}^{-} \leqq y\right\}=P\left\{\frac{r}{m}-x \leqq \xi_{r}^{*} \leqq \frac{r-1}{m}+y \text { for } r=1,2, \ldots, m\right\}
$$

Let

$$
a_{r}=\max \left(0, \frac{r}{m}-x\right) \text { and } b_{r}=\min \left(\frac{r-1}{m}+y, I\right)
$$

for : $r=1,2, \ldots, m$. गhen $0 \leqq a_{1} \leqq \cdots \leqq a_{m} \leqq 1,0 \leqq b_{1} \leqq \cdots \leqq b_{m} \leqq 1$
$S-53$
and $a_{r} \leq b_{r}$ if $x+y \geq \frac{1}{m}, x \geq 0$ and $y \geq 0$.

In general, if $0 \leqq a_{1} \leqq \cdots \leqq a_{m} \leqq 1,0 \leqq b_{I} \leqq \cdots \leqq b_{m} \leqq 1$ and $a_{r} \leqq b_{r}$ for $r=1,2, \ldots, m$, then we have

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{m}}\left\{\mathrm{a}_{r} \leqq \xi_{r}^{*} \leqq \mathrm{~b}_{r} \text { for } \mathrm{r}=1,2, \ldots, \mathrm{~m}\right\}= \\
& =m!\sum_{v=0}^{m-1}(-1)^{m-v-1} 0=k_{0}<k_{1}<\ldots<k_{v+1}=m \prod_{i=0}^{v} \frac{\left(b_{k_{i}+1}-a_{k_{i+1}}\right)^{k_{i+1}-k_{j}}}{\left(k_{i+1}-k_{i}\right)!}= \\
& a_{k_{i+1}} \leqq b_{k_{i}+1}(i=1, \ldots, v) \\
& =m!\operatorname{Det}|\delta(i, j)|_{\substack{1 \leq i \leq m \\
1 \leqq j \leq m}}
\end{aligned}
$$

where

$$
\delta(i, j)=\left\{\begin{array}{cc}
\frac{\left(\left[b_{i}-a_{j}\right]^{+}\right)^{j-i+1}}{(j-i+1)!} & \text { if } i \leq j+1, \\
0 & \text { if } i>j+1
\end{array}\right.
$$

For we have

$$
P\left\{a_{r} \leqq \xi_{r}^{*} \leqq b_{r} \text { for } r=1, \ldots, m\right\}=m!P_{m}\left\{a_{r} \leqq \xi_{r} \leqq b_{r} \text { for } r=1, \ldots, m\right.
$$

and $\left.\xi_{1} \leqq \xi_{2} \leqq \cdots \leqq \xi_{m}\right\}=m!P\left\{a_{r} \leq \xi_{r} \leqq b_{r}\right.$ for $r=1, \ldots, m$ and none of the events $\xi_{i}>\xi_{i+1}(i=1, \ldots, m-1)$ occurs $\}=m!\sum_{v=0}^{m-1}(-1)^{m-1-v}$
$0=k_{0}<k_{1}<\ldots<k_{\nu+1}=m{ }^{P}\left\{a_{r} \leqq \xi_{r} \leqq b_{r}\right.$ for $r=1, \ldots, m$ and $\xi_{r}>\xi_{r+1}$ for $\left.r \neq k_{1}, \ldots, k_{v}\right\}$,
and here

$$
\begin{aligned}
& \left.\underset{m}{P \cdot a_{r}} \leqq \xi_{r} \leqq b_{r} \text { for } r=1, \ldots, m \text { and } \xi_{r}>\xi_{r+1} \text { for } r \neq k_{1}, \ldots, k_{v}\right\}= \\
& =P\left\{a_{r} \leqq \xi_{r} \leqq b_{r} \text { for } k_{i}<r \leqq k_{i+1}, \xi_{r}>\xi_{r+1} \text { for } k_{i}<i<k_{i+1} \text { and } 0 \leq i \leq v\right\} \\
& =P\left\{a_{k_{i+1}} \leqq \xi_{k_{i+1}} \leqq \cdots \leq \xi_{k_{1}+1} \leqq b_{k_{i}+1} \text { for } 0 \leqq i \leqq \nu\right\}= \\
& =\prod_{i=0}^{v} \frac{\left(\left[b_{k_{i}}+1-a_{k_{i+1}}\right]^{+}\right)^{k_{i+1}-k_{i}}}{\left(k_{i+1}-k_{i}\right)!} .
\end{aligned}
$$

40.10. By using the same notation as in the solution of Problem 40.6 we can write that

$$
\delta_{m, n}^{+}=\max _{1 \leq r \leq n}\left[\frac{N_{r}}{m}-\frac{r-l}{n}\right] \text { and } \delta_{m, n}^{-}=\max _{1 \leq \leq \leq n}\left[\frac{r}{n}-\frac{N_{r}}{m}\right]
$$

with probability l. Thus we have

$$
\begin{aligned}
P\left\{\delta_{m, n}^{+}\right. & \left.\leqq x, \delta_{m, n}^{-} \leqq y\right\}=P\left\{\frac{m r}{n}-m y \leqq N_{r} \leqq \frac{m(r-1)}{n}+m x \text { for } 1 \leqq r \leqq n\right\} \\
& =P\left\{a_{r} \leqq N_{r} \leqq b_{r} \text { for } l \leqq r \leqq n\right\}
\end{aligned}
$$

where a_{r} is the smallest integer $\geqq \max \left(0, \frac{m P}{n}-m y\right)$ and b_{r} is the largest integer $\leq \min \left(m, \frac{m}{n}(r-1)+m x\right)$. We have $0 \leqq a_{1} \leqq \cdots \leq a_{n} \leqq m$ and $0 \leqq b_{1} \leqq \ldots$ $\leq b_{n} \leqq m$, and $a_{r} \leqq b_{r}(r=1, \ldots, n)$ whenever $x+y \geqq \frac{1}{n}, x \geqq 0, y \geq 0$. For any such $\left\{a_{r}\right\}$ and $\left\{b_{r}\right\}$ we have

$$
P\left\{a_{r} \leqq N_{r} \leqq b_{r} \text { for } l \leqq r \leqq n\right\}=
$$

$$
\begin{aligned}
& =\frac{1}{\binom{m+n}{m}} \sum_{v=0}^{n-1}(-1)^{n-v-1} \quad 0=j_{0}<j_{1}<\ldots<j_{v+1}=n \quad \prod_{i=0}^{v}\binom{\sum_{i}+1-a_{j_{i+1}}+1}{j_{i+1}-j_{i}}= \\
& a_{j_{i+1}} \leq b_{j_{i}+1}(i=1, \ldots, v) \\
& =\frac{1}{\binom{m+n}{m}} \operatorname{Det}|d(i, j)|_{\substack{1 \leq i \leq n \\
1 \leq j \leq n}}
\end{aligned}
$$

where

$$
\alpha(i, j)=\left\{\begin{array}{cc}
\binom{\left[b_{i}-a_{j}+1\right]^{+}}{j-i+1} & \text { if } i \leq j+1, \\
0 & \text { if } i>j+1
\end{array}\right.
$$

If we take into consideration that

$$
\underset{m}{P}\left\{N_{i}=j_{i} \text { for } i=1,2, \ldots, n\right\}=\frac{1}{\binom{m+n}{m}}
$$

for nomegative integers $0 \leqq j_{I} \leqq j_{2} \leqq \cdots \leqq j_{n} \leqq m$, then the above result can be proved in a similar way as the corresponding result in Problem 40.9.
40.11. Let us define the random variables $N_{1}, N_{2}, \ldots, N_{n}$ in the same way as in the solution of Problem 40.6. Define

$$
\eta_{m, n}(u)=\sqrt{\frac{m \mathrm{~m}}{\mathrm{~m}+\mathrm{n}}}\left[\frac{\mathrm{~N}_{\mathrm{n}}[\mathrm{nu}]}{\mathrm{m}}-\frac{[\mathrm{nu}]}{\mathrm{n}}\right]
$$

for $0 \leq u \leq 1$ and $m \geq 1, n \geq 1$. It is sufficient to prove that if $\mathrm{m} \rightarrow \infty$ and $\mathrm{n} \rightarrow \infty$, then the finite dimensional distribution functions of the process $\left\{\eta_{m, n}(u), 0<u<1\right\}$ converge to the finite dimensional distribution functions of the Gaussian process $\{n(u), 0<u<1\}$ for which $E\{n(u)\}=0$ and $\operatorname{Cov}\{n(u), n(v)\}=u(l-v)$ for $0<u \leqq v<1$. Then (39.79) follows by a theorem of M. D. Donsker [245].

Now

$$
E\left\{n_{m, n}(u)\right\}=\sqrt{\frac{m}{m+n}}\left[\frac{[n u]}{n+1}-\frac{[n u]}{n}\right] \rightarrow 0
$$

as $m \rightarrow \infty$ and $n \rightarrow \infty$, and if $0<u \leqq v<1$, then

$$
\operatorname{Cov}\left\{n_{m, n}(u), n_{m, n}(v)\right\}=\frac{n(n+m-1)[n u](n+1-[n v])}{(m+n)(n+1)^{2}(n+2)} \rightarrow u(1-v)
$$

as $m \rightarrow \infty$ and $n \rightarrow \infty$. Hence we can easily conclude that if $m \rightarrow \infty$ and $n \rightarrow \infty$, then the $\Lambda^{j o i n t ~ d i s t r i b u t i o n ~ f u n c t i o n ~ o f ~ t h e ~ r a n d o m ~ v a r i a b l e s ~} \eta_{m, n}\left(t_{1}\right)$, $n_{m, n}\left(t_{2}\right), \ldots, n_{m, n}\left(t_{k}\right)$ where $0<t_{1}<t_{2}<\ldots<t_{k}<I$ converges to a. $k-$ function
\wedge of the statement.
40.12. First, we shall prove that

$$
\begin{aligned}
& \lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}}\left\{\sqrt{\frac{m n}{m+n}} \delta_{m, n}^{+}(0, \alpha) \leq x\right\}=P\left\{\sup _{0 \leq t \leq \alpha} n(t) \leq x\right\}= \\
& \quad=\int_{-\infty}^{x}\left(1-e^{-2 x(x-u) / \alpha}\right) \operatorname{dP}_{m}\{n(\alpha) \leq u\}
\end{aligned}
$$

for $x \geqq 0$ where $\{n(t), 0 \leqq t \leqq I\}$ is a separable Gaussian process for which $\underset{\sim}{E}\{n(t)\}=0$ if $0 \leqq t \leqq I$ and $\underset{\sim}{E}\{\eta(s) \eta(t)\}=s(1-t)$ for $0 \leq s \leqq t \leqq 1$. The first equality follows from a theorem of M. D. Donsker [245]. To prove the second equality let us calculate the limit in the particular case when $m=n$ and $n \rightarrow \infty$. By using the same notation as in the solution of Problem 40.6 , the above limit can be expressed as $\lim _{n \rightarrow \infty} P N_{r}<r+a$ for $1 \leqq r \leqq j$? where $a=[x \sqrt{2 n}]$ and $j=[n \alpha]$. Since in this case

S-57

$$
\left.{\underset{m}{ }}_{P} N_{r}<r+a \text { for } I \leqq r \leqq j \mid N_{j}=j+s\right\}=I-\frac{\left(\begin{array}{c}
2 j+s-1
\end{array}\right)}{\left(\begin{array}{c}
2 j+s-1
\end{array}\right)}
$$

for $0 \leqq j+s<j+a$,

$$
\lim _{j \rightarrow \infty} P_{i}\left\{\frac{N_{j}-j}{\sqrt{2 n}} \leqq u\right\}=P\{\eta(\alpha) \leqq u\}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\left(\begin{array}{l}
2 j+s-1 \\
\left(\frac{a+j}{2 j+s-1}\right) \\
j-1
\end{array}\right)}{\left(e^{-1}\right.}
$$

whenever $j=[n \alpha], a=[x \sqrt{2 n}]$ and $s=[u \sqrt{2 n}]$, the aforementioned limit theorem follows easily.

By the repeated application of the above limit theorem we can easily prove that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \underset{\infty}{ }\left\{\sqrt{\frac{m n}{m+n}} \delta_{m, n}^{+}(0, \alpha) \leqq x, \sqrt{\frac{m n}{m+n}} \delta_{m, n}^{+}(\alpha, \beta) \leqq y, \sqrt{\frac{m n}{m+n}} \delta_{m, n}^{+}(\beta, 1) \leq z\right\}= \\
& n \rightarrow \infty \\
& =P\left\{\sup _{0 \leqq t \leq \alpha} \eta(t) \leqq x, \sup _{\alpha \leq t \leq \beta} \eta(t) \leqq y, \sup _{\beta \leq t \leq I} \eta(t) \leqq z\right\}= \\
& =\int_{\substack{-\infty<u \leq \min (x, y) \\
-\infty<v \min (y, z)}}\left(1-e^{-2 x(x-u) / \alpha}\right)\left(1-e^{-2(y-u)(y-v) /(\beta-\alpha)}\right)\left(1-e^{-2 z(z-v) /(1-\beta)}\right) \cdot
\end{aligned}
$$

$$
\text { - } d_{u} d_{v} P\{n(\alpha) \leqq u, n(\beta) \leqq v\}
$$

for $0<\alpha<\beta<1$ and $x \geq 0, \mathrm{y} \geqslant 0$.
40.13. By the solution of Problem 40.12 we have

$$
\begin{aligned}
& \lim _{\substack{m \rightarrow \infty \\
n \rightarrow \infty}} P\left\{\delta_{m, n}^{+}(\alpha, \beta) \leq 0\right\}=\int_{-\infty}^{0} \int_{-\infty}^{0}\left(1-e^{-2 u v /(\beta-\alpha)}\right) d_{u} d_{V_{m}} P\{\eta(\alpha) \leqq u, \eta(\beta) \leqq v\}= \\
& \quad=\frac{1}{\pi} \operatorname{arc} \sin \sqrt{\frac{\alpha(1-\beta)}{\beta(1-\alpha)}} .
\end{aligned}
$$

40.14. We have

$$
\lim _{m \rightarrow \infty^{+}}\left\{\sqrt{m} \delta_{m}^{+}(\alpha, \beta) \leqq y\right\}=P\left\{\sup _{\alpha \leq t \leq \beta} n(t) \leqq y\right\}
$$

where $\{n(t), 0 \leqq t \leqq 1\}$ is a separable Gaussian process for which $E\{n(t)\}=0$ if $0 \leqq t \leqq 1$ and $E\left\{n(s) n_{n}(t)\right\}=s(1-t)$ if $0 \leqq s \leqq t \leqq 1$. This probability can be obtained by the solution of Problem 40.12 .

For the case of $\beta=1$ we deduce another formula. By (39.1.29) we have

$$
\underset{m}{P}\left\{\delta_{m}^{+}(\alpha, I)>x\right\}=\sum_{m(x+\alpha) \leq j \leq m} \frac{m x}{m x+m-j} P\left\{x_{m}\left(\frac{j-m x}{m}\right)=\frac{j}{m}\right\}
$$

for $x>0$ where

$$
\underset{m}{P}\left\{x_{m}(u)=\frac{j}{m}\right\}=\left(\frac{m}{j}\right) u^{j}(1-u)^{m-j}
$$

for $0 \leqq j \leqq m$ and $0 \leqq u \leqq 1$. If we put $x=y / \sqrt{m}$ and $j=m u$ in the above formula and let $m \rightarrow \infty$, then we obtain that

$$
\lim _{m \rightarrow \infty^{-}} P\left\{\sqrt{m} \delta_{m}^{+}(\alpha, 1)>y\right\}=\frac{y}{\sqrt{2 \pi}} \int_{\alpha}^{1} \frac{e^{-\frac{y^{2}}{2 u(1-u)}}}{u^{1 / 2}(1-u)^{3 / 2}} d u
$$

for $y>0$.
40.15. By (39.123) we have

$$
\underset{\sim}{P}\left\{u_{m}^{+}(\alpha, 1)>x\right\}=\sum_{m(x+1)_{\alpha \leq j \leq m}} \frac{m x}{m x+m-j} P\left\{x_{m}\left(\frac{j}{m(x+1)}\right)=\frac{j}{m}\right\}
$$

for $\mathrm{x}>0$ where $\mathrm{mx}_{\mathrm{m}}(\mathrm{u})$ has a Bernoulli distribution with parameters m and u. If we put $x=y / \sqrt{m}$ and $j=m u$ in the above formula and let $\mathrm{m} \rightarrow \infty$, then we obtain that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} P\left\{\sqrt{m} u_{m}^{+}(\alpha, 1)>y\right\}=\frac{y}{\sqrt{2 \pi}} \int_{\alpha}^{I} \frac{e^{-\frac{u^{2} y^{2}}{2 u(1-u)}}}{u^{1 / 2}(1-u)^{3 / 2}} d u= \\
& =2\left[1-\Phi\left(y \sqrt{\frac{\alpha}{1-\alpha}}\right)\right]
\end{aligned}
$$

for $y>0$ where $\Phi(x)$ is the normal distriburion function.
46.1. First, we shall prove that $\psi(0)=1$. Since $\psi(0)>0$, this follows from

$$
[\psi(0)]^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} d x d y=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \int_{0}^{\infty} e^{-r^{2} / 2} r d r=1 .
$$

Here in the second integral we made the substitution $x=r \cos \theta$ and $y=r \sin \theta$. We can write that

$$
\psi(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty-s x-\frac{x^{2}}{2}} d x=\frac{e^{s^{2} / 2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x+s)^{2} / 2} d x=\frac{e^{s^{2} / 2}}{\sqrt{2 \pi}} \int_{L_{s}} e^{-z^{2} / 2} d z
$$

where $I_{S}=\{z: z=x+S$ and $-\infty<x<\infty\}$. If we integrate $e^{-z^{2} / 2}$ along the rectangle $(R, 0),(R, i \operatorname{Im}(s)),(-R, i \operatorname{Im}(s)),(-R, 0)$ and let $R \rightarrow \infty$, then by Cauchy's formula it follows that the integral in the last formula does not depend on s. Thus $\psi(s)=e^{s^{2} / 2} \psi(0)=e^{s^{2} / 2}$ for any s.
46.2. In this case

$$
\psi(u)=\int_{-\infty}^{\infty} e^{i u x} f(x) d x=e^{-|u|^{1 / 2}\left(1-i \beta \frac{u}{|u|}\right)}
$$

for $-\infty<u<\infty$ and

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i u x} \psi(u) d u=\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{-i u x} \psi(u) d u\right\}
$$

By the substitution $v=z-(1-i) \sqrt{u x / 2}$ where $z=[(1+\beta)+i(1-\beta)] / \sqrt{8 x}$ we obtain that

$$
\int_{0}^{\infty} e^{-i u x} \psi(u) d u=\frac{1}{i x}+\frac{z e^{-z^{2}}}{x}\left(\sqrt{\pi}+2 i \int_{0}^{z} e^{v^{2}} d v\right)
$$

S-61
for $x>0$. Thus

$$
f^{\prime}(x)=\operatorname{Re}\left\{\frac{z}{\pi x}\left[\sqrt{\pi} e^{-z^{2}}+2 i w(z)\right]\right\}
$$

for $\mathrm{x}>0$ where

$$
w(z)=e^{-z^{2}} \int_{0}^{z} e^{v^{2}} d v
$$

and $z=[(1+\beta)+i(1-\beta)] / \sqrt{8 x}$.
46.3 By integrating by parts we obtain that

$$
\begin{aligned}
& \int_{-a}^{a}|x|^{\delta} d F(x)=\delta \int_{0}^{a} x^{\delta-1}[F(a)-F(x)+F(-x)-F(-a)] d x= \\
= & \delta \int_{0}^{a} x^{\delta-1}[1-F(x)+F(-x)] d x-a^{\delta}[1-F(a)+F(-a)]
\end{aligned}
$$

for $a \geq 0$. If $\int_{-\infty}^{\infty}|x|^{\delta} \mathrm{dF}(\mathrm{x})<\infty$, then

$$
0 \leqq a^{\delta}[1-F(a)+F(-a)] \leqq|x| \leqq a|x|^{\delta} d F(x) \rightarrow 0 \quad \text { as } \quad a \rightarrow \infty,
$$

and thus the statement is true. If $\int_{-\infty}^{\infty}|x|^{\delta} d F(x)=\infty$,

$$
\int_{0}^{\infty} x^{\delta-1}[1-F(x)+F(-x)] d x=\infty
$$

necessarily holds.
46.4. Let us consider the complex plane cut along the positive real axis and define a path of jntegration C as follows: We integrate along a straight line from $z=i \varepsilon$ to $z=R+i \varepsilon$ where $0<\varepsilon<1$ and $R>I$, then from $z=R+i \varepsilon$ to $z=R-i \varepsilon$ along the circle $z^{2}=F^{2}+\varepsilon^{2}$ in the
positive direction, then along a straight line from $z=R-i \varepsilon$ to $z=-i \varepsilon$, and finally from $z=-i \varepsilon$ to $z=i \varepsilon$ along the circle $|z|=\varepsilon$ in the negative direction. If we interpret $z^{\delta}=e^{\delta \log z}$ where $\log z=\log |z|+i a r g z$ and $0 \leqq \arg z \leqq 2 \pi$, then $z^{\delta} /\left(1+z^{2}\right)$ is a one-valued function in the region bounded by C and regular except at the poles $z=i$ and $z=-i$. By the theorem of residues we obtain that

$$
\frac{2}{\pi} \int_{C} \frac{z^{\delta}}{1+z^{2}} d z=2\left[e^{\frac{i \delta \pi}{2}}-e^{\frac{3 i \delta \pi}{2}}\right]=-4 i e^{i \delta \pi} \sin \frac{\delta \pi}{2}
$$

$$
\text { If } \varepsilon \rightarrow 0 \text { and } R \rightarrow \infty \text {, then the integral on the left-hand side tends }
$$ to

$$
\frac{2}{\pi}\left(1-e^{2 i \delta \pi}\right) \int_{0}^{\infty} \frac{x^{\delta}}{1+x^{2}} d x=-4 i e^{i \delta \pi} \sin \frac{\delta \pi}{2}
$$

Hence it follows that

$$
E\left\{|\xi|^{\delta}\right\}=\frac{2}{\pi} \int_{0}^{\infty} \frac{x^{\delta}}{1+x^{2}} d x=\frac{1}{\cos \frac{\delta \pi}{2}}
$$

for $-1 \leqslant \delta<1$. See D. Bierens de Haan $\left[\begin{array}{ll}11 & \text { p. } 42 \text { p. 50 }\end{array}\right]$.
46.5 By using Cauchy's integral theorem we can express $I_{\alpha}(s)$ by known real integrals which can be found for example in the book of \underline{D}. Bierens de Haan [11].

First, let us suppose that $0<\alpha<1$. If we use the solution of Problem 46. 4 and if we introduce a new variable $z=s x$ in the integral, then we obtain that

S-63

$$
I_{\alpha}(s)=s J_{\alpha}^{\alpha}(s)+\frac{s \alpha \pi}{2 \cos \frac{\alpha \pi}{2}}
$$

where

$$
J_{\alpha}(s)=\int_{L_{s}}\left(e^{-z}-1\right) \frac{\alpha d z}{z^{\alpha+1}}
$$

and $L_{S}=\{z: z=S x, 0 \leqq x<\infty\}$. The integrand in $J_{\alpha}(s)$ is a regular function of z in the region bounded by the lines I_{1} and I_{S} and the ares $|z|=\varepsilon$ and $|z|=R$ where $0<\varepsilon<R$. If we integrate along the boundary of this region and let $\varepsilon \rightarrow 0$ and $R \rightarrow \infty$, then we obtain that

$$
J_{\alpha}(s)=J_{\alpha}(1)=\int_{0}^{\infty}\left(e^{-x}-1\right) \frac{\alpha d x}{x^{\alpha+1}}=-\Gamma(1-\alpha)
$$

where $\Gamma^{\prime}(1-\alpha)$ is the gamma function. See [11 p. 132].

Thus

$$
I_{\alpha}(s)=-\Gamma(1-\alpha) s^{\alpha}+\frac{s \alpha \pi}{2 \cos \frac{\alpha \pi}{2}}
$$

for $0<\alpha<1$ if $\operatorname{Re}(s) \geqslant 0$.

Now we shall prove that

$$
I_{1}(s)=s \log s-s(1-C)
$$

if $\operatorname{Re}(s)>0$ where $C=0.5772157 .$. is Euler's constant. By [ll p. 135] we have $I_{1}(1)=C-1$. If we introduce a new variable $z=s x$ in $I_{1}(s)$, then we can write that

$$
I_{1}(s)=s \int_{L_{s}}\left(e^{-2}-1+\frac{z}{1+z^{2}}\right) d z+s \int_{0}^{\infty}\left[\frac{1}{1+x^{2}}-\frac{1}{1+s^{2} x^{2}}\right] \frac{d x}{x}
$$

where $I_{s}=\{z: z=s x, 0 \leqq x<\infty\}$. By using Cauchy's integral theorem we can prove that the first integral on the right-hand side of the above equation does not depend on s. Thus the first term becomes $s I_{1}(I)=s(C-I)$. The integral in the second term on the right-hand side of the above formula can be calculated as follows:

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty}\left[\frac{1}{1+x^{2}}-\frac{1}{1+s^{2} x^{2}}\right] \frac{d x}{x}=\lim _{\varepsilon \rightarrow 0}\left[\int_{\varepsilon}^{\infty} \frac{d x}{x\left(1+x^{2}\right)}-\int_{L_{S}(\varepsilon)} \frac{d z}{z\left(1+z^{2}\right)}\right]
$$

where $L_{S}(\varepsilon)=\{z: z=s x, \varepsilon \leqq x<\infty\}$. Since the function $I / Z\left(1+z^{2}\right)$ is regular in the domain $\operatorname{Re}(z)>0$, the last term can be expressed as

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\varepsilon s} \frac{d z}{z\left(1+z^{2}\right)}=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\varepsilon s} \frac{d z}{z}=\log s
$$

This proves the formula for $I_{1}(s)$ in the case when $\operatorname{Re}(s)>0$. If $\operatorname{Re}(s) \geqslant 0$, then $F_{1}(s)$ can be obtained by continuity.

If $s=-i \omega$ where ω is real, we have

$$
I_{1}(-j \omega)=-i \omega \log \omega-\frac{\omega \pi}{2}+i \omega(1-C)
$$

for $\omega>0, I_{1}(0)=0$ and $I_{1}(i \omega)=\overline{I_{1}(-i \omega)}$. This can be proved directly as follows. If $\omega>0$, then

$$
\begin{aligned}
& I_{1}(-i \omega)=\int_{0}^{\infty}\left(e^{i \omega x}-1-\frac{i \omega x}{1+x^{2}}\right) \frac{d x}{x}=\int_{0}^{\infty} \frac{\cos \omega x-1}{x^{2}} d x+ \\
+ & i \int_{0}^{\infty}\left(\sin \omega x-\frac{\omega x}{1+\omega^{2} x^{2}}\right) \frac{d x}{x^{2}}-i \omega \int_{0}^{\infty}\left(\frac{x}{1+x^{2}}-\frac{x}{1+\omega^{2} x^{2}}\right) \frac{d x}{x^{2}}= \\
= & \omega \int_{0}^{\infty} \frac{\cos u-1}{u^{2}} d u+i \omega \int_{0}^{\infty}\left(\frac{\sin u}{u}-\frac{1}{1+u^{2}}\right) d u-i \omega \lim \int_{\varepsilon \rightarrow 0}^{\varepsilon \omega} \frac{d u}{u\left(1+u^{2}\right)}= \\
= & -\frac{\omega \pi}{2}+i \omega(1-C)-i \omega \log \omega .
\end{aligned}
$$

S-65

For by [11 p. 220]

$$
\int_{0}^{\infty} \frac{1-\cos u}{u^{2}} d u=\frac{\pi}{2}
$$

and

$$
\int_{0}^{\infty} \frac{\sin u-u \cos u}{u^{2}} d u=1
$$

and by [11 p. 256]

$$
\int_{0}^{\infty}\left(\frac{1}{1+u^{2}}-\cos u\right) \frac{d u}{u}=C .
$$

Finally let us suppose that $1<\alpha<2$. Then we can write that

$$
I_{\alpha}(s)=\int_{0}^{\infty}\left(e^{-s x}-1+s x\right) \frac{\alpha d x}{x^{\alpha+1}}+s \alpha \int_{0}^{\infty} \frac{x^{1-\alpha}}{1+x^{2}} d x
$$

Thus by the solution of Problem 46.4 we have

$$
I_{\alpha}(s)=s^{\alpha} J_{\alpha}(s)+\frac{s \alpha \pi}{2 \cos \frac{\alpha \pi}{2}}
$$

where

$$
J_{\alpha}(s)=\int_{L_{s}}\left(e^{-z}-1+z\right) \frac{\alpha d z}{z^{\alpha+1}}
$$

and $\mathrm{I}_{\mathrm{s}}=\{\mathrm{z}: \mathrm{z}=\mathrm{sx}, 0 \leqq \mathrm{x}<\infty\}$. By using Cauchy's theorem we can prove that. $J_{\alpha}(s)$ does not depend on s, and thus by [ll p. 132] we have

$$
J_{\alpha}(s)=J_{\alpha}(1)=\int_{0}^{\infty}\left(e^{-x}-1+x\right) \frac{\alpha d x}{x^{\alpha+1}}=-\Gamma(1-\alpha)=\frac{\pi}{\Gamma(\alpha) \sin \alpha \pi} .
$$

Finally,

$$
I_{\alpha}(s)=-\Gamma(1-\alpha) s^{\alpha}+\frac{s \alpha \pi}{2 \cos \frac{\alpha \pi}{2}}=\frac{-s^{\alpha} \pi}{\Gamma(\alpha) \sin \alpha \pi}+\frac{s \alpha \pi}{2 \cos \frac{\alpha \pi}{2}}
$$

for $I<\alpha<2$ and $\operatorname{Re}(s) \geqq 0$.
46.6 Let

$$
\gamma=\frac{2}{\pi} \arctan \left(\beta \tan \frac{\alpha \pi}{2}\right)
$$

where $-1<\gamma<1$. By (42.128) and (42.130) we have

$$
\begin{aligned}
E\left(|\xi|^{\delta}\right\} & =\int_{-\infty}^{\infty}|x|^{\delta} f(x ; \alpha, \beta, c, 0) d x=\left(\frac{c}{\cos \frac{\gamma \pi}{2}}\right)^{\frac{\delta}{\alpha}} \int_{-\infty}^{\infty}|x|^{\delta} h(x ; \alpha, \gamma) d x= \\
& =\left(-\frac{c}{\cos \frac{\gamma \pi}{2}}\right)^{\frac{\delta}{\alpha}}\left[\int_{0}^{\infty} x^{\delta} h(x ; \alpha, \gamma) d x+\int_{0}^{\infty} x^{\delta} h(x ; \alpha,-\gamma) d x\right] .
\end{aligned}
$$

The case $\delta=0$ is obvious. Let $\delta \neq 0$ and $-1<\delta<\alpha$. By (42.131) we have

$$
\begin{aligned}
& \int_{0}^{\infty} x^{\delta} h(x ; \alpha, \gamma) d x=\frac{1}{\pi} \int_{0}^{\infty} x^{\delta} \operatorname{Re}\left\{\int_{0}^{\infty} e^{\left.-i x u-u^{\alpha} e^{-\frac{\gamma \pi i}{2}} d u\right\} d x=} \begin{array}{l}
\quad=\frac{\Gamma(1+\delta)}{\pi} \operatorname{Re}\left\{e^{-\frac{(1+\delta) \pi i}{2}} \int_{0}^{\infty} e^{-u e^{-\frac{\gamma \pi i}{2}}} u^{-\delta-1} d u\right\}= \\
\quad=\frac{\Gamma(1+\delta)}{\pi \alpha} \operatorname{Re}\left\{e^{-\frac{(1+\delta) \pi i}{2}-\frac{\delta \gamma \pi i}{2 \alpha}} \int_{L} e^{-z z^{-\frac{\delta}{\alpha}-1}} d z\right\}= \\
\quad=\frac{\Gamma(1+\delta) \Gamma\left(-\frac{\delta}{\alpha}\right)}{\pi \alpha} \operatorname{Re}\left\{e^{-\frac{(1+\delta) \pi i}{2}-\frac{\delta \gamma \pi i}{2}}\right\}= \\
=-\frac{\Gamma(1+\delta) \Gamma\left(1-\frac{\delta}{\alpha}\right)}{\pi \delta} \cos \left(\frac{(1+\delta) \pi}{2}+\frac{\delta \gamma \pi}{2}\right)=\frac{\Gamma(1+\delta) \Gamma\left(1-\frac{\delta}{\alpha}\right)}{\pi \delta} \sin \left(1+\frac{\gamma}{\alpha}\right) \frac{\delta \pi}{2}
\end{array}\right.
\end{aligned}
$$

s-67
where $L=\left\{z: z=e^{-\frac{\gamma \pi i}{2}} u^{\alpha}, 0 \leqq u<\infty\right\}$.

Thus finally,

$$
\begin{aligned}
\mathrm{E}\left\{|\xi|^{\delta}\right\} & =\left(\frac{c}{\cos \frac{\gamma \pi}{2}}\right)^{\frac{\delta}{\alpha}} \frac{2 \Gamma(1+\delta) \Gamma\left(1-\frac{\delta}{\alpha}\right)}{\pi \delta} \sin \frac{\delta \pi}{2} \cos \frac{\gamma \delta \pi}{2 \alpha}= \\
& =\left(\frac{c}{\cos \frac{\gamma \pi}{2}}\right)^{\frac{\delta}{\alpha}} \frac{\Gamma\left(1-\frac{\delta}{\alpha}\right) \cos \frac{\gamma \delta \pi}{2 \alpha}}{\Gamma(1-\delta) \cos \frac{\delta \pi}{2}}
\end{aligned}
$$

for $-1<\delta<\alpha$. This result is in agreement with (42.198).
46.7. By the solution of Problem 46.6 we obtain that

$$
\begin{aligned}
\sim_{\sim}\{\xi \geq 0\} & =\int_{0}^{\infty} f(x ; \alpha, \beta, c, 0) d x=\int_{0}^{\infty} h(x ; \alpha, \gamma) d x= \\
& =\lim _{\delta \rightarrow 0} \int_{0}^{\infty} \delta h(x ; \alpha, \gamma) d x=\lim _{\delta \rightarrow 0} \frac{\Gamma(1+\delta) \Gamma\left(1-\frac{\delta}{\alpha}\right)}{\pi \delta} \sin \left(1+\frac{\gamma}{\alpha}\right) \frac{\delta \pi}{2}= \\
& =\frac{1}{2}+\frac{\gamma}{2 \alpha}
\end{aligned}
$$

where

$$
\gamma=\frac{2}{\pi} \arctan \left(\beta \tan \frac{\alpha \pi}{2}\right)
$$

and $-1<\gamma<1$. This implies (42.192).
46.8. If $0<\alpha<1$ and $\beta=1$, then $R(0)=0$ and therefore $T\{\psi(s)\}=$ $\psi(s)$ for $\operatorname{Re}(s) \geq 0$. If $0<\alpha<1$ and $\beta=-1$, then $R(0)=1$ and $T\{\psi(s)\}=1$ for $\mathrm{Fe}(\mathrm{s}) \geqslant 0$. In the remaining cases we have

S-68

$$
\psi^{+}(s)=\frac{1}{2}-\frac{\gamma}{2 \alpha}+\frac{\cos \frac{\gamma \pi}{2 \alpha}}{\pi} \int_{0}^{\infty} \frac{e^{-c x^{\alpha} s^{\alpha} / \cos \frac{\gamma \pi}{2}}}{1-2 x \sin \frac{\gamma \pi}{2 \alpha}+x^{2}} d x
$$

for $\operatorname{Re}(s) \geqq 0$ where

$$
\gamma=\frac{2}{\pi} \arctan \left(\beta \tan \frac{\alpha \pi}{2}\right)
$$

and $-1<\gamma<1$. We note that $R(0)=\frac{1}{2}-\frac{\gamma}{2 \alpha}$.
It is sufficient to prove the above formula for $\mathrm{Re}(\mathrm{s})>0$ and for some particular $c>0$. For $\operatorname{Re}(s) \geq 0$ we obtain $\psi^{+}(s)$ by continuity. We shall prove the above formula for $c=\cos \frac{\gamma \pi}{2}$ and by replacing s by $s\left(c / \cos \frac{\gamma \pi}{2}\right)^{1 / \alpha}$ we obtain $\psi^{+}(s)$ for a general $c>0$.

Thus let us assume that $c=\cos \frac{\gamma \pi}{2}$. Then we have

$$
\psi(i y)= \begin{cases}e^{-y^{\alpha} e^{i \gamma \pi / 2}} & \text { for } y \geq 0, \\ e^{-(-y)^{\alpha} e^{-i \gamma \pi / 2}} & \text { for } y \leq 0 .\end{cases}
$$

By Theorem 5.1 we have

$$
\psi^{+}(s)=\frac{1}{2}+\lim _{\varepsilon \rightarrow 0} \frac{s}{2 \pi i}\left[\int_{\varepsilon}^{\infty} \frac{\psi(i y)}{y(s-i y)} d y-\int_{\varepsilon}^{\infty} \frac{\psi(-i y)}{y(s+i y)} d y\right]
$$

for $\operatorname{Re}(s)>0$. If we substitute $y=e^{-i \gamma \pi / 2 \alpha_{s z}}$ in the first integral and $y=e^{i \gamma \pi / 2 \alpha_{s z}}$ in the second integral then we obtain that

$$
\psi^{+}(s)=\frac{1}{2}+\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i}\left[L_{1}(\varepsilon) \frac{e^{-z^{\alpha} s^{\alpha}}}{z\left(1-i z e^{-i \gamma \pi / 2 \alpha}\right)} d z-\int_{2}(\varepsilon) \frac{e^{-z^{\alpha} s^{\alpha}}}{z\left(1+i z e^{i \gamma \pi / 2 \alpha}\right)} d z\right]
$$

for $\operatorname{Re}(s)>0$ where $L_{1}(\varepsilon)=\left\{z: z=e^{i \gamma \pi / 2 \alpha} y / s\right.$ and $\left.\varepsilon \leq y<\infty\right\}$ and $L_{2}(\varepsilon)=\left\{z: z=e^{-i \gamma \pi / 2 \alpha} y / s\right.$ and $\left.\varepsilon \leqq y<\infty\right\}$. Denote by $C_{1}(\varepsilon)$ the path which varies from $z=e^{\mathrm{i} \gamma \pi / 2 \alpha} \varepsilon / \mathrm{s}$ to $\mathrm{z}=\varepsilon /|\mathrm{s}|$ along the arc $|z|=\varepsilon /|\mathrm{s}|$. and from $z=\varepsilon /|s|$ to ∞ along the real axis. Denote by $C_{2}(\varepsilon)$ the path which varies from $z=e^{-i \gamma \pi / 2 \alpha} \varepsilon / s$ to $z=\varepsilon /|s|$ along the arc $|z|=\varepsilon /|s|$ and from $z=\varepsilon /|s|$ to ∞ along the real axis. If we replace $L_{1}(\varepsilon)$ by $C_{1}(\varepsilon)$ in the first integral and $L_{2}(\varepsilon)$ by $C_{2}(\varepsilon)$ in the second integral, then by Cauchy's integral theorem both integrals remain unchanged. If $\varepsilon \rightarrow 0$, then the difference of the two integrals taken along the arcs tend to

$$
\lim _{\varepsilon \rightarrow 0}\left[-\int_{\varepsilon /|\mathrm{s}|}^{\varepsilon e^{i \gamma \pi / 2 \alpha / s}} \frac{d z}{z}+\int_{\varepsilon /|s|} \int_{\mathrm{i} \mid}^{-\mathrm{i} \gamma \pi / 2 \alpha / s}\right]=\log \mathrm{e}^{-\frac{\mathrm{i} \gamma \pi}{2 \alpha}} \frac{\mathrm{~s}}{|\mathrm{~s}|}-\log e^{\frac{i \gamma \pi}{2 \alpha}} \frac{\mathrm{~s}}{|\mathrm{~s}|}=-\frac{i \gamma \pi}{\alpha}
$$

and consequently,

$$
\begin{aligned}
\psi^{+}(s) & =\frac{1}{2}-\frac{\gamma}{2 \alpha}+\frac{1}{2 \pi i} \int_{0}^{\infty}\left[\frac{e^{-x^{\alpha} s^{\alpha}}}{x\left(1-i x e^{-i \gamma \pi / 2 \alpha}\right)}-\frac{e^{-x^{\alpha} s^{\alpha}}}{x\left(1+i x e^{i \gamma \pi / 2 \alpha}\right.}\right] d x= \\
& =\frac{1}{2}-\frac{\gamma}{2 \alpha}+\frac{\cos \frac{\gamma \pi}{2 \alpha}}{\pi} \int_{0}^{\infty} \frac{e^{-x^{\alpha} s^{\alpha}}}{1-2 x \sin \frac{\gamma \pi}{2 \alpha}+x^{2}} d x
\end{aligned}
$$

for $\operatorname{Re}(s)>0$ and $c=\cos \frac{\gamma \pi}{2 \alpha}$. Since

$$
\psi^{+}(0)=\frac{1}{2}-\frac{\gamma}{2 \alpha}+\frac{\cos \frac{\gamma \pi}{2 \alpha}}{\pi} \int_{0}^{\infty} \frac{1}{1-2 x \sin \frac{\gamma \pi}{2 \alpha}+x^{2}} d x=1
$$

we can also write that

$$
\psi^{+}(s)=1-\frac{\cos \frac{\gamma \pi}{2 \alpha}}{\pi} \int_{0}^{\infty} \frac{1-e^{-x^{\alpha} s^{\alpha}}}{1-2 x \sin \frac{\gamma \pi}{2 \alpha}+x^{2}} d x
$$

for $\operatorname{Re}(s) \geqq 0$ and $c=\cos \frac{\gamma \pi}{\partial \alpha}$.
46.9. $\mathrm{By}(42.115)$ we have

$$
\mathrm{m}^{\{ }\{\eta \leq x\}= \begin{cases}2\left[1-\Phi\left(\frac{c}{\sqrt{x}}\right)\right] & \text { for } x \geq 0, \\ 0 & \text { for } x<0,\end{cases}
$$

whence the statement follows. We note that $\underset{\sim}{E}\left\{e^{-s \eta}\right\}=e^{-c \sqrt{2 s}}$ for $\operatorname{Re}(s) \geqslant 0$ or $E\left\{e^{-s \eta}\right\}=e^{-c|s|^{1 / 2}\left(I+\frac{s}{|s|}\right)}$ for $\operatorname{Re}(s)=0$.
46.10. Since $F(x)$ belongs to the domain of attraction of itself, Theorem 44.8 is applicable. By (42.104) and (42.105) we can choose $B_{n}=n^{1 / \alpha}$ in (46.247). Thus by (46.244) and (46.247) we obtain that

$$
\lim _{n \rightarrow \infty} n F\left(-n^{1 / \alpha} x\right)=\frac{c_{1}}{x^{\alpha}} \text { and } \lim _{n \rightarrow \infty} n\left[1-F\left(n^{l / \alpha} x\right)\right]=\frac{c_{2}}{x^{\alpha}}
$$

for $\mathrm{x}>0$. Hence the assertions follow.
46.11. Let us denote by a the expectation of $F(x)$ if it exists, and by σ^{2} the variance of. $F(x)$ if it exists.

If $\sigma^{2}=0$, then $F(x)$ is ciegenerate, and $c=0$ and $m=a . \quad(\alpha$ and β are immaterial.)

If $0<\sigma^{2}<\infty$, then $F(x)$ is a normal distribution, and $\alpha=2$, $c=\sigma^{2} / 2, m=a \quad . \quad(\beta$ is inmaterial.)

If $\sigma^{2}=\infty$, then $F(x)$ belongs to the domain of attraction of itself and thus by (46.245) we have
s-71

$$
\lim _{x \rightarrow \infty} \frac{I-F(x)+F(-x)}{I-F(\rho x)+F(-\rho x)}=\rho^{\alpha}
$$

for any $\rho>0$. This determines α. The constants β and c are determined by the solution of Problem 46.10. It remains to find m. If $I \leq \alpha<2$, then m can be determined in the following way. On the one hand. in Theorem 46.8

$$
A_{n}=n \iint_{|x|<\tau n^{1 / \alpha}} x d F(x)-\left(\mu(\tau)+\varepsilon_{n}\right) n^{1 / \alpha}
$$

where $\tau>0, \mu(\tau)$ is defined by (46.243) and $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. On the other hand by (42.104) and (42.1.05)

$$
A_{n}= \begin{cases}m\left(n-n^{1 / \alpha}\right) & \text { for } \alpha \neq 1 \\ \frac{2 \beta c n \log n}{\pi} & \text { for } \alpha=1\end{cases}
$$

is a possible choice in Theorem 46.8.

A comparison of the above two formulas show that if $1<\alpha<2$, then

$$
\mathrm{m}=\mathrm{a}=\int_{-\infty}^{\infty} \mathrm{xdF}(\mathrm{x})
$$

and if $\alpha=1$, then

$$
m=\lim _{n \rightarrow \infty}\left[\int_{|x|<\tau n} x d F(x)-\frac{2 \beta c \log n}{\pi}\right]-\frac{2 \beta C}{\pi}[\log \tau-(I-C)]
$$

where $\tau>0$ and C is Euler's constant. It is convenient to choose $\tau=e^{l-C}$ in the last formula.

Note. If $\alpha=1$, then by the last formula we obtain that

$$
\lim _{y \rightarrow \infty} \frac{1}{\log y} \int_{|x|<y} x d F(x)=\frac{2 \beta c}{\pi} .
$$

If' $0<\alpha<1$ and if we compare the aforementioned two formulas for A_{n}, then we obtain that

$$
\lim _{y \rightarrow \infty} \frac{1}{y^{1-\alpha}}|x|<y, x d F(x)=\frac{2 \beta c \Gamma(1+\alpha) \sin \frac{\alpha \pi}{2}}{(1-\alpha) \pi} .
$$

These formulas can also be proved directly by the solution of Problem 46.10 .

$$
\begin{aligned}
& \text { 46.1. For any } k=1,2, \ldots \text { we have } \\
& \lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\xi_{2}+\ldots+\xi_{n k}-A_{n k}}{B_{n k}} \leq x\right\}=R(x)
\end{aligned}
$$

where $R(x)$ is a stable distribution function of type $S(\alpha, \beta, c, m)$. If we write •

$$
\frac{\xi_{1}+\ldots+\xi_{n k}-k A_{n}}{B_{n}}=\frac{\xi_{1}+\ldots+\xi_{n}-A_{n}}{B_{n}}+\frac{\xi_{n+1}+\ldots+\xi_{2 n}-A_{n}}{B_{n}}+\ldots+\frac{\xi_{(k-1) n+1}+\ldots+\xi_{m n}-A_{n}}{B_{n}},
$$

then we can easily see that

$$
\lim _{n \rightarrow \infty}\left\{\frac{\xi_{1}+\xi_{2}+\ldots+\xi_{n k}-k A_{n}}{B_{n}} \leqq x\right\}=R_{k}(x)
$$

where $R_{k}(x)$ is the k-th iterated convolution of $R(x)$ with itself. By (42.103) $R_{k}(x)$ is a stable distribution function of type $S(\alpha, \beta, k c, k m)$. Thus by (42.104) and (42.105)

S-73

$$
\frac{\xi_{1}+\xi_{2}+\ldots+\xi_{n k}-k A_{n}}{k^{1 / \alpha} B_{n}}- \begin{cases}\frac{2 \beta c \log k}{\pi} & \text { for } \alpha=1, \\ m\left(k^{1-\frac{1}{\alpha}}-1\right) & \text { for } \alpha \neq 1\end{cases}
$$

has the limiting distribution $R(x)$ as $n \rightarrow \infty$. Hence by Lenma 44.2 it follows that necessarily

$$
\lim _{n \rightarrow \infty} \frac{B_{n k}}{k^{1 / a_{B}}}=1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{A_{n k}-k A_{n}}{B_{n k}}= \begin{cases}\frac{2 \beta C}{\pi} \log k & \text { for } \alpha=1, \\ m\left(k^{\left.1-\frac{1}{\alpha}-1\right)}\right. & \text { for } \alpha \neq 1 .\end{cases}
$$

Let us define

$$
B(t)=B_{n}+(t-n)\left(B_{n+1}-B_{n}\right)
$$

for $n<t \leqq n+1$ and $n=0,1,2, \ldots$ and

$$
a(t)=\frac{A_{n}}{B_{n}}+(t-n)\left[\frac{A_{n+1}}{B_{n+1}}-\frac{A_{n}}{B_{n}}\right]
$$

for $n<t \leqq n+1$ and $n=0,1,2, \ldots$. Since by (44.118) $B_{n} \rightarrow \infty$ and $B_{n+1} / B_{n} \rightarrow 1$ as $n \rightarrow \infty$, and by (44.125) $\left(A_{n+1}-A_{n}\right) / B_{n} \rightarrow 0$ as $n \rightarrow \infty$, we can conclude that

$$
\lim _{t \rightarrow \infty} \frac{B(k t)}{k^{1 / \alpha} B(t)}=1
$$

and

S-74

$$
\lim _{t \rightarrow \infty}\left[a(k t)-\frac{k}{k^{1 / \alpha}} a(t)\right]= \begin{cases}\frac{2 \beta c}{\pi} \log k & \text { if } \alpha=1, \\ m\left(k-\frac{1}{\alpha}-1\right) & \text { if } \alpha \neq 1,\end{cases}
$$

and $k=1,2, \ldots$. The functions $B(t)$ and $a(t)$ are continuous functions of t, and therefore the above relations are $a l$ so valid if k is replaced by ω where ω is any positive real number. If we write

$$
B(t)=t^{I / \alpha} \rho(t)
$$

for
$t>0$, then we have

$$
\lim _{t \rightarrow \infty} \frac{\rho(\omega t)}{\rho(t)}=1
$$

for $\omega>0$, and if we write

$$
a(t)=\frac{h(t)}{t^{\frac{1}{\alpha}}-1}+ \begin{cases}\frac{2 \beta c}{\pi} \cdot \log t & \text { for } \alpha=1, \\ -m & \text { for } \alpha \neq 1,\end{cases}
$$

for $t>0$, then we have

$$
\lim _{t \rightarrow \infty} \frac{h(\omega t)-h(t)}{t^{\frac{1}{\alpha}}-1}=0
$$

for $\omega>0$.
46.13. By (42.171) we have

$$
\int_{0}^{\infty} e^{-s x} d R(x)=e^{-\Gamma(1-\alpha) s^{\alpha}}
$$

for $R(s) \geqq 0$. Let $\phi(s)=\int_{0}^{\infty} e^{-s x} d F(x)$. Then

S-75

$$
\begin{aligned}
\phi(s) & =1-s \int_{0}^{\alpha}[1-F(x)] e^{-s x} d x=1 \cdots s \int_{0}^{\infty} h(x) x^{-\alpha} e^{-s x} d x= \\
& =1-\Gamma(1-\alpha) s^{\alpha} h\left(\frac{1}{s}\right)+o\left(s^{\alpha}\right)
\end{aligned}
$$

as $s \rightarrow 0$. If $s>0$, then

$$
\lim _{n \rightarrow \infty}\left[\phi\left(\frac{s}{n^{1 / \alpha} \rho(n)}\right)\right]^{n}=e^{-\Gamma(1-\alpha) s^{\alpha}}
$$

if and only if

$$
\lim _{n \rightarrow \infty} \frac{h\left(n^{1 / \alpha} \rho(n)\right)}{(\rho(n))^{\alpha}}=1,
$$

and this proves the statement.
46.14. By (42.173) we have

$$
\int_{0}^{\infty} e^{-s X} d R(x)=e^{-\Gamma(1-\alpha) s^{\alpha}}
$$

for $\operatorname{Re}(s) \geqq 0$. Let $\phi(s)=\int_{0}^{\infty} e^{-s x} d F(x)$. Then

$$
\begin{aligned}
\phi(s)= & 1-a s+s \int_{0}^{\infty}[1-F(x)]\left(1-e^{-s x}\right) d x=1-a s+ \\
& +s \int_{0}^{\infty} h(x) x^{-\alpha}\left(1-e^{-s x}\right) d x=1-a s-r(1-\alpha) s^{\alpha} h\left(\frac{1}{s}\right)+0\left(s^{\alpha}\right)
\end{aligned}
$$

and

$$
\phi(s) e^{a s}=1-\Gamma(1-\alpha) s^{\alpha} h\left(\frac{1}{s}\right)+o\left(s^{\alpha}\right)
$$

as $s \rightarrow 0$. If $s>0$, then

$$
\lim _{n \rightarrow \infty}\left[\phi\left(\frac{s}{n^{1 / \alpha} \rho(n)}\right) e^{\frac{a s}{n^{1 / \alpha} \rho(n)}}\right]^{n}=e^{-\Gamma(1-\alpha) s^{\alpha}}
$$

S-76
if and only if

$$
\lim _{n \rightarrow \infty} \frac{h\left(n^{1 / \alpha} \rho(n)\right)}{(\rho(n))^{\alpha}}=I
$$

and this proves the statement.
46.15. Since

$$
\sum_{j=0}^{k}(-1)^{j}\binom{a}{j}=(-1)^{k}\binom{a-1}{k}
$$

for any a , we have

$$
\begin{aligned}
\left.{\underset{\sim}{P}}^{P} \xi_{n}>2 k\right\} & =1-\sum_{j=1}^{k} \frac{1}{2 j-1}\binom{2 j}{j} \frac{1}{2^{2 j}}=1-\sum_{j=1}^{k}(-1)^{j-1}\binom{\frac{1}{2}}{j}= \\
& =(-1)^{k-1}\left(\frac{-1}{2}{ }_{k}^{2}\right)=\binom{2 k}{k} \frac{1}{2^{2 k}}
\end{aligned}
$$

for $k=1,2, \ldots$. By using the inequality

$$
\frac{1}{\sqrt{\pi\left(k+\frac{1}{2}\right)}}<\binom{2 \mathrm{k}}{k} \frac{1}{2^{2 k}}<\frac{1}{\sqrt{\pi k}},
$$

we get

$$
\lim _{k \rightarrow \infty} \sqrt{2 k} P\left\{\xi_{\mathrm{n}}>2 \mathrm{k}\right\}=\sqrt{\frac{2}{\pi}} .
$$

Thus $P\left\{\xi_{n} \leq x\right\}$ belongs to the domain of attraction of a stable distribution function $R(x)$ of type $S\left(\frac{1}{2}, 1, c, 0\right)$ where $c>0$. If we choose $A_{n}=0$ and $B_{n}=(n b)^{2}$ where

$$
b=\frac{\sqrt{\frac{2}{\pi}}}{\frac{2 c}{\pi} \Gamma\left(\frac{1}{2}\right) \sin \frac{\pi}{4}}=\frac{1}{c}
$$

S-77
then we have
for $x \geq 0$ where $\Phi(x)$ is the normal distribution function.

Note. Since

$$
\underset{m}{P}\left\{\xi_{1}+\ldots+\xi_{n}=2 j\right\}=\frac{n}{2 j-n}\left({ }_{j}^{2 j-n}\right) \frac{1}{2^{2 j-n}}
$$

for $j=n, n+1, \ldots$, we can prove directly that,

$$
\lim _{n \rightarrow \infty}\left\{\frac{\xi_{1}+\ldots+\xi_{n}}{n^{2}}>x\right\}=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} y^{-\frac{3}{2}} e^{-\frac{1}{2 y}} d y=2 \Phi\left(\frac{1}{\sqrt{x}}\right)-1
$$

for $x>0$.
46.1.6. Since $\Gamma(a+1) \sim \sqrt{2 \pi a}\left(\frac{a}{e}\right)^{a}$ as $a \rightarrow \infty$, we have

$$
k_{m}^{q_{p}\left\{\xi_{n}>k\right\}=k^{q}\binom{k-q}{k}=\frac{k^{q} \Gamma(k-q+1)}{\Gamma(1-q) \Gamma(k+1)} \rightarrow \frac{1}{\Gamma(1-q)} \quad \text { as } \quad k \rightarrow \infty}
$$

and thus $P\left\{\xi_{n} \leqq x\right\}$ belongs to the domain of attraction of a stable distribution function $R(x)$ of type $S(q, 1, c, 0)$ where $c>0$. If we choose $A_{n}=0$ and $B_{n}=(n b)^{1 / q}$ where

$$
\mathrm{b}=\frac{\pi}{\Gamma(1-q) 2 c \Gamma(q) \sin \frac{q \pi}{2}}=\frac{\sin q \pi}{2 c \sin \frac{q \pi}{2}}=\frac{\cos \frac{q \pi}{2}}{c},
$$

then

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\xi_{2}+\ldots+\xi_{n}}{(b n)^{1 / q}} \leq x\right\}=R(x)
$$

s-78
If $b=1$, then $R(x)$ is of type $S\left(q, 1, \cos \frac{q_{1}}{2}, 0\right)$.
46.17. Since

$$
\lim _{x \rightarrow \infty} \frac{1-F(x)}{1-F(\rho x)}=\rho
$$

for $\rho>0$, by Theorem 44.8 it follows that $F(x)$ belongs to the domain of attraction of a stable distribution function $R(x)$ of type $S(1,1, c, m)$ where $c>0$ and m is a real number. We have

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\ldots+\xi_{n}-A_{n}}{B_{n}} \leq x\right\}=R(x)
$$

if we choose B_{n} in such a way that

$$
\lim _{n \rightarrow \infty} \frac{n}{B_{n}\left(\log B_{n}\right)^{2}}=\frac{2 c}{\pi}
$$

and if

$$
A_{n}=n \int_{0}^{\tau B_{n}} x d F(x)-m B_{n}-\frac{2 c}{\pi} B_{n}[\log \tau-(1-C)]+\varepsilon_{n} B_{n}
$$

where C is Euler's constant, $\tau>0$, and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
If

$$
B_{n}=\frac{n \pi}{2 c(\log n)^{2}}
$$

for $n>l$, then the requirements are satisfied.

In our case

$$
\int_{0}^{\infty} x d F(x)=\int_{0}^{\infty}[1-F(x)] d x=e+\int_{e}^{\infty} \frac{d x}{x(1 \log x)^{2}}=e+1
$$

and if $\pi B_{n}>e$, then

$$
\begin{aligned}
\int_{0}^{\tau B_{n}} x d F(x)=e-1 & +\int_{e}^{\tau B_{n}}\left[\frac{1}{x(\log x)^{2}}+\frac{2}{x(\log x)^{3}}\right] d x=e+1-\frac{1}{\log \tau B_{n}}- \\
& -\frac{1}{\left(\log \tau B_{n}\right)^{2}} .
\end{aligned}
$$

T hus

$$
A_{n}=n(e+1)-\frac{n}{\log n}+\frac{n}{(\log n)^{2}}\left[\log \frac{\pi}{2 c}-c-\frac{m \pi}{\alpha}\right]-\frac{2 n \log \log n}{(\log n)^{2}}
$$

for $n>e$ is a possible choice.

$$
\begin{aligned}
& \text { If } c=\pi / 2 \text { and } m=-c \text {, then we have } \\
& \quad \lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\ldots+\xi_{n_{1}}-n(e+1)}{n(\log n)^{-2}}+\log n+2 \log \log n \leqq x\right\}=R(x)
\end{aligned}
$$

where $\cdot R(x)$ is a stable distribution function of type $S\left(1,1, \frac{\pi}{2},-C\right)$.
46.18. In this case

$$
1-F(x)+F(-x)=\frac{5}{6 x(\log x)^{2}}
$$

for $x \geqslant e$ and

$$
\lim _{x \rightarrow \infty} \frac{F(-x)}{1-F(x)}=\frac{2}{3}
$$

function
Thus $F(x)$ belongs to the domain of attraction of a stable distribution $R(x)$ of type $S\left(1, \frac{1}{5}, c, m\right)$. If $c=5 \pi / 12$, then we can choose $B_{n}=n /(\log n)^{2}$ for $n>1$ and if $m=-C / 6 \quad$ where C is Euler's constant, then
$S-80$

$$
A_{n}=n\left(e-\frac{5}{6}\right)-\frac{1}{6 \log n}-\frac{2 n \log \log n}{6(\log n)^{2}}
$$

for $n>e$ is a possible choice. Thus

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\ldots+\xi_{n}-A_{n}}{B_{n}} \leq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(I, \frac{1}{5}, \frac{5 \pi}{12},-\frac{C}{6}\right)$.
46.19. Since $\lim _{x \rightarrow \infty} x[1-F(x)]=1$, it follows from Theorem 44.8 that $F(x)$ belongs to the domain of attraction of a stable distribution function $R(x)$ of type $S(1,1, c, m)$. By (44.247) we can choose $B_{n}=n \pi / 2 c$ and by (44.248)

$$
A_{n}=n \int_{1}^{\pi n \pi / 2 c} \frac{d x}{x}-\frac{n \pi}{2 c}\left\{m+\frac{2 c}{\pi}[\log \tau-(1-c)]\right\}
$$

where $\tau>0$ and C is Euler's constant. Thus

$$
A_{n}=-m \frac{n \pi}{2 c}+n \log \frac{n \pi}{2 c}+n(1-c)
$$

If $c=\pi / 2$ and $m=1-C$, then we have

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\xi_{1}+\ldots+\xi_{n}}{n}-\log n \leqq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(1,1, \frac{\pi}{2}, 1-C\right)$. The Laplace-Stieltjes transform of $R(x)$ is

$$
\psi(s)=e^{-(I-C) s-|s| \frac{\pi}{2}+s \log |s|}
$$

for $\operatorname{Re}(s)=0$ or
§-81

$$
\psi(s)=e^{-(1-C) s+s \log s}
$$

for $\operatorname{Re}(\mathrm{s}) \geq 0$.

Note. We can prove the above result directly. The Laplace-Stieltjes transform of $F(x)$ can be expressed as

$$
\phi(s)=\int_{1}^{\infty} \frac{e^{-s x}}{x^{2}} d x=s \int_{s}^{\infty} e^{-z} \frac{d z}{z^{2}}=s[C-1]+s \log s+1-s^{2}+o\left(s^{2}\right)
$$

for $\operatorname{Re}(s) \geq 0$ where $O\left(s^{2}\right) / s^{2} \rightarrow 0$ as $|s| \rightarrow 0$. (See N. Nielsen [142p.5].) Thus

$$
\lim _{n \rightarrow \infty}\left[\phi\left(\frac{s}{n}\right)\right]^{n} e^{s \log n}=e^{s(C-1)+s \log s}
$$

for $\operatorname{Re}(s) \geq 0$. Accordingly,

$$
\lim _{n \rightarrow \infty}\left\{\frac{\xi_{1}+\ldots+\xi_{n}}{n}-\log n \leq x\right\}=R(x)
$$

where

$$
\psi(s)=\int_{-\infty}^{\infty} e^{-s x} d R(x)=e^{-(1-C) s+s \log s}
$$

for $\operatorname{Re}(s) \geq 0$. If $\operatorname{Re}(s)=0$, then $s \log s=s \log |s|-\frac{|s| \pi}{2}$
46.20. In this case $F(-x)=1-F(x)$ and

$$
\text { I. }-F(x)+F(-x)=\frac{1+\log x}{x}
$$

for $x \geq 1$. Thus $F(x)$ belongs to the domain of attraction of a stable distribution function of type $S(1,0, c, 0)$ where $c>0$. If. we choose $A_{n}=0$ and $B_{n}=(\pi n \log n) / 2 c$, then

$$
\lim _{n \rightarrow \infty}\left\{\frac{2 c\left(\xi_{1}+\ldots+\xi_{n}\right)}{\pi n \log n} \leqq x\right\}=\frac{1}{2}+\frac{1}{\pi} \arctan \frac{x}{c} .
$$

46.21. Let us suppose that $E\left\{e^{-s \xi}\right\}=e^{-s^{\alpha}}$ for $\operatorname{Re}(s) \geqq 0$ where $0<\alpha<1, P\{n \leqq x\}=1-e^{-x}$ for $x \geqq 0$, and ξ and n are independent random variables. Then

$$
\left.m^{P\left\{\xi \eta^{-1}\right.} \leqq x\right\}=\int_{0}^{\infty} P\{\xi \leqq x y\} e^{-y} d y=e^{-(l / x)^{\alpha}}
$$

for $x>0$. Hence

$$
\left.\operatorname{Pin}^{\alpha} \xi^{-\alpha} \leq x\right\}=1-e^{-x}
$$

for $x \geq 0$, and

$$
E\left\{e^{-\sin ^{\alpha} \xi^{-\alpha}}\right\}=\frac{1}{1+s}
$$

for $\operatorname{Re}(s)>-1$, or

$$
E\left\{e^{-s^{\alpha} n^{\alpha} \xi^{-\alpha}}\right\}=\int_{0}^{\infty} E\left\{e^{-(s u)^{\alpha} \xi^{-\alpha}}\right\} e^{-u} d u=\frac{1}{1+s^{\alpha}}
$$

for $\operatorname{Re}(s) \geq 0$. On the other hand by (42.180) we have

$$
\int_{0}^{\infty} E_{0}\left(-s^{\alpha} u^{\alpha}\right) e^{-u} d u=\sum_{k=0}^{\infty} \frac{(-1)^{k} s^{k \alpha}}{\Gamma(k \alpha+1)} \int_{0}^{\infty} e^{-u} u^{k \alpha} d u=\frac{1}{1+s^{\alpha}}
$$

for $|s|<1$. Accordingly, we have

$$
\int_{0}^{\infty} E\left\{e^{-(s u)^{\alpha} \xi^{-\alpha}}\right\} e^{-u} d u=\int_{0}^{\infty} E_{\alpha}\left(-s^{\alpha} u^{\alpha}\right) e^{-u} d u
$$

for $|s|<I$, and this implies that

$$
\underset{\sim}{E}\left\{e^{-w \xi^{-\alpha}}\right\}=E_{\alpha}(-w)
$$

for every w. This proves (42.181).
46.22. In this case $\psi(s)=E\left\{e^{-S \xi}\right\}=E\left\{e^{-s \eta}\right\}=e^{-S^{\alpha}}$ for $\operatorname{Re}(s) \geqq 0$. Let us suppose that $\xi, \eta, \theta_{1}, \theta_{2}$ are mutually independent random variables and $P\left\{\theta_{1} \leqq x\right\}=P\left\{\theta_{2} \leqq x\right\}=1-e^{-x}$ for $x \geqslant 0$. Then

$$
\underset{\sim}{P}\left\{\xi \theta_{1}^{-1} \leq x\right\}=P\left\{n \theta_{2}^{-1} \leq x\right\}=\psi\left(\frac{1}{x}\right)
$$

for $x>0$ and

$$
G(x)=P\left\{\xi \eta^{-1} \theta_{1}^{-1} \theta_{2} \leq x\right\}=\int_{u v^{-1} \leq x} \psi\left(\frac{1}{u}\right) \psi\left(\frac{1}{v}\right) d u d v=\frac{x^{\alpha}}{1+x^{\alpha}}
$$

for $x \geq 0$. Since

$$
E\left\{\theta_{1}^{-S} \theta_{2}^{S}\right\}=\Gamma(l-s) \Gamma(I+s)=\frac{\pi s}{\sin \pi s}
$$

for $|\operatorname{Re}(s)|<1$, it follows that

$$
\int_{0}^{\infty} x^{S} d H(x)=\frac{\sin \pi S}{\pi S} \int_{0}^{\infty} x^{S} d G(x)
$$

for $-1<\operatorname{Re}(s)<\alpha$. If we extend the definition of $G(x)$ by analytical continuation to the complex plane cut along the negative real axis from the origin to infinity, then we can write that

$$
\frac{d H(x)}{d x}=\frac{G\left(x e^{\pi i}\right)-G\left(x e^{-\pi i}\right)}{2 \pi i x}=\frac{x^{\alpha} \sin \alpha \pi}{\pi x\left(1+2 x^{\alpha} \cos \alpha \pi+x^{2 \alpha}\right)}
$$

for $x>0$. If, in particular, $\alpha=1 / 2$, then

$$
H(x)=\frac{2}{\pi} \arctan \sqrt{x}
$$

for $x \geqq 0$.

CHAPTER VII

53.1. If $\tau_{k}(k=0,1,2, \ldots)$ is defined as in Section 49, then by Theorem 43.3 we have

$$
\left.\underset{k \rightarrow \infty}{P} \lim _{k \rightarrow \infty} \frac{{ }^{\tau} k}{k}=a\right\}=1 .
$$

Hence if $0<\varepsilon<a$, then

$$
(a-\varepsilon) k \leqq \tau_{k} \leqq(a+\varepsilon) k
$$

large
for sufficiently \wedge with probability 1 . Since ${ }^{\tau} v(t) \leqq t<\tau_{v}(t)+1$, therefore

$$
\frac{1}{a+\varepsilon}-\frac{1}{t} \leqq \frac{\nu(t)}{t} \leqq \frac{1}{a-\varepsilon}
$$

for sufficiently large t with probability 1 . This implies that

$$
\operatorname{mim}_{t \rightarrow \infty}\left\{\frac{\nu(t)}{t}=\frac{I}{a}\right\}=1 .
$$

This result is also valid for $a=\infty$, if we define $1 / a$ as 0 for $a=\infty$. This can be obtained from the previous result by truncating the recurrence times at m and letting $\mathrm{m} \rightarrow \infty$.
53.2. Both ξ_{1} and ξ_{2} are necessarily discrete random variables, and there is a constant c such that $\xi_{1}+c$ and $\xi_{2}-c$ take on nonnegative integers only. Let $P\left\{\xi_{1}+c=j\right\}=p_{j}$ and $P\left\{\xi_{2}-c=j\right\}=q_{j}$ for $j=0,1,2, \ldots$. Then we have

$$
\sum_{j=0}^{k} p_{j} q_{k-j}=e^{-a} \frac{e^{k}}{k!}
$$

for $k=0,1,2, \ldots$. Hence $p_{0}>0, q_{0}>0$ and

$$
p_{k} \leqq \frac{e^{-a} a^{k}}{q_{0} k!} \text { and } q_{k} \leqq \frac{e^{-a} a^{k}}{p_{0} k!}
$$

for $k=0,1,2, \ldots$. Let

$$
g(z)=\sum_{j=0}^{\infty} p_{j} z^{j} \text { and } h(z)=\sum_{j=0}^{\infty} q_{j} z^{j} .
$$

The function $g(z)$ is regular on the whole complex plane,

$$
|g(z)| \leqq \frac{1}{q_{0}} \sum_{k=0}^{\infty} e^{-a} \frac{a^{k}}{k!}|z|^{k}=\frac{1}{q_{0}} e^{-a(1-|z|)}
$$

and $g(z)$ never vanishes. For $g(z) h(z)=e^{-a(1-z)}$ and $e^{-a(1-z)}$ has no zeros. Thus

$$
\lim \frac{\log g(z)}{|z| \rightarrow \infty} z^{2}=0
$$

and by Theorem 10.3 in the Appendix, it follows that $\log _{-a_{1}(1-z)} g(z)=a_{1}(z-1)$. Here we used that. $g(1)=1$. Accordingly, $g(z)=e^{-a_{1}(1-z)}$, and in a similar way we get $h(z)=e^{-a_{2}(l-z)}$. Obviously $a_{1} \geq 0, a_{2} \geqq 0$ and $a_{1}+a_{2}=a$. If $a_{1}=0$ or $a_{2}=0$, then the random variable ξ_{1} or ξ_{2} has a degenerate distribution. If $a_{1}>0$ and $a_{2}>0$ then both $\xi_{1}+c$ and $\xi_{2}-c$ have a nondegenerate Poisson distribution.
53.3. Let

$$
q_{k}(n)=P\{v(i)=i \text { for } k \text { values } i=1,2, \ldots, n \mid v(n)=n\}
$$

for $1 \leq k \leq n$. It is easy to see that $d_{1}(1)=1$ and

$$
q_{1}(n)=1-\sum_{j=1}^{n-1} p\{v(j)=j \mid v(n)=n\} q_{1}(j)
$$

S-85
for n > 1 . Furthermore,

$$
q_{k}(n)=\sum_{j=1}^{n-k+1} P\{v(j)=j \mid v(n)=n\} q_{1}(j) q_{k-1}(n-j)
$$

for $2 \leqq k \leqq n$. Define

$$
Q_{k}(n)=\frac{n^{n}}{n!} q_{k}(n)
$$

for $1 \leqq k \leqq n$. Then we have $Q_{1}(1)=1$ and

$$
Q_{1}(n)=\frac{n^{n}}{n!}-\sum_{j=1}^{n-1} Q_{1}(j) \frac{(n-j)^{n-j}}{(n-j)!}
$$

for $n>1$. Furthermore,

$$
Q_{K}(n)=\sum_{j=1}^{n-k+1} Q_{I}(j) Q_{k-1}(n-j)
$$

for $2^{\circ} \leqq \mathrm{k} \leqq \mathrm{n}$. Hence

$$
\sum_{n=1}^{\infty} Q_{1}(n) z^{n}=\frac{\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}}{1+\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}}=\frac{\frac{\rho(z)}{1-\rho(z)}}{\frac{1}{1-\rho(z)}}=\rho(z)
$$

for $|z|<I / e$ where $w=\rho(z)$ is the only root of $w e^{-w}=z$ in the circle $|w|<I$, and

$$
\sum_{n=k}^{\infty} Q_{k}(n) z^{n}=\left(\sum_{n=1}^{\infty} Q_{1}(n) z^{n}\right)^{k}=[\rho(z)]^{k}
$$

for $k=1,2, \ldots$. By Lagrange's expansion we obtain that

S-86

$$
Q_{k}(n)=\frac{k}{(n-k)!n}
$$

for $1 \leqq k \leqq n$. (See (39.148) and (39.149).)
53.4. If $\tau_{u}(0 \leqq i<\infty)$ is defined by (49.24), then by the solution of Problem 46.17 we have

$$
\left.\lim _{u \rightarrow \infty^{n}} \frac{{ }^{\tau}-u^{-}(e+1)}{u(\log u)^{-2}}+\quad \leq x\right\}=R(x) \quad \quad \log u+2 \log \log u
$$

where $R(x)$ is a stable distribution function of type $S\left(1,9, \frac{\pi}{2},-C\right)$ where C Is Euler's constant.

If

$$
t=u(e+1)-\frac{u}{\log u}+\sqrt{x \frac{u}{(\log u)^{2}}-\frac{2 u \log \log u}{(\log u)^{2}}}
$$

for u. $>$ e., then
and thus

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left[\frac{u-\frac{t}{e+1}}{t(e+1)^{-2}(\log t)^{-2}} / \lambda=\frac{1}{e+1}+\log (e+1)-x\right. \\
& \quad \text { (-log } t-2 \log 1 \log t
\end{aligned}
$$

$$
\lim _{u \rightarrow \infty} P\{\tau \leq t\}=\lim _{t \rightarrow \infty} P\{u(t) \supseteq u\}=R(x)
$$

implies that

$$
\begin{array}{r}
\lim _{t \rightarrow \infty}\left\{\frac{v(t)-\frac{t}{e+1}}{t(e+1)^{-2}(\log t)^{-2}}<\leq \frac{1}{e+1}+\log (e+1)+x\right\}=1-R(-x) \\
\quad(-\log t-2 \log \log t
\end{array}
$$

53.5. Denote by Δ_{n} the number of positive terms in the sequence $\zeta_{0}, \zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$. Then we have

$$
\underset{m}{P}\left\{\tau_{1}>n\right\}=P\left\{\zeta_{r} \leq 0 \text { for } 0 \leq r \leq n\right\}=P\left\{\Delta_{n}=0\right\}
$$

for $n=0,1, \ldots$. By Theoren 23.1 we have

$$
\sum_{n=0}^{\infty} P_{n}^{P}\left\{\Delta_{n}=0\right\} \rho_{p}^{n}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} P_{m}^{P\left\{\zeta_{n} \leq 0 j\right\}}\right.
$$

for $|\rho|<1$. By (42.192) we have

$$
P\left\{\zeta_{n} \leqq 0\right\}=1-q=\frac{z}{2}-\frac{\gamma}{2 \alpha}
$$

for $n=i, 2, \ldots$ where

$$
\gamma=\frac{2}{\pi} \arctan \left(\beta \tan \frac{\alpha \pi}{2}\right)
$$

and $-1<\gamma<1$. Thus it follows that

$$
\underset{\sim}{P}\left\{\tau_{1}>n\right\}=\underset{\sim}{P}\left\{\Delta_{n}=0\right\}=(-1)^{n}\binom{q-1}{n}=\binom{n-q}{n}
$$

for $n=0,1,2, \ldots$ and $0<q<1$.

By the solution of Problem 46.16 we have

$$
\left.\lim _{n \rightarrow \infty} P_{n} \frac{\tau}{n^{1 / q}} \leqq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(q, 1, \cos \frac{q \pi}{2}, 0\right)$.

Hence by Theorem 49.2 we have

$$
\lim _{t \rightarrow \infty} p\left\{\frac{v(t)}{t^{q}} \leq x\right\}=I-R\left(x^{-1 / q}\right)
$$

S-88
for $x>0$ or

$$
\lim _{t \rightarrow \infty} P\left\{\frac{v(t)}{t^{q}} \leqq x\right\}=G_{q}(x)
$$

where $\mathrm{G}_{\mathrm{q}}(\mathrm{x})$ is defined by (42.178).
53.6. The random variables $x_{1}=\zeta_{\tau_{1}}, x_{2}=\zeta_{\tau_{2}}-\zeta_{\tau_{1}}, \ldots$ are mutually independent and identically distributed positive random variables and $\zeta_{\tau_{n}}=x_{1}+x_{2}+\ldots+x_{n}$ for $n=1,2, \ldots$. By Theorem 19.4 we have

$$
\left.-\sum_{n=1}^{\infty} \frac{1}{n} E\left\{e^{-s \zeta_{n}} n_{\delta\left(\zeta_{n}\right.}>0\right)\right\}
$$

$$
\left.\phi(s)=E e^{-s x_{I}}\right\}=1-e^{n=1}
$$

for $\operatorname{Re}(\mathrm{s}) \geq 0$. The random variable ζ_{n} has a stable distribution of type $S(\alpha, \beta, n c, 0)$ and thus by the solution of Problem 46.8 we have
for $\operatorname{Re}(s) \geqq 0$ where $c^{*}=c / \cos \frac{\gamma \pi}{2}$. Since $q=\frac{1}{2}+\frac{\gamma}{2 \alpha}$ we have

$$
\sin \frac{\gamma \pi}{2 \alpha}=-\cos q \pi \text { and } \cos \frac{\gamma \pi}{2 \alpha}=\sin q \pi,
$$

and

$$
1-\phi(s)=\exp \left\{\frac{\sin q}{\pi} \int_{0}^{\infty} \frac{\log \left(1-e^{-c^{*} x^{\alpha} s^{\alpha}}\right)}{1+2 x \cos q \pi+x^{2}} d x\right\}
$$

for $\operatorname{Re}(s) \geq 0$. If we write

S-89

$$
\log \left(1-e^{-c^{*} x^{\alpha} s^{\alpha}}\right)=\log \left(c^{*} x^{\alpha} s^{\alpha}\right)+\log \left(\frac{1-e^{-c^{*} x^{\alpha} s^{\alpha}}}{c^{*} x^{\alpha} s^{\alpha}}\right)
$$

in the above integral and if we take into consideration that

$$
\int_{0}^{\infty} \frac{d x}{1+2 x \cos q \pi+x^{2}}=2 \int_{0}^{1} \frac{d x}{1+2 x \cos q \pi+x^{2}}=\frac{q \pi}{\sin q \pi}
$$

and

$$
\int_{0}^{\infty} \frac{\log x}{1+2 x \cos q \pi+x^{2}}=\int_{0}^{1} \frac{\log x}{1+2 x \cos q \pi+x^{2}} d x+\int_{1}^{\infty} \frac{\log x}{1+2 x \cos q \pi+x^{2}} d x=0,
$$

then we can easily see that

$$
\lim _{s \rightarrow 0} \frac{1-\phi(s)}{s^{\alpha q}}=\left(c^{*}\right)^{q}=\left[\frac{c}{\cos \frac{\gamma \pi}{2}}\right]^{q}=c^{q}\left(1+\beta^{2} \tan ^{2} \frac{\alpha \pi}{2}\right)^{\frac{q}{2}} .
$$

$$
\text { If either } 0<\alpha<1 \text { or } 1<\alpha<2 \text { and }-1<\beta \leqq 1 \text {, then } 0<\alpha q<1
$$ and consequently $-$

$$
\lim _{x \rightarrow \infty} x^{\alpha q} \underset{p}{p}\left\{x_{1}>x\right\}=\frac{\left(c^{*}\right)^{q}}{\Gamma(1-\alpha q)}
$$

Thus $\underset{\sim}{P}\left\{x_{1} \leqq x\right\}$ belongs to the domain of attraction of a stable distribution function $R(x)$ of type $S\left(\alpha \mathcal{C}_{1}, \bar{c}, 0\right)$ where $\bar{c}>0$. We have

$$
\lim _{n \rightarrow \infty^{+}}\left\{\frac{x_{1}+x_{2}+\ldots+x_{n}}{(b n)^{\alpha q}} \leq x\right\}=R(x)
$$

if

$$
b=\frac{\left(c^{*}\right)^{q} \pi}{\Gamma(1-\alpha q) 2 \overline{c \Gamma}(\alpha q) \sin \frac{\alpha q \pi}{2}}=\frac{\left(c^{*}\right)^{q} \cos \frac{\alpha q \pi}{2}}{\bar{c}}
$$

S-90
If $\bar{c}=\left(c^{*}\right)^{q} \cos \frac{0.9 \pi}{2}$, then $b=1$ and we have

$$
\lim _{n \rightarrow \infty} p\left\{\frac{x_{1}+x_{2}+\ldots+x_{n}}{n^{\alpha q}} \leqq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type

$$
S\left(\alpha, 1,1, c^{q}\left(1+\beta^{2} \tan ^{2} \frac{\alpha \pi}{2}\right)^{\frac{q}{2}} \cos \frac{\alpha q \pi}{2}, 0\right) .
$$

We note that if $1<\alpha<2$ and $\beta=-1$, then $\gamma=2-\alpha$, and $\alpha q=1$.
In this case

$$
\lim _{s \rightarrow 0} \frac{1-\phi(s)}{s}=\left(\frac{c}{\left|\cos \frac{\alpha \pi}{2}\right|}\right)^{1 / \alpha}
$$

that is

$$
E\left\{x_{I}\right\}=\left(\frac{c}{\left|\cos \frac{\alpha \pi}{2}\right|}\right)^{1 / \alpha}
$$

CHAPJER VIJI

58.1. Let us suppose that for each $i=1,2, \ldots, \mathrm{~m}$ independently of the others we perform the following randorn trial: We distribute a_{i} points on the interval $(0,1)$ in such a way that the points are distributed independently and uniformly on (0,1) . In the i-th trial denote by $x_{i}(u)$ the number of points in the interval ($0, u$) for $0 \leqq u \leqq 1$. Then the processes $\left\{x_{i}(u), 0 \leqq u \leqq 1\right\}$ are independent for $i=1,2, \ldots, m$ and we can easily see that the probability sought is

$$
P=P\left\{x_{1}(u)+c_{1}<x_{2}(u)+c_{2}<\ldots<x_{m}(u)+c_{m} \text { for } 0 \leqq u \leqq I\right\}
$$

On the other hand if we suppose that $\left\{v_{i}(u), 0 \leqq u<\alpha\right\}(i=1,2, \ldots, m)$ are independent Poisson processes of density λ, then obviously we can write that

$$
\begin{gathered}
P=P\left\{v_{1}(u)+c_{1}<v_{2}(u)+c_{2}<\ldots<v_{m}(u)+c_{m} \text { for } 0 \leqq u \leqq 1 \mid v_{1}(1)=\right. \\
\left.=a_{1}, v_{2}(1)=a_{2}, \ldots, v_{m}(1)=a_{m}\right\} \quad
\end{gathered}
$$

This latter probability is given by Theorem 56.9.
58.2. Let us define

$$
p_{k}(a)=P\{v(i)<i \text { for } 0<i \leqq k \mid v(a+k)=k\}
$$

for $k=0,1,2, \ldots$ and $a \geq 0$ where $p_{0}(a)=1$, and

$$
p_{k}^{*}(a)=P\{v(i)<i+1 \text { for } 0 \leq i<k \mid v(a+k-i)=k\}
$$

for $k=0,1,2, \ldots$ and $a \geq 0$ where $p_{0}^{*}(a)=1$ and $p_{1}^{*}(a)=1$.

S-92
Then we have $W(t, 0, k)=p_{k}(t-k)$ for $0 \leqq k \leqq t$ and $W(t, 1, k)=p_{k}^{*}(t+1-k)$ for $0 \leqq k \leqq t+1$.

We can see immediately that

$$
p_{k}(a)=P\{\nu(a+i)>i \text { for } 0 \leqq i<k \mid v(a+k)=k\}
$$

for $k=0,1,2, \ldots$ and $a \geq 0$ where $p_{0}(a)=1$.
If $k=1,2, \ldots$ and $a \geqq 0$, then we have

$$
p_{k}(a)=1-\sum_{j=0}^{k-1} P\{\nu(a+j)=j \mid \nu(a+k)=k\} p_{j}(a)
$$

$$
\left.m^{P\{v(a+j)}=j \mid \nu(a+k)=k\right\}=\binom{k}{j} \frac{(a+j)^{j}(k-j)^{k-j}}{(a+k)^{k}}
$$

Let

$$
P_{k}(a)=\frac{p_{k}(a)(a+k)^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and $a \geq 0$. Then we have $P_{0}(a)=1$ and

$$
P_{k}(a)=\frac{(a+k)^{k}}{k!}-\sum_{j=0}^{k-1} P_{j}(a) \frac{(k-j)^{k-j}}{(k-j)!}
$$

for $k=1,2, \ldots$. Hence

$$
\sum_{k=0}^{\infty} P_{k}(a) z^{k}=\frac{\sum_{k=0}^{\infty} \frac{(a+k)^{k}}{k!} z^{k}}{\sum_{k=0}^{\infty} \frac{k^{k}}{k!} z^{k}}=\frac{\frac{e^{a \rho(z)}}{1-\rho(z)}}{\frac{1}{1-\rho(z)}}=e^{a \rho(z)}=\sum_{k=0}^{\infty} \frac{a(a+k)^{k-1}}{k!} z^{k}
$$

for $|z|<1 / e$ where $w=\rho(z)$ is the only root of the equation $w e^{-w}=z$ in the circle $|w|<1$. (See (39.148) and (39.149).) Thus

$$
p_{k}(a)=\frac{a}{a+k}
$$

for $k=0,1, \ldots$ and $a \geqq 0$ where $p_{0}(0)=1$, and

$$
W(t, 0, k)=1-\frac{k}{t}
$$

for $0 \leqq k \leqq t$ and $t>0$. This is in agreement with (56.83).

Second, we can write equivalently that

$$
p_{k}^{*}(a)=P\{v(a+i) \doteq i+1 \text { for } 0 \leq i<k \mid v(a+k-1)=k\}
$$

for $k=0,1,2, \ldots$ and $a \geqslant 0$ where $p_{0}^{*}(a)=1$ and $p_{1}^{*}(a)=1$.

$$
\begin{aligned}
& \text { If } k=1,2, \ldots \text { and } a \geq 0 \text {, then we have } \\
& \quad p_{k}^{*}(a)=1-\sum_{j=0}^{k-1} P\{v(a+j-1)=j, v(a+j)=j \mid v(a+k-1)=k\} p_{j}^{*}(a)
\end{aligned}
$$

where

$$
\left.\underset{m^{\prime}}{P} v(a+j-1)=j, v(a+j)=j \mid v(a+k-1)=k\right\}=\frac{k!(a+j-1)^{j}(k-j-1)^{k-j}}{j!(k-j)!(a+k-1)^{k}} .
$$

Let

$$
P_{k}^{*}(a)=\frac{p_{k}^{*}(a)(a+k-1)^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and $a \geq 0$. Then we have $P_{0}^{*}(a)=1, P_{1}^{*}(a)=1$ and

$$
P_{k}^{*}(a)=\frac{(a+k-1)^{k}}{k!}-\sum_{j=0}^{k-1} P_{j}^{*}(a) \frac{(k-j-1)^{k-j}}{(k-j)!}
$$

for $k=1,2, \ldots$. Hence

$$
\sum_{k=0}^{\infty} P_{k}^{*}(a) z^{k}=\frac{\sum_{k=0}^{\infty} \frac{(a+k-1)^{k}}{k!} z^{k}}{\sum_{k=0}^{\infty} \frac{(k-1)^{k}}{k!} z^{k}}=\frac{e^{(a-1)_{\rho}(z)}}{1-\rho(z)}-e^{a \rho(z)}=\sum_{k=0}^{\infty} \frac{a(a+k)^{k-1}}{k!} z^{k}
$$

for $|z|<1 / e$. Thus

$$
p_{k}^{*}(a)=\frac{a(a+k)^{k-1}}{(a+k-1)^{k}}
$$

for $k=0,1, \ldots$, and $a \geq 0$ where $p_{0}^{*}(a)=1$ and $p_{1}^{*}(a)=1$, and

$$
W(t, 1, k)=\frac{(t+1-k)(t+1)^{k-1}}{t^{k}}
$$

for $0 \leqq k \leqq t+1$ and $t>0$. This is in agreement with (56.88).
58.3. If we take into consideration that in the underlying Poisson process in the interval $(0, \Delta t)$ one event occurs with probability $\lambda \Delta t+_{o}(\Delta t)$ and more than one event occurs with probability $o(\Delta t)$, then we can write that

$$
W(t+\Delta t, x)=(1-\lambda \Delta t) W(t, x+\Delta t) \cdot+\lambda \Delta t \int_{-\infty}^{x} W(t, x-y) d H(y)+o(\Delta t) .
$$

Hence by the limiting procedure $\Delta t \rightarrow 0$ we obtain that $W(t, x)$ satisfies the integro-differential equation

$$
\frac{\partial W(t, x)}{\partial t}=\frac{\partial W(t, x)}{\partial x}-\lambda W(t, x)+\lambda \int_{-\infty}^{x} W(t, x-y) d H(y)
$$

for almost all (t, x) . The probaiblity $W(t, x)$ can be determined by solving this equation.
58.4. In this case,

S-95

$$
\begin{aligned}
P\{x(u) \leqq x\} & =e^{-\lambda u}+\sum_{n=1}^{\infty} e^{-\lambda u} \frac{(\lambda u)^{n}}{n!} \int_{0}^{x} e^{-\mu y} \frac{(\mu y)^{n-1}}{(n-1)!} \mu d y= \\
& =e^{-\lambda u}\left[1+\lambda \mu u \int_{0}^{x} e^{-\mu y} J^{\prime}(\lambda \mu u y) d y\right]
\end{aligned}
$$

for $x \geqq 0$ and $P\{x(u) \leqq x\}=0$ for $x<0$ where

$$
J(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{(n!)^{2}}
$$

is a Bessel function. Hence $\underset{m}{P}\{x(u)=0\}=e^{-\lambda u}$ and

$$
\frac{\partial P[x(u)<x}{\partial x}=\lambda \mu u e^{-\lambda u-\mu x} J^{\prime}(\lambda \mu u x)
$$

for $x>0$.

By Iheorem- 55.5 we have

$$
W(t, 0)=e^{-\lambda t}\left[1+\lambda \mu \int_{0}^{t}(t-y) e^{-\mu y} J^{\prime}(\lambda \mu t y) d y\right]
$$

for $t \geqslant 0$ and

$$
W(t, x)=P\{x(t) \leqq t+x\}-\lambda \mu e^{-\mu x} \int_{0}^{t} u e^{-(\lambda+\mu) u} J^{\prime}(\lambda \mu u(u+x)) W(t-u, 0) d u
$$

for $t \geqslant 0$ and $x \geqslant 0$. In another form we car write that

$$
W(t, x)=1-\lambda e^{-\mu x} \int_{0}^{t} \frac{e^{-(\lambda+\mu) y}}{x+y}\left[x J(\lambda \mu y(x+y))+y J^{r}(\lambda \mu y(x+y))\right] d y
$$

for $t \geq 0$ and $x \geq 0$.
58.5. By using the same notation as in Problem 58.4 we have

$$
V(t, x)=1-e^{-\lambda x}-\lambda \mu x e^{\mu x} \int_{x}^{t} e^{-(\lambda+\mu) y} J^{\prime}(\lambda \mu y(y-x)) d y
$$

for $0<x \leqq t$. This follows inmediately from Theorem 55.9.
58.6. If we suppose that $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ and $\tau_{1}, \tau_{2}, \ldots,{ }_{n}, \ldots$ are numerical (non-random) quantities for which $0<\tau_{1}<\tau_{2}<\ldots<\tau_{n}<\ldots$ and $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then we have $n(t)=n_{n}$ for $\tau_{n}<t<\tau_{n+1} \quad(n=0,1, \ldots)$ where $n_{0}=0$ and

$$
n_{n}=\max \left(0, x_{1}-\tau_{1}, x_{1}+x_{2}-\tau_{2}, \ldots, x_{1}+\ldots+x_{n}-\tau_{n}\right) .
$$

Thus

$$
q \int_{0}^{\infty} e^{-q t-s n(t)} d t=\sum_{n=0}^{\infty} q e^{-s n_{n}} \int_{n}^{\tau} n+1 \quad e^{-q t} d t=\sum_{n=0}^{\infty} e^{-s n_{n}}\left(e^{-q \tau_{n}}-e^{-q \tau_{n+1}}\right)
$$

for $\operatorname{Re}(q)>0$ and $\operatorname{Re}(s) \geq 0$. If $\left\{x_{n}\right\}$ and $\left\{\tau_{n}\right\}$ are random variables, then the above identity holds for almost all realizations of the process $\{x(u)$, $0 \leqq u<\infty\}$. If we form the expectation of the above expression, then we get

$$
q \int_{0}^{\infty} e^{-q t} E\left\{e^{-s n(t)}\right\} d t=[1-\phi(q)] U(q, s)
$$

for $\operatorname{Re}(q)>0$ and $\operatorname{Re}(s) \geq 0$ where by Theorem 4.1

$$
U(q, s)=\sum_{n=0}^{\infty} E_{m}\left\{e^{-s n_{n}-q \tau} n_{\}}=e^{-T\{\log [1-\psi(s) \phi(q-s)]\}} .\right.
$$

The same result can also be obtained by Theorem 54.1. The distribution function $P\{n(t) \leqq x\}$ can be obtained by inversion from the above transform.
58.7. First, let us suppose that $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{n}, \ldots$ are numerical (non-random) quantities for which/ $0<\tau_{1}<\tau_{2}<\ldots<\tau_{n}<\ldots$
and $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Let us write $\gamma_{n}=x_{1}+x_{2}+\ldots+x_{n}$ for $n=1,2, \ldots$
and

$$
n_{n}^{*}=\max \left(0, \tau_{2}-\tau_{1}-\gamma_{1}, \ldots, \tau_{n+1}-\tau_{1}-\gamma_{n}\right)
$$

for $n=1,2, \ldots$ and $n_{0}^{*}=0$. Then $n^{*}\left(\tau_{n}\right)=\tau_{1}+n_{n-1}^{*}$ for $n=1,2, \ldots$, and

$$
n^{*}(t)=\max \left(n^{*}\left(\tau_{n}\right), t-\gamma_{n}\right)=t-\gamma_{n}+\left[n^{*}\left(\tau_{n}\right)+\gamma_{n}-t\right]^{+}
$$

for $\tau_{n} \leq t \leq \tau_{n+1}$. If we calculate

$$
q \int_{\mathrm{T}}^{{ }^{\tau} \mathrm{n}+1} e^{-q t-s n^{*}(t)} d t
$$

we
by using (54.17) and if \wedge_{\wedge} add these integrals for $n=0,1,2, \ldots$, then we obtain that

$$
q \int_{0}^{\infty} e^{-q t-s n^{*}(t)} d t=\frac{q}{q+s}+\frac{s e^{-(q+s) \tau} \tau_{1}}{q+s} \sum_{n=0}^{\infty} e^{-q \gamma_{n}-(q+s) n_{n}^{*}}\left(1-e^{-q x_{n+1}}\right)
$$

for $\operatorname{Re}(\mathrm{q})>0$ and $\operatorname{Re}(\mathrm{s}) \geq 0$. If $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\tau_{\mathrm{n}}\right\}$ are random variables, then the above identity holds for almost all realizations of the process $\{x(u), 0 \leqq u<\infty\}$. If we form the expectation of the above expression, then we get

$$
\mathrm{q} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{qt}} E\left\{\mathrm{e}^{-\mathrm{s} n^{*}(\mathrm{t})}\right\} \mathrm{dt}=\frac{\mathrm{q}}{\mathrm{q}+\mathrm{s}}+\frac{\mathrm{s}}{\mathrm{q}+\mathrm{s}} \phi(\mathrm{q}+\mathrm{s})[1-\psi(\mathrm{q})]^{*}(\mathrm{q}, \mathrm{q}+\mathrm{s})
$$

for $\operatorname{Re}(q)>0$ and $\operatorname{Re}(\mathrm{s}) \geqq 0$ where by Theorem 4.1

S-98

$$
U^{*}(q, s)=\sum_{n=0}^{\infty} E\left\{e^{-q \gamma_{n}-s n_{n}^{*}} n_{\}}^{*}=e^{-T\{\log [1-\phi(s) \psi(q-s)]\}}\right.
$$

The distribution function $\left.\operatorname{man}^{P} n^{*}(t) \leq x\right\}$ can be obtained by inversion from the above transform.
58.8. If $\gamma \leqq \alpha$, then

$$
(s-q) \int_{\alpha}^{\beta} e^{-q t} d t=\frac{(q-s)}{q}\left(e^{-q \beta}-e^{-q \alpha}\right)
$$

if $\gamma \geq \beta$, then
and if $\alpha \leq \gamma \leq \beta$, then $\begin{aligned} & \quad(s-q) \int_{\alpha}^{\beta} e^{-q t-s(\gamma-t)} \alpha t=e^{-q \beta-s(\gamma-\beta)}-e^{-q \alpha-s(\gamma-\alpha)},\end{aligned}$

$$
\begin{aligned}
& (s-q) \int_{\alpha}^{\gamma} e^{-q t-s(\gamma-t)} d t+(s-q) \int_{\gamma}^{\beta} e^{-q t} d t= \\
= & {\left[e^{-q \gamma}-e^{-q \alpha-s(\gamma-\alpha)}\right]-\left(1-\frac{s}{q}\right)\left(e^{-q \beta}-e^{-q \gamma}\right) . }
\end{aligned}
$$

These formulas prove the identity in question in each case.
61.1. In this case

$$
\psi(s)=\int_{0}^{\infty} e^{-s x} d H(x)=\frac{\mu}{\mu+s}
$$

for $\operatorname{Re}(\mathrm{s})>-\mu$ and by (59.12) we have

$$
\int_{0}^{\infty} e^{-s x} d_{X \sim} P[B(a+x) \leq x\}=e^{-\frac{\lambda a s}{\mu+s}}
$$

for $\operatorname{Re}(\mathrm{s}) \geq 0$ and $\mathrm{a}>0$. Hence by inversion we get

$$
{\underset{\sim}{r}}^{P}\{\beta(a+x) \leq x\}=e^{-\lambda a}\left[1+\sqrt{\lambda \mu a} \int_{0}^{x} e^{-\mu u} u^{-1 / 2} I_{1}(2 \sqrt{\lambda \mu a u}) d u\right]
$$

for $a>0$ and $x \geq 0$ where

$$
I_{1}(x)=\sum_{n=0}^{\infty} \frac{(x / 2)^{2 n+1}}{n!(n+1)!}
$$

is a Bessel function. Thus we have

$$
\underset{\sim}{P\{\beta(t)} \leqq x\}=e^{-\lambda(t-x)}\left[1+\sqrt{\lambda \mu(t-x)} \int_{0}^{x} e^{-\mu u} u^{-1 / 2} I_{1}(2 \sqrt{\lambda \mu(t-x) u}) d u\right]
$$

for $0 \leqq x<t$.

- 61.2. If we use the notation of Example 1 in Section 59, then
$\alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \beta_{2}, \ldots$ are mutually independent random variables for which

$$
\underset{M}{P}\left\{\alpha_{n}=2 j-1\right\}=P\left\{P_{n}=2 j-1\right\}=\frac{1}{2 j-1}(\underset{j}{2 j}) \frac{1}{2^{2 \cdot j}} \sim \frac{1}{\sqrt{4 \pi j^{3}}}
$$

as $\mathrm{j} \rightarrow \infty(\mathrm{j}=1,2, \ldots)$. Hence

S-100

$$
\lim _{x \rightarrow \infty}[1-G(x)] x^{1 / 2}=\lim _{x \rightarrow \infty}[1-H(x)] x^{1 / 2}=\sqrt{\frac{2}{\pi}},
$$

and by (59.62) we obtain that

$$
\lim _{t \rightarrow \infty} P\{\beta(t) \leqq t x\}=\frac{2}{\pi} \arcsin \sqrt{x}
$$

for $0 \leqq x \leqq 1$. For a direct proof see (37.166).
61.3. Denote by $\Delta_{n}(t)$ the number positive elernents in the sequence $\xi\left(\frac{r t}{n}\right) \quad(r=1,2, \ldots, n)$. Since $\xi\left(\frac{r t}{n}\right)-\xi\left(\frac{(r-1) t}{n}\right) \quad(r=1,2, \ldots, m)$ are mutually independent, identically distributed, symmetric random variables for which $\operatorname{Pr}\left\{\xi\left(\frac{r t}{n}\right)=0\right\}=0$, by the solution of Problem 27.1 we have

$$
\mathrm{m}^{P}\left\{\Delta_{n}(t)=j\right\}=\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{1}{2^{2 n}}
$$

for $j=0,1, \ldots, n$. Thus by (37.166) we have

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\Delta_{n}(t)}{n} \leq x\right\}=\frac{2}{\pi} \arcsin \sqrt{x}
$$

for $0 \leqq x \leqq 1$. Now by Theorem 52.3 we can conclude that

$$
P\left\{\frac{B(t)}{t} \leqq x\right\}=\lim _{n \rightarrow \infty^{\infty}} P\left\{\frac{\Delta_{n}(t)}{n} \leqq x\right\}
$$

for $0 \leqq x \leqq 1$ and therefore

$$
P\{\beta(t) \leqq t x\}=\frac{2}{\pi} \operatorname{arc} \sin \sqrt{x}
$$

for $0 \leqq x \leqq 1$.

S-101
61.4. Let us use the notation of Example 1 in Section 59. In this case $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are independent sequences of mutually independent and identically distributed random variables. We have

$$
P\left\{a_{n}=2 j-1\right\}=\frac{1}{2 j-1}\binom{2 j}{j} \frac{1}{2^{2 j}}
$$

for $j=1,2, \ldots$ and $\underset{w}{E}\left\{\beta_{n}\right\}=m$. Hence

$$
\lim _{x \rightarrow \infty}[1-G(x)] x^{1 / 2}=\sqrt{\frac{2}{\pi}}
$$

and by (59.52.) we can conclude that

$$
\lim _{t \rightarrow \infty^{n}}\left\{\sqrt{\frac{2}{\pi}} \frac{\beta(t)}{m t^{1 / 2}} \leq x\right\}=P\left\{y^{-1 / 2} \leq x\right\}
$$

where r has a stable distribution of type $S\left(\frac{1}{2}, 1, \sqrt{\frac{\pi}{2}}, 0\right)$. Thus we car. write that $\gamma=\pi / 2 \gamma^{* 2}$ where $P\left\{\gamma^{*} \leqq x\right\}=\Phi(x)$, the normal distribution function. Thus

$$
\lim _{t \rightarrow \infty^{\infty}}\{\beta(t) \leqq x \sqrt{t}\}=P\left\{\left|\gamma^{*}\right| \leq \frac{x}{m}\right\}=2 \Phi\left(\frac{x}{m}\right)-1
$$

for $x \geqq 0$.
61.5. We shall use the same notation as in the proof of Theorem 59.2. In this case

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\delta_{n}}{n^{1 / \alpha} r^{r}(n)} \leqq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(\alpha, 1, \Gamma(1-\alpha) \cos \frac{\alpha \pi}{2}, 0\right)$ and $r(t)$ satisfies the relation

S-102

$$
\lim _{t \rightarrow \infty} \frac{h\left(t^{1 / \alpha} r(t)\right)}{(r(t))^{\alpha}}=1
$$

(See Problem 46.13.) We note that $\lim r(\omega t) / r(t)=1$ for any $\omega>0$. If we define $\rho(t)$ by (59.5), then we have

$$
\frac{\rho(t)}{t} \Rightarrow \frac{1}{A}
$$

as $t \rightarrow \infty$. Thus by Theorem 45.4 we have

$$
\lim _{t \rightarrow \infty} P\left\{\frac{A^{1 / \alpha} \delta_{\rho}(t)}{t^{1 / \alpha} r(t)} \leqq x\right\}=R(x)
$$

regardless of whether $\left\{\alpha_{n}\right\}$ depends on $\left\{\beta_{n}\right\}$ or not. If we define

$$
u=t+x x^{n}(t)(t / A)^{1 / \alpha}
$$

then

$$
\lim _{u \rightarrow \infty} \frac{t\left[r\left(u^{\alpha}\right)\right]^{\alpha}}{A u^{\alpha}}=\frac{1}{x^{\alpha}}
$$

for $x>0$ and thus by (59.6) we have

$$
\lim _{u \rightarrow \infty} \underset{\sim}{P}\{\beta(u) \leqq u-t\}=R(x)
$$

for $x>0$. Accordingly,

$$
\lim _{u \rightarrow \infty} P\left\{\frac{[u-B(u)]\left[r\left(u^{\alpha}\right)\right]^{\alpha}}{A u^{\alpha}} \leq \frac{1}{x^{\alpha}}\right\}=1-R(x)
$$

for $x>0$, or

$$
\lim _{t \rightarrow \infty} P\left\{\frac{[\epsilon-\beta(t)]\left[r\left(t^{\alpha}\right)\right]^{\alpha}}{A t^{\alpha}} \leqq x\right\}=1-R\left(\frac{1}{x^{1 / \alpha}}\right)=G_{\alpha}(\Gamma(1-\alpha) x)
$$

S-103
for $x>0$ where $G_{\alpha}(x)$ is defined by (42.178).
61.6. For each $t \geq 0$ let us define $\omega(t)$ as a discrete random variable which takes on positive integers only and which satisfies

$$
\{u(t) \leqq n\} \equiv\left\{\delta_{n}>t\right\}
$$

for $t \geqq 0$ and $n=0,1,2, \ldots$. Then by (59.1) we can write that

$$
\left.\underset{\sim}{P}\{\beta(t) \leqq x\}=\underset{\sim}{1-P\left\{\gamma_{\omega}(x)\right.}<t-x\right\}
$$

for $\begin{array}{r}0 \leqq x \leqq t . \\ \text { In our case }\end{array}$

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\gamma_{n}}{n^{1 / \alpha} r(n)} \leq x\right\}=R(x)
$$

where $R(x)$ and $r(x)$ have the same meaning as in the solution of Problem 61.4 . Furthermore, we have

$$
\frac{\omega(t)}{t} \Rightarrow \frac{1}{B}
$$

as $t \rightarrow \infty$. Thus by Theorem 45.4 we have

$$
\lim _{t \rightarrow \infty} \underset{\infty}{ }\left\{\frac{B^{1 / \alpha} \gamma_{\omega(t)}}{t^{1 / \alpha} r(t)} \leqq x\right\}=R(x)
$$

regardless of whether $\left\{\alpha_{n}\right\}$ depends on $\left\{\beta_{n}\right\}$ or not.

If we define

$$
u=t+\operatorname{xr}(t)(t / B)^{1 / \alpha},
$$

then

S-104

$$
\lim _{u \rightarrow \infty} \frac{t\left[r\left(u^{\alpha}\right)\right]^{\alpha}}{A u^{\alpha}}=\frac{1}{x^{\alpha}}
$$

for $x>0$, and consequently

$$
\lim _{u \rightarrow \hat{\omega}^{-}}\{\beta(u) \leqq t\}=1-R(x)
$$

for $x>0$. Hence we get

$$
\lim _{t \rightarrow \infty} P\left\{\frac{\beta(t)\left[r\left(t^{\alpha}\right)\right]^{\alpha}}{B t^{\alpha}} \leqq x\right\}=1-R\left(\frac{1}{x^{1 / \alpha}}\right)=G_{\alpha}(\Gamma(1-\alpha) x)
$$

for $x>0$ where $G_{\alpha}(x)$ is defined by (42.178).
61.7. By Theorem 59.6 we obtain that

$$
\lim _{t \rightarrow \infty} \underset{\sim}{p}\left\{\frac{\beta(t)-\frac{B_{1} t}{A_{1}+B_{1}}}{\left(\frac{A_{1}}{A_{1}+B_{1}}\right)^{3 / 2} t^{1 / 2}} \leqq x\right\}=\underset{m}{p}\left\{\frac{A_{1} B_{2} \delta-B_{1} A_{2} \gamma}{A_{1}^{3 / 2}} \leqq x\right\}
$$

where $\underset{\sim}{P}\{\delta \leqq x, \gamma \leqq y\}=F(x, y)$. Hence it follows that

$$
\lim _{t \rightarrow \infty} P\left\{\frac{\beta(t)-M_{1} t}{M_{2} t^{1 / 2}} \leqq x\right\}=\Phi(x)
$$

where $M_{1}=B_{I} /\left(A_{1}+B_{1}\right)$,

$$
M_{2}=\frac{\left(A_{1}^{2} B_{2}^{2}+B_{1}^{2} A_{2}^{2}-2 r A_{1} B_{1} A_{2} B_{2}\right)^{1 / 2}}{\left(A_{1}+B_{1}\right)^{3 / 2}}
$$

and $\Phi(x)$ is the normal distribution function of type $N(0,1)$.

S-104a

$$
\text { 61.8. (i) If } \Phi(s, q)=e^{-s^{\alpha}-q^{\alpha}} \text { for } \operatorname{Re}(s) \geqq 0 \text { and }
$$

$\operatorname{Re}(q) \geqq 0$, and $0<\alpha<1$, then by (59.131) we have

$$
V(x)=\frac{x^{\alpha}}{1+x^{\alpha}}
$$

for $x \geqq 0$ and therefore

$$
\frac{d Q(x)}{d x}=\frac{x^{\alpha-1} \sin \alpha \pi}{\pi\left(1+2 x^{\alpha} \cos \alpha \pi+x^{2 \alpha}\right)}
$$

for $x>0$. Thus by (59.109)

$$
\lim _{t \rightarrow \infty} P\left\{\frac{\beta(t)}{t} \leqslant x\right\}=1-Q\left(\frac{B_{2}(1-x)}{A_{2} x}\right)
$$

for $0<x \leqslant 1$.
(ii) If $\Phi(s, q)=e^{-(s+q)^{\alpha}}$ for $\operatorname{Re}(s+q) \geqq 0$, and $0<\alpha<1$, then by (59.131) we have

$$
V(x)=1-\frac{1}{(1+x)^{\alpha}}
$$

for $x \geqq 0$ and therefore

$$
\frac{d Q(x)}{d x}=\left\{\begin{array}{cc}
\frac{\sin \alpha \pi}{\pi x(x-1)^{\alpha}} & \text { for } x>1 \\
0 & \text { for } x \leqq 1
\end{array}\right.
$$

Thus by (59.109)

$$
\lim _{t \rightarrow \infty} P\left\{\frac{\beta(t)}{t} \leqq x\right\}=1-Q\left(\frac{B_{2}(1-x)}{A_{2} x}\right)
$$

for $0<x \leqq 1$.
65.1. First, let us consider a general single-server queue in which customersarrive at a courter at times $\tau_{0}, \tau_{1}, \ldots, \tau_{n}, \ldots$ where ${ }^{\tau_{0}}=0$. Denote by x_{n} the service time of the customer arriving at time ${ }^{\tau}{ }_{n}(n=0,1,2, \ldots)$. Let n_{O} be the initial occupation time of the server immediately before $t=0$. Let

$$
x(u)=\sum_{0<\tau} x_{n<u} x_{n}
$$

for $u \geqq 0$.

Now we shall prove that

$$
\theta(t)=\sup \left\{0 \text { and } u-x(u)-n_{0}-x_{0} \text { for } 0 \leqq u \leqq t\right\}
$$

for $t \geqslant 0$.

Define $r_{n}=n_{0}+x_{0}+\ldots+x_{n-1}$ for $r_{1}=1,2, \ldots$ and $\gamma_{0}=0$.

Let $\tau_{n} \leqq t \leqq \tau_{n+1}$. If at time t the server is busy, then $\theta(t)=\theta\left(\tau_{n}\right)$ and $\theta\left(\tau_{n}\right) \geqq t-\gamma_{n+1}$. If at time t the server is idle, then $\theta(t)=t-\gamma_{n+1}$. and $t-\gamma_{n+1} \geqq \theta\left(\tau_{n}\right)$. Thus we have

$$
\theta(t)=\max \left(\theta\left(\tau_{n}\right), t-\gamma_{n+1}\right)
$$

for $\tau_{n} \leqq t \leqq \tau_{n+1}$ and $n=0,1,2, \ldots$. In particular, $\theta\left(\tau_{n+1}\right)=\max \left(\theta\left(\tau_{n}\right)\right.$, $\left.\tau_{n+1}-\gamma_{n+1}\right)$ for $n=0,1, \ldots$ and $\theta\left(\tau_{0}\right)=0$, and consequently

$$
\theta\left(\tau_{n}\right)=\max \left(0, \tau_{1}-\gamma_{1}, \ldots, \tau_{n}-\gamma_{n}\right)
$$

for $n=1,2, \ldots$.

These relations are valjd for any single-server queue.

Now let us suppose that $\tau_{0}, \tau_{1}, \ldots, \tau_{n}, \ldots, x_{0}, x_{1}, \ldots, x_{n}, \ldots$ and n_{0} are numerical (non-random) quantities for which $\tau_{0}=0<\tau_{1}<\ldots<\tau_{n}<\ldots$ and $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If we write $\theta(t)=t-\gamma_{n+1}+\left[\theta\left(\tau_{n}\right)+\gamma_{n+1}-t\right]^{+}$for $\tau_{n} \leq t \leq \tau_{n+1}(n=0,1, \ldots)$ and if we use (54.17) in calculating the integrai

$$
q \int_{{ }_{n}}^{\tau+1} e^{-q t-s \theta(t)} d t
$$

for $n=0,1,2, \ldots$, then we obtain that

$$
\begin{gathered}
q \int_{0}^{\infty} e^{-q t-s \theta(t)} d t=1-\frac{s}{q+s} e^{-q\left(n_{0}+x_{0}\right)}+ \\
+\frac{s}{q+s}\left\{\sum_{n=0}^{\infty} e^{-q \gamma_{n+1}-(q+s) \theta\left(\tau_{n+1}\right)}\left(1-e^{-q x_{n}}\right)\right\}
\end{gathered}
$$

for $\operatorname{Ré}(q)>0$ and $\operatorname{Re}(s) \geq 0$.

Now let us suppose that $\underset{n^{P}}{P}\left\{n_{0}=0\right\}=1$ and $x_{n}(n=0,1, \ldots)$ and $\tau_{n}-\tau_{n-1}(n=1,2, \ldots)$ are independent/and identically distributed positive random variables. Let $E\left\{e^{-s x_{n}}\right\}=\psi(s)$ and $E\left\{e^{-s\left(\tau_{n} n^{-\tau} n-1\right.}\right\}=\phi(s)$ for $\operatorname{Re}(s) \geq 0$. Then the above identity holds for almost all realizations of the queuing process. If we form its expectation, then we obtain that

$$
q \int_{0}^{\infty} e^{-q t} E\left\{e^{-s \theta(t)}\right\} d t=\frac{q}{q+s}+\frac{s}{q+s}[1-\psi(q)] v(q, q+s)
$$

for $\operatorname{Re}(q)>0$ and $\operatorname{Re}(s) \geqq 0$ where

S-107

$$
\begin{aligned}
V(q, s) & =1+\sum_{n=0}^{\infty} \sum_{m}\left\{e^{-q r_{n+1}-s \theta\left(r_{n+1}\right)}\right\}= \\
& =e^{-T\{\operatorname{Tog}[1-\phi(s) \psi(q-s)]\}}
\end{aligned}
$$

This last equation can be proved by using Theorem 4.1. The distribution function $F\{\theta(t) \leqq x\}$ can be obtained by inversion from the above transform.

We note that if $\underset{\sim}{P}\left\{n_{0}=0\right\}=1$ and $P\left\{x_{0}=0\right\}=1$, then

$$
\theta(t)=\sup _{0 \leq u \leq t}[u-x(u)]
$$

for $t \geq 0$, and $\underset{\sim}{P}\{\theta(t) \leqq x\}$ can be obtained by the solution of Problern 58.7.
65.2. Since $\theta(t)$ is a nondecreasing function of t, the limit $\lim P\{\cdot \theta(t) \leq x\}=V(x)$ exists for every x and by the solution of Problemi $t \rightarrow \infty^{m}$
65.1 we have

$$
\Omega^{*}(s)=\int_{0}^{\infty} e^{-s x} d V(x)=\lim _{q \rightarrow+0} q \int_{0}^{\infty} e^{-q t} E\left\{e^{-s \theta(t)}\right\} d t
$$

for $\operatorname{Re}(s)>0$. Thus

$$
\Omega^{*}(s)=\lim _{q \rightarrow+0}[1-\psi(q)] V(q, q+s)
$$

Since

$$
[1-\psi(q)] V(q, q+s)=\exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n} e^{-q \gamma_{n}}\left(1-E\left\{e^{\left.\left.-(q+s)\left[\tau n^{\left.-\gamma_{n}\right]^{+}}\right\}\right)\right\}}\right.\right.\right.
$$

for $\operatorname{Re}(q)>0$ and $\operatorname{Re}(q+s) \geq 0$, it follows that

S-108

$$
\Omega^{*}(s)=\exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n}\left(1-E\left\{e^{-s\left[\tau_{n}-\gamma_{n}\right]^{+}}\right\}\right)\right\}
$$

for $\operatorname{Re}(\mathrm{s})>0$. If $\mathrm{a}<\mathrm{b}$, then by Theorem 43.13 we have $\underset{\mathrm{s} \rightarrow+0}{\lim } \Omega^{*}(\mathrm{~s})=1$, that is, $V(x)$ is a proper distribution function and its Laplace-Stieltjes transform is given by $\Omega^{*}(s)$ for $\operatorname{Re}(s) \geqslant 0$. It is interesting to point out that by Theorem 62.2 we can conclude that $V(x)$ is the limiting distribution of the actual waiting time of the n-th arriving customer in the inverse queuing process, that is, in the queuing process in which the interarrival times and service times are interchanged.
65.3. By Theorem 62.2 we have

$$
\lim _{n \rightarrow \infty} P\left\{n_{n} \leqq x\right\}=P\left\{\sup \left(0, x_{0}-\tau_{1}, x_{0}+x_{1}-\tau_{2}, \ldots\right) \leqq x\right\}
$$

and obviously,

$$
\sup _{0 \leq u<\infty}[x(u)-u]=\sup \left(0, x_{1}-\tau_{1}, x_{1}+x_{2}-\tau_{2}, \ldots\right) .
$$

Since $\left\{\tau_{n}-\tau_{n-1}, n=1,2, \ldots\right\}$ and $\left\{x_{n}, n=0,1,2, \ldots\right\}$ are independent sequences of mutually independent and identically distributed random variables the assertion follows.
65.4. Since

$$
\underset{m}{P}\left\{\eta_{n} \leq\left. x\right|_{n_{0}}=0\right\}=P\left\{x_{0}-\tau_{1} \leqq x, x_{0}+x_{1}-\tau_{2} \leqq x, \ldots, x_{0}+\ldots+x_{n-1}-\tau_{n} \leqq x\right\}
$$

and

$$
P\left\{\rho_{0}^{*}>n \mid n_{0}^{*}=x\right\}=P\left\{x_{0} \leqq \tau_{1}+x, x_{0}+x_{1} \leqq \tau_{2}+x, \ldots, x_{0}+\ldots+x_{n-1} \leqq \tau_{n}+x\right\}
$$

for $n=1,2, \ldots$, the assertion follows immediately. We note that

$$
\lim _{n \rightarrow \infty} P\left\{n_{n} \leqq x \mid n_{0}=0\right\}=1-P\left\{\rho_{0}^{*}<\infty \mid n_{0}^{*}=x\right\}
$$

for $x>0$.
65.5. We can interpret $G^{(r)}(x)$ as the probability that the length of the initial busy period is $\leq x$ provided that the initial queue size is r. Denote by $x_{1}, x_{2}, \ldots, x_{n}$ the lengths of the first n service times and by $v_{1}, v_{2}, \ldots, v_{n}$ the number of customers arriving during the 1-st, 2-nd,..., n-th service time respectively. If we use Lerma 20.2 , then we obtain that the probability that the initial busy period has length $\leq x$ and consists of n services is given by

$$
G_{n}^{(r)}(x)=\underset{m}{P}\left\{x_{1}+\ldots+x_{n} \leqq x, v_{1}+\ldots+v_{i}>i-r \text { for } i=r, \ldots, n-1\right.
$$

and $\left.\cdot v_{1}+\ldots+v_{n}=n-r\right\}=\underset{m}{P}\left\{x_{1}+\ldots+x_{n} \leq x, v_{1}+\ldots+v_{i}<i\right.$ for $i=1, \ldots, n-r$ and $\left.v_{1}+\ldots+v_{n}=n-r\right\}=\frac{r}{n} \underset{n}{ }\left\{v_{1}+\ldots+v_{n}=n-r\right.$ and $\left.x_{1}+\ldots+x_{n} \leqq x\right\}=$

$$
=\frac{r}{n} \int_{0}^{x} e^{-\lambda u} \frac{(\lambda u)^{n-r}}{(n-r)!} d H_{n}(u)
$$

for $x \geq 0$. Finally,

$$
G^{(r)}(x)=\sum_{n=r}^{\infty} G_{n}^{(r)}(x)
$$

65.6. Let us define $\xi_{n}(n=1,2, \ldots$.$) by (62.9) and let \zeta_{n}=\xi_{1}+$ $\xi_{2}+\ldots+\xi_{n}$ for $n=1,2, \ldots$, and $\zeta_{0}=0$. Then $\underset{m}{E}\left\{\xi_{n}\right\}=0$ and $\operatorname{Var}\left\{\xi_{n}\right\}=$ $\sigma_{a}^{2}+\sigma_{b}^{2}$. By (62.12) we can conclude that η_{n} has the same asymptotic

S-110
distribution as $\underset{0 \leq k \leq n}{\max } \tau_{k}$ regardless of the distribution of ${ }^{n_{0}}$. Thus by the Theorem $45 . \overline{6}$ we have

$$
\lim _{n \rightarrow \infty} P\left\{\frac{n_{n}}{\sqrt{\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right) n}} \leq x\right\}=2 \Phi(x)-1
$$

for $x \geqq 0$ where $\Phi(x)$ is the normal distribution function.

Denote by $v(t)$ the number of arrivals in the time interval ($0, t$). Then $v(t) / t \Rightarrow 1 / a$ as $t \rightarrow \infty$. We can easily see that $n(t)$ has the same asymptotic distribution as $\eta_{v}(t)$. Thus by 'Theorem 45.5 we obtair that

$$
\lim _{t \rightarrow \infty} P\left\{\frac{n(t)}{\sqrt{\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right) t / a}} \leq x\right\}=2 \Phi(x)-1
$$

for $x \geq 0$.
65.7. Let us define $\xi_{n}(n=1,2, \ldots)$ by (62.9) and let $\zeta_{n}=\xi_{1}+$ $\xi_{2}+\ldots+\xi_{n}$ for $n=1,2, \ldots$ and $\zeta_{0}=0$. By (62.12) we can conclude that n_{n} has the same asymptotic distribution as $\max _{0 \leq k \leq n} \varepsilon_{\mathrm{K}}$ regardless of the distribution of η_{0}. In our case

$$
\lim _{n \rightarrow \infty} P\left\{\frac{x_{1}+\ldots+x_{n}-n a}{n^{1 / \alpha} \rho(n)} \leq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(\alpha, l, \Gamma(1-\alpha) \cos \frac{\alpha \pi}{2^{3}} 0\right)$ and

$$
\lim _{t \rightarrow \infty} t\left[1-H\left(t^{1 / \alpha} \rho(t)\right)\right]=1
$$

Furthermore, we have

$$
\frac{{ }^{T_{n}}-n a}{n^{l / \alpha}} \Rightarrow 0
$$

as $n \rightarrow \infty$. Thus it follows that

$$
\lim _{n \rightarrow \infty} \underset{\sim}{P}\left\{\frac{\zeta_{n}}{n^{l / \alpha} \rho(n)} \leq x\right\}=R(x) .
$$

Now by Theorem 45.10 it follows that

$$
\lim _{n \rightarrow \infty} P_{n}\left\{\frac{n_{n}}{n^{1 / \alpha} \rho(n)} \leq x\right\}=Q(x)
$$

where

$$
Q(x)=P\left\{\sup _{0 \leq u \leq I} \xi(u) \leqq x\right\}
$$

and $\cdot\{\xi(u), 0 \leqq u \leqq 1\}$ is a separable stable process of type $S\left(\alpha, 1, \Gamma(1-\alpha) \cos \frac{\alpha \pi}{2}, 0\right.$ The distribution function $Q(x)$ can be determined by (45.232) .

If $v(t)$ denotes the number of arrivals in the time interval $(0, t)$, then $v(t) / t \Longrightarrow 1 / a$ as $t \rightarrow \infty$. Since $\eta(t)$ has the same asymptotic distribution as $\eta_{v(t)}$, by Theorem 45.5 it follows that

$$
\lim _{t \rightarrow \infty} P\left\{\frac{n(t) a^{1 / \alpha}}{t^{1 / \alpha} \rho(t)} \leqq x\right\}=Q(x)
$$

also holds.
65.8. By (62.167) we have

$$
n(t)=n_{0}+x_{0}+x(t)-\sigma(t)
$$

S-112
where $x(t)$ is defined by (62.166) and $0 \leqq \sigma^{\prime}(t) \leqq t . I f^{\prime}$

$$
\lim _{t \rightarrow \infty} \underset{\infty}{ }\left\{\frac{x(t)-D_{1}(t)}{D_{2}(t)} \leq x\right\}=Q(x)
$$

exists and $\lim _{t \rightarrow \infty} D_{2}(t) / t=\infty$, then obviously

$$
\lim _{t \rightarrow \infty} \underset{\infty}{P}\left\{\frac{n(t)-D_{1}(t)}{D_{2}(t)} \leqq x\right\}=Q(x)
$$

also holds. In our case

$$
\lim _{n \rightarrow \infty} P\left\{\frac{r_{n}}{\left(n a_{1}\right)} 1 / \alpha_{1} \leq x\right\}=R_{1}(x)
$$

where $R_{1}(x)$ is a stable distribution function of type $S\left(\alpha_{1}, 1, \Gamma\left(1-\alpha_{1}\right) \cos \frac{\alpha_{1} \pi}{2}, 0\right)$ and

$$
\lim _{n \rightarrow \infty} P\left\{\frac{x_{1}+\ldots+x_{n}}{\left(n a_{2}\right)} \leq x\right\}=R_{2}(x)
$$

where $R_{2}(x)$ is a stable distribution function of type $S\left(\alpha_{2}, I, I\left(I-\alpha_{2}\right) \cos \frac{\alpha_{2} \pi}{2}, 0\right)$: Thus by (49.205) we obtain that

$$
\lim _{t \rightarrow \infty} P^{P}\left\{\frac{x(t)}{\left(a_{2} t^{\alpha} / a_{1}\right)} \leq x\right\}=Q(x)
$$

where $Q(x)=P\left\{x^{-\alpha / \eta^{2}} \leq x\right\}$ and θ and x are independent random variables for which $\underset{m}{P}\{\theta \leqq x\}=R_{1}(x)$ and $P\{x \leqq x\}=R_{2}(x)$. Since $\alpha_{1} / \alpha_{2}>1$, it follows that $\eta(t)$ has the sane asymptotic distribution as $x(t)$ as $t \rightarrow \infty$.
65.9. Since $b<a$ and $0<\sigma_{a}^{2}+\sigma_{b}^{2}<\infty$, it follows that $\underset{\sim}{E}\left\{\theta_{n}\right\}$, $\operatorname{Var}\left\{\theta_{n}\right\}$ and $\underset{\sim}{E}\left\{\sigma_{n}\right\}, \operatorname{Var}\left\{\sigma_{n}\right\}$ exist. Thus by Theorem 59.6. and by (59.107) we have

$$
\lim _{t \rightarrow \infty} \underset{\infty}{P}\left\{\frac{\sigma(t)-\frac{B_{1} t}{A_{1}+B_{1}}}{\left(\frac{A_{1}}{A_{1}+B_{1}}\right)} \leq x\right\}=\frac{P}{3 / 2}\left\{\frac{A_{1} B_{2} \delta-B_{1} A_{2} \gamma}{A_{1}^{3 / 2}} \leqq x\right\}
$$

where $A_{1}=E\left\{\theta_{n}\right\} \quad, A_{2}=\sqrt{\operatorname{Var}\left\{\theta_{n}\right\}}, B_{1}=E\left\{\sigma_{n}\right\}, B_{2}=\sqrt{\operatorname{Var}\left\{\sigma_{n}\right\}}$ and ($\left.\delta, \gamma\right)$ has a normal distribution of type

$$
N\left(\|O\|,\left\|\begin{array}{ll}
1 & x
\end{array}\right\|\right)
$$

where $r=\operatorname{Cov}\left\{\theta_{n}, \sigma_{n}\right\} / A_{2} B_{2}$. Accordingly (62.175) holds with

$$
M_{1}=\frac{B_{1}}{A_{1}+B_{1}}
$$

and

$$
M_{2}^{2}=\frac{E\left\{\left(A_{1} \sigma_{n}-B_{1} \theta_{n}\right)^{2}\right\}}{\left(A_{1}+B_{1}\right)^{3}}
$$

Denote by v_{n} the number of customers served in the r-th busy period.
If $\mathrm{b}<\mathrm{a}$, then $E\left\{v_{n}\right\}$ is finite and by Theorem 62.2 we have

$$
\underset{\sim}{E}\left\{v_{n}\right\}=1 / W(0)=\exp \left\{\sum_{n=1}^{\infty} \frac{P\left\{x_{1}+\ldots+x_{n}>\tau_{n}\right\}}{n}\right\} .
$$

Thus by Theorem 6.1 in the Appendix we have

$$
\underset{\sim}{E}\left\{\sigma_{n}+\theta_{n}\right\}=A / W(O)
$$

and

$$
E\left\{\sigma_{n}\right\}=b / W(0),
$$

and by Theorem 6.2 and Theorem 6.3 in the Appendix we have

$$
\begin{aligned}
& E\left\{\left(\sigma_{n}+\theta_{n}-v_{n} a\right)^{2}\right\}=\sigma_{a}^{2} / W(0), \\
& E\left\{\left(\sigma_{n}-v_{n} b\right)^{2}\right\}=\sigma_{b}^{2} / W(0)
\end{aligned}
$$

and

$$
\underset{n}{E}\left\{\left(\sigma_{n}+\theta_{n}-\nu_{n} a\right)\left(\sigma_{n}-\nu_{n} b\right)\right\}=\operatorname{Cov}\left\{\tau_{n}-\tau_{n-1}, x_{n}\right\} / W(0)=0 .
$$

Thus $A_{1}+B_{1}=a / W(0), B_{1}=b / W(0)$ and

$$
E\left\{\left[a \sigma_{n}-b\left(\sigma_{n}+\theta_{n}\right)\right]^{2}\right\}=\left(a^{2} \sigma_{b}^{2}+b^{2} \sigma_{a}^{2}\right) / W(0)
$$

In the last equation we used that

$$
a \sigma_{n}-b\left(\sigma_{n}+\theta_{n}\right)=a\left(\sigma_{n}-\nu_{n} b\right)-b\left(\sigma_{n}+\theta_{n}-\nu_{n} a\right)
$$

The above formulas prove that (62.175) holds if M_{1} is given by (62.176) and M_{2} by (62.177) .
65.10. Let us use the same notation as in Theorem 62.9 and denote by ν_{n} the number of customers served in the n-th busy period. Ther by (62.106) we have

$$
1-E\left\{e^{-W \sigma} n^{-s \theta_{n}} \rho^{\nu_{n}}\right\}=\exp \left\{-\sum_{n=1}^{\infty} \frac{p^{n}}{n} E\left\{e^{-w \gamma_{n}-s\left(\tau_{n}-\gamma_{n}\right)} \delta\left(\tau_{n} \geq \gamma_{n}\right)\right\}\right\}
$$

for $\operatorname{Re}(s) \geqslant 0, \operatorname{Re}(w) \geqslant 0$ and $|\rho| \leqq 1$. Hence it follows that
$S-115$

$$
\left.\underset{m}{E}\left\{\theta_{n} \rho^{\nu_{n}}\right\}=\frac{1}{2}[]-E\left\{\rho{ }_{m}^{v_{n}}\right\}\right] \sum_{n=1}^{\infty} \frac{\rho}{n} E\left\{\left|\tau_{n}-\gamma_{n}\right|\right\}
$$

for $|\rho|<1$. Here we used that $\underset{m}{E}\left\{\tau_{n}-\gamma_{n}\right\}=0$.
Since

$$
\frac{E\left\{\left(\tau_{n}-\gamma_{n}\right)^{2}\right\}}{n\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)}=1,
$$

it follows that

$$
\lim _{n \rightarrow \infty} \frac{E\left\{\left|\tau_{n}-\gamma_{n}\right|\right\}}{\sqrt{n\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)}}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|x| e^{-x^{2} / 2} d x=\sqrt{\frac{2}{\pi}} .
$$

Thus by Theorem 9.3 in the Appendix we can conclude that \cdot

$$
\begin{aligned}
\lim _{\rho \rightarrow 1-0}(1-\rho)^{\frac{1}{2}} \sum_{n=1}^{\infty} \rho_{n}^{n} E\left\{\left|\tau_{n}-r_{n}\right|\right\} & =\lim _{\rho \rightarrow 1-0}(1-\rho)^{\frac{1}{2}} \frac{{\underset{n}{n}}^{\operatorname{E}\left\{\theta_{n} \rho^{v_{n}}\right\}}}{\operatorname{l-E}_{\sim}\left\{\rho^{v_{n}}\right.}= \\
& =\left[2\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)\right]^{1 / 2} .
\end{aligned}
$$

Since

$$
\frac{(1-\rho)^{\frac{1}{2}}}{1-E\left\{\rho{ }^{{ }^{\nu}} n^{\prime}\right.}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n}\left[P\left\{\tau_{n} \geqq \gamma_{n}\right\}-\frac{1}{2}\right]\right\}
$$

for $|\rho|<1$, it follows that

$$
\underset{m}{E}\left\{\theta_{n}\right\}=A=\left(\frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{2}\right)^{\frac{1}{2}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n}\left[p_{n}\left\{\tau_{n} \geq r_{n}\right\}-\frac{1}{2}\right]\right\} \text {. }
$$

If we use the notation $\psi(s)=E\left\{e^{-s\left(\tau_{n}-\tau n-1\right)}\right\}$ for $\operatorname{Re}(s) \geq 0$, then $\psi(s)=$ l-asto (s) as $s \rightarrow+0$.

Since

$$
\frac{1-E\left\{e^{-s \sigma_{n}} n_{\}}\right.}{s^{1 / 2}}=\left(\frac{1-\psi(s)}{s}\right)^{\frac{1}{2}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n}\left[E\left\{e^{-s \gamma_{n}} \delta\left(\tau n \geqq \gamma_{n}\right)\right\}-\frac{1}{2} E\left[e^{-s \gamma} n_{n}\right]\right\}\right.
$$

for $\operatorname{Re}(s)>0$, we obtain that

$$
\lim _{s \rightarrow+0} \frac{1-E\left\{e^{-s \sigma_{n}} n_{\}}\right.}{s^{1 / 2}}=A\left(\frac{2 \mathrm{a}}{\sigma_{a}^{2}+\sigma_{b}^{2}}\right)^{I / 2} .
$$

Hence

$$
\lim _{x \rightarrow \infty} P_{n}\left\{\sigma_{n}>x\right\} x^{1 / 2}=\frac{A}{\pi^{1 / 2}}\left(\frac{2 a}{\sigma_{a}^{2}+\sigma_{b}^{2}}\right)^{\frac{1}{2}}
$$

and

$$
\left.\lim _{n \rightarrow \infty} P \frac{\sigma_{1}+\sigma_{2}+\ldots+\sigma_{n}}{n^{2} A^{2} a /\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)} \leqq x\right\}=2\left[1-\Phi\left(\frac{1}{\sqrt{x}}\right)\right]
$$

for $x>0$. This limit theorem and the relation

$$
\frac{\theta_{1}+\theta_{2}+\ldots+\theta_{n}}{n} \Rightarrow A
$$

as $n \rightarrow \infty$, by the solution of Problem 61.5 or by the 7 -th statement of Theorem 59.2, imply that

$$
\lim _{t \rightarrow \infty}\left\{\frac{a^{1 / 2} \theta(t)}{\left.\left[\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right) t\right]^{1 / 2} \leq x\right\}=2 \Phi(x)-1}\right.
$$

S-117
for $x \geq 0$ where $\Phi(x)$ is the normal distribution function.
65.11. Let, us use the same notation as in the solution of Probiem 65.10 . In this case by (61.191) and (61.192) we have

$$
\left.\lim _{n \rightarrow \infty^{n}} P^{\tau_{n}-\gamma_{n}}(n h)^{1 / \alpha} \leqq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S\left(\alpha,-1, \Gamma(1-\alpha) \cos \frac{\alpha \pi}{2}, 0\right)$. Hence it follows that

$$
\lim _{n \rightarrow \infty} \frac{E\left\{\left|\tau_{n}-\gamma_{n}\right|\right\}}{(n h)^{1 / \alpha}}=\int_{-\infty}^{\infty}|x| d R(x)=\frac{2[-\Gamma(1-\alpha)]^{1 / \alpha}}{\Gamma\left(\frac{1}{\alpha}\right)}
$$

(See (42.198).) Thus by Theorem 9.3 in the Appendix it follows that

$$
\begin{aligned}
& \lim _{\rho \rightarrow 1-0}(1-\rho)^{\frac{1}{\alpha}} \sum_{n=0}^{\infty} \frac{\rho^{n}}{n} E\left\{\left|\tau_{n}-\gamma_{n}\right|\right\}= \\
& =\lim _{\rho \rightarrow 1-0}(1-\rho)^{\frac{1}{\alpha}} \frac{2 E\left\{\theta_{n^{\rho}}{ }^{\nu_{n}}\right\}}{1-E\left\{\rho{ }^{v_{n_{1}}}\right.}=2 h^{1 / \alpha}[-\Gamma(1-\alpha)]^{1 / \alpha} .
\end{aligned}
$$

Since

$$
\frac{(1-\rho)^{\frac{1}{\alpha}}}{\left.1-\underset{m}{\sum_{n}}{ }^{\nu_{n}}\right\}}=\exp \left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n}\left[P\left\{\tau_{n} \geq \gamma_{n}\right\}-\frac{1}{\alpha}\right]\right\}
$$

for $|\rho|<1$, it follows that

$$
\underset{m}{E}\left\{\theta_{n}\right\}=A=n^{1 / \alpha}[-\Gamma(1-\alpha)]^{\frac{1}{\alpha}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n}\left[P\left\{\tau_{n} \geq \gamma_{n}\right\}-\frac{1}{\alpha}\right]\right\}
$$

If we use the notation $\psi(s)=E\left\{e^{-s\left(\tau_{n}-T_{n-1}\right)}\right\}$ for $\operatorname{Re}(s) \geq 0$, then we have

$$
1-\psi(s)=a s+\Gamma(1-\alpha) h s^{\alpha}+o\left(s^{\alpha}\right)
$$

as $s++0$. Since

$$
\frac{1-E\left\{e^{-s \sigma_{n}}\right\}}{s^{1 / \alpha}}=\left[\frac{1-\psi(s)}{s}\right]^{\frac{I}{\alpha}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n}\left[E\left\{e^{-s \gamma_{n}} \delta\left(\tau_{n} \geq \gamma_{n}\right)\right\}-\frac{1}{\alpha} E\left\{e^{-s \gamma_{n}}\right\}\right]\right\}
$$

for $\operatorname{Re}(\mathrm{s})>0$, we obtain that

$$
\lim _{s \rightarrow+0} \frac{1-E\left\{e^{-s \sigma} n_{\}}\right.}{s^{1 / \alpha}}=\frac{A a^{1 / \alpha}}{n^{] / \alpha}[-\Gamma(1-\alpha)]^{1 / \alpha}} .
$$

Accordingly, we have

$$
\lim _{x \rightarrow \infty} \underset{\sim}{P}\left[\sigma_{n}>x\right\} x^{\frac{1}{\alpha}}=\frac{A a^{1 / \alpha}}{\Gamma\left(1-\frac{1}{\alpha}\right) h^{1 / \alpha}[-\Gamma(1-\alpha)]^{1 / \alpha}}
$$

and thus

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\left(\sigma_{1}+\sigma_{2}+\ldots+\sigma_{n}\right) h[-\Gamma(1-\alpha)]}{a_{A} A_{n}^{\alpha}} \leq x\right\}=R^{*}(x)
$$

where $R^{*}(x)$ is a stable distribution function of type $S\left(\frac{1}{\alpha}, 1, \cos \frac{\pi}{2 \alpha}, 0\right)$. Furthermore, we have

$$
\frac{\theta_{1}+\theta_{2}+\ldots+\theta_{n}}{n} \Rightarrow A
$$

as $n \rightarrow \infty$. Thus by the solution of Problem 61.5 or by the $7-$ th statement of Theorem 59.2 we obtain that

S-119

$$
\lim _{t \rightarrow \infty} P\left\{\frac{\theta(t) a^{I / \alpha}}{h^{I / \alpha}[-\Gamma(1-\alpha)]^{1 / \alpha} t^{I / \alpha}} \leqq x\right\}=I-R^{*}\left(\frac{1}{x^{\alpha}}\right)=G_{1 / \alpha}(x)
$$

for $x>0$ where $G_{1 / \alpha}(x)$ is defined by (42.178). This result is in agreement with (62.194).

