SOLUTIONS

CHAPTER I

13.1. We have $|\Phi_m(s)-\Phi_n(s)|\leq \|\Phi_m-\Phi_n\|$ for Re(s)=0. Thus for every $\epsilon>0$ there exists an N such that $|\Phi_m(s)-\Phi_n(s)|<\epsilon$ whenever m>N, n>N and Re(s)=0. Accordingly, the sequence $\{\Phi_n(s)\}$ is a uniformly convergent sequence of continuous functions for Re(s)=0. Thus $\lim_{n\to\infty}\Phi_n(s)=\Phi(s)$ exists for Re(s)=0 and $\Phi(s)$ is a continuous function of s for Re(s)=0. (We have $|\Phi(s)-\Phi_n(s)|<\epsilon$ if n>N and Re(s)=0.)

First, we shall prove that $\Phi(s) \in \mathbb{R}$. Let us choose an increasing sequence of positive integers $n_1, n_2, \ldots, n_j, \ldots$ such that $\|\Phi_n - \Phi_n\| < 1/2^j$ if $n > n_j$. Then $\|\Phi_n - \Phi_n\| < 1/2^j$ for $j = 1, 2, \ldots$, and this implies that

$$\sum_{j=k}^{\infty} \|\phi_{n_{j+1}} - \phi_{n_{j}}\| < 1/2^{k-1}$$

for k = 1, 2, ... By making use of Lemma 3.2 we can conclude that

$$\Phi(s) - \Phi_{n_k}(s) = \sum_{j=k}^{\infty} \left[\Phi_{n_{j+1}}(s) - \Phi_{n_j}(s) \right] \in \mathbb{R}$$

and

$$\| \Phi - \Phi_{n_k} \| \leq \sum_{j=k}^{\infty} \| \Phi_{n_{j+1}} - \Phi_{n_j} \| < 1/2^{k-1}$$

for k = 1,2,... . Since $\Phi_{n_k}(s) \in \mathbb{R}$ and $\Phi(s)$ - $\Phi_{n_k}(s) \in \mathbb{R}$, it follows that $\Phi(s) \in \mathbb{R}$.

If $n > n_k$, then we have

$$\| \Phi - \Phi_{\mathbf{n}} \| \leq \| \Phi - \Phi_{\mathbf{n}_{\mathbf{k}}} \| + \| \Phi_{\mathbf{n}_{\mathbf{k}}} - \Phi_{\mathbf{n}} \| < \frac{1}{2^{k-1}} + \frac{1}{2^{k}} = \frac{3}{2^{k}}$$

for $k=1,2,\ldots$. This implies that $\lim_{n\to\infty}\|\Phi-\Phi_n\|=0$. So we can conclude that the space R is complete.

13.2. Let

$$a_n(s) = \sum_{k=-\infty}^{\infty} a_k^{(n)} s^k \varepsilon A \text{ and } ||a_n|| = \sum_{k=-\infty}^{\infty} |a_k^{(n)}| < \infty$$

for $n=1,2,\ldots$. By assumption, for every $\epsilon>0$ there exists an N such that

.
$$||a_m - a_n|| = \sum_{k=-\infty}^{\infty} |a_k^{(m)} - a_k^{(n)}| < \varepsilon$$

if m > N and n > N. This implies that for each k $(k = 0, \pm 1, \pm 2, ...)$ $|a_k^{(m)} - a_k^{(n)}| < \epsilon$ if m > N and n > N, that is, $\{a_k^{(n)}; n = 1, 2, ...\}$ is a Cauchy sequence. Thus the limit $\lim_{n \to \infty} a_k^{(n)} = a_k$ exists for each $k = 0, \pm 1, \pm 2, ...$ Now for any fixed K we have

$$\sum_{k=-K}^{K} \left| a_k^{(m)} - a_k^{(n)} \right| < \varepsilon$$

if m > N and n > N. Let $m \to \infty$. Then we obtain

$$\sum_{k=-K}^{K} |a_k - a_k^{(n)}| \le \varepsilon$$

for $n \,>\, N$ and for any K . Let $K \,\rightarrow\, \infty$. Then we obtain

$$\sum_{k=-\infty}^{\infty} |a_k - a_k^{(n)}| \le \varepsilon$$

for n>N . Since $\left|a_{k}\right|\leq\left|a_{k}-a_{k}^{(n)}\right|+\left|a_{k}^{(n)}\right|$, it follows that

$$\sum_{k=-\infty}^{\infty} |a_k| \leq \varepsilon + \sum_{k=-\infty}^{\infty} |a_k^{(n)}| < \infty.$$

Accordingly, if

$$a(s) = \sum_{k=-\infty}^{\infty} a_k s^k,$$

then $a(s) \in A$ and $\|a-a_n\| \le \epsilon$ if n>N . This implies that $\lim_{n\to\infty}\|a-a_n\|=0 \ .$ So we can conclude that the space $\underset{\infty}{A}$ is complete.

13.3. We observe that $\Phi(s) = E\{e^{-s\eta}\}$ where η has the density function $f(x) = e^{-|x|}/2$ for $-\infty < x < \infty$. Thus $\Phi(s) \in \mathbb{R}$ and

$$\Phi^{+}(s) = E\{e^{-s\eta^{+}}\} = \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} e^{-sx-x} dx = \frac{1}{2} (1 + \frac{1}{1+s})$$

for Re(s) > -1.

In this case we can also apply (5.8) with $0 < \epsilon < 1$ to obtain

$$\Phi^{+}(s) = \frac{s}{2\pi i} \int_{C_{E}^{+}} \frac{\Phi(z)}{z(s-z)} dz = \frac{s}{2\pi i} \int_{C_{E}^{+}} \frac{dz}{z(s-z)(1-z^{2})}$$

for $\text{Re}(s) > \epsilon > 0$. In the right half-plane $\,\text{Re}(z) > 0$, the integrand

has two poles z = s and z = 1, and by Cauchy's theorem of residues (see e.g. <u>W. Osgood</u> [23 p. 162]) we obtain that

$$\Phi^+(s) = \frac{1}{1-s^2} - \frac{s}{2(1-s)} = \frac{1}{2} (1 + \frac{1}{1+s})$$

for Re(s) > 0.

If we apply formula (5.1), then we obtain that

$$\Phi^{+}(s) = \frac{1}{2} + \lim_{\varepsilon \to 0} \frac{s}{2\pi i} \int_{L_{\varepsilon}} \frac{dz}{z(s-z)(1-z^{2})} =$$

$$= \frac{1}{2} + \lim_{\varepsilon \to 0} \frac{s}{\pi} \int_{\varepsilon}^{\infty} \frac{dy}{(1+y^{2})(s^{2}+y^{2})} =$$

$$= \frac{1}{2} + \frac{s}{\pi(1-s^{2})} \int_{0}^{\infty} \left[\frac{1}{s^{2}+y^{2}} - \frac{1}{1+y^{2}} \right] dy =$$

$$= \frac{1}{2} + \frac{s}{1-s^{2}} \left[\frac{1}{2s} - \frac{1}{2} \right] = \frac{1}{2} \left(1 + \frac{1}{1+s} \right)$$

for Re(s) > 0.

13.4. Since $\Phi(s) = E\{e^{-sv_{nl}}\}$ where

$$\Pr_{\mathbf{m}} = \mathbf{m} - 2\mathbf{j} = \binom{\mathbf{m}}{\mathbf{j}} \mathbf{p}^{\mathbf{j}} \mathbf{q}^{\mathbf{m} - \mathbf{j}}$$

for j = 0,1,..., m, it follows that $\Phi(s) \in \mathbb{R}$. If we write

$$\Phi(s) = \sum_{j=0}^{m} {m \choose j} p^{j} q^{m-j} e^{-(m-2j)s}$$

and apply T term by term, then we obtain that

$$\Phi^{+}(s) = \sum_{2j \le m} {m \choose j} p^{j} q^{m-j} e^{-(m-2j)s} + \sum_{2j \ge m} {m \choose j} p^{j} q^{m-j} =$$

$$= 1 + \sum_{2j \le m} {m \choose j} p^{j} q^{m-j} [e^{-(m-2j)s} -1].$$

The same result can be obtained by using formula (5.1). Accordingly, if Re(s) > 0, then

$$\begin{split} & \Phi^{+}(s) = \frac{1}{2} \Phi(0) + \lim_{\varepsilon \to 0} \frac{s}{2\pi i} \int_{L_{\varepsilon}} \frac{\Phi(z)}{z(s-z)} dz = \\ & = \frac{1}{2} \Phi(0) + \lim_{\varepsilon \to 0} \frac{s}{2\pi i} \int_{L_{\varepsilon}} \left[\frac{\Phi(iy)}{s-iy} - \frac{\Phi(-iy)}{s+iy} \right] \frac{dy}{y} = \\ & = \frac{1}{2} \Phi(0) + \lim_{\varepsilon \to 0} \frac{s}{\pi} \int_{\varepsilon}^{\infty} \frac{s \operatorname{Im}[\Phi(iy)] + y \operatorname{Re}[\Phi(iy)]}{(s^{2} + y^{2})y} dy \ . \end{split}$$

Thus we obtain that

$$\Phi^{+}(s) = \frac{1}{2} + \frac{s}{\pi} \sum_{j=0}^{m} {m \choose j} p^{j} q^{m-j} \int_{0}^{\infty} \frac{s \sin(2j-m)y + y \cos(2j-m)y}{(s^{2} + y^{2})} dy$$

for Re(s) > 0. If we take into consideration that

$$\int_{0}^{\infty} \frac{\cos ay}{s^{2} + y^{2}} dy = \frac{\pi e^{-as}}{2s} \text{ and } \int_{0}^{\infty} \frac{\sin ay}{(s^{2} + y^{2})y} dy = \frac{\pi (1 - e^{-as})}{2s^{2}}$$

for $a \ge 0$ and Re(s) > 0, then it follows that

$$\phi^{+}(s) = \frac{1}{2} + \sum_{2j < m} {m \choose j} p^{j} q^{m-j} \left[e^{-(m-2j)s} - \frac{1}{2} \right] + \sum_{2j \ge m} {m \choose j} p^{j} q^{m-j}$$

which is in agreement with the previous result.

13.5. Since $\Phi(s) = \mathbb{E}\{e^{-s\eta}\}$ where

$$P\{\eta \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$
,

it follows that $\Phi(s) \in R$ and

$$\Phi^{+}(s) = \mathbb{E}\{e^{-s\eta^{+}}\} = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-sx - \frac{x^{2}}{2}} dx =$$

$$= \frac{1}{2} + \frac{e^{s^{2}/2}}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{1}{2}(s+x)^{2}} dx = \frac{1}{2} + \frac{e^{s^{2}/2}}{\sqrt{2\pi}} \int_{s}^{\infty} e^{-u^{2}/2} du .$$

If we introduce the function

$$w(s) = \frac{e^{s^2/2}}{\sqrt{2\pi}} \int_0^s e^{-u^2/2} du$$

for any complex s, then we can write that

$$\Phi^{+}(s) = \frac{1 + e^{s^{2}/2}}{2} - w(s)$$

for any complex s. We note that the function $w(\sqrt{2} \text{ is})\sqrt{\pi}/\text{i}$ has been tabulated by K. A. Karpov [17].

13.6. Let ξ be a nonnegative random variable for which $E\{e^{-S\xi}\}= \phi(s)$ if $Re(s) \ge 0$. Let $P\{\theta \le x\} = 1 - e^{-\lambda x}$ for $x \ge 0$, and $P\{\theta \le x\} = 0$ for x < 0. Then

$$\mathbb{E}\{e^{-S\theta}\} = \frac{\lambda}{\lambda + s}$$

for $Re(s) > -\lambda$. If ξ and θ are independent, then

$$\mathbb{E}\{e^{-s(\xi-\theta)}\} = \frac{\lambda\phi(s)}{\lambda - s}$$

for $0 \le \text{Re}(s) < \lambda$. Accordingly,

$$T\left\{\frac{\lambda\phi(s)}{\lambda-s}\right\} = E\left\{e^{-s\left[\xi-\theta\right]^{+}}\right\}$$

for $Re(s) \ge 0$.

If $x \ge 0$, then

$$\mathbb{E}\left\{e^{-s\left[\xi-\theta\right]^{+}}\middle|\xi=x\right\} = \lambda \int_{0}^{x} e^{-s(x-u)-\lambda u} du + \lambda \int_{x}^{\infty} e^{-\lambda u} du =$$

$$= \begin{cases} \frac{\lambda e^{-SX} - s e^{-\lambda X}}{\lambda - s} & \text{for } s \neq \lambda, \\ \lambda x e^{-\lambda X} + e^{-\lambda X} & \text{for } s = \lambda. \end{cases}$$

Hence

$$\underbrace{\mathbb{E}\{e^{-s\left[\xi-\theta\right]+}\}}_{\text{E}\left\{e^{-\lambda\xi}\right\}-s\underbrace{\mathbb{E}\{e^{-\lambda\xi}\}}_{\lambda-s} \text{ if } s\neq\lambda\ , \\ \underbrace{\mathbb{E}\{\xi e^{-\lambda\xi}\}+\mathbb{E}\{e^{-\lambda\xi}\}}_{\text{M}} \text{ if } s=\lambda\ ,$$

and $Re(s) \ge 0$.

Finally,

$$T\{\frac{\lambda\phi(s)}{\lambda-s}\} = \begin{cases} \frac{\lambda\phi(s)-s\phi(\lambda)}{\lambda-s} & \text{if } s \neq \lambda, \\ \phi(\lambda)-\lambda\phi'(\lambda) & \text{if } s = \lambda, \end{cases}$$

and $Re(s) \ge 0$. The same result can be obtained by applying formula (5.8).

13.7. Let $q = \lambda + i\tau$ where λ and τ are real numbers. Since

$$\int_{0}^{\infty} e^{-qx+sx} dx = \int_{0}^{\infty} e^{-\lambda x} e^{-i\tau x+sx} dx = \frac{1}{q-s}$$

for Re(s) = 0, we can write that

$$\frac{1}{\lambda} \mathbb{E} \{ -e^{-i\tau \eta - s(-\eta)} \} = \frac{1}{s - a}$$

for Re(s) = 0 where η is a random variable with density function $f(x)=\lambda e^{-\lambda x}$ for $x\geq 0$ and f(x)=0 for x<0 . This shows at once that 1/(s-q) ϵ R . Thus by (5.1)

$$\mathbb{T}\left\{\frac{\Phi(s)}{s-q}\right\} = -\frac{\Phi(0)}{2q} + \lim_{\epsilon \to 0} \frac{s}{2\pi i} \int_{L_{\epsilon}} \frac{\Phi(z)}{z(s-z)(z-q)} dz$$

for Re(s) > 0. Since

$$\frac{1}{(s-z)(z-q)} = \frac{1}{(s-q)} \left[\frac{1}{s-z} - \frac{1}{q-z} \right]$$

if $s \neq q$ and $z \in L_{\epsilon}$, it follows that

$$T\{\frac{\Phi(s)}{s-q}\} = -\frac{\Phi(0)}{2q} + \frac{1}{(s-q)} \left[\Phi^{+}(s) - \frac{1}{2}\Phi(0)\right] - \frac{1}{2}\Phi(0)$$

$$-\frac{s}{(s-q)q} \left[\Phi^{+}(q) - \frac{1}{2} \Phi(0) \right] = \frac{1}{(s-q)} \left[\Phi^{+}(s) - \frac{s}{q} \Phi^{+}(q) \right]$$

for Re(s) > 0 and s \neq q . For Re(s) \geq 0 we obtain the formula to be proved by continuity.

13.8. Let ξ be a nonnegative random variable for which $\mathbb{E}\{e^{-S\xi}\}=\phi(s)$ if $\text{Re}(s)\geq 0$. Let $\mathbb{P}\{\theta\leq x\}=1-e^{-\lambda x}$ for $x\geq 0$ and $\mathbb{P}\{\theta\leq x\}=0$ for x<0. Then

$$\mathbb{E}\{e^{-s\theta}\} = \frac{\lambda}{\lambda + s}$$

for $Re(s) > -\lambda$. If ξ and θ are independent, then

$$\mathbb{E}\{e^{-s(\theta-\xi)}\} = \frac{\lambda\phi(-s)}{\lambda+s}$$

for $-\lambda < \text{Re(s)} \leq 0$, and

$$T\left\{ \frac{\lambda \phi(-s)}{\lambda + s} \right\} = E\left\{ e^{-s \left[\theta - \xi\right]^{+}} \right\} = 1 - \frac{\phi(\lambda)s}{\lambda + s}$$

for $\text{Re}(s) > -\lambda$. For if $x \ge 0$, then

$$\mathbb{E}\left\{e^{-s\left[\theta-\xi\right]^{+}} \middle| \xi = x\right\} = \lambda \int_{0}^{x} e^{-\lambda u} du + \lambda \int_{x}^{\infty} e^{-s(u-x)-\lambda u} du =$$

$$= 1 - e^{-\lambda x} + e^{-\lambda x} \frac{\lambda}{\lambda + s},$$

and unconditionally we have

$$\mathbb{E}\left\{e^{-s\left[\theta-\xi\right]^{+}}\right\} = 1 - \phi(\lambda) + \phi(\lambda) \frac{\lambda}{\lambda + s}$$

for $\text{Re}(s) > -\lambda$. The same result can also be obtained by using formula (5.9).

Note. If $\Phi(s) \in \mathbb{R}$, and $\Phi^+(s) = \mathbb{T}\{\Phi(s)\}$, then we can write that $\mathbb{T}\{\Phi(-s)\} = \Phi(-s) - \Phi^+(-s) + \Phi(0)$

for Re(s) = 0. This follows from the following identity.

$$e^{-s[-x]^{+}} = e^{sx} - e^{s[x]^{+}} + 1$$

which holds for any s and real x.

Thus we can deduce the solution of Problem 13.8 from the solution of Problem 13.6 if Re(s) = 0 and by analytic continuation we can obtain the solution for $Re(s) \ge 0$ too.

13.9. Let ξ be a nonnegative random variable for which $\sum_{\infty} \{e^{-s\xi}\} = \phi(s)$ if $\text{Re}(s) \ge 0$. Let

$$P\{\theta \leq x\} = \begin{cases} 1 - \sum_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^j}{j!} & \text{if } x \geq 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Then

$$E\{e^{-S\theta}\} = \lambda^{m}/(\lambda+s)^{m}$$

for $Re(s) > - \lambda$

If ξ and θ are independent, then

$$\mathbb{E}\left\{e^{-s\left(\xi-\theta\right)}\right\} = \lambda^{m}\phi(s)/(\lambda-s)^{m}$$

for $0 \le \text{Re}(s) < \lambda$, and

$$\underbrace{T} \left\{ \frac{\lambda^{m} \phi(s)}{(\lambda - s)^{m}} \right\} = \underbrace{E} \left\{ e^{-s \left[\xi - \theta \right]^{+}} \right\}$$

for $Re(s) \geq 0$.

If $x \ge 0$, then

$$\mathbb{E}\{e^{-s[\xi-\theta]^{\frac{1}{2}}}|\xi=x\} = \frac{\lambda^{m}}{(m-1)!}\int_{0}^{x}e^{-s(x-u)-\lambda u}u^{m-1}du + \sum_{j=0}^{m-1}e^{-\lambda x}\frac{(\lambda x)^{j}}{j!} = 0$$

$$\begin{cases} \lambda^{m} e^{-sx} - e^{-\lambda x} \sum_{j=0}^{m-1} \frac{x^{j}}{j!} \left[\lambda^{m} (\lambda - s)^{j} - \lambda^{j} (\lambda - s)^{m}\right] \\ \hline \\ e^{-\lambda x} \sum_{j=0}^{m} \frac{x^{j}}{j!} & \text{for } s = \lambda . \end{cases}$$

Hence

$$\begin{split} \mathbb{E}\{e^{-s\left[\xi-\theta\right]^{+}}\} &= \begin{cases} \lambda^{m_{\varphi}(s)} - \sum\limits_{j=0}^{m-1} \frac{(-1)^{j_{\varphi}(j)}(\lambda)}{j!} \left[\lambda^{m}(\lambda-s)^{j_{-\lambda}j}(\lambda-s)^{m_{j}}\right] \\ &\qquad \qquad \text{if } s \neq \lambda \text{ ,} \\ \frac{\sum\limits_{j=0}^{m} \frac{(-1)^{j}}{j!} \lambda^{j_{\varphi}(j)}(\lambda)}{j!} &\qquad \text{if } s = \lambda \text{ ,} \end{cases} \end{split}$$

and $Re(s) \ge 0$. The same result can be obtained by using formula (5.8).

13.10. If we use the same notation as in the solution of Problem 13.9, then we can write that

$$\prod_{m} \left\{ \frac{\lambda^{m} \phi(-s)}{(\lambda + s)^{m}} \right\} = \prod_{m} \left\{ e^{-s \left[\theta - \xi\right]^{+}} \right\}$$

for $Re(s) \ge 0$. If $x \ge 0$, then we have

$$E\{e^{-s[\theta-\xi]^{+}} | \xi = x\} = \int_{0}^{x} e^{-\lambda u} \frac{(\lambda u)^{m-1}}{(m-1)!} \lambda du + \int_{x}^{\infty} e^{-s(u-x)-\lambda u} \frac{(\lambda u)^{m-1}}{(m-1)!} \lambda du$$

$$= 1 - \int_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} + \int_{j=0}^{m-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} (\frac{\lambda}{\lambda + s})^{m-j} .$$

Hence it follows that

$$T\left\{\frac{\lambda^{m} \phi(-s)}{(\lambda + s)^{m}}\right\} = 1 - \sum_{j=0}^{m-1} \frac{(-1)^{j} \lambda^{j} \phi^{(j)}(\lambda)}{j!} \left[1 - \left(\frac{\lambda}{\lambda + s}\right)^{m-j}\right]$$

for $Re(s) \ge 0$.

13.11. In this case we can write that

$$\gamma(s) = \frac{\pi_{m-1}(s)}{m}$$

$$\prod_{j=1}^{m} (s+\alpha_j)$$

for $\operatorname{Re}(s) \geq 0$ where $\pi_{m-1}(s)$ is a polynomial of degree $\leq m-1$. Since $|\gamma(s)| \leq 1$ for $\operatorname{Re}(s) \geq 0$, it follows that $\operatorname{Re}(\alpha_j) > 0$ for $j=1,2,\ldots,m$. By formula (5.8) we have

$$T\{\phi(s)\gamma(-s)\} = \frac{s}{2\pi i} \int_{C_s^+} \frac{\phi(z)\gamma(-z)}{z(s-z)} dz$$

for Re(s) > ϵ > 0 where ϵ is a sufficiently small positive number. In the right half-plane Re(z) > 0 , the integrand has poles z=s and $z=\alpha_j$ ($j=1,2,\ldots,m$). If $\alpha_1,\alpha_2,\ldots,\alpha_m$ are distinct and $s\neq\alpha_j$ ($j=1,2,\ldots,m$), then by Cauchy's theorem of residues we obtain that

$$T\{\phi(s)\gamma(-s)\} = \phi(s)\gamma(-s) + \sum_{j=1}^{m} \frac{s\phi(\alpha_{j})\pi_{m-1}(-\alpha_{j})}{(s-\alpha_{j})\alpha_{j}} \frac{1}{i\neq j} (\alpha_{j}-\alpha_{i})$$

for $\operatorname{Re}(s) \ge 0$ and $s \ne \alpha_j$ (j = 1, 2, ..., m).

If the numbers $\alpha_1, \alpha_2, \ldots, \alpha_m$ are not distinct, then we can also apply Cauchy's theorem of residues to obtain $T\{\phi(s)\gamma(-s)\}$.

13.12. As in the solution of Problem 13.11 we can write that

$$\gamma(s) = \frac{\pi_{m-1}(s)}{m}$$

$$\prod_{j=1}^{m} (s + \alpha_j)$$

for $\text{Re}(s) \ge 0$ where $\pi_{m-1}(s)$ is a polynomial of degree $\le m-1$ and $\text{Re}(\alpha_j) > 0$ for j = 1, 2, ..., m.

· By (5.1) we have

$$\mathbb{T}\{\Phi(s)\gamma(-s)\} = \frac{\Phi(0)\gamma(0)}{2} + \lim_{\varepsilon \to 0} \frac{s}{2^{\pi}i} \int_{L_{\varepsilon}} \frac{\Phi(z)\pi_{m-1}(-z)}{z(s-z)(\alpha_{1}-z)\dots(\alpha_{m}-z)} dz$$

for Re(s) > 0 . If α_1 , α_2 ,..., α_m are distinct and if we use partial fraction expansion in the integrand and apply (5.1) repeatedly, then we obtain that

$$T\{\Phi(s)\gamma(-s)\} = \Phi^{+}(s)\gamma(-s) + \sum_{j=1}^{m} \frac{s\Phi^{+}(\alpha_{j})\pi_{m-1}(-\alpha_{j})}{(s-\alpha_{j})\alpha_{j}} \frac{1}{\prod\limits_{i\neq j} (\alpha_{j}-\alpha_{i})}$$

for $\text{Re}(s) \ge 0$ and $s \ne \alpha_j$ (j = 1, 2, ..., m) where $\phi^+(s) = T\{\phi(s)\}$.

In general we can write that

$$T\{\Phi(s)\gamma(-s)\} = \Phi^{\dagger}(s)\gamma(-s) + \frac{s G_{m-1}(s)}{(s-\alpha_1)(s-\alpha_2)\dots(s-\alpha_m)}$$

for Re(s) \geq 0 and s $\neq \alpha_j$ (j = 1,2,..., m) where $G_{m-1}(s)$ is a polynomial of degree \leq m-l . The polynomial $G_{m-1}(s)$ is uniquely determined by the requirement that

$$z G_{m-1}(z) - \Phi^{+}(z)\pi_{m-1}(-z) = 0$$

whenever $z=\alpha_j$ $(j=1,2,\ldots,m)$ and if the number α_j occurs r times among $\alpha_1,\alpha_2,\ldots,\alpha_m$, then $z=\alpha_j$ is a root of multiplicity r of the above equation.

13.13. As in the solution of Problem 13.11 we can write that

$$\gamma(s) = \frac{\pi_{m-1}(s)}{m}$$

$$\pi \quad (s+ \alpha_j)$$

$$j=1$$

for. Re(s) \geq 0 where $\pi_{m-1}(s)$ is a polynomial of degree \leq m-1 and Re(α_j) > 0 for j = 1,2,..., m .

By (5.9) we have

$$T\{\gamma(s)\phi(-s)\} = 1 + \frac{s}{2\pi i} \int_{C_{\epsilon}} \frac{\gamma(z)\phi(-z)}{z(s-z)} dz$$

for Re(s) \geq 0 where ϵ is a sufficiently small positive number. In the left half-plane Re(z) < 0, the integrand has poles $z=-\alpha_j$ for $j=1,2,\ldots,m$. If $\alpha_1,\alpha_2,\ldots,\alpha_m$ are distinct, then by Cauchy's theorem of residues we obtain that

$$T\{\gamma(s)\phi(-s)\} = 1 - \sum_{j=1}^{m} \frac{s\phi(\alpha_{j})\pi_{m-1}(-\alpha_{j})}{\alpha_{j}(s+\alpha_{j})} \frac{1}{\prod_{i\neq j}(\alpha_{j}-\alpha_{i})}$$

for $Re(s) \ge 0$.

If the numbers $\alpha_1, \alpha_2, \ldots, \alpha_m$ are not distinct, then we can also apply Cauchy's theorem of residues to obtain $T\{\gamma(s)\phi(-s)\}$.

13.14. Let $P\{v = j\} = pq^j$ for j = 0,1,2,... Then $E\{s^v\} = p/(1-qs)$ for |s| < 1/q. If ξ and v are independent, then

$$\mathbb{E}\{s^{\xi-\nu}\} = \frac{p \cdot s \cdot g(s)}{s - q}$$

for $q < |s| \le 1$. Accordingly, we have

$$\prod_{\infty} \left\{ \frac{p \cdot s \cdot g(s)}{s - q} \right\} = \mathbb{E} \left\{ s^{\left[\xi - \nu\right]^{+}} \right\}$$

for $|s| \le 1$. If k = 0,1,2,..., then

$$\begin{split} \mathbb{E}\{\mathbf{s}^{\left[\xi-\nu\right]^{+}} \big| \, \xi = \mathbf{k}\} &= \mathbf{p} \, \sum_{\mathbf{j}=0}^{k} \mathbf{q}^{\mathbf{j}} \, \, \mathbf{s}^{k-\mathbf{j}} + \mathbf{q}^{k+\mathbf{l}} = \\ &= \begin{cases} \frac{\mathbf{p}\mathbf{s}^{k+\mathbf{l}} - (1-\mathbf{s})\mathbf{q}^{k+\mathbf{l}}}{\mathbf{s} - \mathbf{q}} & \text{for } \mathbf{s} \neq \mathbf{q} \ , \\ (1+\mathbf{k}\mathbf{p})\mathbf{q}^{k} & \text{for } \mathbf{s} = \mathbf{q} \ . \end{cases} \end{split}$$

If we multiply the above equation by $P\{\xi = k\}$ and add for k = 0,1,2,..., then we obtain that

$$\prod_{s \to q} \left\{ \frac{p \cdot g(s)}{s - q} \right\} = \begin{cases}
\frac{p \cdot g(s) - (1 - s)q \cdot g(s)}{s - q} & \text{if } s \neq q, \\
g(q) + p \cdot q \cdot g'(q) & \text{if } s = q,
\end{cases}$$

and $|s| \le 1$. The same result can be obtained by using (11.10).

13.15. If we use the same **not** ation as in the solution of Problem 13.14, then we can write that

$$E\{s^{v-\xi}\} = \frac{p g(1/s)}{1-qs}$$

for $1 \le |s| < 1/q$. Accordingly, we have

$$\prod_{m} \{ \frac{p g(1/s)}{1-qs} \} = E\{s^{[\nu-\xi]^{+}}\} = 1 - \frac{q g(q)(1-s)}{1-qs}$$

for |s| < 1/q. For

$$E\{s^{[v-\xi]^{+}} | \xi = k\} = p \sum_{j=0}^{k} q^{j} + p \sum_{j=k+1}^{\infty} q^{j} s^{j-k} = 1 - q^{k+1} + \frac{p q^{k+1} s}{1-qs}$$

whenever k = 0,1,2,... and |s| < 1/q. If we multiply this equation by $P\{\xi = k\}$ and add for k = 0,1,2,..., then we obtain the above formula. The same result can also be obtained by using formula (11.12).

Note. If $a(s) \in A$ and $a^+(s) = II\{a(s)\}$, then we can write that $II\{a(\frac{1}{s})\} = a(\frac{1}{s}) - a^+(\frac{1}{s}) + a(1)$

for |s| = 1. This follows easily from the following identity

$$s^{[-k]}^{\dagger} = s^{-k} - s^{-[k]}^{\dagger} + 1$$

which holds for any s and $k = 0, \pm 1, \pm 2, \dots$

Thus we can deduce the solution of Problem 13.15 from the solution of Problem 13.14 if |s| = 1 and by analytic continuation we can obtain the solution for $|s| \le 1$ too.

. 13.16. Let

$$P\{v = j\} = \begin{pmatrix} m+j-1 \\ m-1 \end{pmatrix} p^m q^j$$

for j = 0,1,2,... Then $\mathbb{E}\{s^{\nu}\} = p^{m}/(1-qs)^{m}$ for |s| < 1/q. If ξ and ν are independent random variables, then

$$\mathbb{E}\{s^{\xi-\nu}\} = \frac{p^m s^m g(s)}{(s-q)^m}$$

for $q < |s| \le 1$ and

$$\prod_{m} \{ \frac{p^m s^m g(s)}{(s-q)^m} \} = \mathbb{E} \{ s^{\left[\xi-v\right]^+} \}$$
 for $|s| \le 1$. If $k = 0, 1, 2, ...,$ then

$$\underset{\sim}{E\{s^{\left[\xi-\nu\right]^{+}} | \xi = k\} = p^{m} \sum_{j=0}^{k} \binom{m+j-1}{m-1} q^{j} s^{k-j} + 1 - p^{m} \sum_{j=0}^{k} \binom{m+j-1}{m-1} q^{j} = 1 \} }$$

If we multiply this equation by $P\{\xi = k\}$ and add for k = 0,1,2,..., then we obtain that

$$\prod_{m \in \frac{p^m s^m g(s)}{(s-q)^m}} = \begin{cases} \frac{p^m s^m g(s)}{(s-q)^m} - \sum_{j=0}^{m-1} \frac{1}{j!} \left(\frac{d^j q^m g(q)}{dq^j} \right) \left[\frac{p^m (s-q)^j - p^j (s-q)^m}{(s-q)^m} \right] & \text{for } s \neq q \text{ ,} \\ \sum_{j=0}^{m} \frac{p^j}{j!} \left(\frac{d^j q^m g(q)}{dq^j} \right) & \text{for } s = q \text{ ,} \end{cases}$$

and $|s| \leq 1$.

Note. In the above proof we used the following identity

$$\sum_{j=0}^{k} \binom{a+j}{b} q^{j} s^{k-j} = \frac{s^{k+1} \sum_{j=0}^{b} \binom{a}{j} (s-q)^{j} q^{b-j} - q^{k+1} \sum_{j=0}^{b} \binom{a+k+1}{j} (s-q)^{j} q^{b-j}}{(s-q)^{b+1}}$$

which holds if $s \neq q$ and a and b are nonnegative integers. This follows from the relation

$$\frac{1}{b!} \frac{d^b}{dz^b} \left(z^a \int_{j=0}^k (qz)^j \ s^{k-j} \right)_{z=1} = \frac{1}{b!} \frac{d^b}{dz^b} \left(z^a \frac{s^{k+1} - (qz)^{k+1}}{s - qz} \right)_{z=1}.$$

13.17. If we use the same notation as in the solution of Problem 13.16, then we can write that

$$E\{s^{v-\xi}\} = p^m g(1/s)/(1-qs)^m$$

for $1 \le |s| < 1/q$ and

$$\mathbb{I}\left\{\frac{p^{m} g(1/s)}{(1-as)^{m}}\right\} = \mathbb{E}\left\{s^{\left[\nu-\xi\right]^{+}}\right\}$$

for $|s| \leq 1$. If k = 0,1,2,..., then

$$\mathbb{E}\{s^{\left[v-\xi\right]^{+}} | \xi = k\} = p^{m} \sum_{j=0}^{k} {m+j-1 \choose m-1} q^{j} + p^{m} \sum_{j=k+1}^{\infty} {m+j-1 \choose m-1} q^{j} s^{j-k} = 1 - \sum_{j=0}^{m-1} {m+k \choose j} p^{j} q^{m+k-j} + \sum_{j=0}^{m-1} {m+k \choose j} p^{j} q^{m+k-j} (\frac{ps}{1-qs})^{m-j}$$

for |s| < 1/q and hence it follows that

$$\prod_{m} \{ \frac{p^{m}g(1/s)}{(1-qs)^{m}} \} = 1 - \sum_{j=0}^{m-1} \frac{p^{j}}{j!} \left(\frac{d^{j}q^{m}g(q)}{dq^{j}} \right) [1 - \left(\frac{qs}{1-qs} \right)^{m-j}]$$

for |s| < 1/q . The same result can also be obtained by using formula (11.12).

Note. in the above proof we used the relations

$$\sum_{j=0}^{\infty} {m-j-1 \choose m-1} q^{j} s^{j} = \frac{1}{(1-qs)^{m}},$$

$$\sum_{j=0}^{k} {m-j-1 \choose m-1} q^{j} s^{j} = \frac{1}{(1-qs)^{m}} - \sum_{j=0}^{m-1} {m+k \choose j} \frac{(qs)^{m+k-j}}{(1-qs)^{m-j}}$$

and

$$\sum_{j=k+1}^{\infty} {m-j-1 \choose m-1} q^{j} s^{j} = \sum_{j=0}^{m-1} {m+k \choose j} \frac{(qs)^{m+k-j}}{(1-qs)^{m-j}}$$

which hold for |s| < 1/q.

13.18. We can write that

$$b(s) = \frac{\pi_{m-1}(s)}{m}$$

$$\prod_{j=1}^{\pi} (1-\beta_{j}s)$$

for $|s| \le 1$ where $\pi_{m-1}(s)$ is a polynomial of degree $\le m-1$. Since $|b(s)| \le 1$ for $|s| \le 1$, it follows that $|\beta_j| < 1$ for $j=1,2,\ldots,m$. By formula (11.10) we have

$$\mathbb{I}\{a(s)b(\frac{1}{s})\} = \frac{1-s}{2\pi i} \int_{C_{\epsilon}^{+}}^{+} \frac{g(z)b(\frac{1}{z})}{(1-z)(s-z)} dz$$

for $|s| < 1-\epsilon$ where ϵ is a sufficiently small positive number. In the unit circle |z| < 1 the integrand has poles at z = s and $z = \beta_j$ for $j = 1, 2, \ldots, m$. If $\beta_1, \beta_2, \ldots, \beta_m$ are distinct and $s \neq \beta_j$ $(j = 1, 2, \ldots, m)$, then by Chaucy's theorem of residues we obtain that

$$\prod_{s} \{a(s)b(\frac{1}{s})\} = a(s)b(\frac{1}{s}) - \sum_{j=1}^{m} \frac{(1-s)\beta_{j}^{m} a(\beta_{j}) \pi_{m-1}(1/\beta_{j})}{(1-\beta_{j})(s-\beta_{j})} \frac{1}{\prod_{i \neq j} (\beta_{j} - \beta_{i})}$$

for $|s| \le 1$ and $s \ne \beta_j$ (j = 1, 2, ..., m). If $\beta_1, \beta_2, ..., \beta_m$ are not distinct, then we can obtain $\mathbb{I}\{a(s)b(\frac{1}{s})\}$ in a similar way.

13.19. As in the solution of Problem 13.18 we can write that

$$b(s) = \frac{\pi_{m-1}(s)}{m}$$

$$II \quad (1-\beta_{j}s)$$

$$j=1$$

for $|s| \le 1$ where $\pi_{m-1}(s)$ is a polynomial of degree $\le m-1$ and $|\beta_j| < 1$ for $j=1,2,\ldots,m$. By (11.12) we have

$$\prod_{s} \{a(\frac{1}{s})b(s)\} = 1 + \frac{1-s}{2\pi i} \int_{C_{\epsilon}} \frac{a(\frac{1}{z})b(z)}{(1-z)(s-z)} dz$$

for $|s| \le 1$ where ϵ is a sufficiently small positive number. In the domain |z| > 1 the integrand has poles at $z = 1/\beta_j$ for $j = 1, 2, \ldots, m$. If $\beta_1, \beta_2, \ldots, \beta_m$ are distinct, then by Cauchy's theorem of residues we obtain that

$$\prod_{m} \{a(\frac{1}{s})b(s)\} = 1 - \sum_{j=1}^{m} \frac{(1-s)\beta_{j}^{m} a(\beta_{j})\pi_{m-1}(1/\beta_{j})}{(1-\beta_{j})(1-s\beta_{j})} \frac{1}{\prod_{i \neq j} (\beta_{j} - \beta_{i})}$$

for $|s| \le 1$. If $\beta_1, \beta_2, ..., \beta_m$ are not distinct, then we can obtain $\prod \{a(\frac{1}{s})b(s)\}$ in a similar way.

13.20. Let $\{v_n\}$ be a sequence of mutually independent random variables for which $\sum_{n=0}^{\infty} \{v_n = j\} = h$, for $j = 0,1,2,\ldots$ and $n = 1,2,\ldots$. Define a sequence of random variables ξ_n $(n = 0,1,2,\ldots)$ by the recurrence formula

$$\xi_{n} = [\xi_{n-1} + 1 - v_{n}]^{+}$$

where n = 1,2,... and ξ_0 is a random variable which takes on only non-negative integers and which is independent of $\{\nu_n\}$. It can easily be seen that $\{\xi_n\}$ is a homogeneous Markov chain with state space $I=\{0,1,2,\ldots\}$ and transition probability matrix π . Accordingly, we can use the aforementioned representation of $\{\xi_n\}$ in finding the distribution of ξ_n for $n=1,2,\ldots$. Let us introduce the notation

$$U_{n}(s) = \mathbb{E}\{s^{\xi_{n}}\}$$

for n = 0,1,2,... and $|s| \le 1$ and

$$h(s) = \sum_{j=0}^{\infty} h_j s^j$$

for $|s| \le 1$. Then we can write that

$$U_{n}(s) = \prod_{n} \{U_{n-1}(s) \operatorname{sh}(\frac{1}{s})\}$$

for $n = 1, 2, \dots$ By Theorem 10.1 we obtain that

$$\sum_{n=0}^{\infty} U_{n}(s) \rho^{n} = e^{-\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})]} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})]} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})]} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})] \}} \frac{\prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})]} \prod_{n=0}^{\pi \{ \log[1-\rho sh(\frac{1}{s})]} \frac{\prod_{n=0}^{\pi \{ \log$$

for $|s| \le 1$ and $|\rho| < 1$. If, in particular, $\Pr\{\xi_0 = 0\} = 1$, that is, $U_0(s) = 1$, then

$$\sum_{n=0}^{\infty} U_n(s) \rho^n = e^{-\prod \{ \log \left[1 - \rho sh\left(\frac{1}{s}\right) \right] \}}$$

for $|s| \le 1$ and $|\rho| < 1$.

We observe that if $|\rho| < 1$, then the equation

$$\rho h(z) = z$$

has exactly one root $z=\delta(\rho)$ in the unit circle |z|<1. If we use the notation $N_n=\nu_1+\nu_2+\ldots+\nu_n$ for $n=1,2,\ldots$, and $N_0=0$, then by Lagrange's expansion we obtain that

$$[\delta(\rho)]^{k} = \sum_{n=k}^{\infty} \frac{k}{n} \mathbb{P}\{N_{n} = n-k\} \rho^{n}$$

for k = 1, 2, ... and $|\rho| < 1$.

Thus by (12.2) we can write that

$$1 - \rho \operatorname{sh}(\frac{1}{s}) = g^{+}(s, \rho)g^{-}(s, \rho)$$

for |s| = 1 and $|\rho| < 1$ where

$$g^{\dagger}(s, \rho) = 1 - s\delta(\rho)$$

for $|s| \leq 1$ and

$$g^{-}(s, \rho) = \frac{1 - \rho sh(\frac{1}{s})}{1 - s\delta(\rho)}$$

for $|s| \ge 1$. Hence by (12.13) we have

$$\sum_{n=0}^{\infty} U_n(s) \rho^n = \frac{1}{1-s\delta(\rho)} \prod_{n=0}^{\infty} \left\{ \frac{U_0(s)[1-s\delta(\rho)]}{1-\rho sh(\frac{1}{s})} \right\}$$

for $|s| \le 1$ and $|\rho| < 1$. If, in particular, $\Pr\{\xi_0 = 0\} = 1$, then by (12.14) we have

$$(1-\rho) \sum_{n=0}^{\infty} U_n(s) \rho^n = \frac{1-\delta(\rho)}{1-s\delta(\rho)}$$

for $|s| \leq 1$ and $|\rho| < 1$, that is,

$$(1-\rho) \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \Pr\{\xi_n = k \big| \xi_0 = 0 \} s^k \rho^n = \frac{1-\delta(\rho)}{1-s\delta(\rho)} .$$

Hence

$$(1-\rho) \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \Pr\{\xi_n \ge k | \xi_0 = 0\} s^k \rho^n = \frac{1}{1 - s\delta(\rho)}$$

and

$$(1-\rho) \sum_{n=0}^{\infty} P\{\xi_n \ge k | \xi_0 = 0\} \rho^n = [\delta(\rho)]^k$$

for k = 0,1,2,... and $\left|\rho\right|$ < 1 . From this formula we can conclude that if k = 1,2,..., then

$$\sum_{m=0}^{n} \frac{k}{n} \ge k |\xi_0 = 0\} = \sum_{j=k}^{n} \frac{k}{j} \sum_{m=0}^{n} N_j = j - k$$

for $n = k, k+1, \ldots$.

If $P\{\xi_0 = i\} = 1$ where i = 0,1,2,..., then

for $|s| \le 1$ and $|\rho| < 1$. If we multiply this equation by $w^{\mbox{i}}$ and add for i = 0,1,2,..., then we obtain that

for $\left|s\right| \leq 1$, $\left|\rho\right| < 1$ and $\left|w\right| < 1$. Hence it follows that

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \Pr\{\xi_{n} \ge k | \xi_{0} = i\} s^{k} \rho^{n} w^{i} = \frac{1}{(1-s)(1-\rho)(1-w)} - \frac{1}{(1-s)(1-\rho)(1-w)}$$

$$-\frac{s}{(1-s)[1-s\delta(\rho)]} \underset{\sim}{\mathbb{I}} \left\{ \frac{1-s\delta(\rho)}{(1-sw)[1-\rho sh(\frac{1}{s})]} \right\}$$

for $|\mathbf{s}| \leq 1$, $|\boldsymbol{\rho}|$ <1 and $|\mathbf{w}|$ < 1 . By (11.10) we can prove that

$$\prod \left\{ \frac{1 - s\delta(\rho)}{(1-sw)[1-\rho sh(\frac{1}{s})]} \right\} = \frac{1 - \delta(\rho)}{(1-w)(1-\rho)} + \frac{w(1-s)[w-\delta(\rho)]}{(1-w)(1-ws)[w-\rho h(w)]} \bullet$$

The above formulas make it possible to find $P\{\xi_n \ge k | \xi_0 = i\}$ explicitly. If k = 1, 2, ... and i = 0, 1, ..., then we have

$$\Pr_{\mathbf{m}} \{ \xi_{n} \ge k \, | \, \xi_{0} = i \} = \Pr_{\mathbf{m}} \{ N_{n} \le n + i - k \} + \sum_{j=k}^{n} \Pr_{\mathbf{m}} \{ N_{j} = j - k \} \Pr_{\mathbf{m}} \{ N_{n-j} > n + i - j \}$$
 for $n = 1, 2, \dots$

If $h_0 > 0$ and $h_0 + h_1 < 1$, then $\{\xi_n\}$ is an irreducible and aperiodic Markov chain with state space $I = \{0, 1, 2, \dots\}$. Thus $\lim_{n \to \infty} P\{\xi_n = k\} = P_k \text{ exists for } k = 0, 1, 2, \dots \text{ and is independent of the initial distribution.}$ There are two possibilities: either $P_k > 0$ for $k = 0, 1, 2, \dots$ and $\sum_{k=0}^{\infty} P_k = 1 \text{ , or } P_k = 0 \text{ for } k = 0, 1, 2, \dots$ In finding $\{P_k\}$ we may assume without loss of generality that $P\{\xi_0 = 0\} = 1$. Then by Abel's theorem we obtain that

$$\sum_{k=0}^{\infty} P_k s^k = \lim_{\rho \to +1} (1-\rho) \sum_{n=0}^{\infty} U_n(s) \rho^n = \frac{1-\delta}{1-s\delta}$$

where $\delta = \lim_{\rho \to +1} \delta(\rho)$. Accordingly, $P_k = (1-\delta)\delta^k$ for $k = 0,1,2,\ldots$.

We can easily prove that $\,\delta\,=\,0\,$ if $\,\alpha\,\leq\,1\,$, whereas $\,0\,<\,\delta\,<\,1\,$ if $\,\alpha\,>\,1\,$.

CHADMER TT

21.1. Denote by $\tau_k = \rho_1 + \rho_2 + \ldots + \rho_k$ $(k = 1, 2, \ldots)$ the k-th ladder index for $k = 1, 2, \ldots$ and let $\tau_0 = 0$. Then $\rho_1, \rho_2, \ldots, \rho_k, \ldots$ are mutually independent and identically distributed random variables. Since $P\{\zeta_n > 0\} = 1/2$ for $n = 1, 2, \ldots$, by Theorem 19.3 we obtain that

$$-\frac{1}{2} \sum_{n=1}^{\infty} \frac{z^{n}}{n}$$

$$\mathbb{E}\{z^{n}\} = \pi(z) = 1 - e = 1 - \sqrt{1-z}$$

for |z| < 1 . Hence

$$E\{z^{\tau_k}\} = (1 - \sqrt{1-z})^k = \sum_{j=k}^{\infty} \frac{k}{2j-k} {2j-k \choose j} \frac{z^j}{2^{2j-k}}$$

for |z| < 1 , and consequently

$$\Pr\{\tau_{\mathbf{k}} = \mathtt{j}\} = \frac{\mathtt{k}}{2\mathtt{j} - \mathtt{k}} \; \binom{2\mathtt{j} - \mathtt{k}}{\mathtt{j}} \; \frac{1}{2^{2\mathtt{j} - \mathtt{k}}} = \left[\binom{2\mathtt{j} - \mathtt{k} - 1}{\mathtt{j}} - \binom{2\mathtt{j} - \mathtt{k} - 1}{\mathtt{j}}\right] \; \frac{1}{2^{2\mathtt{j} - \mathtt{k}}}$$

for $1 \le k \le j$.

Obviously we have

$$\Pr_{m} \{ v_{n} \ge k \} = \Pr_{m} \{ \tau_{k} \le n \}$$

for k = 0,1,2,... and n = 1,2,... This implies that

$$P\{v_n = k\} = P\{\tau_k \le n\} - P\{\tau_{k+1} \le n\} = \binom{2n-k}{n} \frac{1}{2^{2n-k}}$$

for $0 \le k \le n$.

Note. The power series expansion of $\left[\pi(z)\right]^k$ can be proved either by mathematical induction if we take into consideration that

$$[\pi(z)]^k = 2[\pi(z)]^{k-1} - z[\pi(z)]^{k-2}$$

for k=2,3,..., or by Lagrange's expansion if we take into consideration that $w=\pi(z)$ is the only root of $w^2-2w+z=0$ in the unit circle |w|<1 whenever |z|<1. The Lagrange's expansion of $[\pi(z)]^k$ is as follows:

$$[\pi(z)]^k = \frac{z^k}{2^k} + \sum_{n=1}^{\infty} \frac{k!}{2^n n!} (\frac{d^{n-1} a^{k-1} a^{2n}}{da^{n-1}})_{a=z/2}$$

for |z| < 1.

21.2. In this case the sequence $\{\zeta_n; n=0,1,2,\ldots\}$ describes the path of a one-dimensional random walk on the x-axis and $\tau_k=k+2m$ $(m=0,1,\ldots)$ if and only if the particle reaches the point x=k for the first time at the (k+2m)-th step. By Lemma 20.3 we have

$$\sum_{k=1}^{n} \{ \tau_{k} = k+2m \} = \left[\binom{k+2m-1}{m} - \binom{k+2m-1}{m-1} \right] p^{k+m} q^{m} = \frac{k}{k+2m} \binom{k+2m}{m} p^{k+m} q^{m}$$

for k = 1, 2, ... and m = 0, 1, 2, The same result can also be obtained by using the reflection principle. See formula (36.49).

We note that by the solution of Problem 21.1 we can write that

$$\mathbb{E}\left\{z^{\tau_{k}}\right\} = \mathbf{z}^{\kappa_{0}} \sum_{m=0}^{\infty} \frac{kp^{k}}{k+2m} {k+2m \choose m} (pqz^{2})^{m} = \left[\frac{1-\sqrt{1-4pqz^{2}}}{2qz}\right]^{k}$$

for $k=1,2,\ldots$ and |z|<1 . This formula can be proved directly as follows. Since

$$P\{\tau_1 = 2m+1\} = \frac{p}{2m+1} {2m+1 \choose m} (pq)^m = \frac{p}{m+1} {2m \choose m} (pq)^m = (-1)^m 2p {1 \over 2m} (4pq)^m$$

for m = 0,1,2,..., therefore

$$\mathbb{E}\{z^{\tau_1}\} = 2p \sum_{m=0}^{\infty} {(\frac{\frac{1}{2}}{m+1})(-4pqz^2)^m} = 2p \frac{1-\sqrt{1-4pqz^2}}{4pqz}$$

for |z| < 1, and the relation $\mathbb{E}\{z^{\tau k}\} = [\mathbb{E}\{z^{\tau l}\}]^k$ proves the desired result.

Finally, we note that

$$\underset{\sim}{\mathbb{P}}\{\tau_{k} < \infty\} = \lim_{z \to 1-0} \mathbb{E}\{z^{\tau_{k}}\} = \left(\frac{1 - |p-q|}{2q}\right)^{k} = \begin{cases} 1 & \text{if } p \geq q, \\ (p/q)^{k} & \text{if } p < q. \end{cases}$$

21.3. Let $u_n(s) = E\{s^n\}$ for n = 0,1,2,... and $|s| \le 1$, and $\gamma(s) = E\{s^n\} = ps + qs^{-1}$ for $s \ne 0$. We have $u_0(s) = 1$ and

$$u_n(s) = \prod_{s \in \mathbb{N}} \{ \gamma(s) \ u_{n-1}(s) \}$$

for $n=1,2,\ldots$ and $|s|\leq 1$ where \prod_{∞} is defined in Section 9. If |s|=1 and |z|<1, then we can write that

$$1 - z \gamma(s) = g^{+}(s,z) g^{-}(s,z)$$

where

$$g^{+}(s,z) = s - \frac{1 + \sqrt{1 - 4pqz^{2}}}{2pz} = s - \frac{2qz}{1 - \sqrt{1 - 4pqz^{2}}}$$

and

$$g(s,z) = \frac{1 - \sqrt{1 - 4pqz^2}}{2.5} - pz$$

satisfy the conditions (a_1) , (a_2) , (b_1) , (b_2) , (b_3) in Section 12. By Theorem 12.2 we have

(1-z)
$$\sum_{n=0}^{\infty} u_n(s) z^n = \frac{g^+(1,z)}{g^+(s,z)} = \frac{1 - 2qz - \sqrt{1 - 4pqz^2}}{s - 2qz - s\sqrt{1 - 4pqz^2}}$$

for $|s| \le 1$ and |z| < 1. Hence

(1-z)
$$\sum_{n=0}^{\infty} \Pr\{\eta_n = k\} z^k = \left[\frac{1 - \sqrt{1 - \mu_{pqz}^2}}{2qz} \right]^k - \left[\frac{1 - \sqrt{1 - \mu_{pqz}^2}}{2qz} \right]^{k+1}$$

or

(1-z)
$$\sum_{n=0}^{\infty} P\{\eta_n \ge k\} z^k = \left[\frac{1 - \sqrt{1 - 4pqz^2}}{2qz}\right]^k$$

for k = 0,1,2,... and |z| < 1. Hence by the solution of Problem 21.2 we get

$$\mathbf{P}\{\eta_{n} \geq k\} = \sum_{m=0}^{\left[\frac{n-k}{2}\right]} \frac{k}{k+2m} \binom{k+2m}{m} p^{k+m} q^{m}$$

for k = 0, 1, 2, ...

We note that if τ_k (k=1,2,...) denotes the k-th ladder index for the sequence $\zeta_0,\,\zeta_1,\,...,\,\zeta_n,\,...$ and $\tau_0=0$ then we have the obvious relation $\Pr\{\eta_n\geq k\}=\Pr\{\tau_k\leq n\}$ for $n\geq 0$ and $k\geq 0$. Thus $\Pr\{\eta_n\geq k\}$ can also be obtained immediately by the solution of Problem 21.2.

21.4. For k=1,2,... we can write that $\tau_k = \rho_1 + \rho_2 + ... + \rho_k$ where $\rho_1, \rho_2,..., \rho_k,...$ are mutually independent and identically distributed random variables. Since

$$P\{\zeta_n > 0\} = P\{\frac{\zeta_n}{n^{1/\alpha}} > 0\} = P\{\xi_1 > 0\} = 1 - R_{\alpha}(0) = q$$

is independent of n, by Theorem 19.3 we obtain that

$$-q \sum_{n=1}^{\infty} \frac{z^{n}}{n}$$

$$E\{z^{\rho_{k}}\} = \pi(z) = 1 - e = 1 - (1-z)^{q}$$

for |z| < 1. Hence we obtain that

$$P\{\rho_k = j\} = (-1)^{j-1} {q \choose j}$$

for $j = 1, 2, \dots$ Since

$$\mathbb{E}\{z^{\tau_k}\} = [1 - (1-z)^q]^k = \sum_{r=0}^k (-1)^r {k \choose r} (1-z)^{rq},$$

it follows that

$$P\{\tau_{k} = j\} = (-1)^{j} \sum_{r=1}^{k} (-1)^{r} {k \choose r} {r \choose j}$$

for j = 1, 2, ... Obviously $P\{\tau_k = j\} = 0$ for j < k. Accordingly,

$$\sum_{k=1}^{P\{\tau_{k} \leq n\}} = (-1)^{n} \sum_{r=1}^{k} (-1)^{r} {k \choose r} {rq-1 \choose n} = \sum_{r=1}^{k} (-1)^{r} {k \choose r} {n-rq \choose n}$$

for $1 \le k \le n$.

We note that by (42.192) we have

$$q = \frac{1}{2} + \frac{1}{\alpha\pi} \arctan (\beta tan \frac{\alpha\pi}{2})$$
.

See also Problem 46.7.

21.5. Since $\underset{1 \le r \le n}{\mathbb{P}\{\max (N_r - r) < k\}} = 0$ if k < 0, we can write that

$$\mathbb{E}\{\max_{\mathbf{r}} (\mathbf{N} - \mathbf{r})\} = \sum_{k=1}^{\infty} [1-P\{\max_{\mathbf{r}} (\mathbf{N} - \mathbf{r}) < k\}] = \sum_{k=1}^{\infty} (\sum_{\mathbf{r} \leq \mathbf{r}} (\mathbf{N} - \mathbf{r}) < k\}] = \sum_{k=1}^{\infty} (\sum_{\mathbf{r} \leq \mathbf{r}} (\mathbf{N} - \mathbf{r}) < k\}$$

$$= \sum_{k=1}^{\infty} \left[1-P\{\max_{r}(N_{r}-r) < k\}\right] - \sum_{k=-\infty}^{0} P\{\max_{r}(N_{r}-r) < k\} + P\{\max_{r}(N_{r}-r) < 0\}$$

and the probabilities in question can be obtained by (20.8) and (20.13).

Accordingly, we have

$$\mathbb{E}\{\max_{0 \leq r \leq n} (N_r - r)\} = \mathbb{E}\{[N_n - n]^+\} + \sum_{j=1}^{n-1} \sum_{\ell=0}^{n-j} (1 - \frac{\ell}{n-j}) P\{N_n - N_j = \ell, N_j > j\} - \mathbb{E}\{[n-N_n]^+\} + \sum_{j=1}^{n-1} \sum_{\ell=0}^{n-j} (1 - \frac{\ell}{n-j}) P\{N_n - N_j = \ell, N_j \leq j\} + \frac{1}{n} \mathbb{E}\{[n-N_n]^+\} =$$

$$= \sum_{j=1}^{n-1} \mathbb{E}\{[1 - \frac{N_n - N_j}{n-j}]^+\} + \mathbb{E}\{N_n - n\} - \frac{(n-1)}{n} \mathbb{E}\{[n-N_n]^+\} =$$

$$= \sum_{j=0}^{n-1} \mathbb{E}\{[1 - \frac{N_n - N_j}{n-j}]^+\} + \mathbb{E}\{N_n - n\} = \sum_{j=1}^{n} \frac{1}{j} \mathbb{E}\{[j-N_j]^+\} + \mathbb{E}\{N_n - n\} = \sum_{j=1}^{n} \frac{1}{j} \mathbb{E}\{[j-N_j]^+\} + \mathbb{E}\{N_n - n\} = \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} + \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} + \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^+\} + \mathbb{E}\{[n-N_n]^+\} = \mathbb{E}\{[n-N_n]^$$

$$= \sum_{j=1}^{n} \frac{1}{j} \mathbb{E} \left[N_{j} - j \right]^{+}$$

because if $\mathbb{E}\{v_j\} = \gamma < \infty$, then $\mathbb{E}\{[j-N_j]^+\} = \mathbb{E}\{j-N_j\} + \mathbb{E}\{[N_j-j]^+\} = j(1-\gamma) + \mathbb{E}\{[N_j-j]^+\}$ for $j=1,2,\ldots,n$. If $\gamma=\infty$, then both sides of the equation to be proved are infinite.

21.6. Now $\max_{0 \le r \le n} (r-N_r)$ is a discrete random variable which may take on the integers 0, 1,..., n only. Thus by (20.17) we have

$$\sum_{\substack{n \in \mathbb{N} \\ 0 \le r \le n}} \mathbb{E} \{ \max_{i} (r - N_{i}) \} = \sum_{k=1}^{n} \mathbb{E} \{ \max_{i} (r - N_{i}) \ge k \} = \sum_{k=1}^{n} \sum_{j=k}^{n} \frac{k}{j} \mathbb{E} \{ [j - N_{j}]^{+} \} .$$

21.7. We have

$$\mathbb{E}\{\eta_n\} = \sum_{j=1}^n \frac{1}{j} \mathbb{E}\{\zeta_j^+\}.$$

If $\mathbb{E}\{\xi_n^+\} = \infty$, then both sides of the above equation are infinite. Let us suppose that $\mathbb{E}\{\xi_n^+\} < \infty$. Then $\mathbb{E}\{\eta_n\} < \infty$ for $n = 1, 2, \ldots$ because, obviously, $\mathbb{E}\{\eta_n\} \le n \ \mathbb{E}\{\xi_1^+\}$. Since by (15.1)

$$\sum_{n=0}^{\infty} E\{e^{-s\eta_n}\} \rho^n = \exp\{\sum_{k=1}^{\infty} \frac{k}{k} E\{e^{-s\zeta_k^+}\}\}$$

for $\operatorname{Re}(s) \geq 0$ and $|\rho| < 1$, it follows that

$$\sum_{n=1}^{\infty} \mathbb{E}\{\gamma_n\} \rho^n = \frac{1}{1-\rho} \sum_{k=1}^{\infty} \frac{\rho^k}{k} \mathbb{E}\{\zeta_k^+\}$$

for $|\rho| < 1$. If we form the coefficient of ρ^n on the right-hand side,

then we obtain $\mathbb{E}\{\eta_n\}$ which was to be determined.

We note that in a similar way we can express $\mathbb{E}\{\eta_n^r\}$ for $r=1,2,\ldots$ with the aid of the moments $\mathbb{E}\{[\zeta_j^+]^s\}$ (s = 1,2,...,r and j = 1,2,...,n).

21.8. Let us introduce the following notation: $P\{\chi_n \leq x\} = H(x)$, $-s\chi_n = -s\eta_n$, $P\{\chi_1 + \ldots + \chi_n \leq x\} = H_n(x)$

$$a_{k}(\lambda) = \int_{0}^{\infty} e^{-\lambda u} \frac{(\lambda u)^{k}}{k!} \left[\int_{0}^{u} (1 - \frac{x}{u}) dH_{k}(u) \right] \lambda du =$$

$$= \frac{(-1)^{k-1} \lambda^{k+1}}{k!} \frac{d^{k-1}}{d\lambda^{k-1}} \left(\frac{\left[\psi(\lambda) \right]^{k}}{\lambda^{2}} \right)$$

for k = 1, 2, ...

. By Theorem 15.3 we have

$$\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n} = e^{-T\{\log[1 - \frac{\lambda \rho \psi(s)}{\lambda - s}]\}}$$

for Re(s) ≥ 0 and $|\rho| < 1$. By the first example in Section 18 we can also write that

$$\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n} = \frac{\lambda [\gamma(\rho) - s]}{\gamma(\rho)[\lambda - s - \lambda \rho \psi(s)]}$$

where $s = \gamma(\rho)$ is the only root of the equation

$$\lambda - s - \lambda \rho \psi(s) = 0$$

in the domain $\operatorname{Re}(s) \geq 0$ whenever $|\rho| \leq 1$.

By Lagrange's expansion we obtain that

$$\frac{1}{\gamma(\rho)} = \frac{1}{\lambda} + \frac{1}{\lambda} \sum_{k=1}^{\infty} \rho^k a_k(\lambda)$$

for $|\rho| < 1$, and consequently

$$\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n} = \left[1 - \frac{s}{\lambda - s} \sum_{k=1}^{\infty} \rho^{k} a_{k}(\lambda)\right] \sum_{j=0}^{\infty} \left(\frac{\lambda \rho \psi(s)}{\lambda - s}\right)^{j}$$

for $|\lambda \rho \psi(s)| < |s-\lambda|$ and $\text{Re}(s) \ge 0$. Hence

$$\Phi_{n}(s) = \left(\frac{\lambda \psi(s)}{\lambda - s}\right)^{n} - \frac{s}{\lambda - s} \sum_{k=1}^{n} a_{k}(\lambda) \left(\frac{\lambda \psi(s)}{\lambda - s}\right)^{n-k}$$

for $n=1,2,\ldots$, $\text{Re}(s)\geq 0$ and $s\neq \lambda$. If we write $s=\lambda-(\lambda-s)$ in front of the sum, then by inversion we obtain that

$$P\{n_n \le x\} = K_n(x) - \sum_{k=1}^n a_k(\lambda)[K_{n-k}^*(x) - K_{n-k}(x)]$$

for any x where

$$K_{n}(x) = \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} H_{n}(u+x)e^{-\lambda u} u^{n-1} du \text{ and } K_{n}^{*}(x) = \frac{\lambda^{n+1}}{n!} \int_{0}^{\infty} H_{n}(u+x)e^{-\lambda u} u^{n} dx$$

for $n=1,2,\ldots,$ $K_0(x)=1$ for $x\geq 0$, $K_0(x)=0$ for x<0, and $K_0^*(x)=1$ for $x\geq 0$, $K_0(x)=e^{\lambda x}$ for x<0. Here we took into consideration that

$$\int_{-\infty}^{\infty} e^{-sx} dK_n(x) = \left(\frac{\lambda \psi(s)}{\lambda - s}\right)^n \text{ and } \int_{-\infty}^{\infty} e^{-sx} dK_n^*(x) = \frac{\lambda^{n+1} [\psi(s)]^n}{(\lambda - s)^{n+1}}$$

for n = 0,1,2,... and $0 \le Re(s) < \lambda$.

If x<0 , then obviously $\Pr_n\leq x\}=0$. Furthermore, $\Pr_n=0\}=\lim_{s\to\infty}\Phi_n(s)=a_n(\lambda)$.

We can also write down that

$$\sum_{k=1}^{n} \{ \mathbf{1}_{n} \leq \mathbf{x} \} = (-1)^{n} \; \mathbf{I}_{n}(\mathbf{x}) \; + \; \sum_{k=1}^{n} (-1)^{n-k} \; \mathbf{a}_{k}(\lambda) \; \left[\mathbf{I}_{n-k}^{*}(\mathbf{x}) \; + \; \mathbf{I}_{n-k}(\mathbf{x}) \right]$$

for $x \ge 0$ where

$$I_n(x) = \frac{\lambda^{n-1} e^{\lambda x}}{(n-1)!} \int_0^x e^{-\lambda y} (x-y)^{n-1} dH_n(y) \text{ and } I_n^*(x) = \frac{\lambda^n e^{\lambda x}}{n!} \int_0^x e^{-\lambda y} (x-y)^n dH_n(y)$$

for $x \ge 0$ and $n = 1, 2, ..., I_0(x) = 1$ for $x \ge 0$ and $I_0^*(x) = (e^{\lambda x} - 1)/\lambda$

for $x \ge 0$. Here we used that $\Pr_{n} \{ \eta_{n} = 0 \} = a_{n}(\lambda)$,

$$\int_{0}^{\infty} e^{-SX} dI_{n}(x) = \left(\frac{\lambda \psi(s)}{s - \lambda}\right)^{n} \quad \text{and} \quad \int_{0}^{\infty} e^{-SX} dI_{n}^{*}(x) = \frac{\lambda^{n+1} [\psi(s)]}{(s - \lambda)^{n+1}}$$

for $Re(s) > \lambda$, and

$$\int_{0}^{\infty} e^{-sx+\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} \lambda dx = \left(\frac{\lambda}{s-\lambda}\right)^{n}$$

for $n = 1, 2, \dots$ and $Re(s) > \lambda$.

21.9. Let us introduce the following notation: $P\{\chi_n \le x\} = H(x)$, $P\{\chi_1 + \ldots + \chi_n \le x\} = H_n(x)$, $H_0(x) = 1$ for $x \ge 0$, $H_0(x) = 0$ for x < 0 and

$$F_{n}(x) = \begin{cases} 1 - \sum_{j=0}^{n-1} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} & \text{for } x \ge 0, \\ 0 & \text{For } x < 0. \end{cases}$$

Furthermore, let $\mathop{\mathbb{E}}\{e^{-s\chi_n}\}=\psi(s)$ and $\mathop{\mathbb{E}}\{e^{-s\eta_n}\}=\phi_n(s)$ for $\mathop{\mathrm{Re}}(s)\geq 0$. Since in this case

$$\mathbb{E}\{e^{-s\theta}n\} = \left(\frac{\lambda}{\lambda + s}\right)^{m}$$

for $Re(s) > -\lambda$ and n = 1,2,..., we can apply the solution of the second example in Section 18 to obtain

$$\sum_{n=0}^{\infty} \Phi_{n}(s) \rho^{n} = \frac{\lambda^{m}}{(\lambda - s)^{m} - \lambda^{m} \rho \psi(s)} \prod_{i=1}^{m} (1 - \frac{s}{\gamma_{i}(\rho)})$$

for Re(s) \geq 0 and $|\rho|$ < 1 where s = $\gamma_i(\rho)$ (i = 1,2,..., m) are the m roots of the equation

$$(\lambda - s)^{m} - \lambda^{m} \rho \psi(s) = 0$$

in the domain $\operatorname{Re}(s) \geq 0$ whenever $|\rho| < 1$.

By forming the Lagrange expansion of the root $\gamma_i(\rho)$ for $i=1,2,\ldots,m$ and $|\rho|<1$, we can write that

$$\prod_{i=1}^{m} \left(1 - \frac{s}{\gamma_{i}(\rho)}\right) = \left(1 - \frac{s}{\lambda}\right)^{m} + \sum_{r=0}^{m} \left(1 - \frac{s}{\lambda}\right)^{r} \sum_{k=1}^{\infty} a_{k,r}(\lambda) \rho^{k}$$

for any s where $a_{k,r}(\lambda)$ (k = 1,2,...; r = 0,1,..., m) are appropriate functions of λ .

If $|\lambda^{m} \rho \psi(s)| < |(\lambda - s)^{m}|$ and $\text{Re}(s) \geq 0$, then obviously

$$\frac{\lambda^{m}}{(\lambda-s)^{m}-\lambda^{m}\rho\psi(s)}=(\frac{\lambda}{\lambda-s})^{m}\sum_{j=0}^{\infty}(\frac{\lambda^{m}\rho\psi(s)}{(\lambda-s)^{m}})^{j}.$$

By using these expansions we can conclude that

$$\Phi_{\mathbf{n}}(\mathbf{s}) = \left(\frac{\lambda^{\mathbf{m}}\psi(\mathbf{s})}{(\lambda - \mathbf{s})^{\mathbf{m}}}\right)^{\mathbf{n}} + \sum_{r=0}^{\mathbf{m}} \sum_{k=1}^{n} \mathbf{a}_{k,r}(\lambda) \left(\frac{\lambda}{\lambda - \mathbf{s}}\right)^{(n-k+1)\mathbf{m} - r} [\psi(\mathbf{s})]^{n-k}$$

for $n=1,2,\ldots$, $\text{Re}(s)\geq 0$ and $s\neq \lambda$. Hence it follows by inversion that

$$P\{\eta_{n} \leq x\} = K_{n,mn}(x) + \sum_{r=0}^{m} \sum_{k=1}^{n} a_{k,r}(\lambda) K_{n-k,(n-k+1)m-r}(x)$$

for any x where

$$K_{n,j}(x) = \frac{\lambda^{j}}{(j-1)!} \int_{0}^{\infty} H_{n}(u+x)e^{-\lambda u} u^{j-1} du$$

for $n=0,1,2,\ldots$ and $j=1,2,\ldots$ and $K_{n,0}(x)=H_n(x)$ for $n=0,1,2,\ldots$. Here we used that

$$\int_{-\infty}^{\infty} e^{-SX} dK_{n,j}(x) = \left(\frac{\lambda}{\lambda - S}\right)^{j} \left[\psi(s)\right]^{n}$$

for $0 \le \text{Re}(s) < \lambda$ and n = 0,1,2,...; j = 0,1,2,...

If x < 0, then obviously $\Pr\{n_n \le x\} = 0$. Furthermore, $\Pr\{n_n = 0\} = 0$ lim $\Pr\{n\} = 0$, $\Pr\{n\} = 0$.

We can also write down that

$$P\{\eta_{n} \leq x\} = (-1)^{mn} I_{n,mn}(x) + \sum_{r=0}^{m} \sum_{k=1}^{n} (-1)^{(n-k+1)m-r} a_{k,r}(\lambda) I_{n-k,(n-k+1)m-r}(x)$$

for $x \ge 0$

$$I_{n,j}(x) = \frac{\lambda^{j-1} e^{\lambda x}}{(j-1)!} \int_{0}^{x} e^{-\lambda y} (x-y)^{j-1} dH_{n}(y)$$

for $x \ge 0$, $n \ge 0$, $j \ge 1$ and $I_{n,0}(x) = H_n(x)$ for $n = 0,1,2,\ldots$. Here we used that

$$\int_{0}^{\infty} e^{-sx} dI_{n,j}(x) = \left(\frac{\lambda}{\lambda - s}\right)^{j} \left[\psi(s)\right]^{n}$$

for Re(s) > λ and $n \ge 0$, $j \ge 0$, and that $\Pr\{\eta_n = 0\} = a_{n,m}(\lambda)$.

We note that

$$\sum_{r=0}^{m} a_{k,r}(\lambda) = 0$$

for $k = 1, 2, \dots$ and

$$\sum_{k=1}^{\infty} a_{k,0}(\lambda) \rho^{k} = \prod_{i=1}^{m} \left(1 - \frac{\lambda}{\gamma_{i}(\rho)}\right).$$

21.10. We shall prove that the probability in question depends only on n and k and thus we can denote this probability by P(n, k) = S(n, k)/n! where S(n, k) is the number of favorable cases. We shall prove that

$$P(n, k) = \begin{cases} 1 - \frac{k}{n} & \text{if } 0 \leq k < n, \\ 0 & \text{if } k \geq n. \end{cases}$$

If n=1, then P(1,0)=1 and P(1,k)=0 for $k\geq 1$. Let us suppose that the above formula is true for every k if n is replaced by n-1 $(n=2,3,\ldots)$. We shall prove that it is true for every k and n. Thus by mathematical induction we can conclude that it is true for $n=1,2,\ldots$ and $k=0,1,2,\ldots$. If $k\geq n$, then obviously P(n,k)=0. Let $0\leq k < n$. Since the last number drawn may be k_i $(i=1,2,\ldots,n)$, we have

$$S(n, k) = \sum_{i=1}^{n} S(n-1, k-k_i)$$
,

or in other words,

$$P(n, k) = \frac{1}{n} \sum_{i=1}^{n} P(n-1, k-k_i)$$
.

If $0 \le k < n$, then by the induction hypothesis the right-hand side becomes

$$P(n, k) = \frac{1}{n} \sum_{i=1}^{n} (1 - \frac{k - k_i}{n - 1}) = 1 - \frac{k}{n - 1} + \frac{k}{n(n - 1)} = 1 - \frac{k}{n}$$

This proves that P(n, k) depends only on n and k and that the aformentioned formula is true.

CHAPTER III

27.1. By Theorem 23.1 we have

$$\underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{n}} = \mathbf{j} \} = \underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{j}} = \mathbf{j} \} \underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{n}-\mathbf{j}} = \mathbf{0} \}$$

for $0 \le j \le n$ and by Theorem 24.1 we have

$$\sum_{n=0}^{\infty} \Pr\{\Delta_n = n\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} \Pr\{\zeta_n > 0\}\}$$

and

$$\sum_{n=0}^{\infty} \Pr\{\Delta_n = 0\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} \Pr\{\zeta_n \le 0\}\}$$

for $|\rho| < 1$. Since in our case $\Pr\{\zeta_n > 0\} = \frac{1}{2}$

for n = 1, 2, ..., it follows that

$$\sum_{n=0}^{\infty} \Pr\{\Delta_{n} = n\} \rho^{n} = \sum_{n=0}^{\infty} \Pr\{\Delta_{n} = 0\} \rho^{n} = (1-\rho)^{-1/2}$$

for $|\rho| < 1$. Thus

$$P\{\Delta_n = n\} = P\{\Delta_n = 0\} = {2n \choose n} \frac{1}{2^{2n}}$$

and

$$\Pr_{\mathbf{n}}\{\Delta_{\mathbf{n}} = \mathbf{j}\} = \binom{2\mathbf{j}}{\mathbf{j}}\binom{2\mathbf{n} - 2\mathbf{j}}{\mathbf{n} - \mathbf{j}} \frac{1}{2^{2\mathbf{n}}}$$

for $0 \le j \le n$.

We note that if Δ_n^* denotes the number of nonnegative elements in the sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$, then obviously $\Pr\{\Delta_n^* = j\} = \Pr\{\Delta_n = j\}$ for $0 \le j \le n$.

Remark. We can also obtain $P\{\Delta_n=j\}$ for $j=0,1,\ldots,n$ in a simpler way. First, we observe that $P\{\Delta_n=n\}=P\{\Delta_n=0\}$ for $n=0,1,2,\ldots$. Since $P\{\xi_r\leq x\}=P\{-\xi_r\leq x\}$ for $r=1,2,\ldots,n$, we have $P\{\Delta_n=n\}=P\{\Delta_n^*=0\}$ and since $P\{\zeta_r=0\}=0$ for $r=1,2,\ldots,n$, we have $P\{\Delta_n^*=0\}=P\{\Delta_n^*=0\}$. Thus we can write that

$$\underset{\sim}{\mathbb{P}}\{\Delta_{\mathbf{n}} = \mathbf{j}\} = \underset{\sim}{\mathbb{P}}\{\Delta_{\mathbf{j}} = 0\} \underset{\sim}{\mathbb{P}}\{\Delta_{\mathbf{n}-\mathbf{j}} = 0\}$$

for $0 \le j \le n$. Hence

(*)
$$\sum_{j=0}^{n} P\{\Delta_{j} = 0\} P\{\Delta_{n-j} = 0\} = 1$$

for $n = 0, 1, 2, \dots$ From this equation we obtain step by step that

$$\mathbb{P}\{\Delta_{n} = 0\} = {2n \choose n} \frac{1}{2^{2n}} = (-1)^{n} {-\frac{1}{2} \choose n}$$

for n = 0, 1, 2, ...

If we multiply (*) by z^n and add for n = 0,1,2,..., then we obtain that

$$\sum_{n=0}^{\infty} P\{\Delta_n = 0\} z^n = \frac{1}{\sqrt{1-z}}$$

for |z| < 1, and this also yields the above result.

27.2. Since in this case $P\{\zeta_n > 0\} = q$ for n = 1,2,... where

$$q = \frac{1}{2} + \frac{1}{\alpha\pi} \arctan(\beta \tan \frac{\alpha\pi}{2})$$
,

in exactly the same way as in the solution of Problem 27.1 we obtain that

$$\sum_{n=0}^{\infty} P\{\Delta_n = n\} \rho^n = (1-\rho)^{-q}$$

and

$$\sum_{n=0}^{\infty} P\{\Delta_n = 0\} \rho^n = (1-\rho)^{q-1}$$

for $|\rho| < 1$. Thus

$$P\{\Delta_{n} = j\} = P\{\Delta_{j} = j\}P\{\Delta_{n-j} = 0\} = (-1)^{n} {\binom{-q}{j}} {\binom{q-1}{n-j}}$$

for $0 \le j \le n$.

We note that if Δ_n^* denotes the number of nonnegative elements in the sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$, then we have $\sum_{n=0}^{\infty} \{ \Delta_n^* = j \} = \sum_{n=0}^{\infty} \{ \Delta_n^* = j \}$ for $0 \le j \le n$ because the random variables $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ have a continuous distribution function.

27.3 By Theorem 22.1 we can write that

$$\underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{n}} = \mathbf{k} \} = \underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{k}} = \mathbf{k} \} \underset{\sim}{\mathbb{P}} \{ \Delta_{\mathbf{n}-\mathbf{k}} = 0 \}$$

for $0 \le k \le n$.

Define $P\{\Delta_n = 0\} = a_n(p)$ for n = 0,1,2,... Since

for n = 1, 2, ..., we can write that

$$P\{\Delta_n = k\} = p \ a_{k-1}(q) \ a_{n-k}(p)$$

for k = 1,2,...,n. Thus it remains only to determine $a_n(p)$ for n = 0,1,2,... and 0 .

By the solution of Problem 21.3 we have

$$\mathbf{a}_{\mathbf{n}}(\mathbf{p}) = \mathbb{P}\{\eta_{\mathbf{n}} = 0\} = 1 - \mathbf{p} \sum_{\mathbf{m}=0}^{\left[\frac{\mathbf{n}-1}{2}\right]} \binom{2\mathbf{m}}{\mathbf{m}} \frac{(\mathbf{p}\mathbf{q})^{\mathbf{m}}}{\mathbf{m}+1}$$

for $n = 1, 2, ..., and <math>a_0(p) = 1$.

Remark. We can also determine $a_n(p)$ for $n=0,1,2,\ldots$ and 0 as follows. Since

$$\sum_{k=0}^{n} P\{\Delta_{n} = k\} = 1,$$

we get

$$p \sum_{k=1}^{n} a_{k-1}(q) a_{n-k}(p) = 1 - a_{n}(p)$$

for n = 1,2,... and $a_0(p) = 1$. If we introduce the generating function

$$A(z,p) = \sum_{n=0}^{\infty} a_n(p) z^n$$

for |z| < 1 and 0 , then we get

$$pz(1-z) A(z,p) A(z,q) + (1-z) A(z,p) - 1 = 0$$
.

If we interchange p and q in the above equation, then we obtain that

$$qz(1-z) A(z,p) A(z,q) + (1-z) A(z,q) - 1 = 0$$
.

Consequently we have

$$q A(z,p) - \frac{q}{1-z} = p A(z,q) - \frac{p}{1-z}$$
.

This implies that

$$q a_n(p) - q = p a_n(q) - p$$

for n = 0, 1, 2, ..., and

$$q z(1-z)[A(z,p)]^2 + (1-2qz)A(z,p) - 1 = 0$$
.

Accordingly,

$$A(z,p) = \frac{\sqrt{1 - \frac{1}{4}pqz^2 - (1 - 2qz)}}{2qz(1-z)}$$

for 0 and <math>|z| < 1. Finally, we obtain that

$$a_{n}(p) = 1 - \frac{1}{2q} + \frac{1}{2q} \sum_{j=0}^{\left[\frac{n+1}{2}\right]} (-1)^{j} (\frac{1}{2}) (4pq)^{j}$$

for n = 0,1,2,... and 0 . This is in agreement with the previous result.

27.4. The random variables v_1, v_2, \ldots, v_n are interchangeable random variables taking on nonnegative integers and having sum $v_1 + \ldots + v_n = n$. By Theorem 26.3 we have

and evidently

$$P\{N_{i} = i+1\} = {n \choose i+1} (\frac{i}{n})^{i+1} (1 - \frac{i}{n})^{n-i-1}$$

for i = 1, 2, ..., n-1.

Thus we can write that

$$\Pr_{\sim} \{\Delta_{n}^{*} = j\} = \frac{1}{n} \sum_{r=1}^{j} \frac{1}{r} {n \choose r-1} {(\frac{r}{n})}^{r-1} {(1 - \frac{r}{n})}^{n-r}$$

for $1 \le j \le n$. For $1 \le j \le n-1$ this is obvious. For j=n we used that

$$\sum_{r=1}^{n} \frac{1}{r} {n-1 \choose r-1} \left(\frac{r}{n}\right)^{r-1} \left(1 - \frac{r}{n}\right)^{n-r} = 1$$

for $n = 1, 2, \dots$ We note that

$$P\{\Delta_n^* = n\} = \frac{(n+1)^{n-1}}{n^n}$$

for n = 1, 2, ...

27.5. If we apply Theorem 22.2 to the random variables $\xi_i = 1 - v_i$ (i = 1,2,..., n) , then we obtain that

$$P\{\Delta_n^{(c)} = j\} = P\{N_r < r-c \text{ for } j \text{ subscripts } r = 1,2,..., n\} =$$

 $= \underset{\sim}{\mathbb{P}}\{\mathbf{j} - \mathbf{N}_{\mathbf{j}} > \mathbf{r} - \mathbf{N}_{\mathbf{r}} - \mathbf{c} \text{ for } 0 \leq \mathbf{r} < \mathbf{j} \text{ and } \mathbf{j} - \mathbf{N}_{\mathbf{j}} \geq \mathbf{r} - \mathbf{N}_{\mathbf{r}} - \mathbf{c} \text{ for } \mathbf{j} \leq \mathbf{r} \leq \mathbf{n}\}.$

If $\Delta_n^{(c)}=j$ and $j\geq l$, then there is an r such that $N_r=r-c$. Hence $N_j\leq j$ necessarily holds. Consequently, we can write that

$$\begin{split} \Pr\{\Delta_{n}^{(c)} = j\} &= \sum_{\ell=0}^{j} \Pr\{N_{j} - N_{r} < j - r + c \text{ for } 0 \le r < j, N_{j} = \ell, N_{r} - N_{j} \ge r - j - c \\ &\qquad \qquad \text{for } j \le r \le n\} = \\ &= \sum_{\ell=0}^{j} \left[\Pr\{N_{j} = \ell\} - \sum_{i=1}^{j-1} \left(1 - \frac{\ell - i - c}{j - i}\right) \Pr\{N_{i} = i + c, N_{j} = \ell\} \right] \cdot \\ &= \left[1 - \sum_{r=0}^{n} \frac{c + 1}{r - j} \Pr\{N_{r} - N_{j} = r - c - 1 | N_{j} = \ell\} \right] . \end{split}$$

In the sum the first factor can be obtained by (20.13) and the second factor by (20.17). Accordingly, we have

$$P\{\Lambda_{n}^{(c)} = j\} = \sum_{\ell=0}^{j} [P\{N_{j} = \ell\} - \sum_{r=c+l+j}^{n} \frac{c+l}{r-j} P\{N_{j} = \ell, N_{r} - N_{j} = r-c-l\}] - \sum_{\ell=0}^{j} \sum_{i=1}^{j-l} (1 - \frac{\ell-i-c}{j-i}) [P\{N_{i} = i+c, N_{j} = \ell\} - \sum_{r=c+l+j}^{n} \frac{c+l}{r-j} P\{N_{i} = i+c, N_{j} = \ell\},$$

$$N_{r} - N_{j} = r-c-l\}]$$

for c = 0,1,..., n-1 and j = 1,2,..., n-c.

CHAPTER IV

34.1. Denote by Δ_n the number of positive partial sums in the sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$, and by Δ_n^* the number of nonnegative partial sums in the sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$. By Theorem 29.1 we have

$$P\{\alpha_{nk} = j\} = \sum_{\max(0,j+k-n) \leq r \leq \min(j,k)} P\{\Delta_j^* = r\}P\{\Delta_{n-j} = k-r\}.$$

By Theorem 23.1 we have

$$P\{\Delta_{n} = k\} = P\{\Delta_{k} = k\}P\{\Delta_{n-k} = 0\}$$

and

$$P\{\Delta_{n}^{*} = k\} = P\{\Delta_{k}^{*} = k\}P\{\Delta_{n-k}^{*} = 0\}$$

for $0 \le k \le n$. Furthermore, by Theorem 24.1 we have

$$\sum_{n=0}^{\infty} P\{\Delta_n = n\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} P\{\zeta_n > 0\}\},$$

$$\sum_{n=0}^{\infty} P\{\Delta_n = 0\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} P\{\zeta_n \leq 0\}\},$$

$$\sum_{n=0}^{\infty} P\{\Delta_n^* = n\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} P\{\zeta_n \ge 0\}\},$$

and

$$\sum_{n=0}^{\infty} \mathbb{P}\{\Delta_{n}^{*} = 0\} \rho^{n} = \exp\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} \mathbb{P}\{\zeta_{n} < 0\}\}$$

for $|\rho|<1$. Accordingly, $\Pr\{\alpha_{nk}=j\}$ is completely determined by the probabilities $\Pr\{\zeta_r>0\}$ and $\Pr\{\zeta_r<0\}$ for $r=1,2,\ldots,n$.

34.2. It follows easily from (31.9) that

$$(1-\rho)\sum_{n=k}^{\infty} \Phi_{nk}(s)\rho^{n} = \frac{\sum_{n=k}^{\infty} \Phi_{nn}(s)\rho^{n}}{\sum_{n=0}^{\infty} \Phi_{nn}(s)\rho^{n}}$$

for $Re(s) \ge 0$ and $|\rho| < 1$.

In our particular case, $\Phi_{nn}(s) = \Phi_n(s)$ is given explicitly for $\text{Re}(s) \geq 0$ and $n=0,1,2,\ldots$ in the solution of Problem 21.7. Thus by the above formula we can also determine explicitly $\Phi_{nk}(s)$ for $0 \leq k \leq n$.

We note that by Theorem 31.2 and by the first example in Section 18 we obtain that

$$(1-\omega)(1-\rho)\sum_{n=0}^{\infty}\sum_{k=0}^{n}\Phi_{nk}(s)\rho^{n}\omega^{k}=$$

=
$$1-\omega \frac{\gamma(\rho)[\gamma(\rho\omega)-s][\lambda-s-\lambda\rho\psi(s)]}{\gamma(\rho\omega)[\gamma(\rho)-s][\lambda-s-\lambda\rho\omega\psi(s)]}$$

for Re(s) \geq 0 , $|\rho|$ <1 , $|\rho\omega|$ < 1 where s = $\gamma(\rho)$ is the only root of the equation

$$\lambda - s - \lambda \rho \psi(s) = 0$$

in the domain $\operatorname{Re}(s) \ge 0$ whenever $|\rho| < 1$.

CHAPTER V

40.1. We can write that

$$p_n(a,b) = pP^*(n-1, a-1)$$

for $n = 1, 2, \dots$ where

$$P(n,j) = pP(n-1, j-1) + qP(n-1, j+1)$$

for n = 1,2,... and -b < j < a, $P^*(n,a) = P^*(n,-b) = 0$ for n = 1,2,..., $P^*(0,0) = 1$, and $P^*(0,j) = 0$ for $j \neq 0$. See (37.29). Let

$$U_{j}(z) = \sum_{n=0}^{\infty} P^{*}(n,j)z^{j}$$

for $-b \le j \le a$. Then $U_a(z) \equiv U_{-b}(z) \equiv 0$ and

$$U_{j}(z) = pzU_{j-1}(z) + qzU_{j+1}(z) + P^{*}(0,j)$$

for -b < j < a. Since the equation $qz\omega^2 - \omega + pz = 0$ has two roots

$$\omega_1 = \frac{1+\sqrt{1-4pqz^2}}{2qz}$$
 and $\omega_2 = \frac{1-\sqrt{1-4pqz^2}}{2qz}$

for $z \neq 0$ and $|4pqz^2| < 1$, the general solution of the above difference equation can be expressed as

$$U_{\mathbf{j}}(z) = A\omega_{1}^{\mathbf{j}} - B\omega_{2}^{\mathbf{j}} - \delta(\mathbf{j}) \frac{\omega_{1}^{\mathbf{j}} - \omega_{2}^{\mathbf{j}}}{qz(\omega_{1} - \omega_{2})}$$

where A and B are arbitrary constants and $\delta(j)=0$ for $j\leq 0$ and $\delta(j)=1$ for $j\geq 1$. The requirements $U_a(z)=U_{-b}(z)=0$ yield that

$$A = \frac{\omega_{1}^{b}(\omega_{1}^{a} - \omega_{2}^{a})}{qz(\omega_{1}^{-} \omega_{2}^{a})(\omega_{1}^{a+b} - \omega_{2}^{a+b})} \text{ and } B = \frac{\omega_{2}^{b}(\omega_{1}^{a} - \omega_{2}^{a})}{qz(\omega_{1}^{-} \omega_{2}^{a})(\omega_{1}^{a+b} - \omega_{2}^{a+b})}.$$

Accordingly we have

$$\sum_{n=1}^{\infty} p_n(a,b) z^n = pz \ U_{a-1}(z) = \frac{p(\omega_1 \omega_2)^{a-1}(\omega_1^b - \omega_2^b)}{q(\omega_1^{a+b} - \omega_2^{a+b})} =$$

$$= (2pz)^{a} \left\{ \frac{[1 + \sqrt{1 - 4pqz^{2}}]^{b} - [1 - \sqrt{1 - 4pqz^{2}}]^{b}}{[1 + \sqrt{1 - 4pqz^{2}}]^{a+b} - [1 - \sqrt{1 - 4pqz^{2}}]^{a+b}} \right\}$$

for $|4pqz^2| < 1$. We can obtain $p_n(a,b)$ explicitly either by (37.24) or by (37.25).

40.2. In exactly the same way as in the solution of Problem 40.1 we obtain that

$$\sum_{n=1}^{\infty} P\{\rho = n\}z^n = pz \ U_{a-1}(z)$$

for $|4pqz^2| < 1$ where

$$U_{j}(z) = pz U_{j-1}(z) + qz U_{j+1}(z) + P^{*}(0,j)$$

for $-\infty < j < a$, $U_a(z) \equiv 0$, $P^*(0,0) = 1$ and $P^*(0,j) = 0$ for $j \neq 0$. Since $|U_j(z)| \leq 1/(1-|z|)$ for all j < a and |z| < 1, it follows that in the general solution B = 0 and A is determined by the condition $U_a(z) \equiv 0$. Thus we obtain that

$$U_{\mathbf{j}}(z) = \frac{(\omega_{1}^{\mathbf{a}} - \omega_{2}^{\mathbf{a}})\omega_{1}^{\mathbf{j}} - \delta(\mathbf{j})(\omega_{1}^{\mathbf{j}} - \omega_{2}^{\mathbf{j}})\omega_{1}^{\mathbf{a}}}{qz(\omega_{1} - \omega_{2})\omega_{1}^{\mathbf{a}}}$$

for j < a and $|4pqz^2| < 1$. Finally

$$\sum_{n=1}^{\infty} P\{\rho = n\}z^{n} = \omega_{2}^{a} = \left[\frac{1 - \sqrt{1 - 4pqz^{2}}}{2qz}\right]^{a}$$

for $|4pqz^2| < 1$. The probability $P\{\rho = a + 2m\}$ for m = 0,1,2,... is given explicitly by (36.42).

40.3. Let us consider a one-dimensional symmetric random walk. Denote by η_{2n} the position of the particle at the 2n-th step. Then η_{2n} has the characteristic function

$$E\{e^{itn}2n\} = (\cos t)^{2n}$$

and

$$Q_{2n} = \Pr_{\infty} \{ n_{2n} = 0 \} = \binom{2n}{n} \frac{1}{2^{2n}} = \frac{1}{2^{\pi}} \int_{0}^{2\pi} (\cos t)^{2n} dt = \frac{2}{\pi} \int_{0}^{\pi/2} (\cos t)^{2n} dt.$$

This relation can also be proved directly. Let us define

$$I_{k} = \int_{0}^{\pi/2} (\cos t)^{k} dt$$

for k=0,1,2,... Then $I_0=\frac{\pi}{2}$, $I_1=1$ and by integrating by parts we obtain that

$$I_{k} = \frac{(k-1)}{k} I_{k-2}$$

for k = 2,3,... Hence

$$I_{2n} = \frac{\pi}{2} \frac{1 \cdot 3 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot \cdot \cdot 2n} = \frac{\pi}{2} {2n \choose n} \frac{1}{2^{2n}} = \frac{\pi}{2} Q_{2n}$$

which is in agreement with the preceding formula.

Since $0 < \cos t < 1$ for $0 < t < \frac{\pi}{2}$, therefore

$$I_{2n+1} < I_{2n} < I_{2n-1}$$

or,

$$\frac{2n}{2n+1} < \frac{I_{2n}}{I_{2n-1}} < 1$$

for n = 1, 2, ... If we take into consideration that

$$I_{2n-1} = \frac{2.4 \dots (2n-2)}{3.5 \dots (2n-1)} = \frac{\pi}{4n} I_{2n} = \frac{1}{2n} Q_{2n}$$

then it follows that

$$\frac{2n}{2n+1} < n\pi Q_{2n}^2 < 1$$

which implies the inequalities to be proved.

From the last inequalities it follows that

$$\frac{4}{\pi} = \lim_{n \to \infty} 4n \ Q_{2n}^2 = \lim_{n \to \infty} \frac{3^2 \cdot 5^2 \cdot \cdot \cdot (2n-3)^2 (2n-1)^2}{n + \infty} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 8} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5}{2 \cdot 6} = \frac{3 \cdot 3 \cdot 5 \cdot 5}$$

This product representation of $4/\pi$ was found in 1665 by J. Wallis [66].

40.4. We have

$$(x-\omega_1)(x-\omega_2)...(x-\omega_n) = a_0x^n - a_1x^{n-1} + ... + (-1)^n a_n$$

or

$$(1-x\omega_1)(1-x\omega_2)$$
 ... $(1-x\omega_n) = a_0 - a_1x + ... + (-1)^n a_nx^n$.

If |x| is sufficiently small, then we can write that

$$a_0 - a_1 x + \dots + (-1)^n a_n x^n = e^{\int_1^n \log(1 - x \omega_1)} = e^{-s_1 x - \frac{s_2}{2} x^2 - \frac{s_3}{3} x^3 - \dots}$$

Hence it follows easily the relation to be proved.

We note that by the relation

$$s_1 x + \frac{s_2}{2} x^2 + \frac{s_3}{3} x^3 + \dots = -\log(a_0 - a_1 x + \dots + (-1)^n a_n x^n) =$$

$$= \sum_{r=1}^{\infty} \frac{(a_1 x - a_2 x^2 + \dots + (-1)^{n-1} a_n x^n)^r}{r}$$

we can also express s_k with the aid of a_1, a_2, \ldots, a_n .

40.5. Denote by ξ_1^* , ξ_2^* ,..., ξ_m^* the variables ξ_1 , ξ_2 ,..., ξ_m arranged in increasing order of magnitude. In general, we have

$$\delta_{\mathbf{m}}^{+} = \sup_{-\infty < \mathbf{x} < \infty} \left[\mathbf{F}_{\mathbf{m}}(\mathbf{x}) - \mathbf{F}(\mathbf{x}) \right] = \max_{\mathbf{1} \leq \mathbf{r} \leq \mathbf{m}} \left[\mathbf{F}_{\mathbf{m}}(\boldsymbol{\xi}_{\mathbf{r}}^{*}) - \mathbf{F}(\boldsymbol{\xi}_{\mathbf{r}}^{*}) \right]$$

and

$$\delta_{\mathbf{m}}^{-} = \sup_{-\infty < \mathbf{x} < \infty} \left[\mathbf{F}(\mathbf{x}) - \mathbf{F}_{\mathbf{m}}(\mathbf{x}) \right] = \max_{\mathbf{1} \le \mathbf{r} \le \mathbf{m}} \left[\mathbf{F}(\xi_{\mathbf{r}}^{*}) - \mathbf{F}_{\mathbf{m}}(\xi_{\mathbf{r}}^{*} - 0) \right].$$

If F(x) is a continuous distribution function, then in finding the distributions of δ_m^+ and δ_m^- we may assume without loss of generality that F(x)=x for $0 \le x \le 1$. Then $F(\xi_{\bf r}^*)=\xi_{\bf r}^*$ and $F_m(\xi_{\bf r}^*)=\frac{\bf r}{m}$ with probability 1. In this case

$$\delta_{m}^{+} = \max_{1 \leq r \leq m} \left[\frac{r}{m} - \xi_{r}^{*} \right] \quad \text{and} \quad \delta_{m}^{-} = \max_{1 \leq r \leq m} \left[\xi_{r}^{*} - \frac{r-1}{m} \right] .$$

If in δ_m^+ we replace ξ_r^* by $1-\xi_{m+1-r}^*$ for $r=1,2,\ldots,m$, then we obtain a new random variable which has exactly the same distribution as δ_m^+ . This new random variable

$$\max_{1 \le r \le m} \left[\xi_{m+1-r}^{*} - \frac{m-r}{m} \right] = \max_{1 \le i \le m} \left[\xi_{i}^{*} - \frac{i-1}{m} \right],$$

is evidently δ_{m}^{-} .

40.6. Denote by ξ_1^* , ξ_2^* ,..., ξ_m^* the random variables ξ_1 , ξ_2 ,..., ξ_m arranged in increasing order of magnitude and by η_1^* , η_2^* ,..., η_n^* the random variables η_1 , η_2 ,..., η_n arranged in increasing order of magnitude . In general we have

$$\delta_{m,n}^{+} = \sup_{-\infty < x < \infty} [F_m(x) - G_n(x)] = \max_{1 \le r \le n} [F_m(\eta_r^*) - G_n(\eta_r^* - 0)]$$

$$= \max_{1 \le r \le m} [F_m(\xi_r^*) - G_n(\xi_r^*)]$$

and

$$\delta_{m,n}^{-} = \sup_{-\infty < x < \infty} [G_{n}(x) - F_{m}(x)] = \max_{1 \le r \le n} [G_{n}(\eta_{r}^{*}) - F_{m}(\eta_{r}^{*})] =$$

$$= \max_{1 \le r \le m} [G_{n}(\xi_{r}^{*}) - F_{m}(\xi_{r}^{*} - 0)].$$

Let us define v_r $(r=1,2,\ldots,n+1)$ as the number of variables $\xi_1,\ \xi_2,\ldots,\ \xi_m$ falling in the interval $(n_{r-1}^*,\ n_r^*]$ where $n_0^*=-\infty$ and $n_{n+1}^*=\infty$. Let $N_r=v_1^+v_2^-+\ldots+v_r^-$ for $r=1,2,\ldots,n+1$. Clearly,

N_n+1 = m . Then $F_m(\eta_r^*) = N_r/m$, $G_n(\eta_r^*) = r/n$ and $G_n(\eta_r^* - 0) = (r-1)/n$ with probability 1 , and we can write that

$$\delta_{m,n}^{+} = \max_{1 \le r \le n} \left[\frac{\frac{N}{r}}{m} - \frac{r-1}{n} \right] \quad \text{and} \quad \delta_{m,n}^{-} = \max_{1 \le r \le n} \left[\frac{r}{n} - \frac{\frac{N}{r}}{m} \right] .$$

If $F(x) \equiv G(x)$ is a continuous distribution function, then $v_1, v_2, \ldots, v_{n+1}$ are interchangeable random variables. If in $\delta_{m,n}^+$ we replace v_r by v_{n+2-r} for $r=1,2,\ldots,n$, then we obtain a new random variable which has exactly the same distribution as $\delta_{m,n}^+$. This new random variable,

$$\max_{1 \le r \le n} \left[\frac{n-r+1}{n} - \frac{N_{n+1-r}}{m} \right] = \max_{1 \le i \le n} \left[\frac{i}{n} - \frac{N_{i}}{m} \right],$$

is evidently $\delta_{m,n}^-$.

40.7. The random variables ξ_1^* , ξ_2^* ,..., ξ_m^* are the coordinates arranged in increasing order of m points distributed uniformly and independently on the interval (0,1). The random variables ξ_1^* , ξ_2^* ,..., ξ_m^* have a joint density function $f(x_1, x_2, ..., x_m) = 1/m!$ for $0 \le x_1 \le x_2 \le ... \le x_m \le 1$ and $f(x_1, x_2, ..., x_m) = 0$ otherwise. We have

$$P\{\xi_{j}^{*} \leq x\} = \frac{m!}{(j-1)!(m-j)!} \int_{0}^{x} u^{j-1} (1-u)^{m-j} du = \sum_{k=j}^{m} {m \choose k} x^{k} (1-x)^{m-k}$$

for $0 \le x \le 1$ and j = 1, 2, ..., m, and

$$E\{(\xi_{j}^{*})^{r}\} = \frac{j(j+1)...(j+r-1)}{(m+1)(m+2)...(m+r)}$$

for $r=1,2,\ldots$. Hence $\mathbb{E}\{\xi_j^*\}=j/(m+1)$ and \mathbb{V} arr $\{\xi_j^*\}=j(m+1-j)/(m+1)^2(m+2)$.

Furthermore, we have $\text{Cov}\{\xi_1^*, \xi_j^*\} = i(m+l-j)/(m+1)^2(m+2)$ for $1 \le i \le j \le n$. This last result can easily be proved if we take into consideration that $\xi_1^*, \xi_2^* - \xi_1^*, \ldots, \xi_m^* - \xi_{m-1}^*, l-\xi_m^*$ are interchangeable random variables with sum 1. For by this property

$$\text{Cov}\{\xi_{1}^{*}, \xi_{j}^{*}\} = \frac{i(m+1-j)}{m} \text{Var}\{\xi_{1}^{*}\}$$

if $1 \le i \le j \le m$.

40.8. The random variables N_1, N_2, \ldots, N_n can be interpreted in the following way. We arrange m white balls and n black balls in a row in such a way that all the $\binom{m+n}{n}$ possible arrangements are equally probable. Denote by N_i ($i=1,2,\ldots,n$) the number of white balls preceding the i-th black ball. We have

$$P\{N_{i} = j_{i} \text{ for } i = 1, 2, ..., n\} = \frac{1}{\binom{m+n}{m}}$$

for $0 \le j_1 \le j_2 \le \ldots \le j_n \le m$. Hence it follows that

$$P\{N_{i} = s\} = \frac{\binom{i+s-1}{s}\binom{m+n-i-s}{m-s}}{\binom{m+n}{n}}$$

for $0 \le s \le m$ and $1 \le i \le n$, and

$$\mathbb{E}\left\{\binom{N_{i}}{r}\right\} = \frac{\binom{i+r-1}{r}\binom{m+n}{n+r}}{\binom{m+n}{m}}$$

for $1 \le r \le m$. In particular, we have $\mathbb{E}\{N_i\} = im/(n+1)$ and

$$Var{N_i} = \frac{i(n+1-i)m(m+n+1)}{(n+1)^2(n+2)}$$

for $1 \leq i \leq n$. Furthermore, we have

$$Cov{N_i, N_j} = \frac{i(n+1-j)m(m+n+1)}{(n+1)^2(n+2)}$$

for $1 \le i \le j \le n$. This last result can easily be proved if we take into consideration that $N_1, N_2 - N_1, \ldots, N_n - N_{n-1}, m-N_n$ are interchangeable random variables with sum m. For this property implies that

$$\operatorname{Cov}\{N_{\mathtt{j}},\ N_{\mathtt{j}}\} = \frac{\mathtt{i}(n+1-\mathtt{j})}{n} \, \operatorname{Var}\{N_{\mathtt{l}}\}$$
 for $1 \le \mathtt{i} \le \mathtt{j} \le n$.

40.9. In finding the joint distribution of δ_m^+ and δ_m^- we may assume without loss of generality that F(x)=x for $0 \le x \le 1$. Then by the solution of Problem 40.5 we have

$$\delta_{m}^{+} = \max_{1 \le r \le m} \left[\frac{r}{m} - \xi_{r}^{*} \right] \text{ and } \delta_{m}^{-} = \max_{1 \le r \le m} \left[\xi_{r}^{*} - \frac{r-1}{m} \right]$$

with probability 1 and consequently

$$P\{\delta_{m}^{+} \le x, \delta_{m}^{-} \le y\} = P\{\frac{r}{m} - x \le \xi_{r}^{*} \le \frac{r-1}{m} + y \text{ for } r = 1, 2, ..., m\}.$$

Let

$$a_r = \max(0, \frac{r}{m} - x)$$
 and $b_r = \min(\frac{r-1}{m} + y, 1)$

for $r=1,2,\ldots,$ m . Then $0 \le a_1 \le \ldots \le a_m \le 1$, $0 \le b_1 \le \ldots \le b_m \le 1$

and $a_r \le b_r$ if $x+y \ge \frac{1}{m}$, $x \ge 0$ and $y \ge 0$.

In general, if $0 \le a_1 \le \dots \le a_m \le 1$, $0 \le b_1 \le \dots \le b_m \le 1$ and $a_r \le b_r$ for $r = 1, 2, \dots, m$, then we have

$$\begin{array}{c} P\{a_{r} \leq \xi_{r}^{*} \leq b_{r} \text{ for } r = 1, 2, \dots, m\} = \\ \\ = m! \sum_{\nu=0}^{m-1} (-1)^{m-\nu-1} \sum_{\substack{0 = k_{0} < k_{1} < \dots < k_{\nu+1} = m \ i = 0}} \frac{(b_{k_{1}+1} - a_{k_{1}+1})^{k_{1}+1} - k_{1}}{(k_{1}+1 - k_{1})!} = \\ \\ a_{k_{1}+1} \leq b_{k_{1}+1} (i=1, \dots, \nu) \\ \\ = m! \quad \text{Det} \left| \delta(i,j) \right|_{\substack{1 \leq i \leq m \\ 1 \leq j \leq m}}$$

where

$$\delta(i,j) = \begin{cases} \frac{([b_i - a_j]^+)^{j-i+1}}{(j-i+1)!} & \text{if } i \leq j+1, \\ 0 & \text{if } i > j+1. \end{cases}$$

For we have

and here

$$P\{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } r = 1, \dots, m \text{ and } \xi_{r} > \xi_{r+1} \text{ for } r \neq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots, k_{v}\} = \sum_{m=1}^{n} \{a_{r} \leq \xi_{r} \leq b_{r} \text{ for } k_{1} < r \leq k_{1}, \dots,$$

40.10. By using the same notation as in the solution of Problem 40.6 we can write that

$$\delta_{m,n}^{+} = \max_{1 \leq r \leq n} \left[\frac{\frac{N}{r}}{m} - \frac{r-1}{n} \right] \quad \text{and} \quad \delta_{m,n}^{-} = \max_{1 \leq r \leq n} \left[\frac{r}{n} - \frac{\frac{N}{r}}{m} \right]$$

with probability 1. Thus we have

$$\mathbb{P}\{\delta_{m,n}^{+} \leq x, \delta_{m,n}^{-} \leq y\} = \mathbb{P}\{\frac{mr}{n} - my \leq N_{r} \leq \frac{m(r-1)}{n} + mx \text{ for } 1 \leq r \leq n\}$$

$$= \mathbb{P}\{a_{r} \leq N_{r} \leq b_{r} \text{ for } 1 \leq r \leq n\}$$

where a_r is the smallest integer $\geq \max(0, \frac{mr}{n} - my)$ and b_r is the largest integer $\leq \min(m, \frac{m}{n}(r-1) + mx)$. We have $0 \leq a_1 \leq \ldots \leq a_n \leq m$ and $0 \leq b_1 \leq \ldots \leq b_n \leq m$, and $a_r \leq b_r$ $(r = 1, \ldots, n)$ whenever $x+y \geq \frac{1}{n}$, $x \geq 0$, $y \geq 0$. For any such $\{a_r\}$ and $\{b_r\}$ we have

$$P\{a_r \leq N_r \leq b_r \text{ for } 1 \leq r \leq n\} =$$

$$= \frac{1}{\binom{m+n}{m}} \sum_{v=0}^{n-1} (-1)^{n-v-1} \sum_{\substack{0=j_0 < j_1 < \dots < j_{v+1}=n \\ a_{j_{i+1}} \le b_{j_{i}} + 1}} \sum_{i=0}^{v} \binom{b_{j_{i}+1} - a_{j_{i+1}} + 1}{j_{i+1}} = \frac{1}{i}$$

$$= \frac{1}{\binom{m+n}{m}} \text{ Det } \left| d(i,j) \right|_{\substack{1 \le i \le n \\ m = i}}$$

where

$$d(i,j) = \begin{cases} \left([b_{i}^{-} a_{j}^{+} 1]^{+} \right) & \text{if } i \leq j+1, \\ j-i+1 & & & \\ 0 & \text{if } i > j+1. \end{cases}$$

If we take into consideration that

$$P\{N_{i} = j_{i} \text{ for } i = 1, 2, ..., n\} = \frac{1}{\binom{m+n}{m}}$$

for nonnegative integers $0 \le j_1 \le j_2 \le ... \le j_n \le m$, then the above result can be proved in a similar way as the corresponding result in Problem 40.9.

40.11. Let us define the random variables N_1, N_2, \ldots, N_n in the same way as in the solution of Problem 40.6. Define

$$\eta_{m,n}(u) = \sqrt{\frac{mn}{m+n}} \left[\frac{N[nu]}{m} - \frac{[nu]}{n} \right]$$

for $0 \le u \le 1$ and $m \ge 1$, $n \ge 1$. It is sufficient to prove that if $m \to \infty$ and $n \to \infty$, then the finite dimensional distribution functions of the process $\{n_{m,n}(u), 0 < u < 1\}$ converge to the finite dimensional distribution functions of the Gaussian process $\{n(u), 0 < u < 1\}$ for which $E\{n(u)\} = 0$ and $Cov\{n(u), n(v)\} = u(1-v)$ for $0 < u \le v < 1$. Then (39.79) follows by a theorem of M. D. Donsker [245].

Now

$$\mathbb{E}\{\eta_{m,n}(u)\} = \sqrt{\frac{mn}{m+n}} \left[\frac{[nu]}{n+1} - \frac{[nu]}{n}\right] \to 0$$

as $m \rightarrow \infty$ and $n \rightarrow \infty$, and if $0 < u \le v < 1$, then

$$\sum_{n=0}^{\infty} (u), \eta_{m,n}(v) = \frac{n(n+m-1)[nu](n+1-[nv])}{(m+n)(n+1)^{2}(n+2)} \rightarrow u(1-v)$$

as $m \to \infty$ and $n \to \infty$. Hence we can easily conclude that if $m \to \infty$ and $n \to \infty$, then joint distribution function of the random variables $\eta_{m,n}(t_1)$, $\eta_{m,n}(t_2)$,..., $\eta_{m,n}(t_k)$ where $0 < t_1 < t_2 < \ldots < t_k < 1$ converges to a k-dimensional normal distribution of type (39.21). This completes the proof of the statement.

40.12. First, we shall prove that

$$\lim_{\substack{m \to \infty \\ n \to \infty}} P\{\sqrt{\frac{mn}{m+n}} \delta_{m,n}^{+}(0,\alpha) \leq x\} = P\{\sup_{0 \leq t \leq \alpha} \eta(t) \leq x\} = \sum_{n = \infty}^{\infty} (1 - e^{-2x(x-u)/\alpha}) dP\{\eta(\alpha) \leq u\}$$

for $x \ge 0$ where $\{\eta(t), 0 \le t \le 1\}$ is a separable Gaussian process for which $E\{\eta(t)\} = 0$ if $0 \le t \le 1$ and $E\{\eta(s)\eta(t)\} = s(1-t)$ for $0 \le s \le t \le 1$. The first equality follows from a theorem of M. D. Donsker [245]. To prove the second equality let us calculate the limit in the particular case when m = n and $n \to \infty$. By using the same notation as in the solution of Problem 40.6, the above limit can be expressed as $\lim_{n \to \infty} P\{N_n < r + a \text{ for } 1 \le r \le j\}$ where $a = [x \sqrt{2n}]$ and $j = [n\alpha]$. Since in this case

$$P\{N_{r} < r + a \text{ for } 1 \le r \le j | N_{j} = j + s\} = 1 - \frac{\binom{2j + s - 1}{a + j}}{\binom{2j + s - 1}{j - 1}}$$

for $0 \le j + s < j + a$,

$$\lim_{j \to \infty} P\left\{ \frac{N_{j} - j}{\sqrt{2n}} \le u \right\} = P\left\{ \eta(\alpha) \le u \right\}$$

and

$$\lim_{n \to \infty} \frac{\binom{2j+s-1}{a+j}}{\binom{2j+s-1}{j-1}} = e^{-2x(x-u)/\alpha}$$

whenever $j = [n\alpha]$, $a = [x\sqrt{2n}]$ and $s = [u\sqrt{2n}]$, the aforementioned limit theorem follows easily.

By the repeated application of the above limit theorem we can easily prove that

$$\begin{split} &\lim_{m \to \infty} \mathbb{P}\{\sqrt{\frac{mn}{m+n}} \ \delta_{m,n}^{+}(0,\alpha) \leq x \ , \sqrt{\frac{mn}{m+n}} \ \delta_{m,n}^{+}(\alpha,\beta) \leq y \ , \sqrt{\frac{mn}{m+n}} \ \delta_{m,n}^{+}(\beta,1) \leq z \} = \\ & n \to \infty \end{split}$$

$$&= \mathbb{P}\{\sup_{0 \leq t \leq \alpha} \eta(t) \leq x \ , \sup_{\alpha \leq t \leq \beta} \eta(t) \leq y \ , \sup_{\beta \leq t \leq 1} \eta(t) \leq z \} = \\ & -\infty \leq u \leq \min(x,y) \\ & -\infty \leq u \leq \min(y,z) \end{split}$$

$$&= \int_{-\infty}^{\infty} (1 - e^{-2x(x-u)/\alpha}) (1 - e^{-2(y-u)(y-v)/(\beta-\alpha)}) (1 - e^{-2z(z-v)/(1-\beta)}) \cdot \\ & d_u \ d_v \sim \mathbb{P}\{\eta(\alpha) \leq u \ , \eta(\beta) \leq v \} \end{split}$$

for $0 < \alpha < \beta < 1$ and $x \ge 0$, $y \ge 0$.

40.13. By the solution of Problem 40.12 we have

$$\begin{split} &\lim_{\substack{m \to \infty \\ n \to \infty}} \mathbb{P}\{\delta_{m,n}^{+}(\alpha,\beta) \leq 0\} = \int_{-\infty}^{0} \int_{-\infty}^{0} (1-e^{-2uv/(\beta-\alpha)}) d_{u} d_{v_{\infty}} \mathbb{P}\{\eta(\alpha) \leq u \text{ , } \eta(\beta) \leq v\} = \\ &n \to \infty \end{split}$$

$$&= \frac{1}{\pi} \text{ arc } \sin \sqrt{\frac{\alpha(1-\beta)}{\beta(1-\alpha)}} \text{ .}$$

40.14. We have

$$\lim_{m \to \infty} P\{\sqrt{m} \delta_{m}^{+}(\alpha,\beta) \leq y\} = P\{\sup_{\alpha \leq t \leq \beta} \eta(t) \leq y\}$$

where $\{\eta(t), 0 \le t \le 1\}$ is a separable Gaussian process for which $\mathbb{E}\{\eta(t)\} = 0$ if $0 \le t \le 1$ and $\mathbb{E}\{\eta(s)\eta(t)\} = s(1-t)$ if $0 \le s \le t \le 1$. This probability can be obtained by the solution of Problem 40.12.

For the case of $\beta = 1$ we deduce another formula. By (39.119) we have

$$P\{\delta_{\mathbf{m}}^{+}(\alpha,1) > x\} = \sum_{\mathbf{m}(\mathbf{x}+\alpha) \leq \mathbf{j} \leq \mathbf{m}} \frac{\mathbf{m}\mathbf{x}}{\mathbf{m}\mathbf{x}+\mathbf{m}-\mathbf{j}} P\{\chi_{\mathbf{m}} \left(\frac{\mathbf{j}-\mathbf{m}\mathbf{x}}{\mathbf{m}}\right) = \frac{\mathbf{j}}{\mathbf{m}}\}$$

for x > 0 where

$$P\{\chi_{m}(u) = \frac{j}{m}\} = {m \choose j} u^{j} (1-u)^{m-j}$$

for $0 \le j \le m$ and $0 \le u \le 1$. If we put $x = y/\sqrt{m}$ and j = mu in the above formula and let $m \to \infty$, then we obtain that

$$\lim_{m \to \infty} \Pr{\sqrt{m} \ \delta_{m}^{+}(\alpha, 1) > y} = \frac{y}{\sqrt{2\pi}} \int_{\alpha}^{1} \frac{e^{\frac{y^{2}}{2u(1-u)}}}{e^{\frac{1}{2u(1-u)}3/2}} du$$

for v > 0.

40.15. By (39.123) we have

$$\mathbb{P}\{\mu_{\mathbf{m}}^{+}(\alpha,1) > \mathbf{x}\} = \sum_{\mathbf{m}(\mathbf{x}+1)\alpha \leq \mathbf{j} \leq \mathbf{m}} \frac{\mathbf{m}\mathbf{x}}{\mathbf{m}\mathbf{x}+\mathbf{m}-\mathbf{j}} \mathbb{P}\{\chi_{\mathbf{m}}(\frac{\mathbf{j}}{\mathbf{m}(\mathbf{x}+1)}) = \frac{\mathbf{j}}{\mathbf{m}}\}$$

for x>0 where $m_{X_{\widehat{m}}}(u)$ has a Bernoulli distribution with parameters m and u . If we put $x=y/\sqrt{m}$ and j=mu in the above formula and let $m\to\infty$, then we obtain that

$$\lim_{m \to \infty} P\{\sqrt{m} \ \mu_{m}^{+}(\alpha, 1) > y\} = \frac{y}{\sqrt{2\pi}} \int_{\alpha}^{1} \frac{e^{-\frac{u^{2}y^{2}}{2u(1-u)}}}{e^{\frac{1}{2u(1-u)}3/2}} du =$$

$$= 2[1 - \Phi(y \sqrt{\frac{\alpha}{1-\alpha}})]$$

for y > 0 where $\phi(x)$ is the normal distribution function.

46.1. First, we shall prove that $\psi(0) = 1$. Since $\psi(0) > 0$, this follows from

$$[\psi(0)]^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dx dy = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}/2} r dr = 1.$$

Here in the second integral we made the substitution $x = r \cos \theta$ and $y = r \sin \theta$.

We can write that

$$\psi(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty - sx - \frac{x^2}{2}} dx = \frac{e^{s^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x+s)^2/2} dx = \frac{e^{s^2/2}}{\sqrt{2\pi}} \int_{L_s} e^{-z^2/2} dz$$

where $L_s = \{z: z = x + s \text{ and } -\infty < x < \infty \}$. If we integrate $e^{-z^2/2}$ along the rectangle (R,0), (R, iIm(s)), (-R, iIm(s)), (-R,0) and let $R \to \infty$, then by Cauchy's formula it follows that the integral in the last formula does not depend on s. Thus $\psi(s) = e^{s^2/2} \psi(0) = e^{s^2/2}$ for any s.

46.2. In this case

$$\psi(u) = \int_{-\infty}^{\infty} e^{iux} f(x) dx = e^{-|u|^{1/2}(1-i\beta \frac{u}{|u|})}$$

for -∞ < u < ∞ and

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} \psi(u) du = \text{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{-iux} \psi(u) du\right\}.$$

By the substitution $v=z-(1-i)\sqrt{ux/2}$ where $z=[(1+\beta)+i(1-\beta)]/\sqrt{8x}$ we obtain that

$$\int_{0}^{\infty} e^{-iux} \psi(u) du = \frac{1}{ix} + \frac{ze^{-z^{2}}}{x} (\sqrt{\pi} + 2i \int_{0}^{z} e^{v^{2}} dv)$$

for x > 0. Thus

$$f(x) = \text{Re} \{ \frac{z}{\pi x} [\sqrt{\pi} e^{-z^2} + 2iw(z)] \}$$

for x > 0 where

$$w(z) = e^{-z} \int_{0}^{z} e^{v^{2}} dv$$

and $z = [(1+\beta) + i(1-\beta)]/\sqrt{8x}$.

By integrating by parts we obtain that

$$\int_{-a}^{a} |x|^{\delta} dF(x) = \delta \int_{0}^{a} x^{\delta-1} [F(a)-F(x)+F(-x)-F(-a)] dx = 0$$

$$= \delta \int_{0}^{a} x^{\delta-1} [1-F(x)+F(-x)] dx-a^{\delta} [1-F(a)+F(-a)]$$
for $a \ge 0$. If $\int_{-\infty}^{\infty} |x|^{\delta} dF(x) < \infty$, then

$$0 \le a^{\delta}[1-F(a)+F(-a)] \le \int_{|x|\ge a} |x|^{\delta} dF(x) \to 0 \text{ as } a \to \infty,$$

and thus the statement is true. If $\int_{-\infty}^{\infty} |x|^{\delta} dF(x) = \infty$,

$$\int_{0}^{\infty} x^{\delta-1} \left[1-F(x) + F(-x)\right] dx = \infty$$

necessarily holds.

Let us consider the complex plane cut along the positive real axis and define a path of integration C as follows: We integrate along a straight line from $z=i_{\epsilon}$ to $z=R+i_{\epsilon}$ where $0<\epsilon<1$ and R>1 , then from $z = R + i\epsilon$ to $z = R - i\epsilon$ along the circle $z^2 = R^2 + \epsilon^2$ in the positive direction, then along a straight line from $z=R-i\epsilon$ to $z=-i\epsilon$, and finally from $z=-i\epsilon$ to $z=i\epsilon$ along the circle $|z|=\epsilon$ in the negative direction. If we interpret $z^\delta=e^{\delta\log z}$ where $\log z=\log|z|$ +iarg z and $0\leq \arg z\leq 2\pi$, then $z^\delta/(1+z^2)$ is a one-valued function in the region bounded by C and regular except at the poles z=i and z=-i. By the theorem of residues we obtain that

$$\frac{2}{\pi} \int_{C} \frac{z^{\delta}}{1+z^{2}} dz = 2\left[e^{\frac{i\delta\pi}{2}} - e^{\frac{3i\delta\pi}{2}}\right] = -4ie^{i\delta\pi} \sin\frac{\delta\pi}{2}.$$

If $\epsilon \to 0$ and $R \to \infty$, then the integral on the left-hand side tends to

$$\frac{2}{\pi} \left(1 - e^{2i\delta\pi} \right) \int_{0}^{\infty} \frac{x^{\delta}}{1+x^{2}} dx = -4ie^{i\delta\pi} \sin \frac{\delta\pi}{2}.$$

Hence it follows that

$$\mathbb{E}\{\left|\xi\right|^{\delta}\} = \frac{2}{\pi} \int_{0}^{\infty} \frac{x^{\delta}}{1+x^{2}} dx = \frac{1}{\cos \frac{\delta \pi}{2}}$$

and

for $-1 < \delta < 1$. See <u>D. Bierens de Haan</u> [11 p.42 p. 50].

46.5 By using Cauchy's integral theorem we can express $I_{\alpha}(s)$ by known real integrals which can be found for example in the book of <u>D. Bierens</u> de <u>Haan</u> [11].

First, let us suppose that $0 < \alpha < 1$. If we use the solution of Problem 46.4 and if we introduce a new variable z = sx in the integral, then we obtain that

$$I_{\alpha}(s) = s^{\alpha}J_{\alpha}(s) + \frac{s\alpha\pi}{2\cos\frac{\alpha\pi}{2}}$$

where

$$J_{\alpha}(s) = \int_{L_{s}} (e^{-z} - 1) \frac{\alpha dz}{z^{\alpha+1}}$$

and $L_s=\{z:z=sx\;,\,0\leq x<\infty\}$. The integrand in $J_s(s)$ is a regular function of z in the region bounded by the lines L_1 and L_s and the arcs $|z|=\epsilon$ and |z|=R where $0<\epsilon< R$. If we integrate along the boundary of this region and let $\epsilon\to 0$ and $R\to\infty$, then we obtain that

$$J_{\alpha}(s) = J_{\alpha}(1) = \int_{0}^{\infty} (e^{-x}-1) \frac{\alpha dx}{x^{\alpha+1}} = -r(1-\alpha)$$

where $\Gamma(1-\alpha)$ is the gamma function. See [11 p. 132].

Thus

$$I_{\alpha}(s) = -\Gamma(1-\alpha)s^{\alpha} + \frac{s\alpha\pi}{2\cos\frac{\alpha\pi}{2}}$$

for $0 < \alpha < 1$ if $Re(s) \ge 0$.

Now we shall prove that

$$I_1(s) = s \log s - s(1-C)$$

if Re(s) > 0 where C = 0.5772157... is Euler's constant. By [11 p. 135] we have $I_1(1)$ = C-1 . If we introduce a new variable z = sx in $I_1(s)$, then we can write that

$$I_1(s) = s \int_{L_s} (e^{-z} - 1 + \frac{z}{1 + z^2}) dz + s \int_0^{\infty} [\frac{1}{1 + x^2} - \frac{1}{1 + s^2 x^2}] \frac{dx}{x}$$

where $L_s=\{z:z=sx\;,\;0\leq x<\omega\}$. By using Cauchy's integral theorem we can prove that the first integral on the right-hand side of the above equation does not depend on s. Thus the first term becomes $sI_1(1)=s(C-1)$. The integral in the second term on the right-hand side of the above formula can be calculated as follows:

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \left[\frac{1}{1+x^2} - \frac{1}{1+s^2x^2} \right] \frac{dx}{x} = \lim_{\varepsilon \to 0} \left[\int_{\varepsilon}^{\infty} \frac{dx}{x(1+x^2)} - \int_{L_{\mathbf{S}}(\varepsilon)} \frac{dz}{z(1+z^2)} \right]$$

where $L_s(\epsilon)=\{z:z=sx\ ,\ \epsilon\le x<\omega\}$. Since the function $1/z(1+z^2)$ is regular in the domain Re(z)>0, the last term can be expressed as

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\varepsilon S} \frac{dz}{z(1+z^2)} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\varepsilon S} \frac{dz}{z} = \log s.$$

This proves the formula for $I_1(s)$ in the case when Re(s)>0. If $Re(s)\geq0$, then $I_1(s)$ can be obtained by continuity.

If $s = -i\omega$ where ω is real, we have

$$I_{1}(-i\omega) = -i\omega\log\omega - \frac{\omega\pi}{2} + i\omega(1-C)$$

for $\omega>0$, $I_1(0)=0$ and $I_1(i\omega)=\overline{I_1(-i\omega)}$. This can be proved directly as follows. If $\omega>0$, then

$$\begin{split} & I_{1}(-i\omega) = \int_{0}^{\infty} (e^{i\omega x} - 1 - \frac{i\omega x}{1+x^{2}}) \frac{dx}{x} = \int_{0}^{\infty} \frac{\cos \omega x - 1}{x^{2}} dx + \\ & + i \int_{0}^{\infty} (\sin \omega x - \frac{\omega x}{1+\omega^{2}x^{2}}) \frac{dx}{x^{2}} - i\omega \int_{0}^{\infty} (\frac{x}{1+x^{2}} - \frac{x}{1+\omega^{2}x^{2}}) \frac{dx}{x^{2}} = \\ & = \omega \int_{0}^{\infty} \frac{\cos u - 1}{u^{2}} du + i\omega \int_{0}^{\infty} (\frac{\sin u}{u} - \frac{1}{1+u^{2}}) du - i\omega \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\varepsilon \omega} \frac{du}{u(1+u^{2})} = \\ & = -\frac{\omega \pi}{2} + i\omega(1-C) - i\omega \log \omega . \end{split}$$

For by [11 p. 220]

$$\int_{0}^{\infty} \frac{1-\cos u}{u^2} du = \frac{\pi}{2}$$

and

$$\int_{0}^{\infty} \frac{\sin u - u \cos u}{u^{2}} du = 1$$

and by [11 p. 256]

$$\int_{0}^{\infty} \left(\frac{1}{1+u^2} - \cos u\right) \frac{du}{u} = C.$$

Finally let us suppose that $1 < \alpha < 2$. Then we can write that

$$I_{\alpha}(s) = \int_{0}^{\infty} (e^{-sx} - 1 + sx) \frac{\alpha dx}{x^{\alpha+1}} + s\alpha \int_{0}^{\infty} \frac{x^{1-\alpha}}{1+x^2} dx.$$

Thus by the solution of Problem 46.4 we have

$$I_{\alpha}(s) = s^{\alpha}J_{\alpha}(s) + \frac{s\alpha\pi}{2\cos^{\alpha}\frac{\pi}{2}}$$

where

$$J_{\alpha}(s) = \int_{L_{s}} (e^{-z} - 1 + z) \frac{\alpha dz}{z^{\alpha + 1}}$$

and $L_s=\{z:z=sx\;,\,0\leq x<\infty\}$. By using Cauchy's theorem we can prove that $J_\alpha(s)$ does not depend on s , and thus by [11 p. 132] we have

$$J_{\alpha}(s) = J_{\alpha}(1) = \int_{0}^{\infty} (e^{-X} - 1 + x) \frac{\alpha dx}{x^{\alpha+1}} = -\Gamma(1 - \alpha) = \frac{\pi}{\Gamma(\alpha) \sin \alpha \pi} .$$

Finally,

$$I_{\alpha}(s) = -\Gamma(1-\alpha)s^{\alpha} + \frac{s\alpha\pi}{2\cos\frac{\alpha\pi}{2}} = \frac{-s^{\alpha}\pi}{\Gamma(\alpha)\sin\alpha\pi} + \frac{s\alpha\pi}{2\cos\frac{\alpha\pi}{2}}$$

for $1 < \alpha < 2$ and $Re(s) \ge 0$.

46.6 Let

$$\gamma = \frac{2}{\pi} \arctan(\beta \tan \frac{\alpha \pi}{2})$$

where $-1 < \gamma < 1$. By (42.128) and (42.130) we have

$$\mathbb{E}\{|\xi|^{\delta}\} = \int_{-\infty}^{\infty} |x|^{\delta} f(x;\alpha,\beta,c,0) dx = \left(\frac{c}{\cos \frac{\gamma\pi}{2}}\right)^{\frac{\delta}{\alpha}} \int_{-\infty}^{\infty} |x|^{\delta} h(x;\alpha,\gamma) dx = \left(\frac{c}{\cos \frac{\gamma\pi}{2}}\right)^{\frac{\delta}{\alpha}} \left[\int_{0}^{\infty} x^{\delta} h(x;\alpha,\gamma) dx + \int_{0}^{\infty} x^{\delta} h(x;\alpha,-\gamma) dx\right].$$

The case $\delta = 0$ is obvious. Let $\delta \neq 0$ and $-1 < \delta < \alpha$. By (42.131) we have

$$\int_{0}^{\infty} x^{\delta} h(x;\alpha,\gamma) dx = \frac{1}{\pi} \int_{0}^{\infty} x^{\delta} Re \{ \int_{0}^{\infty} e^{-ixu - u^{\alpha}} e^{-\frac{\gamma \pi i}{2}} du \} dx =$$

$$= \frac{\Gamma(1+\delta)}{\pi} Re \{ e^{-\frac{(1+\delta)\pi i}{2}} \int_{0}^{\infty} e^{-u^{\alpha}} e^{-\frac{\gamma \pi i}{2}} u^{-\delta - 1} du \} =$$

$$= \frac{\Gamma(1+\delta)}{\pi \alpha} Re \{ e^{-\frac{(1+\delta)\pi i}{2}} - \frac{\delta \gamma \pi i}{2\alpha} \int_{L} e^{-z} z^{-\frac{\delta}{\alpha} - 1} dz \} =$$

$$= \frac{\Gamma(1+\delta)\Gamma(-\frac{\delta}{\alpha})}{\pi \alpha} Re \{ e^{-\frac{(1+\delta)\pi i}{2}} - \frac{\delta \gamma \pi i}{2} \} =$$

$$= -\frac{\Gamma(1+\delta)\Gamma(1-\frac{\delta}{\alpha})}{\pi \delta} \cos(\frac{(1+\delta)\pi}{2} + \frac{\delta \gamma \pi}{2}) = \frac{\Gamma(1+\delta)\Gamma(1-\frac{\delta}{\alpha})}{\pi \delta} \sin(1+\frac{\gamma}{\alpha}) \frac{\delta \pi}{2}$$

where
$$L = \{z : z = e^{-\frac{\gamma\pi i}{2}} u^{\alpha}, 0 \le u < \infty \}$$
.

Thus finally,

$$E\{|\xi|^{\delta}\} = \left(\frac{c}{\cos\frac{\gamma\pi}{2}}\right)^{\frac{\delta}{\alpha}} \frac{2\Gamma(1+\delta)\Gamma(1-\frac{\delta}{\alpha})}{\pi\delta} \sin\frac{\delta\pi}{2}\cos\frac{\gamma\delta\pi}{2\alpha} =$$

$$= \left(\frac{c}{\cos\frac{\gamma\pi}{2}}\right)^{\frac{\delta}{\alpha}} \frac{\Gamma(1-\frac{\delta}{\alpha})\cos\frac{\gamma\delta\pi}{2\alpha}}{\Gamma(1-\delta)\cos\frac{\delta\pi}{2}}$$

for $-1 < \delta < \alpha$. This result is in agreement with (42.198).

46.7. By the solution of Problem 46.6 we obtain that

$$\Pr\{\xi \ge 0\} = \int_{0}^{\infty} f(x;\alpha,\beta,c,0) dx = \int_{0}^{\infty} h(x;\alpha,\gamma) dx =$$

$$= \lim_{\delta \to 0} \int_{0}^{\infty} x^{\delta} h(x;\alpha,\gamma) dx = \lim_{\delta \to 0} \frac{\Gamma(1+\delta)\Gamma(1-\frac{\delta}{\alpha})}{\pi\delta} \sin(1+\frac{\gamma}{\alpha}) \frac{\delta\pi}{2} =$$

$$= \frac{1}{2} + \frac{\gamma}{2\alpha}$$

where

$$\gamma = \frac{2}{\pi} \arctan(\beta \tan \frac{\alpha \pi}{2})$$

and $-1 < \gamma < 1$. This implies (42.192).

46.8. If $0 < \alpha < 1$ and $\beta = 1$, then R(0) = 0 and therefore $T\{\psi(s)\} = \psi(s)$ for $Re(s) \ge 0$. If $0 < \alpha < 1$ and $\beta = -1$, then R(0) = 1 and $T\{\psi(s)\} = 1$ for $Re(s) \ge 0$. In the remaining cases we have

$$\psi^{+}(s) = \frac{1}{2} - \frac{\gamma}{2\alpha} + \frac{\cos\frac{\gamma\pi}{2\alpha}}{\pi} \int_{0}^{\infty} \frac{e^{-cx^{\alpha}s^{\alpha}/\cos\frac{\gamma\pi}{2}}}{1-2x \sin\frac{\gamma\pi}{2\alpha} + x^{2}} dx$$

for Re(s) > 0 where

$$\gamma = \frac{2}{\pi} \arctan(\beta \tan \frac{\alpha \pi}{2})$$

and $-1 < \gamma < 1$. We note that $R(0) = \frac{1}{2} - \frac{\gamma}{2\alpha}$.

It is sufficient to prove the above formula for Re(s)>0 and for some particular c>0. For $\text{Re}(s)\geq 0$ we obtain $\psi^+(s)$ by continuity. We shall prove the above formula for $c=\cos\frac{\gamma\pi}{2}$ and by replacing s by $s(c/\cos\frac{\gamma\pi}{2})$ we obtain $\psi^+(s)$ for a general c>0.

Thus let us assume that $c = \cos \frac{\gamma \pi}{2}$. Then we have

$$\psi(iy) = \begin{cases} e^{-y^{\alpha}} e^{i\gamma\pi/2} & \text{for } y \ge 0, \\ e^{-(-y)^{\alpha}} e^{-i\gamma\pi/2} & \text{for } y \le 0. \end{cases}$$

By Theorem 5.1 we have

$$\psi^{+}(s) = \frac{1}{2} + \lim_{\varepsilon \to 0} \frac{s}{2\pi i} \left[\int_{\varepsilon}^{\infty} \frac{\psi(iy)}{y(s-iy)} dy - \int_{\varepsilon}^{\infty} \frac{\psi(-iy)}{y(s+iy)} dy \right]$$

for Re(s) > 0 . If we substitute $y=e^{-i\gamma\pi/2\alpha}sz$ in the first integral and $y=e^{i\gamma\pi/2\alpha}sz$ in the second integral then we obtain that

$$\psi^{+}(s) = \frac{1}{2} + \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \left[\int_{L_{1}(\varepsilon)} \frac{e^{-z^{\alpha}s^{\alpha}}}{z(1-ize^{-i\gamma\pi/2\alpha})} dz - \int_{L_{2}(\varepsilon)} \frac{e^{-z^{\alpha}s^{\alpha}}}{z(1+ize^{i\gamma\pi/2\alpha})} dz \right]$$

for Re(s) > 0 where $L_1(\epsilon) = \{z: z=e^{i\gamma\pi/2\alpha}y/s \text{ and } \epsilon \leq y < \infty\}$ and $L_2(\epsilon) = \{z: z=e^{-i\gamma\pi/2\alpha}y/s \text{ and } \epsilon \leq y < \infty\}$. Denote by $C_1(\epsilon)$ the path which varies from $z=e^{i\gamma\pi/2\alpha}\epsilon/s$ to $z=\epsilon/|s|$ along the arc $|z|=\epsilon/|s|$ and from $z=\epsilon/|s|$ to ∞ along the real axis. Denote by $C_2(\epsilon)$ the path which varies from $z=e^{-i\gamma\pi/2\alpha}\epsilon/s$ to $z=\epsilon/|s|$ along the arc $|z|=\epsilon/|s|$ and from $z=\epsilon/|s|$ to ∞ along the real axis. If we replace $L_1(\epsilon)$ by $C_1(\epsilon)$ in the first integral and $L_2(\epsilon)$ by $C_2(\epsilon)$ in the second integral, then by Cauchy's integral theorem both integrals remain unchanged. If $\epsilon \neq 0$, then the difference of the two integrals taken along the arcs tend to

$$\lim_{\varepsilon \to 0} \frac{i\gamma\pi/2\alpha/s}{\varepsilon/|s|} = \lim_{\varepsilon \to 0} \frac{dz}{|s|} + \int_{\varepsilon/|s|} \frac{dz}{|s|} = \log e^{-\frac{i\gamma\pi}{2\alpha}} \frac{s}{|s|} - \log e^{\frac{i\gamma\pi}{2\alpha}} \frac{s}{|s|} = \frac{i\gamma\pi}{\alpha}$$

and consequently,

$$\psi^{+}(s) = \frac{1}{2} - \frac{\gamma}{2\alpha} + \frac{1}{2\pi i} \int_{0}^{\infty} \left[\frac{e^{-x^{\alpha}s^{\alpha}}}{x(1-ixe^{-i\gamma\pi/2\alpha})} - \frac{e^{-x^{\alpha}s^{\alpha}}}{x(1+ixe^{i\gamma\pi/2\alpha})} \right] dx =$$

$$= \frac{1}{2} - \frac{\gamma}{2\alpha} + \frac{\cos\frac{\gamma\pi}{2\alpha}}{\pi} \int_{0}^{\infty} \frac{e^{-x^{\alpha}s^{\alpha}}}{1-2x \sin\frac{\gamma\pi}{2\alpha} + x^{2}} dx$$

for Re(s) > 0 and $c = \cos \frac{\gamma \pi}{2\alpha}$. Since

$$\psi^{+}(0) = \frac{1}{2} - \frac{\gamma}{2\alpha} + \frac{\cos \frac{\gamma\pi}{2\alpha}}{\pi} \int_{0}^{\infty} \frac{1}{1 - 2x \sin \frac{\gamma\pi}{2\alpha} + x^{2}} dx = 1$$

we can also write that

$$\psi^{+}(s) = 1 - \frac{\cos \frac{\gamma \pi}{2\alpha}}{\pi} \int_{0}^{\infty} \frac{1 - e^{-x^{\alpha} s^{\alpha}}}{1 - 2x \sin \frac{\gamma \pi}{2\alpha} + x^{2}} dx$$

for Re(s) ≥ 0 and $c = \cos \frac{\gamma \pi}{2\alpha}$.

46.9. By (42.115) we have

$$\mathbb{P}\{\eta \leq x\} = \begin{cases}
2[1-\Phi(\frac{c}{\sqrt{x}})] & \text{for } x \geq 0, \\
0 & \text{for } x < 0,
\end{cases}$$

whence the statement follows. We note that $\mathbb{E}\{e^{-s\eta}\}=e^{-c\sqrt{2s}}$ for $\text{Re}(s)\geq 0$ or $\mathbb{E}\{e^{-s\eta}\}=e^{-c\sqrt{2s}}$ for Re(s)=0.

46.10. Since F(x) belongs to the domain of attraction of itself, Theorem 44.8 is applicable. By (42.104) and (42.105) we can choose $B_n = n^{1/\alpha}$ in (46.247). Thus by (46.244) and (46.247) we obtain that

$$\lim_{n \to \infty} n F(-n^{1/\alpha}x) = \frac{c_1}{x^{\alpha}} \quad \text{and} \quad \lim_{n \to \infty} n[1-F(n^{1/\alpha}x)] = \frac{c_2}{x^{\alpha}}$$

for x > 0. Hence the assertions follow.

46.11. Let us denote by a the expectation of F(x) if it exists, and by σ^2 the variance of F(x) if it exists.

If $\sigma^2 = 0$, then F(x) is degenerate, and c = 0 and m = a. (α and β are immaterial.)

If $0 < \sigma^2 < \infty$, then F(x) is a normal distribution, and $\alpha = 2$, $c = \sigma^2/2$, m = a . (β is immaterial.)

If $\sigma^2 = \infty$, then F(x) belongs to the domain of attraction of itself and thus by (46.245) we have

$$\lim_{x \to \infty} \frac{1 - F(x) + F(-x)}{1 - F(\rho x) + F(-\rho x)} = \rho^{\alpha}$$

for any $\rho>0$. This determines α . The constants β and c are determined by the solution of Problem 46.10. It remains to find m . If $1\leq\alpha<2$, then m can be determined in the following way. On the one hand in Theorem 46.8

$$A_{n} = n \int_{|x| < \tau n} x \, d F(x) - (\mu(\tau) + \epsilon_{n}) n^{1/\alpha}$$

where $\tau>0$, $\mu(\tau)$ is defined by (46.243) and $\lim_{n\to\infty}\epsilon_n=0$. On the other hand by (42.104) and (42.105)

$$A_{n} = \begin{cases} m(n-n^{1/\alpha}) & \text{for } \alpha \neq 1 \\ \frac{2\beta cn \log n}{\pi} & \text{for } \alpha = 1 \end{cases}$$

is a possible choice in Theorem 46.8.

A comparison of the above two formulas show that if $1 < \alpha < 2$, then

$$m = a = \int_{-\infty}^{\infty} x dF(x)$$
,

and if $\alpha = 1$, then

$$m = \lim_{n \to \infty} \left[\int_{|x| < \tau n} x dF(x) - \frac{2\beta c \log n}{\pi} \right] - \frac{2\beta c}{\pi} \left[\log \tau - (1-C) \right]$$

where $\tau > 0$ and C is Euler's constant. It is convenient to choose $\tau = e^{1-C}$ in the last formula.

Note. If $\alpha = 1$, then by the last formula we obtain that

$$\lim_{y \to \infty} \frac{1}{\log y} \int_{|x| < y} x dF(x) = \frac{2\beta c}{\pi} .$$

If $0<\alpha<1$ and if we compare the aforementioned two formulas for A_n , then we obtain that

$$\lim_{y \to \infty} \frac{1}{y^{1-\alpha}} \int_{|x| < y} x dF(x) = \frac{2\beta c\Gamma(1+\alpha)\sin\frac{\alpha\pi}{2}}{(1-\alpha)\pi}.$$

These formulas can also be proved directly by the solution of Problem 46.10.

46.12. For any k = 1, 2, ... we have

$$\lim_{n \to \infty} P\left\{ \frac{\xi_1 + \xi_2 + \ldots + \xi_{nk} - A_{nk}}{B_{nk}} \le x \right\} = R(x)$$

where R(x) is a stable distribution function of type $S(\alpha,\beta,c,m)$. If we write

$$\frac{\xi_{1}^{+}\cdots+\xi_{nk}^{-}kA_{n}}{B_{n}} = \frac{\xi_{1}^{+}\cdots+\xi_{n}^{-}A_{n}}{B_{n}} + \frac{\xi_{n+1}^{+}\cdots+\xi_{2n}^{-}A_{n}}{B_{n}} + \dots + \frac{\xi_{(k-1)n+1}^{+}\cdots+\xi_{kn}^{-}A_{n}}{B_{n}},$$

then we can easily see that

$$\lim_{n \to \infty} \mathbb{P}\left\{\frac{\xi_1 + \xi_2 + \dots + \xi_{nk} - kA_n}{B_n} \le x\right\} = R_k(x)$$

where $R_k(x)$ is the k-th iterated convolution of R(x) with itself. By (42.103) $R_k(x)$ is a stable distribution function of type $S(\alpha,\beta,kc,km)$. Thus by (42.104) and (42.105)

$$\frac{\xi_1 + \xi_2 + \ldots + \xi_{nk} - kA_n}{k^{1/\alpha} B_n} - \begin{cases} \frac{2\beta c \log k}{\pi} & \text{for } \alpha = 1, \\ \frac{1 - \frac{1}{\alpha}}{m(k^{-1})} & \text{for } \alpha \neq 1 \end{cases}$$

has the limiting distribution R(x) as $n \to \infty$. Hence by Lemma 44.2 it follows that necessarily

$$\lim_{n \to \infty} \frac{B_{nk}}{k^{1/\alpha}B_{n}} = 1$$

and

$$\lim_{n \to \infty} \frac{A_{nk} - kA_n}{B_{nk}} = \begin{cases} \frac{2\beta c}{\pi} \log k & \text{for } \alpha = 1, \\ 1 - \frac{1}{\alpha} & \\ m(k - 1) & \text{for } \alpha \neq 1. \end{cases}$$

Let us define

$$B(t) = B_n + (t-n)(B_{n+1} - B_n)$$

for $n < t \le n+1$ and n = 0,1,2,... and

$$a(t) = \frac{A_n}{B_n} + (t-n)[\frac{A_{n+1}}{B_{n+1}} - \frac{A_n}{B_n}]$$

for $n < t \le n+1$ and $n=0,1,2,\ldots$. Since by (44.118) $B_n \to \infty$ and $B_{n+1}/B_n \to 1 \text{ as } n \to \infty \text{ , and by (44.125)} \quad (A_{n+1}-A_n)/B_n \to 0 \text{ as } n \to \infty \text{ , we}$ can conclude that

$$\lim_{t \to \infty} \frac{B(kt)}{k^{1/\alpha} B(t)} = 1$$

and

$$\lim_{t\to\infty} \left[a(kt) - \frac{k}{k^{1/\alpha}} \, a(t) \right] = \begin{cases} \frac{2\beta c}{\pi} \, \log k & \text{if } \alpha = 1 \text{,} \\ \frac{1}{m} \, \left[\frac{1}{\alpha} \, -1 \right) & \text{if } \alpha \neq 1 \text{,} \end{cases}$$

and $k=1,2,\ldots$ The functions B(t) and a(t) are continuous functions of t , and therefore the above relations are also valid if k is replaced by ω where ω is any positive real number. If we write

$$B(t) = t^{1/\alpha} \rho(t)$$

for t > 0 , then we have

$$\lim_{t \to \infty} \frac{\rho(\omega t)}{\rho(t)} = 1$$

for $\omega > 0$, and if we write

$$a(t) = \frac{h(t)}{\frac{1}{t^{\alpha}} - 1} + \begin{cases} \frac{2\beta c}{\pi} \log t & \text{for } \alpha = 1, \\ -m & \text{for } \alpha \neq 1, \end{cases}$$

for t > 0, then we have

$$\lim_{t \to \infty} \frac{h(\omega t) - h(t)}{\frac{1}{t^{\alpha}} - 1} = 0$$

for $\omega > 0$.

46.13. By (42.171) we have

$$\int_{0}^{\infty} e^{-SX} dR(x) = e^{-\Gamma(1-\alpha)S^{\alpha}}$$

for $R(s) \ge 0$. Let $\phi(s) = \int_{0}^{\infty} e^{-SX} dF(x)$. Then

$$\phi(s) = 1-s \int_{0}^{\infty} [1-F(x)]e^{-sx} dx = 1-s \int_{0}^{\infty} h(x)x^{-\alpha}e^{-sx}dx =$$

$$= 1-\Gamma(1-\alpha)s^{\alpha}h(\frac{1}{s}) + o(s^{\alpha})$$

as $s \rightarrow 0$. If s > 0, then

$$\lim_{n \to \infty} \left[\phi(\frac{s}{n^{1/\alpha} \rho(n)}) \right]^n = e^{-\Gamma(1-\alpha)s^{\alpha}}$$

if and only if

$$\lim_{n \to \infty} \frac{h(n^{1/\alpha} \rho(n))}{(\rho(n))^{\alpha}} = 1,$$

and this proves the statement.

46.14. By (42.173) we have

$$\int_{0}^{\infty} e^{-SX} dR(x) = e^{-\Gamma(1-\alpha)S^{\alpha}}$$

for Re(s) ≥ 0 . Let $\phi(s) = \int_{0}^{\infty} e^{-sx} dF(x)$. Then

$$\phi(s) = 1-as+s \int_{0}^{\infty} [1-F(x)](1-e^{-sx})dx = 1-as +$$

+ s
$$\int_{0}^{\infty} h(x)x^{-\alpha}(1-e^{-sx})dx = 1-as-\Gamma(1-\alpha)s^{\alpha}h(\frac{1}{s}) + o(s^{\alpha})$$

and

$$\phi(s)e^{as} = 1-\Gamma(1-\alpha)s^{\alpha}h(\frac{1}{s}) + o(s^{\alpha})$$

as $s \rightarrow 0$. If s > 0, then

$$\lim_{n \to \infty} \left[\phi(\frac{s}{n^{1/\alpha} \rho(n)}) e^{\frac{as}{n^{1/\alpha} \rho(n)}} \right] = e^{-\Gamma(1-\alpha)s^{\alpha}}$$

if and only if

$$\lim_{n \to \infty} \frac{h(n^{1/\alpha} \rho(n))}{(\rho(n))^{\alpha}} = 1,$$

and this proves the statement.

46.15. Since

$$\sum_{j=0}^{k} (-1)^{j} {a \choose j} = (-1)^{k} {a-1 \choose k}$$

for any a, we have

$$\underbrace{P\{\xi_{n} > 2k\}}_{j=1} = 1 - \sum_{j=1}^{k} \frac{1}{2j-1} {2j \choose j} \frac{1}{2^{2j}} = 1 - \sum_{j=1}^{k} (-1)^{j-1} {\frac{1}{2} \choose j} = \\
= (-1)^{k-1} {-\frac{1}{2} \choose k} = {2k \choose k} \frac{1}{2^{2k}}$$

for $k = 1, 2, \dots$ By using the inequality

$$\frac{1}{\sqrt{\pi(k+\frac{1}{2})}} < {2k \choose k} \frac{1}{2^{2k}} < \frac{1}{\sqrt{\pi k}},$$

we get

$$\lim_{k \to \infty} \sqrt{2k} \Pr_{n} \{\xi_{n} > 2k\} = \sqrt{\frac{2}{\pi}} .$$

Thus $\Pr_n \leq x$ belongs to the domain of attraction of a stable distribution function R(x) of type $S(\frac{1}{2},1,c,0)$ where c>0. If we choose $A_n=0$ and $B_n=(nb)^2$ where

$$b = \frac{\sqrt{\frac{2}{\pi}}}{\frac{2c}{\pi} \Gamma(\frac{1}{2}) \sin \frac{\pi}{4}} = \frac{1}{c},$$

then we have

$$\lim_{n \to \infty} \frac{c^2(\xi_1 + \ldots + \xi_n)}{n^2} \le x \} = R(x) = 2[1 - \Phi(\frac{c}{\sqrt{x}})]$$

for $x \ge 0$ where $\Phi(x)$ is the normal distribution function.

Note. Since

$$\Pr\{\xi_1 + ... + \xi_n = 2j\} = \frac{n}{2j-n} \binom{2j-n}{j} \frac{1}{2^{2j-n}}$$

for j = n, n+1,..., we can prove directly that

$$\lim_{n \to \infty} \frac{\xi_1 + \ldots + \xi_n}{n^2} > x \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^{-\frac{3}{2}} e^{-\frac{1}{2y}} dy = 2\Phi(\frac{1}{\sqrt{x}}) - 1$$

for x > 0.

46.16. Since
$$\Gamma(a+1) \sim \sqrt{2\pi a} \left(\frac{a}{e}\right)^a$$
 as $a \to \infty$, we have

$$k \stackrel{q}{\sim} P\{\xi_n > k\} = k^q \binom{k-q}{k} = \frac{k^q \Gamma(k-q+1)}{\Gamma(1-q)\Gamma(k+1)} \rightarrow \frac{1}{\Gamma(1-q)} \quad \text{as} \quad k \rightarrow \infty$$

and thus $\Pr\{\xi_n \leq x\}$ belongs to the domain of attraction of a stable distribution function R(x) of type S(q,1,c,0) where c>0. If we choose $A_n=0$ and $B_n=(nb)^{1/q}$ where

$$b = \frac{\pi}{\Gamma(1-q)2c\Gamma(q)\sin\frac{q\pi}{2}} = \frac{\sin q \pi}{2c \sin\frac{q\pi}{2}} = \frac{\cos\frac{q\pi}{2}}{c},$$

then

$$\lim_{n \to \infty} \mathbb{P}\left\{\frac{\xi_1 + \xi_2 + \ldots + \xi_n}{(bn)^{1/q}} \le x\right\} = \mathbb{R}(x).$$

If b = 1, then R(x) is of type $S(q, 1, \cos \frac{q_n}{2}, 0)$.

46.17. Since

$$\lim_{x \to \infty} \frac{1 - F(x)}{1 - F(\rho x)} = \rho$$

for $\rho > 0$, by Theorem 44.8 it follows that F(x) belongs to the domain of attraction of a stable distribution function R(x) of type S(1,1,c,m) where c>0 and m is a real number. We have

$$\lim_{n \to \infty} \mathbb{P} \left\{ \frac{\xi_1 + \ldots + \xi_n - A_n}{B_n} \le x \right\} = \mathbb{R}(x)$$

if we choose B_n in such a way that

$$\lim_{n \to \infty} \frac{n}{B_n (\log B_n)^2} = \frac{2c}{\pi}$$

and if

$$A_{n} = n \int_{0}^{\tau B} x dF(x) - mB_{n} - \frac{2c}{\pi} B_{n} [\log \tau - (1-c)] + \epsilon_{n}^{B} n$$

where C is Euler's constant, $\tau > 0$, and $\epsilon_n \to 0$ as $n \to \infty$.

Ιſ

$$B_{n} = \frac{n\pi}{2c(\log n)^{2}}$$

for n > 1, then the requirements are satisfied.

In our case

$$\int_{0}^{\infty} x dF(x) = \int_{0}^{\infty} [1-F(x)] dx = e + \int_{e}^{\infty} \frac{dx}{x(\log x)^{2}} = e + 1$$

and if $\pi B_n > e$, then

$$\int_{0}^{\tau B_{n}} x dF(x) = e^{-1} + \int_{e}^{\tau B_{n}} \left[\frac{1}{x(\log x)^{2}} + \frac{2}{x(\log x)^{3}} \right] dx = e + 1 - \frac{1}{\log \tau B_{n}} - \frac{1}{(\log \tau B_{n})^{2}}.$$

T hus

$$A_n = n(e+1) - \frac{n}{\log n} + \frac{n}{(\log n)^2} \left[\log \frac{\pi}{2c} - C - \frac{m\pi}{2c} \right] - \frac{2n \log \log n}{(\log n)^2}$$

for n > e is a possible choice.

If
$$c = \pi/2$$
 and $m = -C$, then we have
$$\lim_{n \to \infty} \frac{\xi_1 + \ldots + \xi_n - n(e+1)}{n(\log n)^{-2}} + \log n + 2\log\log n \le x\} = R(x)$$

where R(x) is a stable distribution function of type S(1,1, $\frac{\pi}{2}$, -C) .

46.18. In this case

1-F(x) + F(-x) =
$$\frac{5}{6x(\log x)^2}$$

for $x \ge e$ and

$$\lim_{x \to \infty} \frac{F(-x)}{1 - F(x)} = \frac{2}{3} .$$

function

Thus F(x) belongs to the domain of attraction of a stable distribution R(x) of type $S(1, \frac{1}{5}, c, m)$. If $c = 5\pi/12$, then we can choose $B_n = n/(\log n)^2$ for n > 1 and if m = -C/6 where C is Euler's constant, then

$$A_n = n(e - \frac{5}{6}) - \frac{n}{6 \log n} - \frac{2n \log \log n}{6(\log n)^2}$$

for n > e is a possible choice. Thus

$$\lim_{n \to \infty} \mathbb{P}\left\{\frac{\xi_1 + \ldots + \xi_n - A_n}{B_n} \le x\right\} = \mathbb{R}(x)$$

where R(x) is a stable distribution function of type S(1, $\frac{1}{5}$, $\frac{5\pi}{12}$, $-\frac{C}{6}$).

46.19. Since $\lim_{x\to\infty} x[1-F(x)] = 1$, it follows from Theorem 44.8 that f(x) belongs to the domain of attraction of a stable distribution function f(x) of type f(x). By (44.247) we can choose f(x) and by (44.248)

$$A_{n} = n \int_{1}^{\tau n\pi/2c} \frac{dx}{x} - \frac{n\pi}{2c} \{m + \frac{2c}{\pi} [\log \tau - (1 - C)]\}$$

where $\tau > 0$ and C is Euler's constant. Thus

$$A_n = -m \frac{n\pi}{2c} + n \log \frac{n\pi}{2c} + n(1-C)$$
.

If $c = \pi/2$ and m = 1-C, then we have

$$\lim_{n \to \infty} P\{ \frac{\xi_1 + \ldots + \xi_n}{n} - \log n \le x \} = R(x)$$

where R(x) is a stable distribution function of type S(1,1, $\frac{\pi}{2}$, 1-C) . The Laplace-Stieltjes transform of R(x) is

$$-(1-C)s-|s|\frac{\pi}{2}+s \log |s|$$

 $\psi(s) = e$

for Re(s) = 0 or

$$\psi(s) = e^{-(1-C)s+s} \log s$$

for $Re(s) \ge 0$.

Note. We can prove the above result directly. The Laplace-Stieltjes transform of F(x) can be expressed as

$$\phi(s) = \int_{1}^{\infty} \frac{e^{-sx}}{x^2} dx = s \int_{s}^{\infty} e^{-z} \frac{dz}{z^2} = s[C-1] + s \log s + 1 - s^2 + o(s^2)$$

for $\text{Re}(s) \ge 0$ where $o(s^2)/s^2 \to 0$ as $|s| \to 0$. (See N. Nielsen [142 p.5].) Thus

$$\lim_{n \to \infty} \left[\phi\left(\frac{s}{n}\right)\right]^n e^{s \log n} = e^{s(C-1)+s \log s}$$

for $Re(s) \ge 0$. Accordingly,

$$\lim_{n \to \infty} \frac{\xi_1 + \ldots + \xi_n}{n} - \log n \le x \} = R(x)$$

where

$$\psi(s) = \int_{-\infty}^{\infty} e^{-SX} dR(x) = e^{-(1-C)s+s \log s}$$

for Re(s) ≥ 0 . If Re(s) = 0, then s log s = s log|s| $-\frac{|s|\pi}{2}$

46.20. In this case F(-x) = 1-F(x) and

$$1-F(x) + F(-x) = \frac{1 + \log x}{x}$$

for $x \ge 1$. Thus F(x) belongs to the domain of attraction of a stable distribution function of type S(1,0,c,0) where c>0 . If we choose $A_n=0$ and $B_n=(\pi n \log n)/2c$, then

$$\lim_{n \to \infty} P\left\{ \frac{2c\left(\xi_1 + \dots + \xi_n\right)}{\pi \ n \ \log n} \le x \right\} = \frac{1}{2} + \frac{1}{\pi} \ \text{arc tan} \ \frac{x}{c} \ .$$

46.21. Let us suppose that $\mathbb{E}\{e^{-S\xi}\}=e^{-S^{\alpha}}$ for $\text{Re}(s)\geq 0$ where $0<\alpha<1$, $\mathbb{P}\{\eta\leq x\}=1-e^{-x}$ for $x\geq 0$, and ξ and η are independent random variables. Then

$$P\{\xi\eta^{-1} \le x\} = \int_{0}^{\infty} P\{\xi \le xy\} e^{-y} dy = e^{-(1/x)^{\alpha}}$$

for x > 0. Hence

$$P\{\eta^{\alpha} \xi^{-\alpha} \le x\} = 1 - e^{-x}$$

for $x \ge 0$, and

$$\mathbb{E}\{e^{-s\eta^{\alpha}\xi^{-\alpha}}\} = \frac{1}{1+s}$$

for Re(s) > -1, or

$$\mathbb{E}\left\{e^{-s^{\alpha}\eta^{\alpha}\xi^{-\alpha}}\right\} = \int_{0}^{\infty} \mathbb{E}\left\{e^{-(su)^{\alpha}\xi^{-\alpha}}\right\} e^{-u} du = \frac{1}{1+s^{\alpha}}$$

for $Re(s) \ge 0$. On the other hand by (42.180) we have

$$\int_{0}^{\infty} E_{\alpha}(-s^{\alpha}u^{\alpha})e^{-u}du = \int_{k=0}^{\infty} \frac{(-1)^{k} s^{k\alpha}}{\Gamma(k\alpha+1)} \int_{0}^{\infty} e^{-u} u^{k\alpha}du = \frac{1}{1+s^{\alpha}}$$

for |s| < 1. Accordingly, we have

$$\int_{0}^{\infty} E\{e^{-(su)^{\alpha}\xi^{-\alpha}}\}e^{-u} du = \int_{0}^{\infty} E_{\alpha}(-s^{\alpha}u^{\alpha})e^{-u} du$$

for |s| < 1 , and this implies that

$$\mathbb{E}\{e^{-W\xi^{-\alpha}}\} = \mathbb{E}_{\alpha}(-w)$$

for every w. This proves (42.181).

46.22. In this case $\psi(s) = \mathbb{E}\{e^{-S\xi}\} = \mathbb{E}\{e^{-S\eta}\} = e^{-s^{\alpha}}$ for $\text{Re}(s) \ge 0$. Let us suppose that ξ , η , θ_1 , θ_2 are mutually independent random variables and $\mathbb{P}\{\theta_1 \le x\} = \mathbb{P}\{\theta_2 \le x\} = 1 - e^{-x}$ for $x \ge 0$. Then

$$\Pr_{\infty} \{ \xi \theta_{1}^{-1} \le x \} = \Pr_{\infty} \{ \eta \theta_{2}^{-1} \le x \} = \psi(\frac{1}{x})$$

for x > 0 and

$$G(x) = \Pr_{\infty} \{ \xi \eta^{-1} \theta_1^{-1} \theta_2 \le x \} = \int_{uv^{-1} \le x} \psi(\frac{1}{u}) \psi(\frac{1}{v}) du dv = \frac{x^{\alpha}}{1 + x^{\alpha}}$$

for $x \ge 0$. Since

$$\mathbb{E}\{\theta_1^{-S}\theta_2^{S}\} = \Gamma(1-s)\Gamma(1+s) = \frac{\pi s}{\sin \pi s}$$

for |Re(s)| < 1, it follows that

$$\int_{0}^{\infty} x^{S} dH(x) = \frac{\sin \pi s}{\pi s} \int_{0}^{\infty} x^{S} dG(x)$$

for $-1 < \text{Re}(s) < \alpha$. If we extend the definition of G(x) by analytical continuation to the complex plane cut along the negative real axis from the origin to infinity, then we can write that

$$\frac{dH(x)}{dx} = \frac{G(xe^{\pi i}) - G(xe^{-\pi i})}{2\pi i x} = \frac{x^{\alpha} \sin \alpha \pi}{\pi x (1+2x^{\alpha} \cos \alpha \pi + x^{2\alpha})}$$

for x > 0. If, in particular, $\alpha = 1/2$, then

$$H(x) = \frac{2}{\pi} \arctan \sqrt{x}$$

for $x \ge 0$.

CHAPTER VII

53.1. If $\tau_{\rm k}$ (k = 0,1,2,...) is defined as in Section 49, then by Theorem 43.3 we have

$$\underbrace{P\{\lim_{k\to\infty}\frac{\tau_k}{k}=a\}=1.}_{}$$

Hence if $0 < \epsilon < a$, then

$$(a-\varepsilon)k \le \tau_k \le (a+\varepsilon)k$$

large

for sufficiently, k with probability 1 . Since $\tau_{\nu(t)} \leq t < \tau_{\nu(t)+1}$, therefore

$$\frac{1}{a+\epsilon} - \frac{1}{t} \le \frac{v(t)}{t} \le \frac{1}{a-\epsilon}$$

for sufficiently large t with probability 1. This implies that

$$P\{\lim_{t\to\infty}\frac{v(t)}{t}=\frac{1}{a}\}=1.$$

This result is also valid for $a=\infty$, if we define 1/a as 0 for $a=\infty$. This can be obtained from the previous result by trurating the recurrence times at m and letting m $\to \infty$.

53.2. Both ξ_1 and ξ_2 are necessarily discrete random variables, and there is a constant c such that ξ_1^+ c and ξ_2^- c take on nonnegative integers only. Let $P\{\xi_1^+ c = j\} = p_j$ and $P\{\xi_2^- c = j\} = q_j$ for $j = 0,1,2,\ldots$. Then we have

$$\sum_{j=0}^{k} p_j q_{k-j} = e^{-a} \frac{a^k}{k!}$$

for k = 0,1,2,... Hence $p_0 > 0$, $q_0 > 0$ and

$$p_k \le \frac{e^{-a} a^k}{q_0 k!}$$
 and $q_k \le \frac{e^{-a} a^k}{p_0 k!}$

for k = 0, 1, 2, ... Let

$$g(z) = \sum_{j=0}^{\infty} p_j z^j$$
 and $h(z) = \sum_{j=0}^{\infty} q_j z^j$.

The function g(z) is regular on the whole complex plane,

$$|g(z)| \le \frac{1}{q_0} \sum_{k=0}^{\infty} e^{-a} \frac{a^k}{k!} |z|^k = \frac{1}{q_0} e^{-a(1-|z|)}$$

and g(z) never vanishes. For $g(z)h(z)=e^{-a(1-z)}$ and $e^{-a(1-z)}$ has no zeros. Thus

$$\lim_{|z| \to \infty} \frac{\log g(z)}{z^2} = 0$$

and by Theorem 10.3 in the Appendix, it follows that $\log g(z) = a_1(z-1)$. Here we used that g(1) = 1. Accordingly, $g(z) = e^{-a_1(1-z)}$ and in a similar $-a_2(1-z)$ way we get $h(z) = e^{-a_2(1-z)}$. Obviously $a_1 \ge 0$, $a_2 \ge 0$ and $a_1 + a_2 = a$. If $a_1 = 0$ or $a_2 = 0$, then the random variable ξ_1 or ξ_2 has a degenerate distribution. If $a_1 > 0$ and $a_2 > 0$ then both $\xi_1 + c$ and $\xi_2 - c$ have a nondegenerate Poisson distribution.

53.3. Let

$$q_k(n) = P(v(i) = i \text{ for } k \text{ values } i = 1,2,..., n | v(n) = n)$$

for $1 \le k \le n$. It is easy to see that $q_1(1) = 1$ and

$$q_1(n) = 1 - \sum_{j=1}^{n-1} P\{v(j) = j | v(n) = n\}q_1(j)$$

for n > 1. Furthermore,

$$q_k(n) = \sum_{j=1}^{n-k+1} P\{v(j) = j | v(n) = n\}q_1(j)q_{k-1}(n-j)$$

for $2 \le k \le n$. Define

$$Q_k(n) = \frac{n^n}{n!} q_k(n)$$

for $1 \le k \le n$. Then we have $Q_1(1) = 1$ and

$$Q_{1}(n) = \frac{n^{n}}{n!} - \sum_{j=1}^{n-1} Q_{1}(j) \frac{(n-j)^{n-j}}{(n-j)!}$$

for n > 1. Furthermore,

$$Q_{k}(n) = \sum_{j=1}^{n-k+1} Q_{1}(j)Q_{k-1}(n-j)$$

for $2 \le k \le n$. Hence

$$\sum_{n=1}^{\infty} Q_{1}(n)z^{n} = \frac{\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}}{1 + \sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}} = \frac{\frac{\rho(z)}{1 - \rho(z)}}{\frac{1}{1 - \rho(z)}} = \rho(z)$$

for |z| < 1/e where $w = \rho(z)$ is the only root of $w \; e^{-W} = z$ in the circle |w| < 1 ,and

$$\sum_{n=k}^{\infty} Q_k(n)z^n = \left(\sum_{n=1}^{\infty} Q_1(n)z^n\right)^k = [\rho(z)]^k$$

for $k = 1, 2, \ldots$ By Lagrange's expansion we obtain that

$$Q_k(n) = \frac{k}{(n-k)!n}$$

for $1 \le k \le n$. (See (39.148) and (39.149).)

53.4. If $\tau_{\rm u}$ (0 \leq u < $^{\omega}$) is defined by (49.24), then by the solution of Problem 46.17 we have

$$\lim_{u \to \infty} \Pr\left\{ \frac{\tau_u - u(e+1)}{u(\log u)^{-2}} + \left(\le x \right) = R(x) \right\} = R(x)$$
 \tag{log u +2loglog u}

where R(x) is a stable distribution function of type S(1,1, $\frac{\pi}{2}$, -C) where C is Euler's constant.

Ιf

$$t = u(e+1) - \frac{u}{\log u} + \left(x - \frac{u}{(\log u)^2}\right) - \frac{2u \log \log u}{(\log u)^2}$$

for u.> e, then

$$\lim_{t \to \infty} \frac{u - \frac{t}{e+1}}{t(e+1)^{-2}(\log t)^{-2}} \sqrt{\frac{1}{e+1}} + \log(e+1) - x$$

$$\sqrt{-\log t - 2\log\log t}$$

and thus

$$\lim_{u \to \infty} P\{\tau_u \le t\} = \lim_{t \to \infty} P\{v(t) \ge u\} = R(x)$$

implies that

$$\lim_{t \to \infty} \frac{P}{t} \left\{ \frac{1}{t(e+1)^{-2}(\log t)^{-2}} \right\} \leq \frac{1}{e+1} + \log(e+1) + x = 1 - R(-x),$$

$$\left\{ -\log t - 2\log\log t \right\}$$

53.5. Denote by $^\Delta n$ the number of positive terms in the sequence $^{\zeta_0}, ^{\zeta_1}, ^{\zeta_2}, \dots, ^{\zeta_n}$. Then we have

$$\Pr_{m} \{ \tau_1 > n \} = \Pr_{m} \{ \tau_r \le 0 \text{ for } 0 \le r \le n \} = \Pr_{m} \{ \Delta_n = 0 \}$$

for n = 0,1,... By Theorem 23.1 we have

$$\sum_{n=0}^{\infty} \Pr\{\Delta_n = 0\} \rho^n = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} \Pr\{\zeta_n \le 0\}\}$$

for $|\rho| < 1$. By (42.192) we have

$$P\{\zeta_n \leq 0\} = 1 - q = \frac{1}{2} - \frac{\gamma}{2\alpha}$$

for $n = 1, 2, \dots$ where

$$\gamma = \frac{2}{\pi} \arctan(\beta \tan \frac{\alpha \pi}{2})$$

and $-1 < \gamma < 1$. Thus it follows that

$$P\{\tau_1 > n\} = P\{\Delta_n = 0\} = (-1)^n {q-1 \choose n} = {n-q \choose n}$$

for n = 0,1,2,... and 0 < q < -1.

By the solution of Problem 46.16 we have

$$\lim_{n \to \infty} \Pr\left\{ \frac{\tau_n}{n^{1/q}} \le x \right\} = R(x)$$

where R(x) is a stable distribution function of type $S(q,1,\cos\frac{q\pi}{2},0)$.

Hence by Theorem 49.2 we have

$$\lim_{t \to \infty} \frac{P\{\frac{v(t)}{t^q} \le x\} = 1 - R(x^{-1/q})$$

for x > 0 or

$$\lim_{t \to \infty} P\{\frac{v(t)}{t^q} \le x\} = G_q(x)$$

where $G_q(x)$ is defined by (42.178).

53.6. The random variables $x_1 = \zeta_{\tau_1}$, $x_2 = \zeta_{\tau_2} - \zeta_{\tau_1}$,... are mutually independent and identically distributed positive random variables and

$$\zeta_{\tau_n} = \chi_1 + \chi_2 + \ldots + \chi_n \quad \text{for } n = 1, 2, \ldots \text{ By Theorem 19.4 we have}$$

$$-\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{E}\{e^{-s\zeta_n} \delta(\zeta_n > 0)\}$$

$$\phi(s) = \mathbb{E}\{e^{-s\chi_1}\} = 1 - e$$

for Re(s) \geq 0. The random variable ζ_n has a stable distribution of type $S(\alpha,\beta,nc,0)$ and thus by the solution of Problem 46.8 we have

$$E\{e^{-s\zeta_n}\delta(\zeta_n>0)\} = \frac{\cos\frac{\gamma\pi}{2\alpha}}{\pi} \int_0^\infty \frac{e^{-nc^*x^\alpha s^\alpha}}{1-2x \sin\frac{\gamma\pi}{2\alpha} + x^2} dx$$

for Re(s) \geq 0 where $c^* = c/\cos\frac{\gamma\pi}{2}$. Since $q = \frac{1}{2} + \frac{\gamma}{2\alpha}$ we have

$$\sin \frac{\gamma \pi}{2\alpha} = -\cos q\pi$$
 and $\cos \frac{\gamma \pi}{2\alpha} = \sin q \pi$,

and

$$1-\phi(s) = \exp\{\frac{\sin q \pi}{\pi} \int_{0}^{\infty} \frac{\log(1-e^{-c^{*}x^{\alpha}s^{\alpha}})}{1+2x \cos q\pi + x^{2}} dx\}$$

for $Re(s) \ge 0$. If we write

$$\log(1-e^{-c^*x^{\alpha}s^{\alpha}}) = \log(c^*x^{\alpha}s^{\alpha}) + \log(\frac{1-e^{-c^*x^{\alpha}s^{\alpha}}}{c^*x^{\alpha}s^{\alpha}})$$

in the above integral and if we take into consideration that

$$\int_{0}^{\infty} \frac{dx}{1+2x \cos q\pi + x^{2}} = 2 \int_{0}^{1} \frac{dx}{1+2x \cos q\pi + x^{2}} = \frac{q\pi}{\sin q\pi}$$

and

$$\int_{0}^{\infty} \frac{\log x}{1+2x \cos q\pi + x^{2}} = \int_{0}^{1} \frac{\log x}{1+2x \cos q\pi + x^{2}} dx + \int_{1}^{\infty} \frac{\log x}{1+2x \cos q\pi + x^{2}} dx = 0,$$

then we can easily see that

$$\lim_{s \to 0} \frac{1 - \phi(s)}{s^{\alpha q}} = (c^*)^q = \left[\frac{c}{\cos \frac{\gamma \pi}{2}} \right]^q = c^q (1 + \beta^2 \tan^2 \frac{\alpha \pi}{2})^{\frac{q}{2}}$$

If either 0 < α < 1 or 1 < α < 2 and -1 < $\beta \leq 1$, then 0 < αq < 1 and consequently

$$\lim_{x \to \infty} x^{\alpha q} \underbrace{P\{\chi_1 > x\}} = \frac{(c^*)^q}{\Gamma(1-\alpha q)}.$$

Thus $\Pr\{\chi_1 \leq x\}$ belongs to the domain of attraction of a stable distribution function R(x) of type $S(\alpha q, 1, \overline{c}, 0)$ where $\overline{c} > 0$. We have

$$\lim_{n \to \infty} \mathbb{P} \left\{ \frac{x_1 + x_2 + \dots + x_n}{(b_n)^{\alpha q}} \le x \right\} = \mathbb{R}(x)$$

11

$$b = \frac{(c^*)^q \pi}{\Gamma(1-\alpha q)2\overline{c}\Gamma(\alpha q)\sin\frac{\alpha q\pi}{2}} = \frac{(c^*)^q \cos\frac{\alpha q\pi}{2}}{\overline{c}}.$$

If $\overline{c} = (c^*)^q \cos \frac{\alpha q \pi}{2}$, then b = 1 and we have

$$\lim_{n \to \infty} \mathbb{P}\left\{ \frac{x_1 + x_2 + \dots + x_n}{n^{\alpha q}} \le x \right\} = \mathbb{R}(x)$$

where R(x) is a stable distribution function of type

$$S(\alpha q, 1, c^{q}(1+\beta^{2}\tan^{2}\frac{\alpha\pi}{2})^{\frac{q}{2}}\cos\frac{\alpha q\pi}{2}, 0)$$
.

We note that if $~l<\alpha<2~$ and $~\beta=-l$, then $~\gamma=2\text{--}\alpha$, and $~\alpha q=l$. In this case

$$\lim_{s \to 0} \frac{1 - \phi(s)}{s} = \left(\frac{c}{|\cos \frac{\alpha \pi}{2}|}\right)^{1/\alpha}$$

that is

$$\mathbb{E}\{\chi_1\} = \left(\frac{c}{|\cos\frac{\alpha\pi}{2}|}\right)^{1/\alpha}.$$

CHAPTER VIII

58.1. Let us suppose that for each $i=1,2,\ldots,m$ independently of the others we perform the following random trial: We distribute a_i points on the interval (0,1) in such a way that the points are distributed independently and uniformly on (0,1). In the i-th trial denote by $\chi_i(u)$ the number of points in the interval (0,u) for $0 \le u \le 1$. Then the processes $\{\chi_i(u), 0 \le u \le 1\}$ are independent for $i=1,2,\ldots,m$ and we can easily see that the probability sought is

$$P = P\{\chi_1(u) + c_1 < \chi_2(u) + c_2 < ... < \chi_m(u) + c_m \text{ for } 0 \le u \le 1\} .$$

On the other hand if we suppose that $\{v_{\mathbf{i}}(u), 0 \le u < \infty\}$ (i = 1,2,..., m) are independent Poisson processes of density λ , then obviously we can write that

$$P = P\{\nu_1(u) + c_1 < \nu_2(u) + c_2 < \dots < \nu_m(u) + c_m \text{ for } 0 \le u \le 1 | \nu_1(1) = a_1, \nu_2(1) = a_2, \dots, \nu_m(1) = a_m\}.$$

This latter probability is given by Theorem 56.9.

58.2. Let us define

$$p_k(a) = P\{v(i) < i \text{ for } 0 < i \le k | v(a+k) = k\}$$

for k = 0,1,2,... and $a \ge 0$ where $p_0(a) = 1$, and

$$p_{k}^{*}(a) = P\{v(i) < i+1 \text{ for } 0 \le i < k | v(a+k-i) = k\}$$

for k = 0, 1, 2, ... and $a \ge 0$ where $p_0^*(a) = 1$ and $p_1^*(a) = 1$.

Then we have $W(t,0,k) = p_k(t-k)$ for $0 \le k \le t$ and $W(t,1,k) = p_k^*(t+1-k)$ for $0 \le k \le t+1$.

We can see immediately that

$$p_k(a) = P\{v(a+i) > i \text{ for } 0 \le i < k | v(a+k) = k\}$$

for k = 0,1,2,... and $a \ge 0$ where $p_0(a) = 1$.

If k = 1, 2, ... and $a \ge 0$, then we have

$$p_k(a) = 1 - \sum_{j=0}^{k-1} P\{v(a+j) = j | v(a+k) = k\} p_j(a)$$

where

$$P\{v(a+j) = j | v(a+k) = k\} = {k \choose j} \frac{(a+j)^{j}(k-j)^{k-j}}{(a+k)^{k}}.$$

Let

$$P_{k}(a) = \frac{P_{k}(a)(a+k)^{k}}{k!}$$

for k = 0, 1, 2, ... and $a \ge 0$. Then we have $P_0(a) = 1$ and

$$P_{k}(a) = \frac{(a+k)^{k}}{k!} - \sum_{j=0}^{k-1} P_{j}(a) \frac{(k-j)^{k-j}}{(k-j)!}$$

for $k = 1, 2, \dots$ Hence

$$\sum_{k=0}^{\infty} P_{k}(a) z^{k} = \frac{\sum_{k=0}^{\infty} \frac{(a+k)^{k}}{k!} z^{k}}{\sum_{k=0}^{\infty} \frac{k^{k}}{k!} z^{k}} = \frac{e^{a\rho(z)}}{\frac{1}{1-\rho(z)}} = e^{a\rho(z)} = \sum_{k=0}^{\infty} \frac{a(a+k)^{k-1}}{k!} z^{k}$$

for |z| < 1/e where $w = \rho(z)$ is the only root of the equation $we^{-W} = z$ in the circle |w| < 1. (See (39.148) and (39.149).) Thus

$$p_k(a) = \frac{a}{a+k}$$

for k = 0,1,... and $a \ge 0$ where $p_0(0) = 1$, and

$$W(t,0,k) = 1 - \frac{k}{t}$$

for $0 \le k \le t$ and t > 0. This is in agreement with (56.83).

Second, we can write equivalently that

$$p_{k}^{*}(a) = P\{v(a+i) \ge i+1 \text{ for } 0 \le i < k | v(a+k-1) = k\}$$

for k = 0, 1, 2, ... and $a \ge 0$ where $p_0^*(a) = 1$ and $p_1^*(a) = 1$.

If k = 1, 2, ... and $a \ge 0$, then we have

$$p_{k}^{*}(a) = 1 - \sum_{j=0}^{k-1} P\{v(a+j-1) = j, v(a+j) = j | v(a+k-1) = k\} p_{j}^{*}(a)$$

where

$$P\{v(a+j-1) = j, v(a+j) = j | v(a+k-1) = k\} = \frac{k!(a+j-1)^{j}(k-j-1)^{k-j}}{j!(k-j)!(a+k-1)^{k}}$$

Let

$$P_{k}^{*}(a) = \frac{P_{k}^{*}(a)(a+k-1)^{k}}{k!}$$

for k=0,1,2,... and $a\geq 0$. Then we have $P_0^*(a)=1$, $P_1^*(a)=1$ and

$$P_{k}^{*}(a) = \frac{(a+k-1)^{k}}{k!} - \sum_{j=0}^{k-1} P_{j}^{*}(a) \frac{(k-j-1)^{k-j}}{(k-j)!}$$

for $k = 1, 2, \dots$ Hence

$$\sum_{k=0}^{\infty} P_{k}^{*}(a)z^{k} = \frac{\sum_{k=0}^{\infty} \frac{(a+k-1)^{k}}{k!} z^{k}}{\sum_{k=0}^{\infty} \frac{(k-1)^{k}}{k!} z^{k}} = \frac{e^{(a-1)\rho(z)}}{\frac{e^{-\rho(z)}}{1-\rho(z)}} = e^{a\rho(z)} = \sum_{k=0}^{\infty} \frac{a(a+k)^{k-1}}{k!} z^{k}$$

for |z| < 1/e. Thus

$$p_k^*(a) = \frac{a(a+k)^{k-1}}{(a+k-1)^k}$$

for k = 0,1,..., and $a \ge 0$ where $p_0^*(a) = 1$ and $p_1^*(a) = 1$, and

$$W(t,1,k) = \frac{(t+1-k)(t+1)^{k-1}}{t^k}$$

for $0 \le k \le t+1$ and t > 0. This is in agreement with (56.88).

58.3. If we take into consideration that in the underlying Poisson process in the interval $(0, \Delta t)$ one event occurs with probability $\lambda \Delta t + o(\Delta t)$ and more than one event occurs with probability $o(\Delta t)$, then we can write that

$$W(t+\Delta t,x) = (1-\lambda \Delta t)W(t,x+\Delta t) + \lambda \Delta t \int_{-\infty}^{x} W(t,x-y)dH(y) + o(\Delta t).$$

Hence by the limiting procedure $\Delta t \rightarrow 0$ we obtain that W(t,x) satisfies the integro-differential equation

$$\frac{\partial W(t,x)}{\partial t} = \frac{\partial W(t,x)}{\partial x} - \lambda W(t,x) + \lambda \int_{-\infty}^{x} W(t,x-y) dH(y)$$

for almost all (t,x). The probability W(t,x) can be determined by solving this equation.

58.4. In this case

$$\Pr_{X}\{\chi(u) \leq x\} = e^{-\lambda u} + \sum_{n=1}^{\infty} e^{-\lambda u} \frac{(\lambda u)^{n}}{n!} \int_{0}^{x} e^{-\mu y} \frac{(\mu y)^{n-1}}{(n-1)!} \mu dy = e^{-\lambda u} \left[1 + \lambda \mu u \int_{0}^{x} e^{-\mu y} J'(\lambda \mu u y) dy\right]$$

for $x \ge 0$ and $P\{\chi(u) \le x\} = 0$ for x < 0 where

$$J(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n!)^2}$$

is a Bessel function. Hence $P\{\chi(u) = 0\} = e^{-\lambda u}$ and

$$\frac{\partial \mathbb{P}\{\chi(u) \leq x\}}{\partial x} = \lambda \mu u e^{-\lambda u - \mu x} J'(\lambda \mu u x)$$

for x > 0.

By Theorem 55.6 we have

$$W(t,0) = e^{-\lambda t} \left[1 + \lambda \mu \int_{0}^{t} (t-y)e^{-\mu y} J'(\lambda \mu ty) dy\right]$$

for $t \geq 0$ and

$$W(t,x) = \Pr\{\chi(t) \leq t+x\} - \lambda \mu e^{-\mu x} \int_{0}^{t} u e^{-(\lambda+\mu)u} J'(\lambda \mu u(u+x))W(t-u,0)du$$

for $t \geq 0$ and $x \geq 0$. In another form we can write that

$$W(t,x) = 1 - \lambda e^{-\mu x} \int_{0}^{t} \frac{e^{-(\lambda+\mu)y}}{x+y} \left[xJ(\lambda\mu y(x+y)) + yJ'(\lambda\mu y(x+y)) \right] dy$$

for $t \ge 0$ and $x \ge 0$.

58.5. By using the same notation as in Problem 58.4 we have

$$V(t,x) = 1 - e^{-\lambda x} - \lambda \mu x e^{\mu x} \int_{x}^{t} e^{-(\lambda + \mu)y} J'(\lambda \mu y(y-x)) dy$$

for $0 < x \le t$. This follows immediately from Theorem 55.9 .

58.6. If we suppose that $\chi_1, \chi_2, \ldots, \chi_n, \ldots$ and $\tau_1, \tau_2, \ldots, \tau_n, \ldots$ are numerical (non-random) quantities for which $0 < \tau_1 < \tau_2 < \ldots < \tau_n < \ldots$ and $\tau_n \to \infty$ as $n \to \infty$, then we have $\eta(t) = \eta_n$ for $\tau_n < t < \tau_{n+1}$ $(n = 0,1,\ldots)$ where $\eta_0 = 0$ and

$$\eta_n = \max(0, \chi_1 - \tau_1, \chi_1 + \chi_2 - \tau_2, ..., \chi_1 + ... + \chi_n - \tau_n)$$

Thus

$$q \int_{0}^{\infty} e^{-qt} - \mathbf{s}\eta(t) dt = \sum_{n=0}^{\infty} qe^{-s\eta} \int_{0}^{\tau} e^{-qt} dt = \sum_{n=0}^{\infty} e^{-s\eta} (e^{-q\tau} - e^{-q\tau} + 1)$$

for Re(q) > 0 and $\text{Re}(s) \geq 0$. If $\{\chi_n\}$ and $\{\tau_n\}$ are random variables, then the above identity holds for almost all realizations of the process $\{\chi(u)$, $0 \leq u < \infty\}$. If we form the expectation of the above expression, then we get

$$q \int_{0}^{\infty} e^{-qt} \underbrace{\mathbb{E}\left\{e^{-s\eta(t)}\right\}} dt = [1-\phi(q)]U(q,s)$$

for Re(q) > 0 and $Re(s) \ge 0$ where by Theorem 4.1

$$U(q,s) = \sum_{n=0}^{\infty} E\{e^{-s\eta} n^{-q\tau} n\} = e^{-T[\log[1-\psi(s)\phi(q-s)]\}}.$$

The same result can also be obtained by Theorem 54.1. The distribution function $P\{n(t) \le x\}$ can be obtained by inversion from the above transform.

58.7. First, let us suppose that $\chi_1, \chi_2, \ldots, \chi_n, \ldots$ and $\tau_1, \tau_2, \ldots, \tau_n, \ldots$ are numerical (non-random) quantities for which $0 < \tau_1 < \tau_2 < \ldots < \tau_n < \ldots$ and $\tau_n \to \infty$ as $n \to \infty$. Let us write $\gamma_n = \chi_1 + \chi_2 + \ldots + \chi_n$ for $n = 1, 2, \ldots$ and $\chi_n \ge 0$ ($n = 1, 2, \ldots$),

$$\eta_{n}^{*} = \max(0, \tau_{2}^{-\tau_{1}^{-\tau_{$$

for $n=1,2,\ldots$ and $\eta_0^*=0$. Then $\eta^*(\tau_n)=\tau_1^*+\eta_{n-1}^*$ for $n=1,2,\ldots,$ and

$$\eta^*(t) = \max(\eta^*(\tau_n), t - \gamma_n) = t - \gamma_n + [\eta^*(\tau_n) + \gamma_n - t]^+$$

for $\tau_n \leq t \leq \tau_{n+1}$. If we calculate

$$q \int_{1}^{\tau} e^{-qt-s\eta^*(t)} dt$$

we

by using (54.17) and if add these integrals for n = 0,1,2,..., then we obtain that

$$q \int_{0}^{\infty} e^{-qt-s\eta^{*}(t)} dt = \frac{q}{q+s} + \frac{s}{q+s} = \frac{e^{-(q+s)\tau_{1}}}{n=0} \int_{n=0}^{\infty} e^{-q\gamma_{n}-(q+s)\eta_{n}^{*}} (1-e^{-q\chi_{n+1}})$$

for Re(q) > 0 and Re(s) \geq 0 . If $\{\chi_n\}$ and $\{\tau_n\}$ are random variables, then the above identity holds for almost all realizations of the process $\{\chi(u)$, $0 \leq u < \infty\}$. If we form the expectation of the above expression, then we get

$$q \int_{0}^{\infty} e^{-qt} \mathbb{E}\left\{e^{-s\eta^{*}(t)}\right\} dt = \frac{q}{q+s} + \frac{s}{q+s} \phi(q+s)[1-\psi(q)] \psi^{*}(q,q+s)$$

for Re(q) > 0 and $Re(s) \ge 0$ where by Theorem 4.1

$$U^{*}(q,s) = \sum_{n=0}^{\infty} E\{e^{-q\gamma_{n}-s\eta_{n}^{*}}\} = e^{-T\{\log[1-\phi(s)\psi(q-s)]\}}.$$

The distribution function $\Pr\{\eta^*(t) \leq x\}$ can be obtained by inversion from the above transform.

58.8. If $\gamma \leq \alpha$, then

(s-q)
$$\int_{\alpha}^{\beta} e^{-qt} dt = \frac{(q-s)}{q} (e^{-q\beta} - e^{-q\alpha}),$$

if $\gamma \geq \beta$, then

$$(s-q)\int\limits_{\alpha}^{\beta}e^{-qt-s(\gamma-t)}dt=e^{-q\beta-s(\gamma-\beta)}-e^{-q\alpha-s(\gamma-\alpha)}\;,$$
 and if $\alpha\leq\gamma\leq\beta$, then

$$(s-q) \int_{\alpha}^{\gamma} e^{-qt-s(\gamma-t)} dt + (s-q) \int_{\gamma}^{\beta} e^{-qt} dt =$$

$$= [e^{-q\gamma} - e^{-q\alpha-s(\gamma-\alpha)}] - (1 - \frac{s}{q})(e^{-q\beta} - e^{-q\gamma}) .$$

These formulas prove the identity in question in each case.

61.1. In this case

$$\psi(s) = \int_{0}^{\infty} e^{-sx} dH(x) = \frac{\mu}{\mu + s}$$

for $Re(s) > -\mu$ and by (59.12) we have

$$\int_{0}^{\infty} e^{-sx} d_{x} P\{\beta(a+x) \le x\} = e^{-\frac{\lambda as}{\mu + s}}$$

for $\operatorname{Re}(s) \geq 0$ and a > 0. Hence by inversion we get

$$\Pr\{\beta(a+x) \leq x\} = e^{-\lambda a}[1 + \sqrt{\lambda \mu a} \int_{0}^{x} e^{-\mu u} u^{-1/2} I_{1}(2\sqrt{\lambda \mu a u}) du]$$
 for $a > 0$ and $x \geq 0$ where

$$I_1(x) = \sum_{n=0}^{\infty} \frac{(x/2)^{2n+1}}{n!(n+1)!}$$

is a Bessel function. Thus we have

$$\Pr_{\sim} \{ \beta(t) \le x \} = e^{-\lambda (t-x)} [1 + \sqrt{\lambda \mu(t-x)} \int_{0}^{x} e^{-\mu u} u^{-1/2} I_{1}(2\sqrt{-\lambda \mu(t-x)u}) du]$$

for $0 \le x < t$.

61.2. If we use the notation of Example 1 in Section 59, then $\alpha_1, \alpha_2, \ldots, \beta_1, \beta_2, \ldots$ are mutually independent random variables for which

$$P\{\alpha_{n} = 2j-1\} = P\{\beta_{n} = 2j-1\} = \frac{1}{2j-1} {2j \choose j} \frac{1}{2^{2j}} \sim \frac{1}{\sqrt{4\pi j^{3}}}$$

as $j \rightarrow \infty$ (j = 1, 2, ...). Hence

$$\lim_{x \to \infty} [1-G(x)]x^{1/2} = \lim_{x \to \infty} [1-H(x)]x^{1/2} = \sqrt{\frac{2}{\pi}},$$

and by (59.62) we obtain that

$$\lim_{t \to \infty} P\{\beta(t) \le tx\} = \frac{2}{\pi} \arcsin \sqrt{x}$$

for $0 \le x \le 1$. For a direct proof see (37.166).

61.3. Denote by $\Delta_n(t)$ the number positive elements in the sequence $\xi(\frac{rt}{n})$ $(r=1,2,\ldots,n)$. Since $\xi(\frac{rt}{n})-\xi(\frac{(r-1)t}{n})$ $(r=1,2,\ldots,m)$ are mutually independent, identically distributed, symmetric random variables for which $P\{\xi(\frac{rt}{n})=0\}=0$, by the solution of Problem 27.1 we have

$$\Pr_{\infty}\{\Delta_{n}(t) = j\} = \binom{2j}{j} \binom{2n-2j}{n-j} \frac{1}{2^{2n}}$$

for j = 0,1,..., n. Thus by (37.166) we have

$$\lim_{n \to \infty} P\{ \frac{\Delta_n(t)}{n} \le x \} = \frac{2}{\pi} \arcsin \sqrt{x}$$

for $0 \le x \le 1$. Now by Theorem 52.3 we can conclude that

$$\mathbb{P}\left\{\begin{array}{c} \frac{\beta(t)}{t} \leq x\right\} = \lim_{n \to \infty} \mathbb{P}\left\{\begin{array}{c} \frac{\Lambda_n(t)}{n} \leq x\right\}
\end{array}$$

for $0 \le x \le 1$ and therefore

$$P\{\beta(t) \le tx\} = \frac{2}{\pi} \arcsin \sqrt{x}$$

for $0 \le x \le 1$.

61.4. Let us use the notation of Example 1 in Section 59. In this case $\{\alpha_n\}$ and $\{\beta_n\}$ are independent sequences of mutually independent and identically distributed random variables. We have

$$P\{\alpha_n = 2j-1\} = \frac{1}{2j-1} {2j \choose j} \frac{1}{2^{2j}}$$

for j = 1,2,... and $\mathbb{E}\{\beta_n\} = m$. Hence

$$\lim_{x \to \infty} [1-G(x)]x^{1/2} = \sqrt{\frac{2}{\pi}}$$

and by (59.52) we can conclude that

$$\lim_{t \to \infty} P\{\sqrt{\frac{2}{\pi}} \frac{\beta(t)}{mt^{1/2}} \le x\} = P\{\gamma^{-1/2} \le x\}$$

where γ has a stable distribution of type $S(\frac{1}{2},\ 1,\ \sqrt{\frac{\pi}{2}}\ ,\ 0)$. Thus we can write that $\gamma=\pi/2\gamma^{\frac{*}{2}}$ where $\Pr\{\gamma \leq x\}=\Phi(x)$, the normal distribution function. Thus

$$\lim_{t \to \infty} P\{\beta(t) \le x\sqrt{t}\} = P\{|\gamma^*| \le \frac{x}{m}\} = 2\Phi(\frac{x}{m}) - 1$$

for $x \ge 0$.

61.5. We shall use the same notation as in the proof of Theorem 59.2. In this case

$$\lim_{n \to \infty} P\left\{ \frac{\delta_n}{n^{1/\alpha} r(n)} \le x \right\} = R(x)$$

where R(x) is a stable distribution function of type $S(\alpha,l,\Gamma(l-\alpha)\cos\frac{\alpha\pi}{2}$, 0) and r(t) satisfies the relation

$$\lim_{t \to \infty} \frac{h(t^{1/\alpha} r(t))}{(r(t))^{\alpha}} = 1.$$

(See Problem 46.13.) We note that $\lim_{t\to\infty} r(\omega t)/r(t) = 1$ for any $\omega > 0$. If the we define $\rho(t)$ by (59.5), then we have

$$\frac{\rho(t)}{t} \Rightarrow \frac{1}{A}$$

as $t \rightarrow \infty$. Thus by Theorem 45.4 we have

$$\lim_{t \to \infty} \frac{A^{1/\alpha} \delta_{\rho}(t)}{t^{1/\alpha} r(t)} \leq x \} = R(x)$$

regardless of whether $\{\alpha_n^{}\}$ depends on $\{\beta_n^{}\}$ or not. If we define

$$u = t + xr(t)(t/A)^{1/\alpha},$$

then

$$\lim_{u \to \infty} \frac{t[r(u^{\alpha})]^{\alpha}}{A u^{\alpha}} = \frac{1}{x^{\alpha}}$$

for x > 0 and thus by (59.6) we have

$$\lim_{u \to \infty} P\{\beta(u) \le u - t\} = R(x)$$

for x > 0. Accordingly,

$$\lim_{u \to \infty} P\{ \frac{[u - \beta(u)][r(u^{\alpha})]^{\alpha}}{A u^{\alpha}} \le \frac{1}{x^{\alpha}} \} = 1 - R(x)$$

for x > 0, or

$$\lim_{t \to \infty} \mathbb{P} \left\{ \frac{[t-\beta(t)][r(t^{\alpha})]}{A t^{\alpha}} \leq x \right\} = 1-R(\frac{1}{x^{1/\alpha}}) = G_{\alpha}(\Gamma(1-\alpha)x)$$

for x > 0 where $G_{\alpha}(x)$ is defined by (42.178).

61.6. For each $t \ge 0$ let us define $\omega(t)$ as a discrete random variable which takes on positive integers only and which satisfies

$$\{\omega(t) \leq n\} \equiv \{\delta_n > t\}$$

for $t \ge 0$ and n = 0,1,2,... Then by (59.1) we can write that

$$P\{\beta(t) \leq x\} = 1-P\{\gamma_{\omega(x)} < t-x\}$$

for $0 \le x \le t$.

In our case

$$\lim_{n \to \infty} \mathbb{P} \left\{ \frac{\gamma_n}{1/\alpha} \le x \right\} = \mathbb{R}(x)$$

where R(x) and r(x) have the same meaning as in the solution of Problem 61.4. Furthermore, we have

$$\frac{\omega(t)}{t} \rightarrow \frac{1}{B}$$

as $t \rightarrow \infty$. Thus by Theorem 45.4 we have

$$\lim_{t \to \infty} \mathbb{P} \left\{ \frac{B^{1/\alpha} \gamma_{\omega}(t)}{t^{1/\alpha} r(t)} \le x \right\} = R(x)$$

regardless of whether $\{\alpha_n^{}\}$ depends on $\{\beta_n^{}\}$ or not.

If we define

$$u = t + xr(t)(t/B)^{1/\alpha},$$

then

$$\lim_{u \to \infty} \frac{t[r(u^{\alpha})]^{\alpha}}{A u^{\alpha}} = \frac{1}{x^{\alpha}}$$

for x > 0, and consequently

$$\lim_{u \to \infty} P\{\beta(u) \le t\} = 1-R(x)$$

for x > 0. Hence we get

$$\lim_{t \to \infty} \mathbb{P}\left\{\frac{\beta(t)[r(t^{\alpha})]^{\alpha}}{\beta t^{\alpha}} \leq x\right\} = 1 - R(\frac{1}{x^{1/\alpha}}) = G_{\alpha}(\Gamma(1-\alpha)x)$$

for x > 0 where $G_{\alpha}(x)$ is defined by (42.178).

61.7. By Theorem 59.6 we obtain that

$$\lim_{t \to \infty} \mathbb{P} \left\{ \frac{\beta(t) - \frac{B_1 t}{A_1 + B_1}}{(\frac{A_1}{A_1 + B_1})^{3/2} t^{1/2}} \le x \right\} = \mathbb{P} \left\{ \frac{A_1 B_2 \delta - B_1 A_2 \gamma}{A_1^{3/2}} \le x \right\}$$

where $P\{S \le x, \gamma \le y\} = F(x,y)$. Hence it follows that

$$\lim_{t\to\infty} P\left\{\frac{\beta(t) - M_1 t}{M_2 t^{1/2}} \le x\right\} = \overline{\Phi}(x)$$

where $M_1 = B_1/(A_1 + B_1)$, $M_2 = \frac{(A_1^2 B_2^2 + B_1^2 A_2^2 - 2rA_1 B_1 A_2 B_2)^{1/2}}{(A_1 + B_1)^{3/2}}$,

and $\Phi(x)$ is the normal distribution function of type N(0,1).

61.8. (i) If
$$\Phi(s,q) = e^{-s^{\alpha} - q^{\alpha}}$$
 for $Re(s) \ge 0$ and

 $Re(q) \ge 0$, and $0 < \infty < 1$, then by (59.131) we have

$$V(x) = \frac{x^{\alpha}}{1 + x^{\alpha}}$$

for $x \ge 0$ and therefore

$$\frac{d Q(x)}{dx} = \frac{x^{\alpha-1} \sin \alpha \pi}{\pi (1+2x^{\alpha} \cos \alpha \pi + x^{2\alpha})}$$

for x > 0. Thus by (59.109)

$$\lim_{t\to\infty} \mathbb{P}\left\{\frac{\beta(t)}{t} \leq x\right\} = 1 - \mathbb{Q}\left(\frac{\mathbb{B}_2(1-x)}{A_2x}\right)$$

for $0 < x \le 1$.

(ii) If $\Phi(s,q) = e^{-(s+q)^{\alpha}}$ for $Re(s+q) \ge 0$, and $0 < \alpha < 1$, then by (59.131) we have

$$V(x) = 1 - \frac{1}{(1+x)^{\alpha}}$$

for $x \ge 0$ and therefore

$$\frac{dQ(x)}{dx} = \begin{cases} \frac{\sin \alpha \pi}{\pi x (x-1)^{\alpha}} & \text{for } x > 1, \\ 0 & \text{for } x \leq 1. \end{cases}$$

Thus by (59.109)

$$\lim_{t\to\infty} \mathbb{P}\left\{\frac{\beta(t)}{t} \leq x\right\} = 1 - \mathbb{Q}\left(\frac{\mathbb{B}_2(1-x)}{\mathbb{A}_2x}\right)$$

for 0< x ≤ 1.

CHAPTER X .

65.1. First, let us consider a general single-server queue in which customers arrive at a counter at times $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ where $\tau_0 = 0$. Denote by χ_n the service time of the customer arriving at time τ_n (n = 0,1,2,...). Let η_0 be the initial occupation time of the server immediately before t = 0. Let

$$\chi(u) = \sum_{0 < \tau_n \le u} \chi_n$$

for $u \ge 0$.

Now we shall prove that

$$\theta(t) = \sup \{ 0 \text{ and } u - \chi(u) - \eta_0 - \chi_0 \text{ for } 0 \le u \le t \}$$

for $t \geq 0$.

Define $\gamma_n = \eta_0 + \chi_0 + \ldots + \chi_{n-1}$ for $n = 1, 2, \ldots$ and $\gamma_0 = 0$.

Let $\tau_n \leq t \leq \tau_{n+1}$. If at time t the server is busy, then $\theta(t) = \theta(\tau_n)$ and $\theta(\tau_n) \geq t - \gamma_{n+1}$. If at time t the server is idle, then $\theta(t) = t - \gamma_{n+1}$ and $t - \gamma_{n+1} \geq \theta(\tau_n)$. Thus we have

$$\theta(t) = \max(\theta(\tau_n), t - \gamma_{n+1})$$

for $\tau_n \leq t \leq \tau_{n+1}$ and $n=0,1,2,\ldots$. In particular, $\theta(\tau_{n+1}) = \max(\theta(\tau_n)$, $\tau_{n+1} - \gamma_{n+1})$ for $n=0,1,\ldots$ and $\theta(\tau_0) = 0$, and consequently

$$\theta(\tau_n) = \max(0, \tau_1 - \gamma_1, \dots, \tau_n - \gamma_n)$$

for n = 1, 2, ...

These relations are valid for any single-server queue.

Now let us suppose that $\tau_0, \tau_1, \ldots, \tau_n, \ldots, \chi_0, \chi_1, \ldots, \chi_n, \ldots$ and η_0 are numerical (non-random) quantities for which $\tau_0 = 0 < \tau_1 < \ldots < \tau_n < \ldots$ and $\tau_n \to \infty$ as $n \to \infty$. If we write $\theta(t) = t - \gamma_{n+1} + \left[\theta(\tau_n) + \gamma_{n+1} - t\right]^+$ for $\tau_n \le t \le \tau_{n+1}$ (n = 0,1,...) and if we use (54.17) in calculating the integral

$$q \int_{\tau_n}^{\tau_{n+1}} e^{-qt-s\theta(t)} dt$$

for n = 0,1,2,..., then we obtain that

$$q \int_{0}^{\infty} e^{-qt-s\theta(t)} dt = 1 - \frac{s}{q+s} e^{-q(\eta_{0} + \chi_{0})} + \frac{s}{q+s} \left\{ \sum_{n=0}^{\infty} e^{-q\gamma_{n+1} - (q+s)\theta(\tau_{n+1})} (1-e^{-q\chi_{n}}) \right\}$$

for Re(q) > 0 and $Re(s) \ge 0$.

Now let us suppose that $\Pr\{\eta_0 = 0\} = 1$ and χ_n (n = 0,1,...) and $\tau_n - \tau_{n-1}$ (n = 1,2,...) are independent and identically distributed positive random variables. Let $\Pr\{e^{-s\chi_n}\} = \psi(s)$ and $\Pr\{e^{-s(\tau_n - \tau_{n-1})}\} = \phi(s)$ for $\Pr\{e^{-s(\tau_n - \tau_{n-1})}\} = 0$. Then the above identity holds for almost all realizations of the queuing process. If we form its expectation, then we obtain that

$$q \int_{0}^{\infty} e^{-qt} E\{e^{-s\theta(t)}\} dt = \frac{q}{q+s} + \frac{s}{q+s} [1-\psi(q)]V(q,q+s)$$

for Re(q) > 0 and $Re(s) \ge 0$ where

sequences of mutually independent

$$V(q,s) = 1 + \sum_{n=0}^{\infty} E\{e^{-q\gamma_{n+1} - s\theta(\tau_{n+1})}\} = e^{-T\{\log[1 - \phi(s)\psi(q-s)]\}}.$$

This last equation can be proved by using Theorem 4.1 . The distribution $P\{\theta(t) \leq x\} \quad \text{can be obtained by inversion from the above transform.}$

We note that if $P\{\eta_O = 0\} = 1$ and $P\{\chi_O = 0\} = 1$, then

$$\theta(t) = \sup_{0 \le u \le t} [u - \chi(u)]$$

for $t \ge 0$, and $\Pr\{\theta(t) \le x\}$ can be obtained by the solution of Problem 58.7.

65.2. Since $\theta(t)$ is a nondecreasing function of t, the limit $\lim_{t\to\infty} P\{\theta(t) \le x\} = V(x)$ exists for every x and by the solution of Problem 65.1 we have

$$\Omega^*(s) = \int_{0}^{\infty} e^{-sx} dV(x) = \lim_{q \to +0} q \int_{0}^{\infty} e^{-qt} E\{e^{-s\theta(t)}\}dt$$

for Re(s) > 0. Thus

$$Ω^*(s) = \lim_{q \to +0} [1 - \psi(q)]V(q, q+s).$$

Since

$$[1-\psi(q)]V(q,q+s) = \exp\{-\sum_{n=1}^{\infty} \frac{1}{n} e^{-q\gamma_n} (1-E\{e^{-(q+s)[\tau_n - \gamma_n]^+}\})\}$$

for Re(q) > 0 and $Re(q+s) \ge 0$, it follows that

$$\Omega^*(s) = \exp\{-\sum_{n=1}^{\infty} \frac{1}{n} (1 - E\{e^{-s[\tau_n - \gamma_n]^+}\})\}$$

for Re(s) > 0 . If a < b , then by Theorem 43.13 we have $\lim_{s \to +0} \Omega^*(s) = 1$, that is, V(x) is a proper distribution function and its Laplace-Stieltjes transform is given by $\Omega^*(s)$ for Re(s) ≥ 0 . It is interesting to point out that by Theorem 62.2 we can conclude that V(x) is the limiting distribution of the actual waiting time of the n-th arriving customer in the inverse queuing process, that is, in the queuing process in which the interarrival times and service times are interchanged.

65.3. By Theorem 62.2 we have

$$\lim_{n \to \infty} \Pr\{\eta_n \le x\} = \Pr\{\sup (0, \chi_0 - \tau_1, \chi_0 + \chi_1 - \tau_2, \dots) \le x\}$$

and obviously,

$$\sup_{\substack{0 \le u < \infty}} [\chi(u) - u] = \sup(0, \chi_1 - \tau_1, \chi_1 + \chi_2 - \tau_2, ...).$$

Since $\{\tau_n - \tau_{n-1}, n=1,2,...\}$ and $\{\chi_n, n=0,1,2,...\}$ are independent sequences of mutually independent and identically distributed random variables the assertion follows.

65.4. Since

and

$$\Pr_{n} \{ \rho_{0}^{*} > n | n_{0}^{*} = x \} = \Pr_{n} \{ \chi_{0} \le \tau_{1}^{+} x, \chi_{0}^{+} \chi_{1} \le \tau_{2}^{+} x, \dots, \chi_{0}^{+} \dots + \chi_{n-1}^{+} \le \tau_{n}^{+} x \}$$

for $n = 1, 2, \ldots$, the assertion follows immediately. We note that

$$\lim_{n \to \infty} \Pr\{\eta_{0} \leq x | \eta_{0} = 0\} = 1 - \Pr\{\rho_{0}^{*} < \infty | \eta_{0}^{*} = x\}$$

for x > 0.

65.5. We can interpret $G^{(r)}(x)$ as the probability that the length of the initial busy period is $\leq x$ provided that the initial queue size is r. Denote by $\chi_1, \chi_2, \ldots, \chi_n$ the lengths of the first n service times and by $\nu_1, \nu_2, \ldots, \nu_n$ the number of customers arriving during the 1-st, 2-nd,..., n-th service time respectively. If we use Lemma 20.2, then we obtain that the probability that the initial busy period has length $\leq x$ and consists of n services is given by

$$G_{n}^{(r)}(x) = \underset{\sim}{\mathbb{P}}\{\chi_{1} + \ldots + \chi_{n} \leq x, \ v_{1} + \ldots + v_{i} > i - r \text{ for } i = r, \ldots, n - l$$
and $v_{1} + \ldots + v_{n} = n - r\} = \underset{\sim}{\mathbb{P}}\{\chi_{1} + \ldots + \chi_{n} \leq x, \ v_{1} + \ldots + v_{i} < i \text{ for } i = 1, \ldots, n - r$
and $v_{1} + \ldots + v_{n} = n - r\} = \frac{r}{n} \underset{\sim}{\mathbb{P}}\{v_{1} + \ldots + v_{n} = n - r \text{ and } \chi_{1} + \ldots + \chi_{n} \leq x\} =$

$$= \frac{r}{n} \int_{0}^{x} e^{-\lambda u} \frac{(\lambda u)^{n-r}}{(n-r)!} dH_{n}(u)$$

for $x \ge 0$. Finally,

$$G^{(r)}(x) = \sum_{n=r}^{\infty} G_n^{(r)}(x)$$
.

65.6. Let us define ξ_n (n = 1,2,...) by (62.9) and let $\zeta_n = \xi_1^+$ $\xi_2^+ \dots + \xi_n$ for n = 1,2,..., and $\zeta_0 = 0$. Then $\mathbb{E}\{\xi_n^-\} = 0$ and $\mathbb{Var}\{\xi_n^-\} = \sigma_a^2 + \sigma_b^2$. By (62.12) we can conclude that η_n has the same asymptotic

distribution as $\max_{0 \le k \le n} \zeta_k$ regardless of the distribution of η_0 . Thus by the Theorem 45.6 we have

$$\lim_{n \to \infty} \frac{P\left\{\frac{\eta_n}{\sqrt{(\sigma_a^2 + \sigma_b^2)}n} \le x\right\} = 2\Phi(x) - 1$$

for $x \ge 0$ where $\Phi(x)$ is the normal distribution function.

Denote by $\nu(t)$ the number of arrivals in the time interval (0, t). Then $\nu(t)/t \Longrightarrow 1/a$ as $t \to \infty$. We can easily see that $\eta(t)$ has the same asymptotic distribution as $\eta_{\nu(t)}$. Thus by Theorem 45.5 we obtain that

$$\lim_{t \to \infty} \mathbb{P}\left\{ \frac{\eta(t)}{\sqrt{(\sigma_a^2 + \sigma_b^2)t/a}} \le x \right\} = 2\Phi(x) -1$$

for $x \ge 0$.

65.7. Let us define ξ_n (n = 1,2,...) by (62.9) and let $\zeta_n = \xi_1 + \xi_2 + \ldots + \xi_n$ for n = 1,2,... and $\zeta_0 = 0$. By (62.12) we can conclude that η_n has the same asymptotic distribution as $\max_{0 \le k \le n} \xi_k$ regardless of the distribution of η_0 . In our case

$$\lim_{n \to \infty} \mathbb{P} \left\{ \frac{\chi_1^+ \dots + \chi_n^- na}{n^{1/\alpha} \rho(n)} \le x \right\} = \mathbb{R}(x)$$

where R(x) is a stable distribution function of type $S(\alpha,1,\Gamma(1-\alpha)\cos\frac{\alpha\pi}{2},0)$ and

$$\lim_{t\to\infty} t[1-H(t^{1/\alpha}\rho(t))] = 1.$$

Furthermore, we have

$$\frac{\tau_n - na}{n^{1/\alpha}} \Rightarrow 0$$

as $n \rightarrow \infty$. Thus it follows that

$$\lim_{n \to \infty} \Pr_{\infty} \left\{ \frac{\zeta_n}{n^{1/\alpha} \rho(n)} \le x \right\} = R(x) .$$

Now by Theorem 45.10 it follows that

$$\lim_{n \to \infty} \frac{P\{\frac{\eta_n}{1/\alpha} \le x\} = Q(x)}{n + \infty}$$

where

$$Q(x) = \underset{\sim}{P} \{ \sup \xi(u) \le x \}$$

and $\{\xi(u), 0 \le u \le 1\}$ is a separable stable process of type $S(\alpha, 1, \Gamma(1-\alpha)\cos\frac{\alpha\pi}{2}, 0)$. The distribution function Q(x) can be determined by (45.232).

If $\nu(t)$ denotes the number of arrivals in the time interval (0,t), then $\nu(t)/t \Longrightarrow 1/a$ as $t \to \infty$. Since $\eta(t)$ has the same asymptotic distribution as $\eta_{\nu(t)}$, by Theorem 45.5 it follows that

$$\lim_{t \to \infty} P\{ \frac{\eta(t) a^{1/\alpha}}{t^{1/\alpha} \rho(t)} \le x \} = Q(x)$$

also holds.

65.8. By (62.167) we have

$$\eta(t) = \eta_0 + \chi_0 + \chi(t) - \sigma(t)$$

where $\chi(t)$ is defined by (62.166) and $0 \le \sigma(t) \le t$. If

$$\lim_{t \to \infty} \mathbb{P}\left\{ \frac{\chi(t) - D_1(t)}{D_2(t)} \leq x \right\} = Q(x)$$

exists and $\lim_{t \to \infty} D_2(t)/t = \infty$, then obviously

$$\lim_{t \to \infty} \frac{P}{\infty} \left\{ \frac{\eta(t) - D_1(t)}{D_2(t)} \le x \right\} = Q(x)$$

also holds. In our case

$$\lim_{n \to \infty} \frac{P}{\infty} \left\{ \frac{\tau_n}{(na_1)^{1/\alpha_1}} \le x \right\} = R_1(x)$$

where $R_1(x)$ is a stable distribution function of type $S(\alpha_1, 1, \Gamma(1-\alpha_1)\cos\frac{\alpha_1}{2}, 0)$ and

$$\lim_{n \to \infty} P\left\{ \frac{x_1 + \dots + x_n}{1/\alpha_2} \le x \right\} = R_2(x)$$

where $R_2(x)$ is a stable distribution function of type $S(\alpha_2, 1, \Gamma(1-\alpha_2)\cos\frac{\alpha_2\pi}{2}, 0)$. Thus by (49.205) we obtain that

$$\lim_{t \to \infty} \frac{P}{\infty} \left\{ \frac{\chi(t)}{(a_2 t^{1/\alpha_2})} \le x \right\} = Q(x)$$

where $Q(x) = P\{\chi\theta^{-\alpha}\}^{\alpha} \le x\}$ and θ and χ are independent random variables for which $P\{\theta \le x\} = R_1(x)$ and $P\{\chi \le x\} = R_2(x)$. Since $\alpha_1/\alpha_2 > 1$, it follows that $\eta(t)$ has the same asymptotic distribution as $\chi(t)$ as $t \to \infty$.

65.9. Since b < a and 0 < $\sigma_a^2 + \sigma_b^2 < \infty$, it follows that $E\{\theta_n\}$, $Var\{\theta_n\}$ and $E\{\sigma_n\}$, $Var\{\sigma_n\}$ exist. Thus by Theorem 59.6 and by (59.107) we have

$$\lim_{t \to \infty} \frac{P}{\infty} \left\{ \frac{\sigma(t) - \frac{B_1 t}{A_1 + B_1}}{\frac{A_1}{A_1 + B_1}} \le x \right\} = P \left\{ \frac{A_1 B_2 \delta - B_1 A_2 \gamma}{A_1^{3/2}} \le x \right\}$$

where $A_1 = E\{e_n\}$, $A_2 = \sqrt{Var\{\theta_n\}}$, $B_1 = E\{\sigma_n\}$, $B_2 = \sqrt{Var\{\sigma_n\}}$ and (δ, γ) has a normal distribution of type

$$N\left(\left\|\begin{matrix}0\\0\end{matrix}\right\|, \left\|\begin{matrix}1&\mathbf{r}\\\mathbf{r}&1\end{matrix}\right\|\right)$$

where $r = Cov\{\theta_n, \sigma_n\}/A_2B_2$. Accordingly (62.175) holds with

$$M_1 = \frac{B_1}{A_1 + B_1}$$

and

$$M_2^2 = \frac{E\{(A_1\sigma_n - B_1\theta_n)^2\}}{(A_1 + B_1)^3}.$$

Denote by ν_n the number of customers served in the n-th busy period. If b < a , then $\mathop{\rm E} \{\nu_n\}$ is finite and by Theorem 62.2 we have

$$\mathbb{E}\{v_n\} = 1/W(0) = \exp\{\sum_{n=1}^{\infty} \frac{P\{x_1 + ... + x_n > \tau_n\}}{n}\}.$$

Thus by Theorem 6.1 in the Appendix we have

$$\mathbb{E}\{\sigma_n + \theta_n\} = A/W(O)$$

and

$$\mathbb{E}\{\sigma_{n}\} = b/W(0) ,$$

and by Theorem 6.2 and Theorem 6.3 in the Appendix we have

$$\mathbb{E}\{(\sigma_n^+ \theta_n^- v_n^a)^2\} = \sigma_a^2 / W(0),$$

$$\mathbb{E}\{(\sigma_n - v_n b)^2\} = \sigma_b^2 / W(0)$$

and

$$\mathbb{E}\{(\sigma_{n}^{+} \theta_{n}^{-} \nu_{n}^{a})(\sigma_{n}^{-} \nu_{n}^{b})\} = \mathbb{C}_{0}^{\text{COV}}\{\tau_{n}^{-} \tau_{n-1}^{-}, \chi_{n}^{a}\}/\mathbb{W}(0) = 0.$$

Thus $A_1 + B_1 = a/W(0)$, $B_1 = b/W(0)$ and

$$\mathbb{E}\{[a\sigma_{n} - b(\sigma_{n} + \theta_{n})]^{2}\} = (a^{2}\sigma_{b}^{2} + b^{2}\sigma_{a}^{2})/W(0).$$

In the last equation we used that

$$a\sigma_n - b(\sigma_n + \theta_n) = a(\sigma_n - v_n b) - b(\sigma_n + \theta_n - v_n a) \ .$$

The above formulas prove that (62.175) holds if M_1 is given by (62.176) and M_2 by (62.177).

65.10. Let us use the same notation as in Theorem 62.9 and denote by ν_n the number of customers served in the n-th busy period. Then by (62.106) we have

$$1-\mathbb{E}\{e^{-w\sigma_n-s\theta_n} \rho^{\nu_n}\} = \exp\{-\sum_{n=1}^{\infty} \frac{\rho}{n} - \mathbb{E}\{e^{-w\gamma_n-s(\tau_n-\gamma_n)} \delta(\tau_n \ge \gamma_n)\}\}$$

for $\operatorname{Re}(s) \geq 0$, $\operatorname{Re}(w) \geq 0$ and $|\rho| \leq 1$. Hence it follows that

$$\mathbb{E}\{\theta_{n} \rho^{\nu} n\} = \frac{1}{2} \left[1 - \mathbb{E}\{\rho^{\nu} n\}\right] \sum_{n=1}^{\infty} \frac{\rho^{n}}{n} \mathbb{E}\{\left|\tau_{n} - \gamma_{n}\right|\}$$

for $|\rho| < 1$. Here we used that $\underset{n}{\mathbb{E}} \{ \tau_n - \gamma_n \} = 0$.

Since

$$\frac{E\{(\tau_{n} - \gamma_{n})^{2}\}}{n(\sigma_{a}^{2} + \sigma_{b}^{2})} = 1,$$

it follows that

$$\lim_{n \to \infty} \frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{\gamma_n}{n} \right)}{\sqrt{n(\sigma_a^2 + \sigma_b^2)}} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x| e^{-x^2/2} dx = \sqrt{\frac{2}{\pi}}.$$

Thus by Theorem 9.3 in the Appendix we can conclude that '

$$\lim_{\rho \to 1-0} (1-\rho)^{\frac{1}{2}} \sum_{n=1}^{\infty} \frac{n}{n} \mathbb{E}\{|\tau_n - \gamma_n|\} = \lim_{\rho \to 1-0} (1-\rho)^{\frac{1}{2}} \frac{2\mathbb{E}\{\theta_n \rho^{\nu_n}\}}{\frac{1}{n} \mathbb{E}\{\rho^{\nu_n}\}} = \mathbb{E}\{|\tau_n - \gamma_n|\} = \mathbb$$

Since

$$\frac{(1-\rho)^{\frac{1}{2}}}{1-\mathbb{E}\{\rho^{\nu_n}\}} = \exp\{\sum_{n=1}^{\infty} \frac{\rho^n}{n} \left[\mathbb{P}\{\tau_n \ge \gamma_n\} - \frac{1}{2} \right] \}$$

for $|\rho| < 1$, it follows that

$$\mathbb{E}\{\theta_{n}\} = A = \left(\frac{\sigma_{a}^{2} + \sigma_{b}^{2}}{2}\right) \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n} \left[\Pr\left\{\tau_{n} \ge \gamma_{n}\right\} - \frac{1}{2}\right]\right\}.$$

If we use the notation $\psi(s) = E\{e^{-s(\tau_n - \tau_{n-1})}\}$ for $Re(s) \ge 0$, then $\psi(s) = 1$ —as+o(s) as $s \to +0$.

Since

$$\frac{1-\mathbb{E}\{e^{-s\gamma}n\}}{s^{1/2}} = \left(\frac{1-\psi(s)}{s}\right)^{\frac{1}{2}} \exp\{-\sum_{n=1}^{\infty} \frac{1}{n} \left[\mathbb{E}\{e^{-s\gamma}n \delta(\tau_n \ge \gamma_n)\} - \frac{1}{2} \mathbb{E}\{e^{-s\gamma}n\}\right]\}$$

for Re(s) > 0, we obtain that

$$\lim_{s \to +0} \frac{1 - E\{e^{-n}\}}{s^{1/2}} = A(\frac{2a}{\sigma_a^2 + \sigma_b^2})^{1/2}.$$

Hence

$$\lim_{x \to \infty} \Pr\{\sigma_n > x\} \ x^{1/2} = \frac{A}{\pi^{1/2}} \left(\frac{2a}{\sigma_a^2 + \sigma_b^2}\right)^{\frac{1}{2}}$$

and

$$\lim_{n\to\infty} \Pr\left\{ \frac{\sigma_1^+ \sigma_2^+ \ldots + \sigma_n}{n^2 A^2 a/(\sigma_a^2 + \sigma_b^2)} \le x \right\} = 2[1-\varphi(\frac{1}{\sqrt{x}})]$$

for x > 0. This limit theorem and the relation

$$\frac{\theta_1 + \theta_2 + \ldots + \theta_n}{n} \implies A$$

as $n \rightarrow \infty$, by the solution of Problem 61.5 or by the 7-th statement of Theorem 59.2, imply that

$$\lim_{t \to \infty} \frac{P}{\left[\left(\sigma_a^2 + \sigma_b^2 \right) t \right]^{1/2}} \le x = 2\Phi(x) -1$$

for $x \ge 0$ where $\phi(x)$ is the normal distribution function.

65.11. Let us use the same notation as in the solution of Problem 65.10. In this case by (61.191) and (61.192) we have

$$\lim_{n \to \infty} P\{ \frac{\tau_n - \gamma_n}{(nh)^{1/\alpha}} \le x \} = R(x)$$

where R(x) is a stable distribution function of type $S(\alpha,-1,\Gamma(1-\alpha)\cos\frac{\alpha\pi}{2},0)$. Hence it follows that

$$\lim_{n \to \infty} \frac{\mathbb{E}\{\left|\tau_{n} - \gamma_{n}\right|\}}{(nh)^{1/\alpha}} = \int_{-\infty}^{\infty} |x| dR(x) = \frac{2[-\Gamma(1-\alpha)]^{1/\alpha}}{\Gamma(\frac{1}{\alpha})}$$

(See (42.198).) Thus by Theorem 9.3 in the Appendix it follows that

$$\begin{split} &\lim_{\rho \to 1-O} (1-\rho)^{\frac{1}{\alpha}} \sum_{n=O}^{\infty} \frac{\rho}{n} \underbrace{\mathbb{E}\{|\tau_{n} - \gamma_{n}|\}}_{=} = \\ &= \lim_{\rho \to 1-O} (1-\rho)^{\frac{1}{\alpha}} \underbrace{\frac{2\mathbb{E}\{\theta_{n}\rho^{\nu_{n}}\}}{m}}_{=} = 2h^{1/\alpha} \left[-\Gamma(1-\alpha)\right]^{1/\alpha} \;. \end{split}$$

Since

$$\frac{\frac{1}{(1-\rho)^{\alpha}}}{1-E\{\rho^{n}\}} = \exp\left\{\sum_{n=1}^{\infty} \frac{\rho^{n}}{n} \left[P\{\tau_{n} \geq \gamma_{n}\} - \frac{1}{\alpha}\right]\right\}$$

for $|\rho| < 1$, it follows that

$$\mathbb{E}\{\theta_{n}\} = A = h^{1/\alpha} \left[-\Gamma(1-\alpha)\right]^{\frac{1}{\alpha}} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n} \left[P\{\tau_{n} \geq \gamma_{n}\} - \frac{1}{\alpha}\right]\right\}.$$

If we use the notation $\psi(s) = \mathbb{E}\{e^{-s(\tau_n - \tau_{n-1})}\}$ for $\text{Re}(s) \geq 0$, then we have

$$1 - \psi(s) = as + \Gamma(1-\alpha)hs^{\alpha} + o(s^{\alpha})$$

as $s \rightarrow +0$. Since

$$\frac{1-\mathbb{E}\{e^{-s\sigma_n}\}}{s^{1/\alpha}} = \left[\frac{1-\psi(s)}{s}\right]^{\frac{1}{\alpha}} \exp\{-\sum_{n=1}^{\infty} \frac{1}{n} \left[\mathbb{E}\{e^{-s\gamma_n} \delta(\tau_n \ge \gamma_n)\} - \frac{1}{\alpha} \mathbb{E}\{e^{-s\gamma_n}\}\right]\}$$

for Re(s) > 0, we obtain that

$$\lim_{s\to +0} \frac{\frac{1-\mathbb{E}\{e^{-n}\}}{s^{1/\alpha}} = \frac{A \ a^{1/\alpha}}{h^{1/\alpha}[-\Gamma(1-\alpha)]^{1/\alpha}} \ .$$

Accordingly, we have

$$\lim_{x \to \infty} \frac{P\{\sigma_n > x\}x^{\frac{1}{\alpha}}}{r(1-\frac{1}{\alpha})h^{1/\alpha}[-r(1-\alpha)]^{1/\alpha}}$$

and thus

$$\lim_{n \to \infty} \frac{P\{\frac{(\sigma_1 + \sigma_2 + \dots + \sigma_n)h[-\Gamma(1-\alpha)]}{a A^{\alpha}n^{\alpha}} \le x\} = R^*(x)$$

where R*(x) is a stable distribution function of type $S(\frac{1}{\alpha},1,\cos\frac{\pi}{2\alpha},0)$. Furthermore, we have

$$\frac{\theta_1 + \theta_2 + \ldots + \theta_n}{n} \Longrightarrow A$$

as $n \to \infty$. Thus by the solution of Problem 61.5 or by the 7-th statement of Theorem 59.2 we obtain that

$$\lim_{t\to\infty} \Pr\left\{\frac{\theta(t)a^{1/\alpha}}{h^{1/\alpha}[-\Gamma(1-\alpha)]^{1/\alpha}t^{1/\alpha}} \le x\} = 1 - R^*(\frac{1}{x^{\alpha}}) = G_{1/\alpha}(x)$$

for x > 0 where $G_{1/\alpha}(x)$ is defined by (42.178). This result is in agreement with (62.194).