SCLUTICHS
CHAPTER I
13.1.  We nave |¢ (s) - ¢ (s < fie, - @nH for Re(s) = 0 . Thus

for every e > O there exists an N such that [e (s) - ¢ (s)| < e when-

ever m>N, n>N and Re(s) =0 . Accordingly, the sequence {@ﬂ(s)}

is a uniformly convergent sequence of continuous functions for Re(s) =90 .

Thus  1im @n(s) = ¢(s) exists for Re(s) =0 and ¢(s) is a continucus
n->w

function of s for Re(s) =0 . (We have |o(s) - @n(s)| <g if n> N

and Re(z) =0 .)

First, we shall prove that ¢(s) ¢ R . Let us choose an increasing
s . . ‘ J
sequence of positive integers nq, n,s..., Ny,... such that h@p -2 Il <1/2
] 13 i
¢ d

if n»> ny - Then Ién ) - o I <1/29 for j=1,2,..., and trds impiies
J* J

that
e k-1
Lol -ep fl< 12
J=k . g+l J

for k=1,2,... . By making use of Lemma 3.2 we can conclude that

#(s) -9 (s)= T [o. (s) -0 (s)]cR
i jzk D541 "y e

and
nk J=k rﬁ&l nj'

for k=1,2,... . Since ¢ (s) ¢ R and ¢(s) - ¢_(s) ¢ R, it follows
Y .l.k S l’lk A

< 1/21{“'-L

that o(s) e R .
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"If n o> N s then we have

1 1 3

o - o ||<|l® -2 e, -0 ||< T3t =y

Jo - g ll<lis = o, 1 lley = eall< 23+ 5= 55
for k = 1,2,... . This implies that lim [le- @DI! =0 . So we can

n > <«
conclude that the space R 1is complete.
13.2. Let
_ oy . k _ (n), _ .
an(S) = _.Z_ a,. s eAﬁ and HanH— 1&_":Z_m]a][{ | <

for m =1,2,... . By assumption, for every ¢ > 0 there exists an N

i

such that

=2l = 1 la -8

-0

<

if m>N and n >N . This implies that for each k (k = 0, +1, +2,...)
ali?n)_ a]in)| <e if m>N and n > N, that is, {af{”) cn=1,2,...] is

1im a.f{n) = ak exists for each k =

a Cauchy sequence. Thus the limit
n -+ «

O, +1, +2,... . Now for any fixed K we have

K
§ (m) _ (n)l<€

la
Kk )

"

if m>N and n>N . Let m~» e« , Then we obtain

K
I la - a™ s«

k= -K
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for' n>N and for any K. Iet X -+ « . Then we obtain

TN ) M
kzgmlak a 'l se
for n>N . Since Iakl ;:Iak - ain)l + [akn)l , it follows that
Tladce+ 1 1%
__mlakl_e L lak
Accordingly, if
ae) = Ta s,

then a(s) e A and [a-a|[se if n>N . This implies that
lim ||a - an||= 0 . So we can conclude that the space A is complete.
n-> o o

13.3. We observe that ¢&(s) = E{e®"}  where n has the density
function f(x) = e"IXI /2 for -« < Xx < . Thus o(s) ¢ R and

L

+ _ —snt. _ 1,1/ ~sxx .. _1
¢ (s) = Efe =5+ 3 [ e dx = (1 T

~ 0

for Re(s) > -1 .

In this case we can also apply (5.8) with O < e < 1 to obtain

dz

¥ z(S-z)(l—zZ)
€

C

for Re(s) > € > 0 . In the right half-plane Re(z) > O , the integrand
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has two poles z =38 and z =1 , and by Cauchy's theorem of residues

(see e.g. W. Osgood [ 23 p. 162]) we obtain that

ot (s) =

for Re(s) > 0 .

If we apply formula (5.1), then we obtain that

+ 1 . S dz
ee) =5t Mmoay ] 2 "
e >0 ~ La z(s-z)(1-z7)
=5+ Un 3) o
e>0 e () (s ¥
=’l§+ S [ [ 5 -~y 10y =
m(l-s") O s™+y~ 1+y
__]; S,_ 1‘_..__!‘- =l'- ———1_-—'
=5 F 1-g2 (55 2] 2 1+ 1+ 5)
-5
for Re(s) > 0.
-Sv_

13.4. Since %(s) = E{e My where

- 511 = (MyJ ]
Plv, =m - 2§} (J.)p q

for j =0,1,..., m , it follows that ¢(s) e R . If we write

¢(s) = %l <?)pj i m(m2d)s

44
Jj=0

and apply T term by term, then we obtain,that



e (o)
) (J.)pj i m2is g ¢ Mpd &9 =
2j<m 2jzm

o7 (s)

1+ (M I e ™20s
2j<m 9

The same result can be obtained by using formula (5.1). Accordingly, if
Re(s) > O , then

st (s) %-@(O) oum S 2ME) 4.

e >0

NOj

2(0) + 1im == [ [ ‘P(}y) _ 2(-1y) 4 §X=

€+ 0
€

=100+ 1im %f s le(iy)] + y Relo()] gy
€

2 e >0 (s+y)y

Thus we obtain that

‘i’ Z Mpd™ J' s_sin( J—m)y +y cos(23-m);y oy

' (s) =
j=0 9 (5% y°)

mlr—J

for Re(s) > O . If we take into consideration that

oas o . -4
2S and f sin ay dy = m(l-e )

0 (s™+ y )y ) 2s

Os+y2

for a >0 and Re(s) > O , then it follows that
1

5
+ 1 (pdd™ e mas 2;;35//2 "l

2j<m J 2j>m

rj-

V@+(S) =

which is in agreement with the previous result.



©13.5. Since ¢(s) = Efe "'} where
X 2
P{n < x} =*E—_“ fe_u/2du,
~ Von —x
it follows that ¢(s) ¢ R and
2
X
+ ® —SX- T
<I>+(s)=E{e_Sn}=-32;+—1—fe 2 ax =
o /21 0
L 72 = - sn)? L ST e 2
=5+ [ e dx = 5+ == [ ¢ “ du
yor 0 /o s
|
|
If we} introduce the function
|
2
s°/2 s 2
w(s) = & J 072 g
o 0
for-any complex s , then we can write that .
‘ 2
s7/2
+ +
¢ (s) = 1te - w(s)

for any conl;;lex S . We note that the function w(v2 is)/n/1 has been

tabulated by K. A. Karpov [ 17 1.

13.6. Let £ be a nomnegative random variable for which E{e S%)=
¢(s) if Re(s) 20 . Let P{6 <x} =1~ e for x>0, and

Fle 2£x} =0 for x <O . Then




ST

for Re(s) >=- A . If & and 6 are independent, then

P A-38

pie-S(E-8), _ 2¢(s)

for O < Re(s) < x . Accordingly,
A (s) —s[e-67"
T{ 'A——_—‘;} = E{e }

for Re(s) 20 .

If x>0, then

«©
b

. + X
E{e_s['g—e] lE=x}= 1] e—s(x—u)—xu au+ [ AL
- 0

X
-SX -AX
Ae SX s e
PN for s #x,
et e fop 5 =2
Hence
-sé ~AL
Ai{e "7)}- sE{e "} .
. ~s[E-67+ X - 5 if sAX,
Efe } =
AE{Ee ) + e if s =1,
and Re(s) 20 .
Finally,
()\cp(s) - s¢(}) ,
if s # 1,
T{ _;i,i_(_g_)} = A -3 . .
d(A) = xp'(N) if s=2x,

and Re(s) > O . The same result can be obtained by applying formula (5.8).
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13.7. Let g=Xx+ 1% where X and 1 are real nurbers. Since

i o OXTSX ax = | o—AX e—nx+sx ax = -%'Z
0 0 -
for Re(s) = 0 , we can write that
1 -itn-s(-n), _ _ 1
X E{—e b= s -q
for Re(s) = 0 where n is a random variable with density function f£(x) =

xe_AX;

for x >0 and f(x) =0 for x < O . This shows at once that
l/(s—jq) e R . Thus by (5.1)
i -

o(s) . _  ¢(0) , s ¢(z) .
E{ s - q} T 2q +£limo oni IJ: z(s-2z)(z~q) dz
€

for Re(s) > O . Since
l = l [ l _ l ]
(s-2)(z-q)  (s-q) "s-z =~ Q-z
if s#qg and z € L, it follows that

o(s) , _ ¢(0) 1 L 1 -
M q} = - g + -0 [0 (b,), -5 ¢(0)]

+

5 7@ - 500] = 2y [7(e) - 247(@)]

for Re(s) >0 and s #q . For Re(s) >0 we obtain . the formula to

be proved by continuity.

13.8. Let & De a nonnegative random variable for which E{e-sg} =

¢(s) if Re(s) 20 . Let P{e <x}=1- e_kx for x >0 and A,Ij{e <%}l =

O for x <0 . Then
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for Re(s) > - . If & and 6 are independent, then

for -x < Re(s) <0, and

oy A8} - peele Tyl 243
" A

:/11-./)

for Re(s) > - X . For if x > O, then

) + X @ —g(u~-X)-AU, _
E{e s[6-£] € = x} = Af )‘udu-mfe du =
0 X
-AX -AX A
=1 -~¢g + e v s’

and unconditionally we have

>J

S+
e I SRR 1O

N S

for Re(s) > = A . The same result can also be obtained by using formuls

(5'9)0 .
Note. If @(s) e R, and ¢+(s) =;£{®(s)} , then we canWrite that
N N +
T{e(-2)} = e(-s) - ¢ (-5) + ¢(0)

for Re(s) =0 . This follows from the following identity.
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. + Lt
e-—u[-x] = 5% _ es[x] +1
which holds for any s s&snd real x .

Thus we can deduce the solution of Problem 13.8 from the solution of
Problem 13.6 if Re(s) = O and by analytic continuation we can obtain the

solution for Re(s) > O too.

-k )

13.9. Let & be a nonnegative random variable for which E{e 551 = ¢(s)
if Re(s) >0 . Let

" .

! m1 -Ax (Ax)"

| 1 - Z e —(-—ﬁ—?— £ x20,

‘ P{e < x} = J=

K 0 if x <0
Then
) -5 m,, m
E{e 1} =i /()*s)

for Re(s) > - X o If £ and 6 are independent, then

Ng{e‘s“i“’,)} = Po(s)/Oms)®

for 0 <Re(s) <x , and

e

m . T
T{ _L Q(ri)}= E{e_sijé_ 6] }
(xs)” 7 -

for Re(s) 20 .

If x>0, then
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+ m X } m-1 j
—alfe . X a(xeu)— L .
E{e s[g-0] e = x} '—"(_m%l—j—!--" el U)--Au um»l du+ T e AX (_>\)_<:_2__=
Mo j_:o J-
// _ R (2 | . .
A 7B gTAX P 3‘—,— ™ (-2)= 29 (=)™
< J=0 i for s # X,
(A-3
ax B od
ey a8 for s=2x.
\. j=0 9"
Hence
é ol 1360y w5 g, m
Wy (s) = 3 g [ (A=8)"-A" (A=s) ]
. + ¢ £ 0 J:
(e SLE-01 -—-< - - if s #,
~o, (A-s)
m J,d )
\ z ("1) A .? (A) if o= ) R
=0 J- ,

and Re(s) > O . The same result can be obtained by using formula (5.8).

13,10. If we use the same notation as in the solution of Problem

13.9, then we can write that

m 4
T{ *—4’—(;:1—3—)—} - ple~3l0-81,
" (Ms) ~

for Re(s) 20 . If x> O, then we have
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. X m-1 © m-1
s{o~-£] _ S =au (Au) -s(u-x)-au ()
E{e le = x} E’) D) AGu + {( e )T Adu
_ m-1 -AX (Ax)j m-1 -xx (Ax)? A \n=J
j=0 R B ! '

Hence it follows that

A g (=s) ml o Cpyd 3 5@y A e
T{__._—_—-—..} =] - - [1 - ( (_) UJ
An (A + S)m jZO J! A+ s

for Re(s) 20 .

13.11. In this case we can write that

)

y(s) =

I (sta.)
=1 7

for Re(s) > O where Trm_l(s) is a polynomial of degree < m-1 . Since
ly(s)] <1 for Re(s) 20 , it follows that Re(ocj) >0 for j=1,2,...

By formula (5.8) we have

S —-—
B o i i
+
CE
for Re(s) > ¢ > O where ¢ 1s a sufficiently small positive number. In

the right half-plane Re(z) > O , the integrand has poles z = s and
(j = 1,25000,m) . If Ops Opseess G .8TE distinet and. s # o,

(Jy=1,2,..., m) , then by Cauchy's theorem of residues we obtain that
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_ m sé(a,)m - (-a,)
£{¢(S)Y("S)} = ¢(s)y(-s) + Z (Sia,r;};]: ! I (i.- a,)
| J=1 373 %] *

for Re(s) >0 and s # o (J=1,2,00., m) .

If the numbers 15 Onserey O AT not distinct, then we can also

apply Cauchy's theorem of residues to obtain T{¢(s)y(-s)} .

13.12. As in the solution of Problem 13.11 we can write that

|
!
|
; >
for Re(s) 2 0 where L

Re(aj) >0 for j=1,2,..., m.

(s) 1s a polynomial of degrée <m-1 and

* By (5.1) we have

'Q(Z)“m;l(_z) :

5
™ L, z(s-2) (o= 2) ... (o ) Az

(e (s)y(~8)} = 9i92§§92-+ 1im
o~ € >0

N

for Re(s) >0 . If %}a?.“,%lamuﬁ%hmtmﬁifwemmpathl
fraction expansion in the integrand and apply (5.1) repeatedly, then we
obtain that

+
m §¢ (aj)ﬂm—l("a'), 1

- T{e(s)v(-s)} = ¢+(S)Y(4S) + 02 (s—a.)a. —~ T (.- a.)
J= J i#o0

1

for Re(s) >0 and s # o (J = 1,2,..., m)‘ where @+(s) = T{e(s)} .
, ; e e FEAS
In general we can write that

S Gm_l(s)
(S—al)(S-az)-.-(S—am)

T{o(s)y(-58)} = o' (8)y(-s) +
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for Re(s) >0 and s # o (j =1,2,..., m) where Gm_J(s) is a
polynomial of degree <m-1 . The polynomial GMFl(S) is uniquely determined

by the requirement that

2 G, (z) - <I>+(z)ﬂm_1(—z) =0

whenever gz = aj (j =1,2,..., m) and if the number aj occurs r ‘times
among, Q15 Gpseees O s then g = aj 1s a root of multiplicity r of the

above equation.

13.13. As in the solution of Problem 13.11 we can write that

1Tm—l(s)

m

T (s+ a.)
=1 Y

vY(s) =

for. Re(s) > O where 1%PJKS) is a polynomial of degree <m-1 and

Re(aj) >0 for j=1,2,..., m.

Ey (5.95 we have

) = s Y(z)¢(-2)
T{y(s)e(-8)} = 1 + 5 { z(s-z) 92
€
for Re(s) 20 where e is a sufficiently small positive number. In the

left half-plane Re(z) < O , the integrand has poles 2z = - aj for

J=12,..., m . If GUys Onseces O are distinet, then by Cauchy's theorem

of»reSidues we obtain that

o m osela)n o(-a,)
T{y(s)¢(-s)} =1 - } Jom=1l ] 1
p 3=l

.sta. I (a,~ o,
uJ(s aJ) i#j(aJ al)
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for - Re(s) 20 .

If the numbers OG5 Oppeees O are nct distinct, then we can also
[a4

apply Cauchy's theorem of residues to obtain T{y(s)é(-s)} .
A

13.14. Let P{v=3j}=pg for j =0,1,2,... . Then Els'} =

p/(1-gs) for |s] <1/q . If & and v are independent, then

B(s) = RS EE)

for q < |s| £1 . Accordingly, we have
v |

; ,
| I &i——:_q(s)} = 5islEvy

for |s| <1 . If k=0,1,2,..., then

+ KoL .
Bl je=kt=p Jod KT+

J=0
k+1 i k+1
- (1-
pS S E qs)q for s #q ,
k : -
(1 + kp)g for s=gq.

If we multiply the above equation by P{¢ = k} and add for k = 0,1,2,...
Va4

then we obtain that

p s g(s) - (1-s)q g(s)

if s #q,

(R EEE) =
g(q) + p qg'(a) if s=q,

and |s| <1 . The same result can be cbtained by using (11.10).
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" 13.15. If we use the same net ation as in the solution of Problem

13.14, then we can write that

for 1 < |s] <1/q . Accordingly, we have

ng R8Q/s)s g [vel"y L) as@@s)

1-gs 1-gs
for ls| <1/q . For
| + k ° L
| E{S[\)ng:| le=k}=p ) qJ+p ) q’J Sjk=
| ~ j=0 J=k+l
=1 - k+l + p_(i{j_l__é
9 1-gs

whenewer. k = 0,1,2,... and |s| < 1/q . If we multiply this equation by
Ng{g = k} and add for k = 0,1,2,..., then we obtain the above formula. .

The same result can also be obtained by using formula (11.12).
Note. If a(s) e A and a+(s) = N{a{s)} , then we can write that
vy ooy - oy 4
Ma@) =a@ - a' @) +a@)

for |s| =1 . This follows easily from the following identity

+ +
gLkl _ ok Tkl 4

which holds for any s and k =0, +1, +2,... .

- Thus we can deduce the solution of Problem 13.15 from the solution of -

Problem 13.14 if |s| = 1 and by analytic continuation we can obtain the

solution for [s| <1 too.
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. 13.16. Let

mtj-1 .
P{v =]} = p" o
~ m-1
for j = 0,1,25..... Then E{u }=p /(l—qo for |s| < /g . If ¢ and

v are independent random variables, then

{ &-vy = EL___.iiﬁi)
(s-q)"

for q < Isl <1 and

n{ ——————Eiél& = E{s[g V] }
~ (s—)™
for |s| <1. If k=0,1,2,..., then

+ k . k .
[e-v) m mtj-1y J k=j, . m mtj-1, J
E{s le = k1 Yo« Ya’s” Y4l-p § (Y7 =
// - m-1 X ' . .
g iy mrk-]
Pt - T (O™ ) - p(s-0)™
L= - for s #q ,
- < . (s~q)"
T omky § k=]
} LY g A for s=q.

G
If we multiply this equation by P{¢ = k} and add for k = 0,1,2,..., then

we obtain that

p's g(s) _ mil L @), oM sa)? - p ICE RPN
(s-)" =0 ' agd (s-)" '
n{__%_(.S__)_} s-q J q s=q
(S—Q) Iil i ((_i:]_gr__ng_(_g_).) for s =q
j20 4t T g ’
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amd |s| < 1.

Note. In the above proof we used the following identity

b . . b . .
Kktl a b- k+l atk+l -
. s T (D)’ - g7 (T -0 @
§@Egdeed - 307 j=o_ 9
. b b+l
J=0 (s - q)

which holds if s #q and a and b are nomnegative integers. This

follows from the relation

o1 e ¥ kg, L& as o (g
T L@ ST =gt (B Ty )
! dz J=0 zZ= * dz z=1
|

13.17. If we use the same notation as in the solution of Problem

13.16, then we can write that

E(sV"°) = p" g(1/s)/(1-gs)"
for 1< |s| <1/q and

‘ m +
ng EBU/s)y - gglv-ely
M (1—q3) A »

for |s| <1 . If k=0,1,2,..., then

+ k . © X . s
— ntj- | - -
E{SE\) £l £ = k) = pm 5 Jll)q.J+ My (m+J11)q,] Jk o
o~ - 3e0 ™1 =kl T

- m-1 .. . om=1 . - m-j
1- 7 <m:;k> I qmk=d Ty G ol itked (Bs

if

ik p” q sk j 1-gs
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for |s| < 1/q and hence it follows that
m-1 J Jm m-j
a )
Hn_ji(l/s) }=1- 7 Q_.(__Qh%iﬁ;)[l - (ngg) ]

!
~(1-gs)™ =0 4°  aq

for |s| < 1/q .

(11.12).
Note. 1n the above proof we used the relations
T mej-l 1
] s = 22—
Jj=0 (1-gs)
P -1 ") e @
j=o ™1 (1-gs)™ j=0 I (1-as)™
and
® . . 1 . k-3
Tl 2Ty ey (ee)T
T m-1 7 .= J -
J=k+1 J=0 (1-gs)

which hold for |[s]| < 1/q .
13.18. We can write that

b(s) = wm_l(S)

=3

(1-8.8)
=1
for |s| < 1 where nm_l(s)

|b(s)| <1 for lIs| <1, it follows that

By formula (11.10) we have

(z)b(~0

l-5
(1-z )(s—a)

a(s)b@? = 35

C+

€

is a polynomial of degree < m-1 .

8] <1 for 3= 1,2,

The same result can also be obtained by using formula

Since

m .
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for Is] < 1-e¢ where e 1s a sufficiently small positive number. In the

unit circle |z| < 1 the integrand has poles at z =s and z = B for

j=12,..., m . If Bys Bos--es B are distinct and s#sj (j = 1,2,0.., m),

m

then by Chaucy's thecrem of residues we obtain that

m (1-s)gT a(g,) =

1., _ 1 J g m1
Yo (=)} = =) - :

I{a(s)b(2)} = a(s)b(3) jzl (18,1 (5-8,)

(l/sj) 1

n (B.,- B.)
w9t

for |s| <1 and s # Bj (j =1,2,..., m) . If Bys Bosevs B are not
© distinet, then we can obtain T{a(s)b(3)) in a similar way.
|

13.19. As in the soluticn of Problem 13.18 we can write that

b(s) =

for |s| <1 where =_ .(s) 1s a polynomial of degree <m-1 andw[BJ.[.x 1

m-1
for j=1,2,..., m . By (11.12) we have

1
1 _, . 1s o @@
Ja@ien =1+ 5% | e @
C

€

for |s| <1 where e is a sufficiently small positive number. In the
domain |z| > 1 the integrand has poles at z = 1/83‘ for j =1,2,.0., m .

If»‘ 51,, .3*2,..., B

n 2Te distinet, then by Cauchy's theorem of residues we-

obtain that
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. m
1 m &l—s)s:L a(gm ., (1/85) ]
T{a{z)b(s)} =1 - ~ J J -

for J|s| <1. If Bys Bysee+s B are not distinct, then we can obtain

Ng{a(%)b(s)} in a similar way.

13.20. let {vn} be a sequence of mutually independent random
variables for which Nf{vn =J} = hj for j =0,1,2,... and n=1,2,... .

Define a sequence of random variables &, (n = 0,1,2,...) by the recurrence

"~ formula
|
_ +
| e = LE gt 1= v]
where n = 1,2,... and go is a random variable which takes on only non-
negative integers and which is independent of {vn} . Itwdén easlly be

seen that {gn} is a homogeneous Markov chain with state space I = {0,1,2,...
and transition probability matrix = .. Accordingly, we can use the afore-
mentioned representation of {gn} in finding the distribution of En feor
n=1,2,... . lLet us introduce the notation

g
Un(s) =N§ﬁs n

for n=0,1,2,... and |[s] <1 and
h(s) = )} h, sJ
j=0 I
for |s] <1 . Then we can write that

U, (s) =IE{Un_l(s)sh(%0}

for n=1,2,... . By Theorem 10.1 we obtain that
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. R 1
o n 75{10%[1—psh(:£)]} ég{lcg[l pSh(s)]}
I Us) =e S 1{Uy(s) T }
n=0 - 1 - esh(3)

for |s| <1 and |p| <1 . If, in particular, P{ey =0} = 1, that is,

- ~M{1og[ 1~psh(X) 1}

n ~~ S

Z U(s)p =e
n

n=0

for |s| <1 and |p| <1 .

We observe that if |p| < 1 , then the equation

oh(z) = z

has exactly one root z = §(p) in the unit cirele |z| <1 . If we use

the notation. Nn = v1+ v2+...+ Vn for n 5A1,2,.ﬂ., and_ NO.= 0 B then ‘

by Lagrange's expansion we obtain that

k ; Tk _ n
[6(p)]" = nzk = PIN_ = n-k}o
for k =1,2,....and |p| < 1.

Thus by (12.2) we can write that
1 + -
1-osh(3) =g (s, plg (s, o)
for |s| =1 and |p| <1 where

g (s, p) = 1= 55(p)



for |s| <1 and

N 1 - psh(3)
g (S: p) = 1 - S(S(p)—n

for |s| > 1 . Hence by (12.13) we have

L Ue)1-s8(e)]

L U (s)' = I
n=0 n l—SS(p)m 1 - pSh(i—_)

for |s] <1 and |p| <1 . If, in particular, P{g. =0} = 1 . then by
= 7 m 70

(12.1214) we have
f

= &§(p)
- 56(p)

s

(1-0) ] U (s)" =
n=0

for’ |s| <1 and |p| < 1, that is,

e

(1-) ] 1 Flg,

n=0 k=0 1-88(p)
Hence
PRS- k n 1
- 1 = = ————
(1-e) nzo kzovl:{gn 2 klgg = 03T = 7 s8(p)
and

® -k
(1-p) [ Ple, 2 klgg=0)0" = [5(p)]
n=0

for k = 0,1,2,... and |p| <1 . From this formula we can conclude that

if k= 1,2,..., then
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n
Ple, 2 Kklgg =0} = .Z
for n =k, ktl,

If P{g, =1} =1 where 1 =0,1,2,..., then
P

[1-s8(p)] ) Z Ple = kl&o = 1)K = ng 8 [1 = Sd(p)] }
n=0 k=0™ A [ pSh( =)

for |s| <1 and |[p] <1 . If we mltiply this equation by w~ and add

for 1 =0,1,2,..., then we obtain that

[+ 0

[1-ss(e)] } 1 1 P& =klg,= 1355, = I 1~ sé(p)
- n=0 k=0 i=0"™ (l—sw)[l—psh( Y]

}

for |[s| <1, |p] <1 and |w] <1 . Hence it follows that

' ) Y JPlE 2 klgo = 13K =
n=0 k= 0 i=0™

1
(1-5) (1~0) (1-w) -

1- Sé(o)
(1-sw)[1- psh(—)]

- TR T M !

for |s| <1, |e|] <1 and |w| <1 . By (11.10) we can prove that

i - SG(p) y = Lo §(p) 4 w(l-s) [w-8(p)]

- v
(l—sw)[l-psh( )] (1-w)(1-p) = (1-w)(1~ws)[w-ph(w)]

The above formulas make it possible to find P{g ;:klgo = 1} explicitly.

If k=1,2,... and 1 =0,1,..., then we have
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n
P{g > klgy = 1} = PN < nti-k} + J_Zk Py = J-KIPIN _; > nti-j)

for n=1,2,... .

If ho >0 and hO + hl <1, then {gn} is an irreducible and

aperiodic Markov chain with state space I = {0, 1,2,... }. Thus

limlg{gn =k} = Pk exists for k = 0,1,2,... and is independent of the
gn;ﬁ;al distribution. There are two possibilities: either Pk >0 for 7
k =0,1,2,... and ; Pk =1, or Pk =0 for k=0,1,2,... . In findiné

{Pk}i we may assumek;gthout loss of generality thaf Ng{go = O}-= 1. Then

by Aﬂel's theorem we obtain that

1-38
1-s86

] Bs = Lim (1-p) ] U (s) =
k=0 p>+1 n=0 .

- where 6 = 1im &(p) . Accordingly, Pk
We can easily prove that § =0 if o <1 , whereas. 0 < § <1 if o > 1.

CHAPTER II o . o
= °1+ p2+...+ Py k = 1,2,...) the k-th ladder

= (1-8)65 for k = 0,1,2,... .

211, Denote by Ty
index for k= 1,2,... and let 9 = 0 . Then P1s Poseres Prsese are»
.mutually independent and identically distributed random variables. Since -

Pf{cn >0} =1/2 for n=1,2,..., by Theorem 19.3 we obtain that

o : :
Ng{z k} = q(z) =1-¢e =1 = /1-2

for |z| <1 . Hence
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& vk 2k, 2
E{z (1—/1-2) =V =S (9T A
j=Kk cJ_k J 2£J—k

for |z| <1, and consequently

- 2i-k - 2J k— 2j-k-1
P = ) ST - - —_—
VV{T J} J 2j-k J ) 2 [ ) ( J )] 223—k

for 1<k <]

Obviously we have

i
i
|

for k=0,1,2,... and n=1,2,... . This implies that

on- k) 1
22n—k :

Ng{vn = k} =P{r <n n} - P{Tk+l <n} = (

for O<k<n.
“Note.  The power series expansion of [w(z)]k' can be proved either
by mathematical induction if we take into,consideration that
V N k y - V k_27
[n(2)1 = 2@ - 2@

for k = 2,3,..., or by Lagrange's expansion if we take into consideratiocn
that w = n(z) is the only root of w2— 2w + z = 0 in the unit éircle
Jw] <1 whenever |z| <1 . The Lagrange's expansion of [ﬂ(z)]k is as

follows:

k o n-1 k-1 2n
f o
n(z)F =2+ ] @2 2
K pe1 2 da a=z/2

for |z] <1.
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\

21.2. In this case the sequence {cn s n=20,1,2,...} describes the
path of a one-dimensional random walk on the x-axis and T = k+2m
(m = 0,1,...) if and only if the particle reaches the point x = k for

the first time at the (k+2m)-th step. By Lemma 20.3 we have

_ r/ktom-1 kt2m-1,- k+tm m _
BPlr, = ktom} = [ )—(m_l )1 q

k ktomy ktm m

for k=1,2,... and m=0,1,2,... . The same result can also be obtained

by using the reflection principle. See formula (36.49).

-

We note that by the solution of Problem 21.1 we can write that

T w k _ / _ 2 k
Bz ) =21 (ke - (i=Yamiea
i m= 29z

for k=1,2,... and [z| < 1. This formula can be proved directly as

follows. Since

1

Plry = 21} = R M )™ = 2 M pa)” = (1)"2p( ) (pa)"”

for m=0,1,2,..., therefore

1
T «© = / 2
E{Z 1} = 2p Z Z ( 2 ) (_upqz2)m = 2p 1— l—)-#ggz
r~ L mtl
m=0 lipqz

T T
for |z| < 1 ,and the relation Efz k} = [E{z l}Jk proves the desired result.

Finally, we note that
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Tie 1 - lo=ql \ Kk 1 if p24q,
P{Tk < °°} = lim E{Z } = 2q = K
e z41-0" : (r/q) if p<gq.

Ll
21.3. Let un(s) =E{s "} for n = 0,1,2,... and |s[ <1, and
g -/"”
v(s) = E{s n} = ps + (s 1 for s # 0. We have uo(s) =1 and

u (s) =~£I{v(S) u (s}

for n=1,2,,.. and |s| <1 where 1 1is defined in Section 9, If |s| =1
AN~

and |z| <1, then we can write that

1-2 y(s) = g+(S,Z) 8-(3:2)

where
n\/ 2
g+(s,z) S s - 1+ 212 Lpgz - - 2qz
P 1-V1 - 4pqz
and

l-yl-l\quze_

g (s,2) = pz

satisfy  the conditions (al), (az), (bl)’ (b2), (b3) in Section 12, By

Theorem 12,2 we have

1 - 2gz - Y1 - l;pqz2
- -

s T(1,2)
(1-z) Z u (s)zn = BAne2) - =
n=0 © g (s,2) s - 2qz = sV1 - hpqz

for |s| <1 and |z| < 1. Hence

[1 - V1 - upqz2]k i [1 Vi - upqzka+1

249z

%}:{’ﬂn = k}zk =

n=0

(1-2) 2qz

or

k
[l - V] - hpqzz-}
|
J

- k
(1-2) n§0£{ﬂn 2k} z = L 2qz
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for k= 0,1,2,,.. and Iz] < 1., Hence by the solution of Problem 21,2 we
get .
[n-k
2"k k + 2m| kim m
AP{nn 2 k} = 2 k + 2m m L 4
™ m=0

for k = 0,1,2,... .

We note that if T, (k= 1,2,...) denotes the k-th ladder index for
the sequence go, Cl’ ooy gn, eves and To = 0 then we have the obvious
relation P[T]n >k} = P{'rk <n} for n>0 and k > 0. Thus P{'ﬂh >k} can

N~ S Ay

also be obtained immediately by the solution of Problem 21,2,
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21.4., For k =1,2,... we can write that T = pyt eyt o where
Pys Poseees Pysees are mutually independent and identically distributed

random variables. Since

4

= I = > = ]-- =
NII”{Cn > 0} E{ nl/o‘ > 0} E{gl 0} =L Ra(O) a

is independent of n , by Theorem 19.3 we obtain that

-q ) =
Py n=1 q
E{z "} =n(z) =1~¢ =1 - (1-2)

for |z| <1 . Hence we cbtain that
: _ 11 — J=1 4
P = = (-1 :
o, =3} (’ ()

for j = 1,2,... . Since

T k k
Bz ) =1~ @-2)% = ] (D",
, o~ : . =0 .
it follows that
P{r, = §} = (1) IZ{ 0FE EY
o k e r=1 T J

» for j = 1,2,... . Obviously ‘P{I«k = j} = 0 for J <k . Accordingly,

k k
; _ n rk,,rg-1\ _ r Kk, n-rq
Pl <nb = (-1) r*'-Z-l(—l) (W) = lgl(-l) T

for 1 <k<n.
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" We riote that by (42.192) we have

.
qg==+ L arc tan(gtan %—TL) .

no

See also Problem L6. 7,

21.5  Since P{ max (NI,— r) <k} =0 if k <O , we can write that
"™ 1lgr<n

E{ max (N - r)} = Z [1-P{ max (N r) < k}] =

™ 0<r<n k=1 ™ 1gr<n

j 0

Z [1-P{ max (N~ ) <k}]- ] P{max (N-r) <k} +P{mx (N-r) <O}
tk—l 1<r<n k= —= 1<pr<n l<r<n

and the probabilities in question can be obtained by (20.8) and (20.13). - -

Accordingly, we have

+ n-1 n-j .
B{ max (N~ r)} = E{[N-n]'} + ]} Z (1- --—)P{N -N, =2, N, > j} -
O<r<n ~ j=1 2=0 J -J :
n-1 rn-j . ) 1. +
- F{[n—N T} + 121 zéo (1- ﬁ)i{Nn- NJ. =2, Ny <jr+ HE‘,{[“’NnJ }o=
n-1 N-N ]
= ] E([1- -———J-] } + E(N- n} - -(Efl-l—) E{[n—Nn]+} =
=17 ™~
n-1 n 4 + .
=y ~E{[1- —-——Jl] b+ BN - n} = Y FE{[J-N.JT}+EN -n}t= = -
~j=0 A - 3=l dom "7 d PYUR ¢ O e
n .
=} TEN-JTH
J'.__l J (N~ J
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because if F{v.} =y < » , then E{[J-N.]'} = B{j-N.} + E([N,-j]"} =

[ J o J AP~ J A J
J(-y) + E{[NJ.— 31"y for j=1,2,...,n. If y == , then both sides
of the equation to be proved are infinite.

21.6., Now max (r—-Nr) is a discrete random variable which may
Osrsn

take on the integers O, 1,..., n only. Thus by (20.17) we have

n
B{ max (1"-N )} =} P{ max (r—T\I ) > k} =

" Ozrsn k=1 1zrzn
, noon n
= TR0 = kb = | FERONT
; k=1 j=k ¢ 3=1 d m

n
s = § 3

If E{'} = =, then both sides of the ;above‘ equation are infinite. Tet us
suppose that E{E;:l} < o, Then E{nn} <w for n=1,2,... because,
~- -

obviously, ,E{”n} ;n E{F,; }. Since by (15.1)

o -sn. . © k =St
} Ele Mot = expl ] £ Efe Ky
=0 SR

for Re(s) 20 and |p| <1, it follows that

for” |p|< 1 . If we form the coefficient of o on the right-hand side,



then we obtain E{-r.n} which was to be determined.
P

We note that in-a similar way we can express n{nr} for » = 1,2,...
Arm i

-+ .
with the aid of the moments E{[;J.]S} (s = 1,2,0..,r and J =1,2,..., n) .
-

21.8. Let us introduce the following notation: E{Xn < x} = H{x),

SXy ~5T
,E{X1+"°+ X < X} = Hn(x), E{e } = w(s),E}{e } = @n(s) and let

ak(x) - f - AU (Au)

[ f(l— =)dH,_(u)Irdu =
0

_ (-—l)k_l )\kﬂ' dk-—l ([UJU\)JK)
k! d}\k—l )\2

for x=1,2,...
. By Theorem 15.3 we have

w - _ ey(s).
I o (s) = e;g{log[} A s P
=0

for Re(s) >0 and |[p] < 1. By the first example in Section 18 we can

also write that

Ay (p) = 5]
nEO : (S) y(p)[A-s=2p¥(s)]

where s = y(p) is the only root of the equation

A=s = dpy(s) =

in the domain Re(s) > O whenever |p| <1 .
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By Lagrange's expansion we obtain that

1 1,1 %
—s =T+t = 1o ()
v(p A ) A

for |p|] < 1 , and consequently

y J
nZO @n(S)p [l— — z p dk()\)] z (;E_’;l{(:))

for |>\p1p(s)[.< |s-A] and Re(s) > 0 . Hence

RYION
0 (s) = B2 - &

n X (S)\n k
s kzlak(x)(iy??

|
|
|
!
for n=1,2,..., Re(s) 20 and s # X . If wewrite s=2A- (As) in

front of the sum, then by inversion we obtain that

n
Pin, =%} = K, (x) - kzl ak(A)IK 5K - (X)]
for any x where
n L ntl]

AU n

S =l g a.ndK(x) }" JH (utx)e "u d
nt o'n

K (x) = ‘(ﬁi_l)‘v“(f) B (wx)e”

, % _
for n=1,2,..., Ko(x) =1 for x>0, KO(X) =0 for x <0, and Ko(x) =]
%

for x>0, Ko(x) = e for x <0 . Here we took into consideration that

- ' @ o Rl
e b L E L [ d.K (X) )u,b(s)) arid J‘e" / x) = _[_\P(_S_)_l_ .

, , ntl -
. aCo -0 \)\—S)
for n=0,1,2,... and O £ Re(s) < 1.



If x < 0, then obviously P{n_ < x} = 0 . Furthermore, P{n_ = O}
[ ¢ Mmoo Tl

lim

Qn(s) = an(x) .

S > x®

n
P{n. <x} = (D" I (x)+ } (-1)
aotn = n kzl

and

We can also write down that

"R () [ (0 + T ()]

for x > O where
n-1 Ax n _Ax X :
; _ A =AY oy—1 A e -y, n ‘
{In(X) ——-——-—(n_l). f e " (x-y)" "aH (yv) and T (%) = Ef) e {x-y) cH (¥
|
%
for x>0 and n = 1,2,..., Io(x) =1 for x>0 and Io(x) = (eAX-l)/A
for x> 0 . Here we used that ,f{”n = Q} = a'n(x) ,
n
© o) +1
_ _ aw(s) —sx ¥ AT ()]
[ e a1 (x) = ( ) and [ e "7 dIl (x) =
0 n S - A ) n (s _Un+1
for Re(s) > A , and
f'jme—sxﬂx ()L \dx = (__A__)n
0 (I'l'—l)! S - A
for n = 1,2,... and Re(s) > A
21.9. Let us introduce the following notation: N_P{xn < x} = H(x) ,
vaAE:{X:L-I:»,..+ Xp < X =H, x) , Ho(x) 1 for x20, HO(X); 0 for x <0
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n-1 +J
1—'263»_“—(—-}“—}(:—2— for x >0,
J=0
F (x) =
O For x <0 .
~5Xy, ~STy
Purhtermore, let E{e *} = y(s) and Efe } = @rl(s) for Re(s) >0 .

Since in this case

~-30 m

E{e "} = <)\is)

 for Re(s) > - A and n=1,2,..., we can apply the solution of the second

example in Section 18 to obtain

of o (s)p = A7 I;Il(l——--?-—j')
n=0 * (-s)" Mou(s) i=1 Yi\P

for Re(s) 20 and |p| <1 where s = v;(p) (1 =1,2,..., m) are the

m roots of the equation

(= )™ = Aou(s) = 0

in the domain Re(s) > O whenever |p| <1 .

By forming the Lagrange expansion of the root yi(‘p) for 1i=1,2,...

and |p| < 1 , we can write that

m : ! ‘m . © .
m(1-——9= Q- 3"+ T @57 (A)p
i=1 Yi(p)) | A 1"20 A kzl ak,r | P

for any s where a lQ(A) k =1,2,...; »r = 0,1,..., m) are appropriate
b . .

functions of A



- If |)\mp‘4j(s>l < I(A_s)mﬁ and Re(s) > C , then obviously

m ® J
A= " ] 2 ouls),
O=s)"= X py(s) i=0  (x=s)"

By using these expansions we can conclude that

() = ULy T T (R (I )k

(A-s ) r=0 k=1

for n=1,2,..., Re(s) 20 and s # X . Hence it follows by inversion

m
P{n ;X} = K (x) + Z Z 8,| n -k, (n- k+l)m-r'(x)

~ 1, r=0 k=1 %
for any x where
K .(x) = f H (u+x)e AT
n,J J 'y
for n=20,1,2,... and j = 1,2,... and Kn.o(x) = Hn(x) for n.=0,1,2,..."
s 2

Here we used that

= >5J [o(s)1™

S—
@®
|
wn
»
—~
>4
~
I

for O <Re(s) <2 and n=0,1,2,...; jJ =0,1,2,...

If x <0, then obviously /f{nn < x} = 0 . Furthermore, _P{nn: 0} =

bli.rnm<l>n(s) n,m(” .

We can also write down that



m n PN
] _ (oM v o oy (ki 1m-r DI p
,f.mn < X} (~1) In,rrm(k) rZ‘O k__é_i -/ ,r( ) n-k, (n-k+1)m-r*"
for x>0
J-1 x x .
A e =AY _oya—l
T,i® =g é e ™ (x=y)T aH (y)

for x>0, n>0, J>1 and I ~(x)=H (x) for n=0,1,2,... .
= = = n,0 n

Here we used that

o

e ar 60 - (297 ()"

for Re(s) > A and n>0, J >0, and that P{nn=0}=a () .

We note that

m
A) =0
rgoak’r( )
for k= 1,2,... and

m

E W= 1 (- —) .
R A A O

.

21.10. We shall prove that the probability in question depends only
on n and k and thus we can denote this probability by P(n, k) =

S(n, k)/n! where S(n, k) is the number of favorable cases. We shall

prove that

1-= if 0zk<n,

0] if k>2n.

x)
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If n=1, then P(1, 0) =1 and P(1, k) =0 for k=>1. Let us
suppose that the above formula is true for every k if n 1is replaced

by n-1 (n=2,3,...) . We shall prove that it is true for every k and
n . Thus by mathematical induction we can conclude that it is true for
n=1,2,... and k =0,1,2,... . If k > n ,then obviously P(n, k) =0 .
Let 0 <k <n . Since the last number drawn may be ki (1 =1,2,...,n) ,

we have

n
) S{n-1, k-k.) ,
1=1 1L

S(n, k)

or 14 other words,

P(n, k)

He~3i3

1
B

P(n-1, k-k.) .
. 1
i=1

~If O <k <n, then by the induction hypothesis the right-hand side
becomes

k-k.

n
=1 iy -1 ..k k .
Pln, k) =3 .Zl(l_ ) S lonat n(n-1) -

1 -~

3=

This proves that P(n, k) depends only on n and k and that the

aformentioned formula is true.
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CHAPTER IIT

27.1. By Theorem 23.1 we have
,E.{An = Jj} =£{Aj = j}f{An—j = 0}
for 0 <j 2n and by Theorem 24.1 we have

N

J P{a =nl" =exp{ ] & P{z_ >0}
n=0"~ " n=l o~ 1
and
y P{a =0} = expl Y g—P{gn < 0}}
| n=0" n=1
o _1
for |e| <1 . Since in our case P{r >0} = 5

for n=1,2,..., it follows that

(=]

OXO P{a = n}pn - z PiA = O}pn - (1-;))'1/2
n=0"" n=0"
for |p| <1 . Thus
R, = o= Py =0 = (3 L
and
2o, -0 - T &
for 0<j<n.

*
- We.note that if Arn denotes the number of nonnegative elements in the

* .
. Sequence Zj; Loseses Doy then obviously P{A_.=j} =P{A_=Jj} for O<j<n .-
- [ Y-- M n s n
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Remark., We can also obtain P{An =3} for j=0,1,...,n in a simpler
way. First, we observe that NE(AH = n} =“£{An =0} for n=0,1,2,.,.. .

P{—gr.g x} for r =1,2,...,n, we have ~E{Ah = n} =éﬂA§ = 0}

fand

Since P{§r < x} =

and since P{({ 0} =0 for r =1,2,..,.,n, we have P{A* = 0} = P{A_ = 0}.
Pow T P n o n
Thus we can write that
Bly, =3} =208, =0} B(a,_ =0
for 0< j <n., Hence
n
* 2 P{p, = 0}P ., =0} =1 )
* Z ploy = 012 h ;= )

for n = 0,1,2,,.. . From this equation we obtain step by step that
P =0) = " - = (1 (CF)
~ 1 n 22n n
for n= 0,1,2,000 .

If we multiply (%) by z" and add for n = 0,1,2,..., then we obtain

that

[+4]
2 P{p = 0}z" =
n=0~\(An }z —

for |z| <1, and this also yields the above result,
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27.2. Since in this case P{cn >0}=q for n=1,2,... where

q= %-+ !;-arc tan(g tan ——J 5

in exactly the same way as in the solution of Problem 27.1 we obtain that

I Pla=nh"= (170
n=0""

and
I Pa_=0)" = (1-0)31
n=0"

— - - 1 = = - n q-l
P{a_ =3} = P{a, = JIP(a . =0} = (-1) (J-q)(n_j)
for 0<j=<n.

¥
We note that if A denotes the number of nonnegative elements in the

SeqUeNCe Ty, Loseees Ly then we have P{A =j} = P{A =j} for 0<Jj<n

because the random variables gl, 52,..., gn,... have a continuous distribution

function.

27.3 By Theorem 22,1 we can write that

Pla =k} = P(p, = K P, 4 = 0)

Define P{An =0} = an(p) for n = 0,1,2,,.. . Since
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Py =n) =P(g =1) PG; -C; >0 for 1<ig<n)=

= pff{- C, S0 for 0<r<n=-1)=p a _1(a)
for n=1,2,..., we can write that
,f{An =k} =pa_;(@a_ ()

for k =1,2,,..,n. Thus it remains only to determine an(p) for n = 0,1,2,...
and 0<p <1,

By the solution of Problem 21,3 we have

(2=l |
Yy=P(M =0} =1 f‘? 2m) (pg)"
an(P =T Tln = =1-p “ \m ) mH

fOI‘ n = 1,2,o¢.’ and aO(P) = 1'

Remark, We can also determine an(p) for n=0,1,2,,,., and 0<p<1

"as follows, Since

we get
n
P L oa_(@a_@®=1-a/p)
k=1
for n=1,2,,.. and ao(p) = 1, If we introduce the generating function
- n
A(z,p) = 2 an(P) 2

n=0

for |z] <1 and 0<p<1l, then we get

pz(l-z) A(z,p) A(z,q) + (1-2z) A(z,p) -1 =0 .
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If we interchange p and q in the above equation, then we obtain that
qz(1-z) A(z,p) A(z,q) + (1l-z) A(z,q) - 1 =0 |,

Consequently)we have

q A(z,p) - ']_'?'z' = p A(z,q) ~ I‘f—z .
This implies that
aa()-a=paqd -p
for n = 0,1,2,..., and
2
q z(1-2)[A(z,p)]” + (1 -2qz) A(z,p) -1 =0 , .

Accordingly,

J1_= hpgz® - (1 - 2qz)

A(z,p) = 2qz(l-z)

for 0<p <1l and ]zl <. 1. Finally, we obtain that

[Eil]
2
_ _ 1 1 _ i x j
a (p) =1 T JEO (-1) (J?) (4pq)

for n = 0,1,2,.., and 0<p < 1l, This is in agreement with the previous

result,

274. The random variables Vs Vgseees Vo aTE interchangeable random
variables taking on nonnegative integers and having sum v1+...+ vy =10 By

Theorem 26.3 we have

g n-z-l 1
77— P{N, = i+1} for léj;n—l,
1= ",j l(l’l—l)m 1
P{a, = J} =4
/\M{ n j

n-1

1
b

i+1} for j=n 3
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and evidently

n i i+l i n-i-1
= 3. = ek - =)
for 1= 1,2,.0., N=1 .
Thus we can write that
1, n n-r

% J ., -1
Pla, = J) =4 ] ICORNNRES

n re1 T r-1
for 1<j<n. PFor 1<J<n-1 this is obvious. For j=n we used

that

n-r

n -1

1ln-1,,r r

z = (&) (1~ =) =1
=1 r r~1"'n n

for n=1,2,... . We note that

_ (n+1 )n""l

n

P(A" = n}
=1

for n =1,2,...

27.5+ If we apply Theorem 22.2 to the random variables gi = l—vi

(i=1,2,..., n) , then we obtain that

c . . e
_ -NI:{AIS1 ) = J} =£{Nr <r-c for Jj subscripts r = 1,2,..., n} =
= P{j-NJ. > r—-Nr- ¢ for O<r<j and j-NJ. ;r—Nr-c for j <r <n}.

If Ar(10) =3j and J 21, then there is an r such that Nr' = r-c . Hence

Nj < J .necessarily holds. Consequently, we can write that



S-41

B J
P{A(c) =3} = ) PN,~-N <J-rtc for O<r<j, N 2, N =N
for j<r<nl=
1 j—l 2'. ’
= 5 [PIN, =2} - ] (1- == C)P{N = i+c , N, = 2}] -
g=0 ™~ J i=1 - J
n
v +1
[1- C2 PN~ N, = r—c-1|N, = 2}] .
rcciz—]ﬁj e T ) "

In the sum the first factor can be obtained by (20.13) and the second factor

by (20.17) . Accordingly, we have
|

|

‘ (c) % 4 ct+l
Pla "’ = jr = [P{N,= 2} - =—= P{N
~ o n g=0 ™~ r=c§-l+3 P T

$ Ta Aoy pay, = gse, N, = - ) S pay, = g, B
- - == = ite, Ny =)= ] 5 P(Ny = di4c, N

g=0 i=1  J7F r=ctl+j T 9~

Nr— NJ. = pr-c-11}]

for ¢=0,1,..., n-1 and j = 1,2,..., N-C .

=4, N~ Nj = r—c-1}] -

|
P
“
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CHAPTER TV

34.1. Denote by An the number of positive partial sums in the
*
SEQUENCE  Zys Znseees Ly o and by A the number of nonnegative partial

sung in the sequence 15 Toscees Ly - By Theoream 29.1 we have

' %
Plog =J1 = ) Play = rIPia, s = k-r} .
™ max (0, j+k-n) <ramin(J , k) -

By Theorem 23.1 we have

j pla, =k =Pl = KPLA = 0
ary
! * #
P{a =k} =Pl =KIP{s , =0}

00 <0 n
1 Pa =nh=expl ] Pz >0},
n=0 n=1 -

[»+] o n

] Pla_ =0k =expl | 2Pz < O}}
n=0™ o n=1 * o~ 1 ’
Y Pa =nho"=expl ] &Pz >0},
n=0 " o n=l * o~ T

and

) P{An=0}pn=exp{ ) %—- {z, < O}

n=0"" n=1 o

for !ol < 1. Accordingly, P %y = j}  is completely determined by the.

probabilities P{cr > 0} and P{;r <0 for r=1,2,..., n.

YN
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34,2, It follows easily from (31.9) that

w ) ‘Fm(S)on
n n=k
(1-p)rgk 2 (8)p = =5 -
1=K
) ¢ (s
n:

for Re(s) >0 and Jp| <1 .

In our particular case, @m(s) = ¢ n(s) is given explicitly for Re{s) >0
anrd n =0,1,2,... in the solution of Problem 21.7. Thus by the above formuila

we can also determine explicitly @nk(s) for O<kz<n.

We note that by Theorem 31.2 and by the first example in Section 18 we

obtain that

(1—w)(1-p>§ I% o (s)p X =
L n=0 k=0 vk

= 1y X)[Y(ow)-s] [A=s=rou(s)]
= y(pw)[y(p)=s] D-S-}pww(S)]A

for Re(s) 20, |p| <1, |pw| <1 where s = y(p) is the only root of

the equation

i
(@]

A=s-Apy(s)

{—t

in the domain Re(s) > O whenever |p| <
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CHAPTER V
40.1. We can write that

*
p,(a,b) = pP (n-1, a-1)

for n=1,2,... where

* * *
P (n,j) = pP (n-1, j-1) + qP (n-1, j+1)

' * %
for n=1,2,...and -b<j<a,P n,a)=P{n,-b)=0 for n=1,2,...

P*(0,0) =1, and P*(O,j) =0 for J#0 . See (37.29). Let

U(z) = § P (n,3)20
J n=0

0 and

for -b<J

A

a . Then Ua(z) = U_b(z)

Uy (2) = paly_;(2) + qzUy, (2) +27(0,3)

for -b < Jj <a . Since the equation qzw2 ~ wtpz = 0 has two roots

_ L/ 1—49922 and _ 1Y/ l-llggzé

“1 2qz Y2 T 29z

for .z #0 and lllpqz2| <1, the general solution of the above difference -

equation can be expressed as

J J
X o - W
= J - j — 1 —-]‘—__i_.
Uj(z) Awl Bw2 8§(3) QZ(wl- w2)

where A and B are arbitrary constants and 6(j) =0 for Jj <O and

8(J) =1 for j >1 . The requirements - Ua(z) = U_b(z) = 0 yield that
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‘b, a a b, a a
wl(w] - ;) w2(w - w))
A= S— and B = 1l 2
z ((1) - ) (wa"l"b_ wa”'b ) 7 ( _ ) ( a+b— ‘a+b )
qzw)= wyJiwy 2 Azlwy= wy)luy = Wy

Accordingly we have

E (a,0)z" U__1(z) p(wiwg)a—l(wg h wg)
p_la,clz =pz U_ z) = Z =
o2y Pn a-1 (&2
b b
- (2pz)a [1+ 7 1—4pqz2] -[1-Y l—upqzzj

atb =~ a+b
1+ 1—Mpq22] - [1 -V 174pqz2] ,

for Iupngl <1 . We can obtain pn(a,b) explicitly either by (37.24) or
1
by (37.25).
4o.2. In exactly the same way as in the solution of Problem U40.1 we
obtain that

«© _ n _ N .
nzl”?{p =n}z = pe 01 (2)

for |4pq22| <1 where
1.(2) = 7 + + D (0,
Uj Z) = pz UJ—l(z) qz Uj+l(z) (0,3)

* ¥

for - < j<a, Ua(z) =0, P (0,0)=1 and P (0,j) =0 for J#O.
Since |Uj(z)| <1/(1-|z]) forall j <a and |z| <1, it follows that
in the general solution B =0 and A 1s determined by the condition

Ua(z) = 0 . Thus we obtain that

a _ayJ yeod o Jy @
(wl w2)wl .G(J)(wlx 2)w1

Uy(z) = -
qz(wl - wz)wl
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for j <a and |l4pqz2| <1 . Finally

Z P{p=n}Zn=w =[1 —
n=1"

for Iquzzl <1 . The probability P{p =a + 2m} for m=0,1,2,...

is given explicitly by (36.42).

ho.3. £ us consider a one-dimensional symmetric random walk. Denote

by n,, the position of the particle at the on-th step. Then has

ﬂ?n

the characteristic function

itn 2n
E{e 2n} = (cos t)
and
: 2n /2
_ sop e 2y 1l 1 ng 2 2n
Q, = Pln, =0} = (7)) 5;=5;/ (cos £)7dt = & [ (cos t)at .
2 o . . 0
This relation can also be proved directly. Let us define
/2 Kk
I, = [ (cos t)7at
5 ,
for k =0,1,2,... . Then I, = 125 ,.I; = 1" and by integrating by parts we
obtain that
(k=1)

for k=2,3,... . Hence
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. (?n-1)
. 2n

Y
T = c‘;;l) __1
2

2n

Q

PO
=

NTE]

.,
2\

rol=

2n
which is in agreement with the prece_ding formula.

Since O<cost <1 for O0< ¢t < L | therefore

2,
Tontr < Ton < Top
or
on < I2n < 1
2?1, o ©

|

for n % 1,2,... . If we take into consideration that

I 2.2 w1,
2n-1 3.5 ... (n-1) Iin I2n n Q2n
then it follows that
o 2n 2 ]
ondL <Oy, <1

which impliés the inequalities to be proved.

From the last inequalities it follows that

2 2 2 2
y . 2 _ ... 37.5 ... (2n-3)"(2n-1)" _ 3.3.5.5.7.7 ...
—= 1im Un Q- = 1lim. : = AL,
T opnee 0 opse2.06%... (2n-2)%2n 2.4.5.6.6.8 ..

This product representation of 4/ was found in 1665 by J. Wallis [ 66 J.

4O0.4. We have

&aﬁ>(»agx.xan>=ad$-»%ﬁ“4+au+<<n%%
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or

(l—xwl)(l~xw2) - (l—an) = ay- aix +...t (—l)n‘a,nxn .

If x| is sufficiently small, then we can write that

n
.leog(l—XQi) i} Eg.X2 Eﬁ.x3
n..n_ B - B T
- a xt...H(~ = =
8y~ 2% (~1) a X e e
Hence it follows easily the relation to be proved.
We note that by the relation
Sy 2 3.3 n. .n
slx+ 7 Xt 3 X4, = —log(ao— a;xt ... +(~1) a X ) =
r
- 2 n-1..n
] Z (a1x~ a X + ... +(-1) a X )
S r=1 r '
we can also express 8 with the aid of a;, a2,..., a, -
£ % %
40.5. Denote by €15 Ensenns Em the variables El, 52,..,, Em‘ arranged

in increasing order of magnitude. In general, we have

6; =_wii€w [Fm(x) - F(x)] = 12?§m [Fm(gz) - F(E;)]

and
6~ [F(x) - F_(x)] [F(£') = F (¢ = 0)]
= sup X) - x)] = max ) - - .
m <X <o m l;riim r m 'r

If F(x) 1is a continuous distribution function, then in finding the distributions

of 6; and _6; we may assume without loss of generality that F(x) = x for

L with probability 1 . In this

¥ * X
O<x<1. Then F(g,) = £, and Fm(gr) ==

case
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% - ¥ oy
& = max [& - £.] and § = max (&, - 2:n—l-
lzram l<ram '

for r=1,2,..., m , then we

. + * i *
If in 6, we replace Ep by 1 - L

. +
obtain a new random variable which has exactly the same distribution as dm; .
Thils new random variable
m+1-r m 1<i<m

is evidently 5;1 .

% # *
40.6. Denote by 81 5 Egseees & the random variables E1s Eosenes £

- ¥ ¥ *
arranged in increasing order of magnitude and by N3 Noseess Ny the ‘random

arranged in increasing order of magnitude . In

variabl{‘es Nys Noseees My

general we have

M 50 18,00 - 6,007 = max [F(ng) = Gl =0T
= lfiim [Em(g;) - Gn(gi)J
and
5;1,1’1 = sup [Gn(x) - Fm(X)] = max [Gn(n:,) - Fm(n:)] =

<X <o l<rsn

% *
- e T0,(60) -yl - O]

1,2,..., ntl) as the number of variables

. Let us define v (r
15 B B falling in the interval (nr—l’ nr] wherev ng = and
s ,

= w, Let Nr =yt v, ot v, for r=1,2,..., ntl . Clearly,

nt1 1 V2
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LI ¥ £ )
N4, =m . Then Fm(“r) =N/m, G (n)=r/n and G,(n, - 0) = (r-1)/n

with probability 1 , and we can write that

+ -
S = max [—— _ -l and § max
m,n 1<ren m n m,n lren

If F(x) = G(x) is a continuous distribution function, then Vis Vgreees

are interchangeable random variables. If in 6; n we replace V by
s

Yn+l
v for r=1,2,..., n , then we obtain a new random variable which has
nt+2-r _
. + . .
exactly the same distribution as 6m n This new random variable,
3
N .. . N
n-r+1 +1-r i i
- s e R- T,
1sr<n 1<in

is evidently Gm,n .

o ¥ - ¥ ¥ )
40.7. . The random variables E1s Epsenes & aTE the coordinates

arranged in increasing order of m points distributed uniformly and

' : ¥ % %
independently on the interval (0,1) . The random variables E15 Epsenes By
have a joint density function f(xl, X s xm) 1/m! for O LX) L%y LS

X, <1l and f(xl, Xgsees xm) = 0 otherwise. We have

¥ m=j. _ m m) k(1 )myk
gy =% (J—l)'(m—J)' f - = k_zj ()% (1-x

P
A

for 0<x¢<1 and § =1,2,..., m, and

AT 3G ()
EUED Y = Ty @y o)

S i : . . .
for r=1,2,... . Hence E{Ej} = j/(m+l) and Var{gj} = j(m+1—j)/(m+l)2(m+2) .
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* ,
Furthermore, we have ny{é , ’j = i(m+l—j)/(m+1)2(m+2) for 1 <1<j<n.
This last result can easily be proved if we take into consideration that

* % * ¥ % %
El’ €5 - gl,..., En ™ gm—l’ 1—£m are interchangeable random variables with
sum 1 . For by this property

* *® - ¥
covieys £y} = XD var( )

40.8., The random variables Nl’ N2,..., Nn can be interpreted in the
“.following way. . We arrange m white balls and n black balls. in a row in -
such a Way that all the (m;é) possible arrangements are equally probable.
Denote ﬁy Ni (1=1,2,..., n) the nuber of white balls preceding the

i-th black ball. We have

(1+s-1)( n—1— )

P{N, = s} =
~ 4 m+n
G

for 0ss<m and 1<i<n, and

( l+r’-1 ) (n+r )

m+n
D)

BT

for 1 <r <m. In particular, we have m%}=mﬂmn and
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i(n+tl-1)m{mnt+l)
Var{N;} = (141)° (me2)

for 1 <1 <n . Furthermore, we have

CoviN., N.} = 1(ntl-j)m(mintl)
e (n+1)2(n+2)

for 121 <J¢n. This last result can easily be proved if we take into
consideration that Nl’ N2— Nl, ey Nn— Nn—l’ m—Nn are interchangeable random

variables with sum m . For this property implies that

e A

CoviN,, N} = 20F=d) oy )

i 75 n e 1
for 1 ;_ i<jzsn.

4o.9. In finding the joint distribution of 6;; and "6;1 we may assume
without loss of generality that F(x) = x for 0 <x <1 . Then by the

solution of Problem 40.5 we have

* - ‘ * -
6:1 = mx [=- gr] and § = max [g - %n—l]
} 1gr<m 1gram

with probability 1 and consequently

Let

= ?.._ o ] -
a, max(o,m x)}_ and br m:Ln(m

In
-

for .r=1,2,...,m. Then O<a; %..2a <1,0<by ... 2D
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and a-r;br

In general, if O <a, <... 2a_ <1, 0 <b.

1A

1 ..2b <1 and 8, b

for r=1,2,..., m , then we have

%
E{ar < Er by bI’ for r = 1,2, , m} =
(b, -2 )ki+1‘ki
i v P41 E
- +1
= m! Z (_l)m-v 1 .n %k. —1 L
| v=0 O=k0<k1<“'<kv+l=m 1=0 141 5
a £ D (1 1 ,\))
kl‘l'l— k1+l ?
] p— V '} l'
| = m! Detla(l,J)lléi;m
I 1<jam
where
4 J-1+1
([by- aj] ) .
) ry 3 > < 3 +
§(1,j) = (J-1+1)! if 12341,
| 0 | if 1> +1.

For we have

> 3

oy

A

g

<b, for r=1,...,m =mPla <k <b, for r=1,...,m

ard EléEZ;‘“—i-gm}=m!,E{ar-<——gr;br for r=1,..., m and none of

m-]1
: m—]—~
the events & > E547 (1=1,..., m1) occurs} = m! ’v Z:o (-1)" Y
Pla, ¢, 5b, for r=1,...,m and £, > ¢, for

O=ky ey <o v o<l g™ r

r#Kiyeen, k,} s

~and hér;e o



E'{ar LE, S bL for »=1,...,m and & > & v for r # kl,. s k\)}=
= P 3 1 ] K]
Pla, e, b, for k <r <k ., > Enqp Tor ky < v <k, and Ogizvl
= P{ < g Seeel & 1< Db for 0 <i<v}=
- aki a kg rl= Ckrl
k, --k.
([b _ 1'}') i+l 1
v k, +1 .
= T i i+l
§ = - 1
1=0 (kyyy = Kyt

40.10. By using the same notation as in the solution of Problem 40.6

we can write that

+ r r-l - r NT'
Sy = X [= -7 and &) = max [F- o]
7 Igrsn > lzr<n :
with probability 1 . Thus we have
+ - _ o - m(r-1) '
Ploy psx & ey =PEm-my <N < —=="+m for 1l<rcn}

=Pla, <N <b

for 1 <r<n
T r ,=»=}'

r
where a, is the smallest integer > max(O, I;’IE - my). and br is the largest

integer ,;mjn(m,%(r—l)& mx) . We have O £a)2.,.2a <m and O <b 2..

b, <m, and a, b, (r=1,..., n) Whenever Xty >

For any such {ar'} and {b,} we have

'WP{ar;Nr;br for 1 <r<n}=
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b - a, +1
oy ot n-v-1 v [l iy _
~ T mrtn L 1) . ) . [ -

Cp) o ve 0=jg<dpe<dyyy™ TON Jyyq-d4
. < b, i=],c0.
a']j_+f Ji_*_l (1 ) :\))
1 . s
= Det'd(l,J)
(m;:ln) | 1<i<n
1<jzn
where
/
[b,- a+ 17"
J if 1<3+1,
ﬁ Jj-itl .
d(i:j) =
|
\‘ 0] if 1> +1.
\, .

If' we take into consideration that

Nf{Ni = Ji for 1=1,2,..., n} =

for normegative integers O < J 1 2 J 5 el J. <m , then the above result

n

can be proved in a similar way as the corresponding result in Problem 40.9.

- b0.11. Let us define the random variables N., N Nn in t,hek

12 Vs

same way as in the solution of Problem 40.6. Define

N | o
0 /Ly

for 0O2usl and m21,n21. It is sufficient to prove that if

m>® and n* *®, then the finite dimensional distribution functions of -
the process {n m, 1q(u), 0 <u <1} converge to the finite dimensional
distribution furétions of the Gaussian process {n(u) , 0 < u < 1} for which
E{ﬂ(u)} =0 and E&v{n(u) , 1)} =u(Q-v) for O<us<v<1l. Then

(39.79) follows by a theorem of M. D. Donsker [245 ].
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Now

.E{nm,n(u)} =/ gn [Ei‘l{] - [nz]]_) 0

as m->e and n->e« , and If O<u<v<1l, then

n{ntm-1)nul (n+1-[nv])
(mn) (1) (n42)

E&V{”m,n(u)’ nm,n(V)} = » u(1-v)

as m-»> e« and n -+ o , Hence we can easily conclude that if m~+ « and
 the .
n-=+ oo, then/i)fom’c distribution function of the random variables o, n(tl) s
>
Ny n(Eodyees my (£ ) where 0 <t < t, <...< b <1 converges to a k-
o ’ . . . function
dimensional normal dlStl"lbuthI’lAOf type (39.21). This completes the proof

!
of the statement.

40.12. First, we shall prove that

/ +
1im P{ /B §7  (0,a) < x} = P{ sup n(t) <'x} =
mo & Y TN MmN =T e T g
In -
X

- = [@1- e‘2x(x‘u)/a)d£{n<a) < u}

for x>0 where {n(t) , 0 <t <1} is a separable Gaussian process for
which E{n(t)} =0 if 02t <1 and E{n(s)n(t)} =s(l-t) for O<s <t <1.

The first equality follows from a theorem of M. D. Donsker [ 245]. To prove

the secpnd equality let us calculate the ljmit in the particular 'c_asebw,hen
m=n and n >« , By using the. same notationﬂ as. in_the solution . .of Problem
40.6, the above limit can be expresséd as  limP{N, <r+a for 1zgrgil

B n+ &
where a =[x ¥2n ] and j = [ne] . Since in this case



< d 3 = {4} = - at] i
AE{Nf rda for 1l<r é:J!Nj Jtst =1 253;%:1;
J-1

for 0<j+s<j+a,

N, - j
1im P{ ~—— < u} = P{n(a) < u}
/on -

S
and

(2j+s-l)

lim 2l o 2O/
n - (34l
L -1

| ‘ ' o ,
whenever Jj = [ne] , a=[x/2n] and s = [u/2n] , the aforementioned limit
|
theorem follows easily.

By the repeated application of the above limit theorem we can easily

prove that
1 e /T c /M e /gy L .
mlfng}z{ vy 6m,n(0,0L) X, o Gm’n(a,B, <Y, = 5m,n<8,1)\; 7} =
n - o«

P{ sup n(t) <x , supn(t) <y, sup n(t) 2z} =
" Ost< a a<t<p B<t<l

j'>fﬂy (l_e—2x(x—u)/a)(l_e—Z(y—u)(Y-V)/(B-u))(l;e’zz(z_v)/(l_s)3 .

—o<UMIn (X, y)
~o<yanin(y,z)

" a, d'vgj{n(a) <u, n(B) < v}

for O<a<g<l and x20,y20.
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40.13. By the solution of Problem 40.12 we have

‘0 O
+ - - o
Lm P(sT (a,8) <0} = [ [ (-2 E)yq g Pin(a)zu , n(8) £ v} =
e M B wvn =T =
n- w
=1 a(1-8)
= . arc sin B(1—a

40,14, We have

' + ; :
lim P{v/m s (a,8) <y} = P{ sup n(t) <y} .
m-> e ™ ast< B

where {n(t) , 0 <t <1} is a separable Gaussian process for which "E{n(t)} =0
| Al
iIf 0<t <1 and E{n(s)n(t)} =s(l-t) if O0<s <t <1 . This probability

can be obtained by the solution of Problem 40.12 .

- For the case of B = 1 we deduce another formula. By (39.119) we have -

. mX J-mx j
- P{ it = i}
m(x+a§=j;m mXHI=] m - M ( m ) ' m

+
Af{(sm(a:l) > x} =
for x > O where
=4 - MJ ™I
Plxp () =53 = (O’ @-u)
for 0<j<m and C<ux<l. Ifweput x=y//m and Jj=m in the

above formula and let m -+ «» , then we obtain that

p)
PO 6 (1) y joe 2O
1im P{ 8 (a,1) >y} = ' du

ms e B e u21-n)3?

for y >0 .
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40.15. By (39.123) we have

+ - X j =
Plg(eo)) > xb = T ey PO ey = )
-~ m(x+1)o<j<m

for' x > O where mxm(u) has a Bernoulli distribution with parameters m
and u. Ifweput x=y//m and j =mu in the above formila and let

m -+ « , then we obtain that

2.2
.
1 2u(1-u)
75375 v =
u’ T (l-u)

im POM w(0,1) >y} = =L f
“ m > o 1/2TT o

| = 201 - sty 5]

for y > O where #(x) 1is the normal distriburion function.
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i

U6.1. First, we shall prove that ¢(0) = 1 . Since ¢(0) > 0, this

follows fram

2. 2
Xty on w2

[v(O) = %*'f f > ax dy %;—é deé e /2rdr =1 .

Here in the second integral we made the substitution x=rcos 8 and y = r sin 6.

We can write that

2

X 2 2
O wGK e T s</2 s /2 =y
p(s) = — Je 2 gx =& — f (x+s) /2dx =& [ e? /zdz
7 VT - Vonr —w 2m LS
| R
| -z°/2
where HS ={z : z=xts and -» < X < »} ., If we integrate e along

the rectangle (R,0), (R, iIm(s)), (-R, iIm(s)), (-R,0) and let R » « , then
by Cauchy's formula it follows that the integral in the last formula does not

24 2/
depend on s . Thus y(s) = e® /2 ¥ (0) = e° /2 for any s .

46,2, In this case

w -|u|1/2(1— B T
b) = fel™ rx)ax = Tl
for -—= < u < « gnd
f(x) = %;— fe-iux y(uw)du = Re l—f o T y(u)dul
-—C0 m O

By the substitution v =z ~ (1-i)/Ax/2 where z = [(1+8)+1(1-8)1//Bx we

obtain that

f e—iux s(u)du = = + ze
0]
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for x>0 . Thus

2
£(x) = Re{ §§-5¢§'e“z + 21w (z)1}
for x > O where
2z 2
w(z) =e 2 [ & av
0

[(1+8) + 1(1-8)1/V8x

and z

46.3 By integrating by parts we obtain that

a. s 2 5.1
L PG = 6 [ XTIRG@)F (O (x)-F(-a) Jdx =
| ~a 0]
e 5
=8 x [1-F(x )+ (-x)Jdx-a°[1-F(a)+F(-a)]
0

for a>0. If j|x|5dF(x)>< © , then

N
O
[sV]
A
e
¥

8

“

0 < ad[1-F(a)¥(-a)] < [ |x]%dF(x)
|x]22

and thus the statement is true. If f|x|%aF(x) = =,

1§
8

jmxé"l [1-F(x) + F(-x)Jdx
c

]
8

necessarily holds.

46.4. ILet us consider the complex plane cut along the positive real
axis and define a path of integration C as follows: We integrate along a
straight line from z =ie to z =R+ 1ie where O <e <1 and R>1,

then from z =R+ ie to z =R - ie along the circle. 22 = R2+ 52 in the
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positive direction, then along a straight line frem z =R - 1e to z = -le ,
and finally from z = -ie to 2z = ie along the circle |z| = ¢ in the

Slogz
§ e logz

negative direction. If we interpret gz = where log z = log [zi+iarg z

(o)
and O < erg z < 2r , then 26/ (14z°) is a one-valued function in the region
bounded by C and regular except at the poles z =1 and z = -1 . By the
theorem of residues we obtain that

18w 3idw

5 = : :
[ = 5 dz = 2[e 2 _e 2 1=yl g S
C 1tz

ERN

Jf €¢->0 and R » » , then the integra;L on the left-hand side tends

to
. ® 8§ s

2.(1 _ e216ﬂ) X gx = uielén <in %1

ﬂ 0 1+x i
Hence it follows that

8 2 X 1
B(lg]) =& [ S5 ax = —=
~ O lx cos &L

2
o and
for ~1 <6 <1 . SeeD. Bilerens de Haan [ 11 p.42 p. 50].

46.5 By using Cauchy's integral theorem we can express Ia(s) by
known real intelgr*als which can be found for example in the book of D. Bierens

de Haan [11 1.
" First, let us suppose that O < a < 1 . If we use the solution of
Probiem 46.# and if we introduce a new variable z = sx in the integral, then

we obtéjn that '
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SO

= 37T (a _- e
Ia(s) =g ua(o) + T
2
where
-S (™2 odz
JG(S) - L (e _1) a+1
s V4

and L, =1{z:z=sx,02<x <~} . The integrand in J{s) 1is a regular

function of z in the region bounded by the lines and Ls and the arcs

!
|z| = ¢ and |z| =R where O < e <R . If we integrate along the boundary
of this region and let ¢+ 0 and R -+ « , then we obtain that

7,(8) = 3, = [ (€7 £ = 1)

0]

E
J

where Tr(l-q) is the gamma function. See [ 11 p. 132].

Thus

san

omw

Ia(S) = -I'(1-a)s™ +
2c0s 5

for O0<a <1 if Re(s) 20.
Now we shall prove that
Il(s) = s log s - s(1-C)

if Re(s) > O where C = 0.5772157... is Euler's constant. By [11 p. 135]
we have Il(l) = C-1 . If we iIntroduce a new variable z = sx in Il(s) ,

then we can write that

Il(s) =s [ (e7%-1+ 2 2)dz +s [ [ 1 5 = ’12 2] %5“
LS 1+z 0 1Iix 1+s7x



where 'LS ={z:2=8X, 0<x <=} . Byusing Cauchy's integral theorem

we can prove that the first integral on the right-hand side of the above
equation does not depend on s . Thus the first term becomes sIl(l) = g(C-1) .
The Integral in the second term on the right-hand side of the above formula

can be calculated as follows:

©

e+ 0 ¢ 1+X 14s X e >0¢ X(1+X ) Ls(s) 7 (1+2)
where Ls(g) ={z:2z=8X, ¢ < X < »} . Since the function 1/2(1+z2) is

.regular_in the domain Re(z) > O , the last term can be expressed asg
) 1

|
I €S

€S
lim | ___Qgﬁ__= f =log s . -
e>0¢ z(1tz") € > O €

This proves the formula for Il(s) in the case when Re(s) > 0 . If Re(s) >0,

then Il(s) can be obtained by continuity.

If s =~iw where w dis real, we have . .

I, (1) = -lulog w - —gl + 19 (1=C)
for w>0, Il(O) =0 ard Il(iw) = Il(—iw) . This can be proved directly
as follows. If w > O , then

[+

. Il(-iw) = [ (elux_y _ 1wx ) ax _ i coswX=1 4. 4

0 1 ¥ 0 %°
. e ax . o dx
1 (s —25) S- e [ (B - ) S
0 1+e™x~ x~ 0 1+x 1+o™x" X
o EW o
= | 93§—%m:»d utie [ (Siﬁ 4 2)du—1u)11m [ — du =
0 u 0 1+u e »0 ¢ u(l+u )

- %IT— + 10(1-C)-inlog w .



® 1-cos u _ T

and -
fsmu~1icosudu=1
0 u”

and by [ 11 p- 2561
f(l —cosu)%E=C.
0] 1+u

Finally let us suppose that 1 < a < 2 . Then we can write that.

- @ l-a
I (S) = f (e—SX-1+SX) Eg§1'+ so f E—"E— dx .
> 0 x* 0 1+x

|

Thus by the solution of Problem 46.4 we have

A La ' sarw -
Ia(s) = 8 Ja(s) + ———

_Qcosag—
where
, - -7 adz
Ja(s) = [ (e "-1+z) =
Ls Z

and LS ={z:z=8Xx,0<x< ©} . By usinQCéuchy's theorem we can prove

that Ja(s) does not depend on s , and thus by [11 p. 132] we have

— _ ® X adx = B - v
J (s) =J,Q) —é (e -1+x) ot r(1-o) = fraysin e
Finally,
(s
I (s) = -T(l-o)s® + —S2T - =S T 4 ST
@ 2c0s %ﬂ I'(a)sin F“f 2C0s %—TT—
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for 1<a <2 and Re(s) » 0 .

4be.6 Let

1N

y = = arc tan(gtan %11)

=3

where -1 < vy

<1 . By (42.128) and (42.130) we have
- S .
E{IEICS} = ”X!Gf(XQOL,B,C,O)dX = (__c__Y?r_)a f]XISh(x;a,y)dx =
—o Cos =— -
2
—6—- o o
= (-—EL—;ﬂa [] x*h(xsa,y)dx + [ xah(x;a,—v)dXJ

‘cos%—-— 0 0

The case 6 =0 1is obvious. Let 6 #0 and -1 < 8 <o . By (42.131) we

have
oyl
© o © o 2
! x*h(x;a,y)dx = % [ x°Re{] g IXU-ue duldx =
0 0 0
s = - lgi
= Eil———:s) Refe 2 [ gue w L quy =
0
_ ()i Symi 8
- I‘(};ZG) Re{e 2 20 J‘ e—,ZZ a dz}:

(&) syrl
2 2 5.

r(1+6)T (= %)

= Re{e
o

r(1+6)T (1~ g-)

= - - cos
s

r(1+)r(l- 2)
: g

(A+8)m , Symy _ . Yy om
=+ = sin(1+ ) 3
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- YT
where 'L={z:z=~‘e 2u°‘,0;u<oo}.
Thus finally,
8 c ';S? 2r (1+6)r (1- ) s &m
E(|g|"} = ( ) 3 & sin 5= cos 5 =
~ cos XL m
2
8 1= Sye0s YT
. . r(l ~)cos B

cos L& r(1-s)cos S
- 2 . 2

for -1 < 6§ <a . This result is in agreement with (42.198).

146?.7, By the solution of Problem 46.6 we obtain that
|

«©

Pl 201 = [ £(x30,8,¢,0)dx = [ h(x;a,y)dx =
0

0
. r(1+6)r(1- ) o
= lim [ x h(X;0,y)dx = 1im sin(1+ ¥) 2T =
§ 00 § -0 ms et 2.
1. x
= = 4 -
2 20

where

= 2 ape am
y = = arce tan(gtan 5
and -1 <y <1 . This implies (42.192).

46.8.- If O<oa <1l and B =1, then R(0) =0 and therefore T{¥(s)} =
¥(s) for Re(s) >0 . If O<a<1l and B =-1, then R(O)>’= 1 and

T{y(s)} =1 for Re(s) >0 . In the remaining cases we have
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o0 gLl YT
. N COS%TT—OOeCXO/COUQ
B 7 9
o T 0 1-2xsin“1§-+x

for Re(s) > O where

on

arc tan( gtan 5

_2
Y oW

and -1<y<1. Venotethat R(O)=3-%

It is sufficient to prove the above formula for Re(s) > O and for

some particular ¢ > O . For Re(s) > O we obtain ¢+(s) by continuity.

We shall} prove the above formula for c¢ = cos 1{2—"— ard by replacing s by
/o

I

s(c/cos Péﬁ-) we obtain ¢+(s) for a general c¢ > O .

Thus let us assume tha® c¢ = cos ¥& . Then we have

2
_ o dyn/2 ,
eV € for-y>0,
vy ) = (= )Ote—iYTT/2
e Y for y<O0.

By Theorem 5.1 we have

) (s) = %+ 1im oor [ fw—‘”—l’——(i ) gy -f D gy

2 0 . v(s-1y) . y(st+iy)
for Re(s) > O . If we substitute y = e~ IY/2%, 10 the first integral
and y = eiY“/ Zuéz in the second integral then we obtain that
: : - L0 0 00
vy =2+ 1im o[ | e’ ® dz - | e 4]

c >0 2mi —i'Y1T/2OL) iyw/2a)

L] (e) z(l-ize L?(s) z(1+ize
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el‘Y n/ 20:'y /s

for Re(s) > O where Ll(c) ={z : 2= and € <y < «} and

e-—iyn /2

L2(E) ={z 1z = y/s and ¢ <y <} . Denote by Cl(e) the path

. . iyn/20
which varies from 2z =.e v/

e/s to z=¢/|s| along the arc |z| = ¢/|s]
and from z = ¢/|s| to « along the real axis. Denote by C2(8) the path

which varies from z = e—lY"/ga

e/s to z = ¢/|s| along the arc |z] = ¢/|s|
and from z = ¢/|s| to « along the real axis. If we replace Li(e) by

Cl(s) in the first integral and L2(e) by Cg(e) in the second integral, ..
then by Cauchy's‘integral theorem both'integrals remain unchanged.. If e +.0 , =

then the difference of the two integrals taken along the arcs tend to

|
|
|

Eei"YTI'/2OL /s ee-iyﬂ/Za/s _ dym iym
dz 20, S 20 S iyw
lim [- | =+ ] =1loge - log e =-—L
e >0 ¢/|s] Z  ¢/|s] , [s] s )

" and coqsequently,

S - s <%
+, 1 v 1 _ .
¥ (8) =5 - =+ =— — — - : Jax
T2 20 27 0 x(1-ixe 1y7r/2a) X(l+ixelyﬂ/2a
08 X —x%s®
- 1'— — ;Y__ + cos 20’ f e ) d_x
2 & T 0 1xsin T4y
for Re(s) >0 and c¢ = cos %g-. Since
Ym
Cos x— ®
+ 1 2 1 C e ,
VO =5- Lt —=] T =1
0 1-2x sin §€'+ X
we can also write that
- Ccos e st
lP (S) = l - T J' 2 dX
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Y
for Re(s) 20 and c¢ = cos %E

~

46.9. By (42.115) we have

2[1-0(%9)]  for x 20,
P{n < x} = Yx

0 for x < O,

/2s

whence the statement follows. We note that FE{e °N}= e™°

—e|s|Y2+ ﬁ)

or E{fe"M= e ‘ S for Re(s) =0 .

for Re(s) >0

. U46.10. Since F(x) belongs to the domain of attraction of itself,

Theorem 44.8 is applicsble. By (42.104) and (42.105) we can choose B, = nl/®

in (46.247). Thus by (U46.2L4) and (46.247) we obtain that

(¢ c
1im n F(—nl/“x =% and 1 n[l—F(nl/"‘x)] = ——3

[0 2
n * © n > « X

»

for x > 0 . Hence the assertions follow,

46.11. Let us denote by a the expectation of F(x) if it exists,

and by 02 “the variance of F(x) if it exists.

If 62 =0, then F(x) 1is degenerate, and ¢ =0 and m=g . ( a and

B are immaterial.)

f 0«< 52 <« , then F(x) 1is a normal distribution, and o =2,

= 02/2“5 m= g . (8 is immaterial.)

If 02 = o, then F(x) belongs to the damain of attraction of itself

and thus by (46.245) we have
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1-F(x) + P(=x) _ «
I-F(px) + F(-px) °

lim
X >

for any p > O . This determines o . The constants B and c¢ are
determined by the solution of Problem 46.10. It remains to find m ., If.

l<a<2, then m can be determined in the following way. On the one hand

in Theorem 46.8

A= [ XAF@ - ) +e "

n
!x|<rn1/a

where 7 > O, u(t) is defined by (U46.243) ard 1im e O . On the other

n - o«
hand by :(42.104) and (42.105)
} m(n-nl/a) for a#1
An i 28cn log n
=2 20B 0 for a =1

T
is a possible choice in Theorem 46.8.

A comparison of the above two formulas show that if 1 < a < 2 , then-

@

m=a= [ xdf(x) ,

-G

and if o =1, then

. 5 ,
m= lim [ [ xdF(x) - BC iog D 2§c [log T - (1-C)]
n > « |x|<m

%.where.'{ >0 and C is Euler's constant. It is convenient to chooge T = elfC

in the last formula.

.. Note.. If o =1, then by the last forrmla we obtain that
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') -—-;1-— 0 =
lim T2y [ [ xdr(x)

2BC
y-—)oo X‘<y ™

If 0 <a <1 and if we compare the aforementioned two formulas for

An , then we obtain that

o

2

1 2BCP(1+OL)SjI1
lim —— [ xdF(x) =

y ey |xl<y (d-e)m

These formulas can also be proved directly by the solution of Problem 46.10 .

46,12, TFor any k = 1,2,... we have

] Byt Egte.t £~ A

where R(x) is a stable distribution function of type S(a,8,c,m) . If we

write -
) . _ + _ _ _
§l+...+£nk kAn _ El "'+£n An . €n+l+"'+£2n An .. E(k—l)n+l+"‘+£kn An
B B ' B Tt B
n n n n
then we can easily see that
gt gt E .~ kA
lim p-t—2 M 1<y} =R (x)
n -+ x n v . v

where Rk(x) is the k-th iterated convolution of R(x) with itself. By
(42.103) ?Rk(x)«.is a stable distribution function of type S(o,B,kc,km) .

Thus by (42.104) and (42.105)
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28¢c log k
m

ke B 1 -3
! mk % -1) for o #1

has the limiting distribution R(x) as n =+ < ., Hence by Lemma 44.2 it

El“i' €2+...+ gnk»— kAI’l _ { for o =1 s

follows that necessarily

Bnk
1lim 1
noe k7 "B
and
A -Q—B—c-logk for a=1,
. ‘mk " n "
Hm =3 - =
p_>°° nk m(k ¢ -1) for o #1.
Let us define

B(t) = B+ (t-n)(B_,;- B))

for n < t <ntl and n=20,1,2,... and

A1r1 An+1 An
a(t) = g+ + (t-n)[gE= ~ 57
n nt+l n

for n<t <ntl and n=0,1,2,... . Since by (44.118) Bn + @ and
Bn+1/Bn >1 as n-~»> e, and by (44.125) (An+1— An)/Bn >0 as n->« , we
can conclude that

B(kt)

lim‘
£ e ® B(t)
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#gegr  if a=1,
. k . -
i [a0ct) - 57 a(6)] ) 1
mx % 1) 1If a#1,
and k= 1,2,... . The functions B(t) and a(t) are continuous functions

of t , and therefore the above relations are also valid if k dis replaced

by w where w is any positive real number. If we write

1/

B(t) = t7 7 o(t)

for t > G , then we have

e PE)

! .
I

for w > 0 , and if we write

—Z—iﬁ-log t for a=1,
a(t) = }—E{—t’m—-) + _
=-1 - m for a#1,
, _ £ . .
for t > 0O , then we have
11m h(u)t:)L - h(t) _ 0
t > o = -] .
t
for w>0.
46.13. By (42.171) we have 7
® -»I"(l—a)sa

é g"S% dR(x) = e

o0

f'or R(s) 20 . let ¢(s) =] e aF(x) . Then
0
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1-g [ [1-F)Je™ ax = 1-s [ h(x)x e ax =

¢(s) =
0 O
a, ,Ls o
= 1-T(1-a)s () + o)
as s~>0. If s >0, then
n a
n-»e n p(n)
if and only if
1/a
14y D Z(H)) -1
o n -+« (p(n))
and thlg proves the statement.
J
46.14. By (42.173) we have
® -I‘(l-a)sa

[ e @r(x) = e
0

for Re(s) >0 . Let ¢(s) = fe"sx dF(x) . Then
0

[~o]

¢(s) = l-as+s [ [l-F(x)](l-e—sx)dx = l-as +
0

[e <]

+5 [ h(Ox ™ (1-e”)ax = l-as-T(1-0)s’h@E) +o (s%)
0

and

0(s)e®S = 1—1“(1—oc)sah(-;'-) +o(s®)

as s>0. If s>0, then

as n
r —_—

/0, a

. ~{1-0)s"
1im “p(-_i./a_._s.___. n” “p(n) = o (1-a)s’
n

no> e p(n)

) e

1
L
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if and only if

1

v DO o)
n>e (o))"

and this proves the statement.
46.15. Since

k .
J 2y . k.a-1
LD G = D

for any a , we have

Ble, > Xk =1- ] @y L. 1 1313 =

J
1
= LS = (9 &
2
for k'=1,2,... . By using the inequality
1 2k, 1 1

we get

1im 2k P{g_ > 2k} =/§-

K > N Tl'
Thus 3{ gn < X} belongs to the domain of attraction of a stable distribution
function R(x) of type S(%—,l,c,o) where c¢ > O .  If we choose An =0 and

"Bn = (‘nb)2 where

[AW)

L
“Ed

m

b

[eR
»

)sin 1
I
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then we have

c2(£1+...+ £ )
1im P{ 5 % <x) = R@&) = 2[1-0(%0)]
n - e n® Yx

for %z > 0 where ¢(x) 1s the normal distribution function.

Note. Since

. n ,2j-n 1
et = = = (7 —_
,E{ €1+ En eJ} 2j-n ( J ) 223 -1

for j =n, ntl,..., we can prove directly that

w_ 2 _ 1

‘ 1 f T2 2y 1
—_— —-— |y e dy = 2¢(—) -1

| e n2 von X VX

a
b6.16. Since TI'(atl) ~ V2ma (-2—) as a > «® , we have

q
o] - 9/k-qy _ kKT(k=gtl) 1
kKPle) > kK =KCW ) = i) 7 TO=))

as k> =

and thus P{ £, < x} belongs to the damain of attraction of a stable distribution
function R(x) of type S(g,1,c,0) where ¢ > O . If we choose An ="0 and

Bn = (nb)l/ 9 where

, qn
b = ul _ singm _°%73
. . b
r(1-g)2cT(qg)sin %1 2¢ -sin %ﬂ» oL
then
€l+ £2+...+ £

1im P{

I <x = R(x) .
n-> e ~ (bn) B }

1/q
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Qi ,0) .

If bp=1, then R(x) is of type S(q,l,cos 3

46.17. Since

1-F(x)

B G TP

X > ®
for p > 0, by Theorem 44.8 it follows that F(x) belongs to the domain of
attraction of a stable distribution function R(x) of type S(1,1,c,mm) where
¢c >0 and m 1s a real number. We have
+...+ En- A "

;
Lim P{ —+——
n-+o® n

< x} = R(x)

if we choose Bn in such a way that

1im ____p____2_=%_
| n - @Bn(log Bn)
ard if
B
n o
A =n [ xdF(x) - mB_ - == B [log 1-(1-C)}+ ¢ B
n 5 n T n nn

where C 1is Euler's constant, T > O , and :en +0 as n-> .

Ir
Bn = ._____m___é.
2c(log n)

for n > 1, then the requirements are satisfied.

In our case

[ xdF(x) = [ [1-F(x))dx = e + [ —=% s=e+l
0 0 e x(log x)
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“ad if .-'cBr\ > e , then

B : B
RE n 1 , : .
[ xdF(x) =e-1+ [ [ o+ dx =41 - i
0 e x(log x)° x(log x)° Tog B,
R
2 L]
(log TBn)

T hus

_ n n L _nx 2n loglog n
An—n(e+l) _logn+ 2 [1og 2~ © 23 1 - . 2

(log n) (log n)

for n > & 1s a possible choice,

If c=1n/2 and m = -C , then we have
|
| g+, + £ - n{etl) - - ,
lim P{ = n + log n + 2loglog n £x}=R(x)
n-«  n(log n)~

where ‘R(x) 1is a stable distribution function of type -S(1,1 -C) .

’25

46,18, In this case

1-P(x) + F(-x) = _m__5__
6x(log x)

for x> e and

1im F(=x) _2
- TIFx) 3

function
Thus  F(x) belongs tc the domain of attraction of 2 stable dis bI‘lbU.thI’l R(x)

T

- of type S(1, ,c m) . If ¢ = 51/12 , then we can choose Bn = n/(log n,2

5

for n>1 and if m= =C/6 where C- is Euler's constant, then
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- > n 2n loglog n
A =nle-2) - rs=— = 2208
n | 6 iog n 6(log n)2

for n >€ 1is a possible choice. Thus

g to. .+ E - A
lim P{———s—"D ¢ x} = R(x)
n-—> o n
105 C
where R(x) is a stable distribution function of type S(1, —‘51, —1)—% -~ Do

46.19. Since 1lim x[1-F(x)] = 1, it follows from Theorem 44.8 that

X-—)oo
F(x) belongs to the domain of attraction of a stable distribution function
R(x) of type S(1,l,c,m) . By (44.247) we can choose Bn = nw/2c and by
(4&.2&8)

mn/2¢
- ax - nm 2¢ _ - -
Ao [ ozt e - G-0D

where 1 >0 and C is Buler's constant. Thus

nm nmw \
= o] — + —_— _) .
A m 5>+ n log 5 n(1-C)

If ¢c=n/2 and m = 1-C , then we have

g te.t £
1im P{

n-—> o«

= n-—logn__i_x}=R(x')

where R(x) is a stablé distribution function of type S(1,1, -g—, 1-C) .
The Laplace-Stieltjes transform of R(x) is

-(1-C)s~|s] —;-+ s log|s]

Y(s) = e i

for Re(s) =0 or
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o(g) = e~(1C)sts log s

for Re(s) > C .

Note. We can prove the above result directly. The Laplace-Stieltjes
transform of F(x) can be expressed as

¢(s) = [ e & =5 | e™? %—= s[C-1] + s log s +1 - s2+ 0(82)

1 x S z

for Re(s) > O where o(sa)/s2 +0 as |s| >0 . (See N. Nielsen [ j42p.5].)

Thus

n
1im [:‘b(}sf)] o5 log n _ es(C—l)+s log s

n - o

for Re(s) > O . Accordingly,

lim P{ -—=———— - log n < x} = R(x)

where

b(s) = [ & @Rx) = ¢"(1O)STS 108 8
for Re(s) >0 . If Re(s) =0, then s logs =s log|s| - -lilgl

46.20. In this case F(-x) = 1-F(x) and

1-F(x) + F(-x) = 1108 X

X
for x>1 . Thus F(x) belongs to the domain of attraction of a stable
distribution function of type 8(1,0,c,0) where c¢ > 0 . If we choose An = Q

and B = (m lcg n)/2c , then
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20(€l+...+€n)
. of
nlfngg‘ ™ n log h

;X}='~-.-+,—l~arc tan%j—.

%
for Re(s) > 0 where

46.21. Let us suppose that Be %) = ¢
O<ac<1l1, P{n <x} = 1l-e * for x >0, and & and n are independent

random variables. Then

-1 ® _ (1 /-\%
Plen " < x} = [ Pl < xyle Yay = e (1/%)
~ 0
for x > 0 . Hence
Pin* e <x}=1-e"
for x>0, and
) o =0
-sn g ._ 1
Ele }= T 5
for Re(s) > -1, or
OL o_~0 @ o~
Ee™ME 1=1 .{e-(su) e ™ au = _1_"'&'

for Re(s) > 0 . On the other hand by (42.180) we have

k ka =
)" s f U ukadu _ 1

0 - 14+ s

Q

[ E (-s*u®)e Mau
o % L
for |s| <1 . Accordingly, we have

[»2]

f E{e -(sw)% } Mau=[E (-=s"uMe T qu
o 0 %

for |s| <1, and this implies that

for every w . This proves (42.181) .
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: a
4,22, In this case ¥(s) =ﬁ§{e_sg} =/§{emsn} =e™® for Re(s) 20 .

Let us suppose that &, n, 91, 6, are mutually independent random veriables

[+

and P(6; <X} =Po, < x = 1-e for x >0 . Then

-1 . R |
Fleey” < xb = Plno," < x} = (7))
for x>0 and
G(x) = plenTote, < x} = [ [ v (l)¢(l)du dv = x”
ST P Yo = u’' v Lo
-1 1+x
uw "
for x ;=O . Since
|
|
o a=S.8, _ _ __TS
NVE\,{Gl 92} = ['(1-s)r(1+s) oin 7S

for |Re(s)| <1, it follows that

{ x®aH(x) = §£%§E§.f x°dG (x)

0 0

for -1 < Re(s) < o . If we extend the definition of G(x) by analytical-
continuation to the complex plane cut along the negative real axis from the -

origin to infinity, then we can write that

dH(x) _ G(xe™) - G(xe ")_ x"sin ar

dx 2mix mx (1+2x"cos an+x2a)

for x>0 . If, in particular, a = 1/2 , then

H(x) = £ arc tan /%

EREN

for x>0 .
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CHAPTER V1T

53.1. If (k = 0,1,2,...) 1is defined as in Section 49, then by

%

Theorem 42.3 we have

T
P{ lim -l}‘-=a}=1.

Wk+@'

Hence if O < e < a , then

(a~e)k 2T < (ate)k
large
for sufficientle k with probability 1 . Since Tv(t) Lt < Tv(t)+1 s therefore
|

for sufficiently large t with probability 1 . This implies that

This result is also valid for a = « , if we define 1/a as O for a =« .
This can be obtained from the previous result by trwreating the recurrence

times at m and letting m +'w. -

53.2. Both gl and 52 are necessarily discrete random variables, and
there is a constant ¢ such that gl+ ¢ and 52— ¢ take on nonnegative
integers only. Let NF{£1+ c=j}-= Py and Nf{gz".C =3} =g for j =0,1,2,...
Then we have

ls -’a.r ak -
P Gy T

for k =0,1,2,... . Hence po >0, qo‘> 0 and
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for k=20,1,2,... . Let

J

j -

glz) = ) P4z and h(z) = ] q.z
320 j=0 9

The function g(z) 1is regular on the whole complex plane,

o k
1 -aa ,k_1 -a(l-|z])
g(z)| < — e |3 =—e
@) oo Lo irld =g

-a(l-z) e—a(l—z)

and g(z) never vanishes. For g(z)h(z) =e and has no

zeros. 'Thus

1n 1EEE) .
ozl v oz
and by:Theorem 10.3 in the Appendix, it follows that log g(z) = al(z-l) .

Here we used that. g(1l) =1 . Accordingly, g(z) = e * (; Z?, and in a similar
~a,(1-z) | L

1 5 >0 and al+ a2 =a .
=0, then the random variable El or 52 has a degenerate

way we get h(z) = e Obviously a, >0 , a

I a1 =0 or a2

distribution. If a; > 0 and a2

nondegenerate Poisson distribution.

> 0 then both gl+ ¢ and gg— ¢ have a

53.3. Let
qk(n) = P{v(i) =1 for k values i =1,2,..., n[v(n) =n}

for 1 <k<n . It is easy to see that ql(l) =1 and

. . ©on-1 :
q(n) =1~ } P{v(§) = jlvin) = nig ()
J=1
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for n> 1 . Furthermore,

n-k+l
g (n) = Zl Plv(§) = jlv(n) = nlq; (Gqy_; (n-3)
: jEp -

for 2 n . Define

A
~
A

11
Q (n) = 7 q, ()

for 1 <k <n . Then we have Q](l)=1 and

n n-l . \N=j
= n .y (n=3)
| QM =y - J,Z] Q, () G
| \
for n> 1 . Furthermore,
n-k+l
Q(n) = 321 Q, (1)Q_; (=)
. for 2'<k<n. Hence
© N
% ) %!* Z" p(z)
2 Ql(n)Zrl = B e l-i(z) = p(z)
n=1 1+ Z n_' S 150 (2)
n=1

for |z| < 1/e where w = p(z) is the only root of we " =z in the circle

lw| <1 ,and

o oo k k
N n," _

’_nzk Qn)z" = (nzl Q (n)z") = [Q(Z)]

for k=1,2,... . By Lagrange's expansion we obtain that
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k
D ( O S,
(”k‘n) (n-k)!n

for 1 <kz<n. (See (39.148) and (39.li}§).)

53.4. If T, (0 £ u < =) 1is defined by (49.24), then by the solution

of Problem U46.17 we have

T - uletl)
1im P{ ~S—o
u-~+« u(log u)”

+Z 2xh = RE) 1108 u +2loglog u

where R(x) dis a stable distribution function of type S(1,1, 2, -C) where
C 1is Euler's constant.
t = uletl) - ]ou . Hx u 5 *2‘_ 2u logloggu ;
& (g w)® |\ (log w)*

e

for u.> e , then

v | oy
13 - <= + +1) -
% fnlgt(e+l)'d(log £)=c ] er] * lo(erl) - x
/<-log t - 2loglog &
and thus
1im P{r1 <ty = lim P{v(t) 2 ul = R(x)
u =+ t >
implies that
o0 iy
tm D . 1 ( vl = ] R(x
Py R A S T e = A

Z-log t - 2loglog ©
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53.5. Denote by An the number of positive terms in the seguence

Zas Ty Toacees . Then we have

Plr; > n} = Plg <0 for Ozrz<n}=Pa =0}

~m~ 1 ~ —~ n
for n=0,1,... . By Theorem 23.1 we have
© n
Z Pla =0k Z B~ P < O}}
O : n - n =

for |p| <1 . By (42.192) we have

Pl <O=1-q=2-L

for n=1,2,... where

-2~ arc tan(B tan %1

<
il

and -1 <y <1 . Thus it follows that
| -= =0} = _ n q-l = n'_q
Plry >nl =Pla =0} = (1) () = ()
for n=20,1,2,... and O <q <-1 .-

By the solution of Problem 46.16 we have

< x} = R(x)
where R(x) 1is a stable distribution function of type S(q,l,cos éﬂ, o) .
Hence by Theorem 49.2 we have

11m pf ¥ ) | <z} =1-R&xVY
£ > o t4
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for x> 0 or

1im P{ vit)

< X} =G_(x)
T > tq q

where Gq(x) is defined by (42.178) .

53.6. The random variables X, = Z_ 5 X, = C_ = C_ s... are mitually
1 2 2 5 T
independent and identically distributed positive random variables and
z. = xl+ x2+...+ Xq for n=1,2,... . By Theorem 19.4 we have
n , © -S¢
- ] S Ele na(;n > 0)}
~SXy n=1 ="

¢(s) = E{e }=1-e

for Re (js) > 0 . The random variable ¢ n has a stable distribution of type

S(a,B8,nc,0) and thus by the solution of Problem 46.8 we have

%
=l cos % ® e x*s®
Ef{e G(z;n >0)} = - / - 5 dx
e 0 1-2x sin £~ + x
2a
%
~for Re(s) >0 where c =c/cos£—Tr . Since q=%+—§-§ we have
N lll’_ = _ _Y_T_T_ - R
sin o cos qr and cos 5a sing w ,
and
w -c*xasa
1-6(s) = expl sin q n log(l-e ) ax }

T 0 142x cos gm +x2

for Re(s)>0 . If we write
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¥ o q

-c x’s - ¥ o o j-e ¢ XS
log(l-e- ) = loglec x's ) + Jog(—“ﬂ"a“)
cC XS

in the above integral and if we take into consideration that

® dx _, fl dx o
0 1+2x cos qu-x2 0O 1+2x cos qﬂ.{.x2 sin gn
and
log x 1 log x ” log x
- 2" f . ) ax + [ s 5 ax =0 ,
0 142x cos qmtx” O 1+2x cos gm¥x” 1 1+2x cos gmtx”
then we can easily see that -
‘ -
|
~ 1im 1_%22' = (c)d=[-E -] = d(1+p%6an” %1)2
s*0 s cos 1+ ,

If either O<a <1l or 1 <a<2 and -1<B8<1,then O0<aoag<]l
and consequently - 0 | -

o

* d
. .ad O ()
LA 7 Fng

Thus P{ X1 < X} belongs to the domain of attraction of a stablie distribution

function R(x) of type S(oq,1,c,0) where ¢ > O . We have -

D < x} = R(x)

7 ¢ 4 ' -
* eqm ; '
. o ¥y (¢') cos =3 .

I'(1~aq)2el (ag)sin 9—%1 c



lim P{ 2 < %} = R(x)
where R(x) 1s a stable distribution function cof type

> <
S(aq,l,cq(l+sdtanr’ %1)2 cos a—oéﬂ , 0) .

We note that if 1 <a <2 and B =-1, then vy = 2-0 , and ag = 1 .

In this case
{
| 1/a
! o 1=0(s) _ c
1im - ( poad
s +0 | cos -2—|
that is
: o 1/a
E{x.} = (————
~ 1 | cos =&
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CHAPTER VITI

58.1. Let us suppose that for each i = 1,2,..., m independently of
the others we perform the following random trial: We distribute ai points
on the interval (0,1) in such a way that the points are distributed
independently and uniformly on (0,1) . In the i-th trial denote by xi(u)
the rumber of points in the interval (O,u) for O <u <1 . Then the processes
{Xi(u) » O <u <1} are independent for 1 = 1,2,..., m and we can easily see

that the probability sought is

P éAEixl(u)+cl < xz(u)+c2 <eaa< xm(u)+qm for O <u <1}

|
i

On 'the other hand if we suppose that {vi(u) s, Ocu<e} (1=1,2,..., m)

are independent Polsson processes of density * , then obviously we can write

that
P =M1f{vl(u)+cl < v2(u)+c2 <uua< Vn#u)+cm for Ozu ;:llvl(l) =
= a;, v2(1) = 85seees vm(l) = %n}
This latter probability is given by Theorem 56.9 .
58.2. Let us define

p (@) = Plv(i) <1 for O<1 < k|v(atk) = k}

, and

}_i

for k=0,1,2,... and a >0 where po(a) =

IS

*
p(a) = P{v(i) < 1+l for 0 <1 k|v(atk-1) = k}

li
)

. _ % *
for k=0,1,2,... and a > 0 where po(a) = and pl(a) =1 .
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%
Then we have W(t,0,k) = pk(t—k) for O0<k<t and W(t,l,k) = pk(t+l—k)

for O <k <t+l .
We can see immediately that
P, (3) =N5{v(a+i) >1i for 0 <1i <klv(atk) = k}
for k =0,1,2,... and a > 0 where po(a) =1.

If k=1,2,... ard a > 0 , then we have

k-1
i p(a) =1~ ] Plv(at]) = jlv(atk) = klp,(a)
| j=0"" J
where E
ceind s gk
P(v(ati) = §|v(atk) = k= () (&L (e])
-~ ’ (atk)
Let
p, (a) (a+)"
Pela) = =

~for k=0,1,2,... and a > 0 . Then we have Po(a) =1 and

k k- 3
p ey = B K p (o Gep)
k&= TR jmo 3 TR
for k =1,2,... . Hence
o k
ECEN O |
- i I @ -1
T (a)k = O k 3@ @) | ] ek
) “hlaszs = e 1T~ ¢ = K1
k=0 Z k™ k k=0 :
o KT z 1-p(z)
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for |z[ < 1/e where w = o(z) is the only root of the equation we " =z in

the circle |w| <1 . (See (39.148) and (39.149).) Thus

=2
P (8) = 3%

for k=0,1,... and a > 0 where pO(O) =1, and

~

W(t,0,k) =1 - %

for O<k<t and t >0 . This is in agreement with (56.83).

S
Second, we can write equivalently that
i ,
i %
- p (@) = Plv(ati) » 141 for 0 <1 < k|v(atk-1) = k}

|
!

% ¥
for k=0,1,2,... and a > O where po(a) =1 and pl(a) =71 .
If k=1,2,... and a > 0 , then we have

k=1

pa) = 1= T Biv(axi-1) = Jov(at)) = Jlv(ael) = k}pf;(a)
5t
where .. ) -
k! (atj=1) (k-3-1)%7
P{v(atj-1) = 3, v(a*+]) = j|v(atk-1) = k} = =21 J =
- 31(k=j)1 (atk-1)
et
* Kk
* pk(a) (atk-1)
Pla) = Pl

% %
for k=0,1,2,... and a >0 . Then we have Po(a)=l s Pl(a)=l and

k k-1 s k-j;:,
P;(a) _ (atk-1)" ) P’f<a) (k=j-1)" ¢

k1 jho (k=3 )1

for k = l',2','.,. . Hence
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T olame) ko (a1 (2)

Sk ko KT T | we) ¢ et x

] Pl = - ey e ) I

k=0 oLl ok e’ k=0 '
NS 1-p(2)

k-1
¥ a(atk)
p (a) = ===~
% (a+k—l)k

for k =0,1,..., and a > O where pg(a) =1 and p’{(a) =1, and
k=1
t+1-k) (t+1
W(e,1,lo = k)
T
for O0<k<t+tl and t > O . This is in agreement with (56.88).

58.3. If we take into considera‘cién that in the underlying Poisson
process in the interval (0, 4t) ¢ne event occurs with probability AAt + g (At)
and more than one event occurs with probability o (At) , then we can write that

W(t+At,x) = (1-AAL)W(L,x+AE) + Aat [ W(t,x~y)dH(y) + o(At) .

Hence by the limiting procedux;e At -+~ O we obtain that W(t,x) satisfies the
integro-~differential equation
X

anjg,X) = ngz,x) - AW(t,x) +Af W(t ,x=y)dH(y)

-0

for almost all (t,x) . The probaiblity W(t,x) can be determined by solving

this equation.

58.4. In this case : S .
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o n x n-1
-A -au (A - ;
Nlj{x(u) <x}=e Uy ]oe -O%;—%— wy Qiy) — pdy =

Jr <
n=1 0 (n-1)

.
= M [1+au | e ™ 3 Gauy)dy]
0

for x>0 and P{x(u) £x} =0 for x <O where
A

<o

n
X

J(x) = Z T
n=0 (n!)
is a Bessel function. Hence P{yx(u) = 0} = e ™M ang
. < | o
R = xb e g )

X

for x>0.

By Theorem-55.6 we have

W(t,0) = ,e"At [1+ auf G=y)e™ I (uty)dy]
| ' 0
for t >0 and

t
W(t,%) = Pix(t) < t+x}-aue ™™ [ u o~ (M) I (vpu (ux) W (t-u,0)du
i 0

for £t 20 and x >0 . In another form we can write that

ux & em (Y '
W(t,x) = 1-2e Of Ty Iy Gety)) + 39T Oy (xty)) Jdy

for £20 and x20.

58.5. By using the same notation as in Problem 58.4 we have



S-96

t
nx f e—'()\-h-l )y Jt
X

V(t,x) =1 - - nx e Quy (y=x))dy

for 0 <x <t . This follows immediately from Theorem 55.9 .

58.6. If we suppose that X172 Xpo+e+s Xpo...2nd T T2,..., T'n"" are

numerical (non-random) quantities for which O < T < Ty <...¥< Tn<... and

1.+ as n-+o , thenwe have n(t) =n_ for 1<t <1 (nh=0,1,...)

n n n ntl

where 9 =0 ard

n. = max(0, )(1- T Xl+ Xo= Toseees xl+...+ xn— ‘rn) -

n
|
Thus I
|
- o -sn_ nHl © -sn_ —qt -qt
qf e B oo 7 ge P f e Tg=J e N e My
0 n=0 T - n=0

~for ‘Re(g) > 0-.and Re(s) 20 . If {Xn} and {rn} are random variables, then
.the above identity holds for almost all realizations of the process {x(u) ,

O 2u <=} . If we form the expectation of the above expression, then we get
¥ gt o, ~sn(t
q e B g = [1-6(q)10(a,s)
O A~ N

- for Re(q) >0 and Re(s) > O where by Theorem 4.1

U(g,s) = 'E E{e_snnﬁan} = o T11log[1-v(s)¢(q-s)1} . L

- n=0
~The ssme.result can 21s0 be obtained by Theorem 54.1 . The distribution-

afunctienf‘;‘f{n;(t') < x} can be obtained by inversion from the above transform.
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53.7. First, let us suppose that x,, Xoseers Xpooos and 195 Tos- n?
are numerical (non-random) quantities for which/ 0 < T] € Ty Ceen< T < e
and T, > ® a8 n- . Let us write Y T gt xpteelt Xy for n = 1,2,~--
and \/X 0 (n—l 2,...),

¥
n, = max (O, Ty~ T T

17 Ypeeres TpayT T Yp)

for n=1,2,..., ard

* * ¥
for n=1,2,... and no = 0. Then n (Tn) = Tl+ N1

¥ ¥ 5(-, +
n (t) =max(n (t), t-v,) = t=v, ¥ [n \Tn) + oy~ t]

f 1
for 7, <t< T+l If we calculate

Thi1

|
ke
| 1 e (g

we
by using (54.17) and :‘Lf,\add these integrals for n = 0,1,2,..., then we obtain

that
=qy,~(ats)n -qxnﬂ)

o - *
-qt-sn (t).,. _ _Q s e n n
at = + o Y oe T T (1-e
0 ats ats n=0

for Re(q) > 0 and Re(s) >0 . If [Xn} and - {'rn} are random varisbles,
then the above identity holds for almost all realizations of the process
{x(u) , 0 < u<»} . If we form the expectation of the above expression, then

we get

L . * :
‘:q:_,,éefqthg{e's” ®yqt = = o o(g+s) 1y}’ CRAY

for Re(q) > O and Re(s) > O where by Theorem 4.1
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%
-'QYn-S 1

U'a,8) = ] e = o Pllog[1-0()y(a-5)]}

n=0™"

%
The distribution function P{n (t) < x} can be obtained by inversion from the

above transform.

58.8. If vy <a, then

B N <
(s-) [ e"Iag = (a=8) ;) G
6]

if y > B8 , then

B
% (s-0) | e._qt--=s(y--‘c )dt _ e—qB-—S(y—B) —e"qo"s(Y’O‘) ,
i o
ia 2y £ B8, then

and 1if

‘Y o . B _ )
(s=q) | at=s(y-t) 4 (s=q) [ e byt =
¢ Y

e“’QY) .

= [ - WSl L g L 8y
q

These formulas prove the identity in question in each case.
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61.1. In this case

v(s) = [ e TaH(x) = A
0 nts

for Re(s) > -y and by (59.12) we have

[ e d Pglatx) < x} = e
o 1493

for Re(s) > O and a > O . Hence by inversion we get

P{g(at+x) < x}

-Aa L -1/2 e
e "[1+Vaa [ e ue Il(2/ Apau)dul
0

0O where

fiv

for a ﬁ 0 and x

is a Bessel function. Thus we have:

X
PO s Gy [ M Y 1 o T )

P{g(t) < x} =e
e 0

for O <X <t

61.2. If we use the notation of Example 1 in Section 59, then

“1’ Gpseses Bl’ 52,... are mutually independent random variables for which

1 2]y 1 1

ETTT Y
231 3 22j /‘}_;r;?’-

Ng{an = 2j-1} =(£{Bn = 2j-1} =

as J-+e (j=1,2,...) . Hence
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1m (162 = 1im [1-HG) ]2 = /ﬁj ,

X > <« X =+

and by (59.62) we obtain that

1im P{B(t) < tx} = %arc sin vx

tr o™

for 0 <x <1 . For a direct proof see (37.160).

61.3. Denote by An(t) the number positive elements in the sequence

(=)&)

g(r—g) (r = 1,2,..., n) . Since s(—r—}) - (e =1,2,..., m) are

.
z

muttially; independent, identically distributed, symmetric random variables for

which P(z(5%) = 0} = 0 , by the solution of Problem 27.1 we have

25y cn-2jy _1_
J ) n-—-j ) 2n

Pla (t) =31 = (
™~ 2

for j =0,1,..., n. Thus by (37.166) we have

A_(E)
n . —
arc sin vx

2 [ro

lim P{

n-»+> o

<x} =2

for 0 <x <1 . Nowby Theorem 52.3 we can conclude that

8,(6)

P{ =~ <x} = 1im P{ < X}

n-> e

for O <x <1 and therefore

m

P{E(t) < tx} = 2 arc sin/x

for O

A

o

i~
=
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61.4., Let us use the notation of Example 1 in Section 59. In thils case
{an} and { sn} are independent sequences of mutually independent and identically

distributed random variables. We have

<2J)

ﬂ};’{an = 2j-1} = 51 l 223

for j =1,2,... and E{Bn} =m . Hence

lm [1-6() 12 = /2

X »r m

and by (59 52) we can conclude that

1im P{/_i B(t) = Py Y2 <

t+w i

where vy has a stable distribution of type S(—]Zl, 1, /—gj , 0) . Thus we can

* *
write that vy = n/2y © where P{y <X} = 8(x) , the normal distribution

function. Thus

1im P{e(t) < xv/%)}
t -> oom-

* X+ X,
Pyl 2gi=20() -1
for x>0 .

61.5. We shall use the same notation as in the proof of Theorem 59.2
In this case
o,
1im P{—V———-—- < x} = R{x)
n->o r(n)

where ”R(xj is a stable distribution function of type S(o,l,I(l-a)cos —2 0)

and r(t) satisfies the relation
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i hEY® pie)

t o (rE)”

(See Problem 46.13.) We note that I1im r(wt)/r{(t) =1 for any w > O .

t->eo

we define p(t) by (59.5), then we have

(t) 1
B

as t -+ « ., Thus by Theorem 45.4 we have

regardless of whether {an} depends on {Bn} or not. If we define

u=t o+ () eme

then
o & .
1m Hr )l L

(o]
u-+° Au

>

for x >0 and thus by (59.6) we have

1im P(B(W) L u - t} =R(x)

u > e

for x>0 . Accordingly)f L

o
o
lim P{ [u - B(u)]gr(u )] <13 = 1RE&)
u-> e Au

tol

for x>0, or

e

. [e-®)Urt™H ] . ., 1. ‘ |
tlimo:g{ A ta <X} o= l—R(;i'E) = GQ(I’(l-—OL)X)

If
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for x > O where Ga(x) ig defined by (42.178) .
For each t > O let us define w(t) as a discrete random variable

61.6.
which takes on positive integers only and which satisfies

{w(t) < n} = {én >t}
Then by (59.1) we can write that

for t >0 and n=0,1,2,...
POB(E) < X3 = 1=Ply, (y < t-X)

for 0<x<¢%
|
|
In jour case
|

Y
. n
T T

n-+® n
where ‘R(x) and r(x)have the same meaning as in the solution of Problem

Furthermore, we have

61.4 .
wlt) 4 1
t => B
as t + « ., Thus by Theorem 45.4 we have
1/0
_._?:m_(_t_)_ < X} = R(X)

B
1im P{
5 tl/ar(t)

t > »

regardless of whether {an} depends on {Bn} or not.

If we define
=t + o) (/B

then
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tlr@] .1
u->e A u* x”
for x > 0 , and consequently
1im P{8(u) < t} = 1-R(x)
u - o
for x > 0 . Hence we get

1- R(—%—/-J) = G_(r(1-a)x)

lim P{ 8(t)[r(t” )J <x) =
B t”

£ > o

for x > 0 where G (x) is defined by (42.178)

By Theorem 59.6 we obtain that

;61070
| o) Byt
+ -
lim P ()’ By E _ { 25'51A2?5’éx}
tam™ ( 13/2 1/2 = 4372
| 1 |

P{S<x, ~X’4 }:.- F(x,y). Hence it follows that

(t) = It
! =X}=§(X)

where
1m P { 1 75

where M, = Bl/(Al +2B1),
2 2,2
(A 32 + B1A2 - .2:[:'./3;133
3/2
(&4 + By) |

1/2
A5B,) /

Mg =
@(x) is the normal distribution function of type N(0,1)

and
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%4 o .
61.8., (i) If (s,9)= ™% ¢ =
»Q 2 for Re(s)= 0 and

Re(q) = 0, and 0<x< 1, then by (59.131) we have

xOr.’
Vix)=
1l 4+ x=%
for x 2 0 and therefore
40 - ==L sin o

= o~
ax T(142%x cOSX T 4x° )

for x>0. Thusby (59.109)
) B,(1-x)
;ls.im f{-&—éﬁ{; x} = 1 - Q(—?:KE;;—-)
S

for O<x< 1.
| . o
o (i1) It @ (s,0) = e-(s-\-q) for Re(s+q)=Z 0, and

0<x< 1, then by (59.131) we have

o 3
V()= 1 « —=——
(14x)™
for x = 0 and therefore
daQ.(x) - grx(x=-1) :
: C for x< 1.

Thus by (59.109)

limP{Méx}-: R Yo Al

tym " b Axx

for 0<x%1.,
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CHAPIER X .

65.1. First, let us consider a general single-server queue in which
customersarrive at a counter at times T Tl""’ Tn"" where TO =0 .
Denote by X the service time of the customer arriving at time T (n =0C,1,2,..

Let o be the initial occupation time of the server immediately before t =20C .

Let
x() = ] ox,
O<t_<u
rF
for u>0.
|
Now we shall prove that
|
|
p(t) = sup{Q and u~-x() - o~ Xo for 0 <u <t}
for £t >0 .

_Define Yy = nO+ XO+°"+ Xpo1 for n=1,2,... and Yo = 0.

Ilet = t

A
A

If at time t the server is busy, then 6(t).= s(rn)‘

n= T+l

and 6(r ) 2t - If at time t the server is idle, then o(t) =t -y .

Yn+l ° 1

and t -y . 2 6e(t)) . Thus we have

o0(t) = max(e(r) , t - Yn+1)

3\

for 7. <t < and n=0,1,2,... . In particular, e(rn+1) = max(e(rn;.5

T4l = yﬁ+1) for n=0,1,... and e(ro) = 0 , and consequently

G(Tn) = max (0, T1= Ypoeees Tnm‘Yn)

for n=1,2,... .
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These relations are valid for any single-server queue.

Now let us suppose that Tos Tyseees Tpaeees Xgo Xy2°ces Xpooo arnd )
are numerical (non-random) quantities for which g = 0 < Ty $een T < ans
i . _ - P
and T, 88 noe . If we write o(t) =t %ﬁﬂ} Le(rn) + Yos1™ t] for

T, <t 2Ty (n=0,1,...) and if we use (54.17) in calculating the integral

T
q In+l e—qt—s@(t) at

T
n

for n=0,1,2,..., then we obtain that

| e q(n~t X
| qf et s0ly o1 8 0 0T,
qa*s
| 0
) e’an+1‘(Q+S)e(Tn+1) -qxn)}

ats n=0 (1-e

for Reé(q) >0 and Re(s) >0 .

.Now let 'us suppose that Ng{no =0} =1 and Xy (n=0,1,...) and
T (n=1,2,...) are independent/and identically distributed positive

, -SX, -s(t -1 l) .
" random variables. Let Ng{e } = y(s) and Efe N D=Ly = 4(s) for

- T
n n-1

Re(s) > O . Then the above identity holds for almost all realizations of

the queuing process. If we form its expectation, then we obtain that

® qt -s6(t
q é ¢ B (©)y 4t = a%s— + Ei'si [1-y(q )V (q,ats)

for” Re(q) > O and Re(s) > O where

/{ sequences of mubtually independent
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1+ E E{e_QY“ﬂ—SG(T“*l}
n=0"

V(st) b o=
. Tilogl1-0(s)b(a=s)T}

This last equation can be proved by using Theorem 4.1 . The distribution

function P{6(t) < x} can be obtained by inversion from the above transform.

We note that if P{n. =0} =1 and P{yx. =0} =1, then
A Lo} ~m 0

8(t)

i

sup [u - x(w)]
Ozust

A

for © >0, and P{o(t) < x} can be obtained by the solution of Problem 53.7 .
o

65.2. Since 6(t) 1is a nordecreasing function of t , the limit

1lim P{8(t) < x} = V(x) exists for every x and by the solution of Problem

t> ™
65.1 we have

[+

, i o e -
Q(s)=[ e avx)= 1im q | e ke Se(t)}dt
0 g>+0 O o )

for Re(s) >0 . Thus

Q (s) = lim [1 - v(Q)IV(a, g+s) .
g>+0

Since

' | = . -ay, ()t v, 1
[1-y(q)IV(qg,qts) = exp{- Z] Se (1-Efe
n=.

1)}

for Re(q) > O and Re{gt+s) > 0 , it follows that
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.’.
S -slt -y ]
Q*(S) = exp{- X }'(l "AF{G n '‘n 1}

n
n=1

*
for Re(s) >0 . If a <Db , then by Theorem 43.13 we have 1lim @ (s) =1 ,
3>+0

that is, V(x) is a proper distribution function and its Laplace-Stieltjes
transform is given by Q*(s) for Re(s) > 0 . It is interesting to point
out that by Theorem 62.2 we can conclude that V(x) is the limiting
distribution of the actual waiting time of the n-th arriving customer in the
inverse queuing process, that is, in the queuing process in which the inter-

arrival times and service times are interchanged.
6JB.3. By Theorem 62.2 we have
|
1im P{n_ < x} =N§{sup (0, Xg~ Tye XO+ Xy~ Tzs'“) £ %}
and obviously,
sup [x(u) - u] = sup(0, Xq= Tqs XqF Xo= Tosee.) -
Qs > X397 Tpe X7 X7 oo
-Since - {‘T'f-'rn—l s, n=12,...} ad {xn » n=0,1,2,...} are independent

sequences of mutually independent and identically distributed random variables

the assertion follows.

65.4 Since
E{nn _5__x|no = 0} =£{XO° T) 2% Xgt Xy Ty S XKseees Xgteeot X g T, < x}

- Plog > n'lﬂo = x} = Plxg £ 1% X5 x5t Xg £ 1ot Kyeees Xgtee ot X g ST ¥ X)

for n=1,2,..., the assertion follows immediately. We note that
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. % %
llmwg{nn ;X[no =0} =1 --Nlj{po < c°|no = x}

n-> o«
for x>0.

65.5.‘ We can interpret G(r)(x) as the probability that the length
of the initial busy period is < x provided that the initial queue size is r .
Dencote by X5 Xpseews Xp the lengths of the first n service times and
by Vys Voseees Vo the number of customers arriving during the l-st, 2-nd,...
n~th service time regpectively. If we use Lemma 20.2, then we obtain that
the pr;obabi'lity that the initial busy period has length < x and consists

of n | services is given by
t
|

r .
Gr(1 )(x) =,£{Xl+"'+ Xy <X, vt ot vy > j~r for i=r,..., n-1

1

and ‘v +...+.\)n = n-rt = P{x

+...+ < oot v, < 1 =1,...,0=
1 X, £ X5 vy vy i for 1=1, sh-r

and wv,+...+ vy n-r} =

1 Plojteoot v =nr and x ..ot x, <X} =

-1

- %é € (n-r')!v dHﬁ(u)

for x > 0 . Finally,

G(r)(X) = z Gr(lr)(x) .
n=r

65.6. Let us define g (n=1,2,.,.] by (62.9) and let ¢ = gt

n
52'+...‘+ . for n=1,2,..., and Ty = 0. 'Ihén E{En} =0 and \Aaag{gn} =

og + 012) . By (62.12) we can conclude that N, has the same asymptotic
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distribution as max C‘k regardless of the distribution of Thus
O<kzn

by the Theorem 45.6 we have

o

n
-lmN}z{ n

n -» 2 2
v/ +
(oa cb)rl

for x >0 where ¢(x) 1is the normal distribution function.

<x}=20(x) -1

Denote by v(t) the number of arrivals in the time interval (O, t) .
Then v(t)/t=3>1/a as t >« . We can easily see that n(t) has the same
asymptotric distribution as n\)(t) . Thus by Theorem U45.5 we obtain that

1im P{ nt) . 5y = oe(x) -1
b /(02 + cg)t/a

‘for x >0 .

65.7. Let us define g, (n= 1,2,...) by (62.9) and let Lo £yt

'\g2+...;‘+_gn “for n=1,2,... and Zq =0 . By (62.12) we.can conclude that
- M has the same asymptotic distribution as max A regardless of the
Ozk<n
distribution of o In our case

X +-00+ X - Nna
limng{ : 1/a -
n-> o n’ p(n)

< x} = R(x)

where R(x) is a stable distribution function of type S(a,1,T(l1-a)cos %_T—r, 0)

and<

lim t[1-HGEY ot )] = 1 .

£t > o
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Furthermore, we have

T, - na
¢l

R

as n- o , Thus it follows that

tn
lim P{ —W——;X} = R(x) .
n->e n’ " pn)
Now by Theorem 45.10 it follows that
n
1im P{ ————— < x} = Q(x)
~" 1/a =
n-»e« n o(n)

where

Q(x) = P{ sup &(u) < x}
" Osucl

cand {g{u) , O £ u <1} is a separable stable process of type S(o,1,I'(1-a)cos >0

A2

~ The distribution function Q(x) can be determined by (45.232) . )

o If vw(t) denotes the number of arrivals in the time interval (0,t) ,
then v(t)/t=»1/a as t » o . Since n(t) has the same asymptotic

distribution as nu(e) by Theorem 45.5 it follows that

1/a
lim P{ -”—S)—-a———;x} = Q(x)
£> S £ ()

also holds.
65.8. By (62.167) we have

n(E) =g + ¥+ x(t) - olt)
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where x(t) 1s defined by (62.166) and O < o{t) <t If

x(t) - D, (t)
limwg{

- < x} = Qx) ‘ -
£ > = D,(t)
exists and

1im Dz(t)/t = « , then obviously
t > ©

also holds. In our case

| 1im P{ ——E“———-ix}=R (x)
: n o+ e l/o"l B 1
| (na,)

? .
where R, (x)

o_ T
is a stable distribution function of type S( al,l,r(].—al)cos - )
and

X ook X
lim P{ ——=-2

<x} =R (x)
" /o, =* o\ X

- wiere . R, (x)

™
is a stable distribution function of type S( ap,l, I'(ls—az)cos i3——,0)
Thus by (49.205) we obtain that

t > e v, Ve, x}= Q)
(a,t “/aq)
—al/a v
where Q(x) =£{xe 2 <x} and 6 and ¥ are indeperdent random variables
6

for which P{6 <x} = Rj(x) and P{x <x} = Ry(x) . Since ocl/oa2' > 1, it

follows that n(t) has the same asymptotic distribution as x(t) as t » «
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-65.9. Since b <a and O < 02 + 02 < « , it follows that E{6_} ,
a b A ¢

Ver(s,)

(59.107) we have

and E{on} s Yglf{cn} exist. Thus by Theorem 59. 6 and by

Bt

o(t) - A ¥ B A[B,S ~ By

1lim P{ <x}=P{-—= < x}

£ > A 3/2 o e A3/2 B

_ 1 1/2 1
GFs) °©
1" "1
where"l A =Ete } , A,=Y/Var{e } , B =E{o},B,=YVar{o} ard (&, v)

has é normal distribution of type

AU RERt)

where r = g\gy{en, on}/A282 . Accordingly (62.175) holds with

Il ©.
3

0

'rl

M, = Bl
1° A+ B
and
E{(A.o_ - B.6 )2}
lv? o 1°n 1'n
2

3
(A1 + Bl)
Denote by v the number of customers served in the n-th busy period.

If b<a, then E{ vn} is finite and by Theorem 62.2 we have

. o P{y,t...tx > 1}
E{v } = 1M(0) =exp{ ] ™= L n"n 2y,
e n=1

Thus by Theorem 6.1 in the Appendix we have
E{Grﬁ' Sn} = ANQO)
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and

ME,’.{On} = b/W(G) ,

and by Theorem 6.2 and Theorem 6.3 in the Appendix we have
E{(c.+ 6 -V a)2} = 02/W(O)
~ . n n n a ?

2, _ 2
Ef (0n~ vnb) } = ob/W(O)

and

3 - = - 1 \ =
Nh\.'{ (on+ 0, \)na)(on vnb)} COV{Tn T2 xn}/W(O; o .

Ao~

Thus A+ Bl = a/W(0o) , B, = b/W(0) and

2, _ , 22 ,.22
E{[aon- b(on+ en)] } = (a o +Db oa)/W(O) .
In the last equation we used that

ao, - b(o‘n+ en) = a(cn— \)nb) - b(0n+ Gn- -\,)na) .

The above formulas prove that (62.175) holds if M, is given by (62.176)

1
and M, by (62.177) .

65.10. Let us use the same notation as in Theorem 62.9 and denote by
vy the number of customers served in the n-th busy period. Then by (62.106)

we have

w0 -s6_ v © n -WyY_- -
a WY, S(Tn Yn)

1B 7 "o ) = expl- -] 2- He T 50y 2vp)P
o - n=l e e

for Re(s) 20, Re(w) 20 and |p| <1 . Hence it follows that
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Y
Bl p ™ =% (1800 ™1 ] Q—E{Ir-—y 3

n=1
for |p| <1 . Here we used that Efr - v} =
Since

E{(T—Y)}
)

o' oS
I
H
-

+
n(ca o

it follows that

E{|T— |} w 2
n= [lxfe™ 72 gx = /2
/( Vor = "

i

Thus by Theorem 9.3 in the Appendix we can conclude that *

1o on L one o™
lim (-p) ] £-EB{|r- vy [} = lm (1-p)° S—f— =
p=1-0 n=1 p+1~0 1-Efp P}
1/2

= [2(6% + &7)]

Since
L
2 @ n
(l"p)v =expl [ E-[P(r 2v] - % 1}
1-E{p 7} = ”

for |p| <1, it follows that

POf

g_ + b
'E{en} =A= (—————?

o
N

) exp{- } -rl; [Pl 2y}~ 51}

If we use the notation ¢(s) = E{e. } for Re(s) >0, thén

y(s) = 1l-asto(s) as s+ +0 . '
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Since
—Sc 1
n 5 ® -SY -Sy
» pl~ | Z[Ee Tolr v, )} - £ Efe
172 s ey B n 2
for Re(s) > O , we obtain that
—SO -
n 1/2
1im 1_3@{_8____}_ A(—-— ﬂ)
1/2 52
s->+0 s
b
Hence
| 1
]JHIP{O > 1) X1/2 - A ( 2a ’)2
1/2 2
X+ o T g_+to
b
and
+ ot .4 o g
1im P 220 <5 = 2f1eE)]
n-oo nA a/(c + ob) VX
for x>0

This limit theorem and the relation

e:ll e2il.tl e

n

=> A
Theorem 59.2, imply that

by the solution of Problem 61.5-or bj the 7-th statement of

1im P {

a
e 2
t > [(ca +0

l/? B(t)

< x} = ?@(x) -1

™1
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for x > O where ¢(x) 1is the normal distribution function.

65.11. Let us ucse the same notation as in the solution of Problem

65.10 . In this case by (61.191) and (61.192) we have

T, Y
Um B{ ~ "7 < 3} = R(O)

where R(x) 1is a stable distribution function of type S(a,—l,r(l—a)cosa

"

o

Hence it follows that

E{lr -y I © o[-T (1~ )]l/a
jnlrzgg?jzgiL'= JIx|aRG) = i

n -+
. a.

(See (42.198).) Thus by Theorem 9.3 in the Appendix it follows that

= ® 1n

1im (1-p)" &Rl -y |} =
p>1-0 n=0 nown n
L 2E{© pvn}
= lm (1-p)* =T = 0 [or -1
p~>1--0 1__33{0 n}
Since
1
A-p)* o o § e R
v TP {n 21 o Pl 2y -5l
1-E{p "}

for |p| <1, it follows that

’ : 1
E{en} = A= hl/QE—F(l-a)]O‘ exp{wnzl [,\;{Tn ;'Yn} - %—]} i

S

,0) .



)
=1} ror Re(s) > 0, then

S-118
. -s(t
If we use the notation {(g) = E{e n
we have
1 - ¢(s) = as + I'(1~a)hs® +0(s%)
as s 0 . Since
-Sg 1
n = © ~Sy -3y
- 1— - .
lﬁ{i/a b L f(s)]a exp{- ) %[E{e n §(r, 2 v, ) - % Ele "1
S = n=1 e 1 : Ara
for Re(s) » O , we obtain that
-So
| 1-Efe ™ _ A o
| Hm = = Y/
| s+0 S h” "[-I(1-0)]
Accordingly, we have
1
= 1/
. ' A a
1im P{o_ > x}x° =
x> o 0 r(1- Hnl/o-r1-0)3"
arnd thus |
(ol+c52+...+on)h[—l‘(1—ot)] ) %
1im P{ o ;:X} =R (X)
n-+ e a A%n
i
2_01.’ O)

* .
where R (x) 1is a stable distribution function of type S(%,l,cos

Furthermore, we have
6.+ e?+...+ 9
= L= 4

1
n
Thus by the solution of Problem 61.5 or by the 7-th statement

. as In >
of Theorem 56.2 we obtain that
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%
11m P { o(t ;x}=1~R(1—a)=G

(x)
1/0
t > o hl/a[_r(l_a)]l/utl/a X

for x > 0 where Gl/a(x) is defined by (42.178). This result is in

agreement with (62.194).



