THEORY OF RANDOM FLUCTUATIONS

Lajos Takács

Case Western Reserve University

PREFAOR

The theory of random iluctuations is concerned with the investigation of the stochastic properties of sums of random variables and the stochastic properties of sample functions of stochastic processes.

The theory of random fluctuations developed concurrently with the advancement of probability theory. Ihe first steps toward fluctuation theory were made by Jakob Bernoulli (16541705), who studied the fluctuations of the number of occurrences of a given event in a sequence of repeated random trials, FierreSimon Laplace (1749-1827), who studied the fluctuations of sums of independent and identically distributed random variables, and Louis Bachelier (1870-1946), who studied the fluctuations of the sample functions of diffusion processes.

The development of the theory of randon fluctuations made great progress in the last fifty years. Important general limit theorems were discovered, and various mathematical methods were found to solve specific problers in fluctuation theory. ro give a few examples, the weat low of large numbers, the strong law of large numbers, the law of iterated logerithm, the central limit theorem and other limit theorems were proved for suns of random variables and for stochastic processes, and ingenious methods were worked out to solve meny problems in the fields of physios (bromion
motion, diffusion), engineering (telephone traffic, dams), industry (storage, production lines), transportation (queues, traffic), insurance and others.

The aim of this book is to give a comprehensive treatment
of fluctuation theory and axi its historical development. The book contains many old and new results which are presented in a simple and unified way. A significant part of the book contains original results which were obtained by the author in the past few years and many of them are published here for the first time.

Comprehension of the material in this book requires only a knowledge of the elements of probability theory and stochastic processes. We give complete proofs for most of the theorems used in the book.

The contents of the book may be brieily described as follows: Chapters I - VI deal with fluctuation problems concerning sums of random variables. Chapters I-III cover finite fluctuation problems. Here the theory of complex variables, algebraic methods, the method of ladder indices, and combinatorial methods are used. Chapter V deals with random walk, ballot, and order statistics. Chapter VI dealswith limit theorems and limit distributions for sums of random variables. Stable distributions are thoroughly discussed in this chapter. Chapters VII-X deal with fluctuation problems concerning stochastic processes. Here algebraic, analytic, and combinatorial methods are used for finding various exact and Iimit distributions. Chapter X deals with queuirg processes,
insurance risk processes, and storage and dam processes. The Appendix contains several useful auxiliary theorems in the field in
of probability theory and some other fields. There are more than one hundred problems for solution and a complete solution is given for each problem.
each
At the end of chapter there is a list of references containing the papers and books mentioned in that chapter and numerous other references on related topics.

The ten chapters and the appendix are subdivided into sections. The numbering of the formulas and theorems starts anew in each section. If a reference is made to a formule or theorem in the same section, the section number is not indicated. References to formulas or theorems in another section are indicated by two numbers separated by a dot. The first number indicates the section and the second, the serial number of the formula or the theorem in that section.

Finally, I would like to acknowledge the financial support which I received from the National Science Foundation and froIl the Office of Naval Research during the writing of the book.

Cleveland
July 1973

CONIENTIS

INIRODUCTION Page
CHAPTERfage 1
I. BASIC THEORY

1. The topic of this chapter2. A space R

-

3. A linear transformation T
4. A recurrence relation
5. A representation of T
6. The method of factorization
7. A subspace R_{0}
8. A space A
9. A linear transformation II II
10. A recurrence relation
11. A representation of II
12. The method of factorization
13. ProblemsReferences
II. MAXIMAL PARTTAL SUMS
14. The distribution of the naximal partial sum
15. A theorem of Pollaczek and Spitzer
16. A generalization of the previous results
17. Joint distributions
...
18. Examples
S

\qquad
19. The method of ladder indices20. Combinatorial methods
21. Problems
References
III. POSIITIVE PARTIAL SUMS
22. An equivalence theorem
23. The distribution of the number of positive partial sums
24. The determination of $V_{n n}(s)$ and $V_{n n}^{*}(s)$
25. Some particular results
\qquad
26. Combinatorial methods
27. ProblemsReferences
IV. ORDERED PARTIAL SUMS
28. Preliminaries
29. The determination of $B_{n j}(s, v, w)$
30. The determination of $A_{n k}(\mathrm{~s}, \mathrm{v}, \mathrm{w})$
31. The distribution of the k -th ordered partial sum
32. A generalization of the previous results
33. An alternative method34. ProblemsReferences
V. RANDOM WALKS, BALIOT THEOREMS AND
ORDER STATISTICS
35. Bernouilli trials
...
36. Classical problems37. Random walks38. Ballot theorems39. Order statistics40. Problems. .ReferencesVI. LIMIT THEOREMS FOR SUMS OF INDEPENDENIRANDOM VARIABLES
41. Fundamental theorems
42. Infinitely divisible distributions and stable distributions
43. Limit laws44. Limit distributions
45. Limit distributions of various functionals
46. ProblemsReferences
VII. STOCHASTIC PROCESSES
47. Basic theorems
48. Poisson and compound Poisson processes
49. Recurrent and compound recurrent processes50. Browntan motion and Gaussian processes
51. Stochastic processes with independent increments52. Weak convergence of stochastic processes
\qquad
53. Problems
\qquadReferences
VIII. THE DISTRIBUTION OF THE SUPREMIM FOR STOCHASTIC PROCESSES
54. Compound recurrent processes
55. Compound Poisson processes
56. Processes with independent increments
\qquad
57. First passage time problems
58. Problems
References
IX. OCCUPATION TINE PROBLEMS
59. Sojourn time problems
60. Sojourn time problems for Markov processes
61. Problems
References
X. QUEUING, RISK AND STORAGE PROCESSES
62. Single server queues
63. Risk processes
65. Problems
References
\qquad
APPENDIX

1. Probability spaces
\qquad2. Random variables and probability spaces
\qquad3. Weak convergence of probability measures4. Product probability spaces
2. Conditional probabilities and conditional expectations
3. Wald's theorem
4. Interchangeable random variables
\qquad
5. Slowly varying functions9. Abelian and Tauberian theorems
\qquad10. Rouché's theorem and Lagrange's expansion
\qquad
SOLUTIONS
6. Chapter I2. Chapter II
7. Chapter III
8. Chapter IV
9. Chapter V
10. Chapter VI
11. Chapter VII
12. Chapter VIII
13. Chapter IX
14. Chapter X
\qquadAUTHOR INDEX
SUBJECT INDEX

The theory of random fluctuations is concerned with the investigation of the stochastic properties of sums of random variables and the stochastic properties of sample functions of stochastic processes. The aim of fluctuation theory is to deduce general theorems which reveal the nature of random fluctuations, and to give various mathematical methods which can be used in solving specific problems. The purpose of this book is to fulfill this aim. We shall deduce general theorems and work out various methods in fluctuation theory. The general results will be applied in the theories of random walk, ballots, order statistics, queues, insurance and storage.

In this book we consider various types of sequences of random variables and various types of stochastic processes and deduce some exact and limit theorems for such sequences and processes.

We shall consider either a finite number of real random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ or an infinite sequence of real random variables ξ_{1}, ξ_{2}, \ldots, ξ_{n}, \ldots which satisfy one of the following assumptions.
(a) The random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{m}}$ are mutually independent and identically distributed with distribution function $F(x)$, that is,

$$
\left.{\underset{m}{P}}^{P} \xi_{1} \leqq x_{1}, \xi_{2} \leqq x_{2}, \ldots, \xi_{m} \leq x_{m}\right\}=F\left(x_{1}\right) F\left(x_{2}\right) \ldots F\left(x_{m}\right)
$$

for all real $x_{1}, x_{2}, \ldots, x_{m}$.
(b) The random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ are interchangeable, that is,

$$
\underset{m}{P}\left\{\xi_{i_{1}} \leqq x_{1}, \xi_{i_{2}} \leqq x_{2}, \ldots, \xi_{i_{m}} \leqq x_{m}\right\}=P\left\{\xi_{1} \leqq x_{1}, \xi_{2} \leqq x_{2}, \ldots, \xi_{m} \leqq x_{m}\right\}
$$

for all the m ! permutations $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ of $(1,2, \ldots, m)$ and for all real $x_{1}, x_{2}, \ldots, x_{m}$.
(c) The random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ are cyclically interchangeable, that is,

$$
\underset{m}{P}\left\{\xi_{j_{1}} \leqq x_{1}, \xi_{i_{2}} \leqq x_{2}, \cdots, \xi_{m} \leqq x_{m}\right\}=P\left\{\xi_{1} \leqq x_{1}, \xi_{2} \leqq x_{2}, \ldots, \xi_{m} \leqq x_{m}\right\}
$$

for all the m cyclic permutations $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ of ($1,2, \ldots, m$) and for all real $x_{1}, x_{2}, \ldots, x_{m}$.
(d) The random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ are mutually independent and identically distributed with distribution function $F(x)$, that is, (a) is satisfied for all $m=1,2, \ldots$.
(e) The random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ are interchangeable, that is, (b) is satisfied for all $m=2,3, \ldots$.

We use the notation $\zeta_{\mathrm{n}}=\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{n}}(\mathrm{n}=1,2, \ldots)$ and $\zeta_{0}=0$. We shall prove various theorems for the sequence $\left\{\zeta_{n}, n=0,1,2, \ldots\right\}$ and we shall determine the distributions of various functionals defined on the sequence $\left\{\zeta_{n}\right\}$.

We shall consider various types of real stochastic processes satisfying one of the following assumptions.
(a) The process $\{\xi(u), 0 \leqq u<\infty\}$ is homogeneous and has independent increments, that is, $P\{\xi(0)=0\}=1, P\{\xi(u+t)-\xi(u) \leqq x\}=P\{\xi(t) \leqq x\}$ for all $u \geq 0, t \geq 0$ and real x, and

$$
\underset{\sim}{P}\left\{\xi\left(t_{r}\right)-\xi\left(t_{r-1}\right) \leqq x_{r} \text { for } r=1,2, \ldots, n\right\}=\prod_{r=1}^{n} P\left\{\xi\left(t_{r}\right)-\xi\left(t_{r-1}\right) \leqq x_{r}\right\}
$$

for $0 \leqq t_{0}<t_{1}<\ldots<t_{n}, n=2,3, \ldots$, and for any real $x_{1}, x_{2}, \ldots, x_{n}$.
If, in particular,

$$
{\underset{\sim}{x}}^{P}\{(u)=k\}=e^{-\lambda u} \frac{(\lambda u)^{k}}{k!}
$$

for $u \geqq 0$ and $k=0,1,2, \ldots$, then we say that $\{\xi(u), 0 \leqq u<\infty\}$ is a hamogeneous Poisson process of density λ.

If, in particular,

$$
P\left\{\xi(u) \leqq x u^{I / 2}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

for $u>0$ and any real x, then we say that $\{\xi(u), 0 \leqq u<\omega\}$ is a Brownian motion process.
(b) The process $\{\xi(u), 0 \leqq u \leqq t\}$ has interchangeable increments, that is, for all $n=2,3, \ldots$ the random variables

$$
\xi\left(\frac{k t}{n}\right)-\xi\left(\frac{(k-1) t}{n}\right) \quad(k=1,2, \ldots, n)
$$

are interchangeable random variables.
(c) The process $\{\xi(u), 0 \leqq u \leqq t\}$ is Gaussian, that is, for any $n=1,2, \ldots$ and $0<u_{1}<u_{2}<\ldots<u_{n}<t$, the random variables $\xi\left(u_{1}\right)$, $\xi\left(u_{2}\right), \ldots, \xi\left(u_{n}\right)$ have an n-dimensional normal distribution.
(d) The process $\{v(u), 0 \leqq u<\infty\}$ is a recurrent process, that is, for each $u \geqq 0$ the $v(u)$ is a discrete random variable which takes on only nonnegative integers and which satisfies the relation

$$
\{v(u)<k\} \equiv\left\{\theta_{1}+\theta_{2}+\ldots+\theta_{k}>u\right\}
$$

for alp $u \geqq 0$ and $k=1,2, \ldots$, where $\theta_{1}, \theta_{2}, \ldots, \theta_{k}, \ldots$ is a sequence of matually independent and identically distributed positive random variables.

If, in particular,

$$
\operatorname{Pin}^{P}\left\{\theta_{k} \leq x\right\}= \begin{cases}1-e^{-\lambda x} & \text { for } x \geqq 0 \\ 0 & \text { for } x<0\end{cases}
$$

where λ is a positive constant, then $\{v(u), 0 \leq u<\infty\}$ is a Poisson process of density λ.
(e) The process $\{\chi(u), 0 \leqq u<\infty\}$ is a compound recurrent process, that is,

$$
x(u)=\sum_{1 \leq i \leq v(u)} x_{i}
$$

for $u \geqq 0$ where $x_{1}, x_{2}, \ldots, x_{i}, \ldots$ is a sequence of mutually independent and identically distributed real random variables, $\{v(u), 0 \leqq u<\infty\}$ is a recurrent process, and $\left\{x_{i}\right\}$ and $\{v(u), 0 \leqq u<\infty\}$ are independent.

If, in particular, $\{v(u), 0 \leqq u<\infty\}$ is a Poisson process, then $\{x(u)$, $0 \leqq u<\infty\}$ is called a compound Poisson process.

We shall prove various theorems for the above mentioned processes and we shall determine the distributions of various functionals defined on these processes.

In what follows we shall give a brief description of the contents of the book.

In Chapter I we consider a space $\underset{\sim}{R}$ of functions $\Phi(s)$ defined for $\operatorname{Re}(s)=0$ on the complex plane, which can be represented in the form

$$
\Phi(s)=\underset{\sim}{E}\left\{\zeta e^{-S \eta}\right\}
$$

where ζ is a complex (or real) random variable with $\underset{m}{E}|\zeta|\}<\infty$, and η is a real random variable. The norm of $\Phi(s)$ is defined by

$$
\|\Phi\|=\inf _{\zeta} E\{|\zeta|\}
$$

where the infimum is taken for all admissible ζ. We define a transform T on R as follows. If $\Phi(s) \varepsilon R$ and $\Phi(s)=E\left\{\zeta e^{-S \eta}\right\}$, then $T\{\Phi(s)\}=$ ${ }_{\Phi}{ }^{+}(\mathrm{s})$ where

$$
\Phi^{+}(s)=E\left\{\zeta e^{-s n^{+}}\right\}
$$

and $\eta^{+}=\max (0, \eta)$. The function $\Phi^{+}(s)$ is uniquely determined for $\operatorname{Re}(s) \geqslant 0$ by $\Phi(s)$.

The main result of this chapter is concerned with the solution of the following problem: Let us suppose that $\gamma(s) \varepsilon R, \Gamma_{0}(s) \varepsilon R, M_{m}\left\{I_{0}(s)\right\}=\Gamma_{0}(s)$
and define $\Gamma_{n}(s)(n=1,2, \ldots)$ by the recurrence formula

$$
\Gamma_{n}(s)=T\left\{\gamma(s) \Gamma_{n-1}(s)\right\}
$$

for $n=1,2, \ldots$. The sequence of functions $\left\{\Gamma_{n}(s)\right\}$ is to be determined. We shall give various methods for finding $\Gamma_{n}(s)$ for $n=1,2, \ldots$.

We consider also a space A of functions $a(s)$ defined for $|s|=I$ on the complex plane, which can be represented in the form

$$
a(s)=E\left\{\zeta s^{n}\right\}
$$

where ζ is a complex (or real) random variable with $E\{|\zeta|\}<\infty$, and η is a discrete random variable taking on integers only. The norm of $a(s)$ is defined by

$$
\|a\|=\inf _{\zeta} E\{|\zeta|\}
$$

where the infimum is taken for all admissible ζ. We define a transform II on A as follows. If $a(s) \varepsilon A$ and $a(s)=E\left\{\zeta s^{\eta}\right\}$, then $\underset{m}{m}\{a(s)\}=a^{+}(s)$ where

$$
a^{+}(s)=E\left\{\zeta s^{n^{+}}\right\}
$$

and $\eta^{+}=\max (0, \eta)$. The function $a^{+}(s)$ is uniquely determined for $|s| \leqq 1$ by $a(s)$.

For the space A we obtain similar results as for $\frac{R}{m}$.

In Chapter II we consider a sequence of mutually independent and
identically distributed real random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ with distribution function $P\left\{\xi_{\mathrm{n}} \leqq \mathrm{x}\right\}=\mathrm{F}(\mathrm{x})$. We write $\zeta_{\mathrm{n}}=\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{n}}$ $(n=1,2, \ldots), \zeta_{0}=0$ and $n_{n}=\max \left(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n}\right)$. By using the results of Chapter I we determine the joint distribution of n_{n} and ζ_{n} for $n=1,2, \ldots$.

We use the Laplace-Stieltjes transform

$$
\phi(s)=E\left\{e^{-s \xi} n_{\}}=\int_{-\infty}^{\infty} e^{-s x} d F(x)\right.
$$

which is convergent if $\operatorname{Re}(s)=0$. If ξ_{n} is a nomegative random variable, then

$$
\phi(s)=E\left\{e^{-s \xi_{n}}=\int_{0}^{\infty} e^{-s x} d F(x)\right.
$$

is convergent for $\operatorname{Re}(\mathrm{s}) \geq 0$. Throughout the book we use the above notation for the Laplace-Stieltjes transform of the distribution function of a nonnegative random variable; however, if ambiguity might arise, we write

$$
\phi(s)=\int_{-0}^{\infty} e^{-s x} d F(x)=\int_{[0, \infty)} e^{-s x} d F(x) .
$$

If ξ_{n} is a nonnegative random variable, then

$$
E\left\{e^{-S \xi_{n}}-P\left\{\xi_{n}=0\right\}=\int_{+0}^{\infty} e^{-s x} d F(x)=\int_{(0, \infty)} e^{-s x} d F(x)\right.
$$

for $\operatorname{Re}(s) \geqslant 0$.

We shall also determine the joint distribution of n_{n} and ζ_{n} for $\mathrm{n}=1,2, \ldots$ by using the method of ladder indices. For a sequence of real
random variables $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n}, \ldots$ we say that $r(r=1,2, \ldots)$ is a ladder index if $\zeta_{r}>\zeta_{n}$ for $0 \leqq n<r$ and $r(r=1,2, \ldots)$ is a weak ladder index if $\zeta_{r} \geqq \zeta_{n}$ for $0 \leqq n \leqq r$.

In some particular cases we determine the distribution of $\eta_{n}(n=1,2, \ldots)$ by using combinatorial methods. These methods are based on the following simple theorem: If $k_{1}, k_{2}, \ldots, k_{n}$ are nonnegative integers with sum $k_{1}+k_{2}+\ldots+k_{n}=k \leq n$, then among the n cyclic permatations of $\left(k_{1}, k_{2}, \ldots\right.$, k_{n}) there are exactly $n-k$ for which the sum of the first r elenents is less than r for all $r=1,2, \ldots, n$.

In Chapter III methods are given for finding the distribution of the number of positive or nonnegative partial sums for a sequence of mutually independent and identically distributed real random variables. We use analytical methods, based on the results of Chapter I, and combinatorial methods.

In Chapter IV we determine the distribution of the k-th ordered partial sum for n mutually independent and identically distributed real random variables.

In Chapter V the previous results are applied in the theory of random walk, in ballots and in order statistics.

In Chapter VI we prove various limit theorems and limit distributions for a sequence of mutually independent and identically distributed real random variables. In this chapter stable distributions play an important role. We say that a distribution function $R(x)$ is a stable distribution
function of type $S(\alpha, \beta, c, m)$ where $0<\alpha \leqq 2,-1 \leqq \beta \leqq 1, c \geqq 0, m$ is a real number, if the logarithm of the Laplace-Stieltjes transform of $R(x)$ has the following forms

$$
\log \psi(s)=-m s-c|s|^{\alpha}\left(I+\frac{\beta s}{|s|} \tan \frac{\alpha \pi}{2}\right)
$$

for $\alpha \neq 1$ and $\operatorname{Re}(s)=0$, and

$$
\log \psi(s)=-m s-c|s|\left(1-\frac{2 \beta s}{\pi|s|} \log |s|\right)
$$

for $\alpha=1$ and $\operatorname{Re}(s)=0$ where $s /|s|=0$ for $s=0$.

The following result is frequently used in this book. Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ be mutually independent and identically distributed real random variables with distribution function $F(x)$. Write $\zeta_{n}=\xi_{1}+\xi_{2}+\ldots+\xi_{n}$ for $n=1,2, \ldots$. If

$$
\lim _{x \rightarrow \infty} x^{\alpha} F(-x)=a_{1}
$$

and

$$
\lim _{x \rightarrow \infty} x^{\alpha}[1-F(x)]=a_{2}
$$

exist where $0<\alpha<2$ and $a_{1}+a_{2}>0$, then we can find normalizing constants A_{n} and B_{n} such that

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\zeta_{n}-A_{n}}{B_{n}} \leq x\right\}=R(x)
$$

where $R(x)$ is a stable distribution function of type $S(\alpha, \beta, c, m)$. Here
α is determined by the above conditions, $\beta=\left(a_{2}-a_{1}\right) /\left(a_{2}+a_{1}\right), i$ is any
positive number, and m is any real number. We can choose

$$
B_{n}=(b n)^{1 / \alpha}
$$

where

$$
\begin{aligned}
& b=\left(\frac{a_{1}+a_{2}}{c}\right) \frac{\pi}{2 \Gamma(\alpha) \sin \frac{\alpha \pi}{2}}=\left(\frac{a_{1}+a_{2}}{c}\right) \Gamma(1-\alpha) \cos \frac{\alpha \pi}{2} \\
& \left(b=\left(a_{1}+a_{2}\right) \pi / 2 c \text { if } \alpha=1\right) \text {, and } A_{n}=-m B_{n} \text { if } 0<\alpha<1 \text {, } \\
& A_{n}=\sum_{|x|<\tau B_{n}} \underset{n}{ } d F(x)-m B_{n}-\frac{2 . B C}{\pi}[\log \tau-(I-C)] B_{n} \\
& \text { if } \alpha=1 \text { where } \tau \text { is any positive number, and } C=0.577215 \ldots \text { is Euler's } \\
& \text { constant, and }
\end{aligned}
$$

$$
A_{n}=n \int_{-\infty}^{\infty} x d F(x)-m B_{n}
$$

if $1<\alpha<2$.

In Chapter VII we deduce the basic properties of the Poisson process, compound Poisson process, recurrent process, compound recurrent process, Brownian motion process and the homogeneous stochastic processes with independent increments. We also discuss the topic of weak convergence of stochastic processes.

In Chapter VIII we determine the distributions of the supremum and the first passage time for compound recurrent processes, compound Poisson processes and for homogeneous processes with independent increments.

In Chapter IX we determine the distribution and the asymptotic
distribution of the occupation time for a general class of stochastic processes.

the

In Chapter X the previous results are applied in theories of queues, insurance and storage.

The Appendix contains numerous useful theorems in the theory of probability, and in the theory of complex variables, and some basic Abelian and Tauberian theorems which have been used in the book.

THEORY OF RANDOM FLUCTUATIONS

Lajos Takécs

Typographical Details

The MS consists of 1576 pages. The pages are not numbered consecutively throughout the MS. Each chapter is numbered separately. The contents and numbering are as follows:

The ten chapters are divided into 65 sections (numbered 1-65) and the Appendix is divided into 10 sections (numbered l10).

The structure of a section is as follows:
Heading. E.g. 39. Order Statistics (Page V - 116).
:
Second-grade heading. E.g. The Comparison of a Theoretical and an Empirical Distribution Function. (Page V-150)
!
Third-grade heading. E.g. The distribution of $\delta_{m, m}^{+} \cdot$ (Page V - 173)
:
Other parts are: Theorem 1. Proof. ... Lemma 1. Proof. ..., Note. ... Examples. Definition.
*)
Figures.

There is only one figure (page $V-43$). I enclosed a drawing in the $\mathbb{M S}$; however, η_{r} on the abscissa is missing and should be printed as follows:

*) In second-grade headings each major word starts with a capital. In third-grade headings simply italics are used.

-3-

Symbols

Greek Letters

German Letters

$\mathrm{G}=$ cap. s

Script Letters

A, B, C, F,
$=\quad$ cap. A, B, C, F
M, R, S, P
$=\quad$ cap. M, R, S, P

Other Characters

$E, P, R, T, S_{m}^{S} / Q, O=$ bold face cap. E, F, R, T, A, Q, bold face zero Var, Cove, $\quad=$ bold face Var, Cove
$\varepsilon, \Pi, C, \varepsilon, \quad=\quad$ sum, product, subset of, element of (ϵ)
$\mathrm{X}, \equiv, \leqq \geq, \sim \quad=\quad$ product, identity, less than or equal, greater than or equal, equivalent to
$\int, \frac{\partial \ldots}{\partial \ldots}, r, \infty=$ integral, partiäi derivative, square root, infinity,
$\|\ldots\|, \cup, \cap, \Rightarrow=$ norm, union, intersection, double arrow

Special letters occurring in foreign names
in the references

a，á，$\grave{a}, \bar{a}, ~ \grave{A}$	$\check{c}, \check{r}, \underline{s}, \check{z}$
e e é．è，e，É	§，§，G，¢
o，ó，ö，ô	王，壬，自
u，u，Ü	i，í，i，i

Special problems
X（Cartesian product）occurs in Chapter VII（Pages VII 4－ VII 11）and in the Appendix（Pages A 39－A 47）and is typed as X ．In these pages and only here every capital X should be set as a boldface product sign（ X ）．
ϑ（1．c．open theta）occurs in Chapter IX（ IX 11 －15，39－ 40）and in Chapter X（X 9－12）．
θ（capital theta）occurs in Chapter III，Chapter IV，Chap－ ter VI and in the Appendix．
θ（1．c．closed theta）occurs frequently in Chapters VII， VIII，IX，X．

Note：On pages VII $40, \underline{V} 1-33$, VII 64－110，and X－43 θ means l．c．closed theta．（To correct a typing error I altered capital theta to l．c．theta in this way．）
ϕ（1．c．phi）should be set as open phi（ φ ）throughout the book．

II（product）．Capital pi is also used as a product sign， but I think it is easy to recognize when the product sign is needed．（See e．g．formulas（84）and（85）on page V－112－and page V－113．）
ϵ（element of ）is typed as l．c．epsilon（ ε ）throughout the book．If ε occurs in the following context：$\Phi(s) \varepsilon R$ ， （ $I 4,5,6$ ），$\omega \varepsilon \Omega, A \in B$ ，a εS ，that is，if it stands between two letters，then it should be set ϵ ．Note：\notin
occurs on page VI-101.

Boldface letters

Boldface letters are indicated by wavy underline in black. Throughout the book if P and E are followed by $\{\ldots\}$, then P and E should be set in boldface, that is, $\underset{m}{P}\{\ldots\}$ and $\underset{m}{E}\}$.

In addition to E and P there are boldface R, T, S, A, Q, O (zero), Var, Cov, Π, ξ, η.
π occurs in Chapter I and in the Solutions (Ch.I.).
η occurs in Chapter V (Pages V-59, 73, 74).
(ξ_{n}) occurs in Chapter VI (VI-247) and in the Appendix (A-55).

Script letters

Script letters (A, B, C, F, M, P, R, S) are typed as script, and occur in Chapters VI, VII, and in the Appendix.

Suggestions and remarks

1. In the book I would prefer to indicate chapter numbers at the top of even pages, and section numbers at the top of odd pages.
2. There are no footnotes. Material at the bottom of a page or on the margin of a page should be inserted in the text. This is indicated by the sign \mathcal{L}.
3. The sign $\sqrt{\text { indicates that a new paragraph should be }}$ started.
4. In the references the original spellings are followed. E.g. Kolmogoroff, Kolmogorov, Koroljuk, Korolyuk, etc. The title of a paper isreproduced in its original spelling (queuing, queueing, generalization, generalisation, etc.). In each reference volume,
year, and page numbers are indicated. However, if in a volume the numbering of each issue starts anew, then the issue number is indicated too. E.g. 34 No. 2 (1930) I -10.
5. Hyphen. If a hyphen in a hyphenated word comes at the margin, I put a hyphen both at the end of the line and at the beginning of the next line.
6. I would prefer the authors' names to be set in italics if the name is followed by a reference number. E.g. M. Kac [100].
7. Brackets. In the MS large and small brackets are equal in size. Please print large brackets when needed. E.g. ($\frac{n}{k}$) should be printed $\binom{n}{k}$.
8. Asterisk (*) and convolution symbols ($*$) are typed in the same size; however for convolutionalarger star ($*$) is needed. In superscript position use asterisk (*), in center position convolution symbol (*). See e.g. VII-I03, formula (186), where $\hat{F}(t) * F_{n}(t)$ should be set.
9. The symbols A and a are used on several occasions. E.g. "A set A ..." or " a votes ...", " a steps...". Itelics are not indicated in the $\mathbb{H S}$, but they can be recognized from the context.
10. $\overline{\mathrm{A}}^{*}$ should always be set as $\overline{\mathrm{A}^{*}}$, whereas $\bar{\eta}^{*}$ should be set as typed.
11. Subscripts. There are some complicated subscripts as in the following examples: Page V-107: ${ }^{\mathbb{N}}(\mathrm{k}-\mathrm{s})(\mathrm{m}+\mathrm{n})-1$. Page VI- 65 : $W_{\frac{1}{2}, \frac{1}{6}}(\ldots)$. Page $A-37: \mu_{n_{k}}(k)$ (A).
12. Ellipses. I prefer the points to be set on the line. For example, l,2,...,n,... .

NOTE: Jater I will/supply the following missing data: In the Preface ...Iouis Bachelier (18..-19..), and the page numbers in reference $x-[23]$.

