CHAPTER IX

OCCUPATION TIME PROBLEMS

59. Sojourn Time Problems. In this section we consider stochastic processes

{n(u) , O <u< =} with state space A UB where A and B are disjoint
svetsr. If n(u) € A, then we say that the process is in state A at time
u , and if n(u) € B , then we say that the process is in state B at time
u . We assume fhat in any finite interval (0, t) the process changes
states only a finite rnumber of times with probability 1 . Let us suppose
that Ng{n(o) e A} =1 and denote by aq, By, @5, B,,... the lengths of the
successive intervals spent in states A and B respectively. Dencte by
a(t) the total time spent in state A in the interval (0, t) , and denote
by B(t) the total time spent in state B in the interval (0, ¢) . Cbvi-
ously, o(t) and g(t) are random variables and al(t) + g(t) =t for all

t>0.

In what follows we shall determine the distribution of B(t) and the
asymptotic distribution of B8(t) as t » « for a wide class of stochastic
processes {n{u) , 0 < u < =} . The following results were obtained by the

author [40 ], [ 41 1, [42 1, [43 1, [as 1, [ 45 1.

The distribution of B8(t) . Let us introduce the notation Y, =

- =179 = b (=) = P »
g_l+ a2+...+ @, for n=1,2,... and Y 0 , furthermore cSn El+ 82'1"...+8n

for n=1,2,... and 60 =0 . .-
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Thecrem 1. If 0 <x <t , then we have

<

(1) P8 gx = ] [Pls_<x, 7

< g-x} ~ P{§
n=0 ™ ~ o0

0 - X, Y41 < t—-X}]‘,

Proof., - For O < x <t denote by 1 = t(t-x) the smallest u e [0, 00)

for which a(u) = t=-x / Then n(z) € A and we have
(2) {8{t) < x} = {B(x) £ x}.

This follows from the following identities

(H]
3l

(3) {8(t) £x} = {a(1) 20 (£)} = {tg t} = {a(r) + B(1) £t} = {B(x)

A

Since a(t) and B(t) are nondecreasing functions of t for 0O

A
ct
A
8
3
i

a(t) + B(t) =t forall t >0, (3) follows easily.

Since B8(t) = 8, (n=0,1,...) if vy < t=x 2 Yo therefore by (2)

r

we obtain that

=2}

() P{B(t) < x} = ) P{s
~ n=0""

<x and vy, < t-x 2y .}

n= ntl
for 0 < x <t and this proves (1) .

Now we shall express (1) in an equivalent form which will be useful in

finding the asymptcotic distribution of B8(t) as t » = .

For each t > O let us define p{t) as a discrete random varisble

taking on nonnegative integers only and satisfying the relation

provided that such a u exists.



(5) {p(t) <n} = {y_ >t}

n
for ali £t >0 and n = 1,2,... . By using this definition we can write that

(6) ‘,E{B(t) < x} = P{$ (b)) < X

m P

A
<t
.

for O;k_

If we can determine the asymptotic distribution of dp( as t » o,

t)
then by (6) we can find the asymptotic distribution of g(t) as t + = .

Examples. Let us suppose that {an} and {Bn} are independent sequences
of mutually independent and identically distributed positive random variables.
Let Af{an < x} =G(x) and P8 < x} = H(x) . Then by (1) we have
(7 Ple(t) 2 x} = ] L6 (=) = Gy (=) TH (%)

n=0
for 0 <x <t where Gn(x) (n=1,2,...) denotes the n-th iterated

convolution of G(x) with itself, Hn(x) (n=1,2,...) denotes the n-th

iterated convolution of H(x) with itself, Go(x) Ho(x) =1 for x>0

and Go(x) = Ho(x) =0 for x<0.

If, in particular,

jl-e"kX for x>0,
(8) G(x) =
L 0 for x <0,

then (7) reduces to
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o« n
( 9) ’ NE{B(t) ; X} = nZ:O e—}\ (t“x) L&-g%zfllﬂ Hn(X)

for 0 <x <t . By (9) we have

(10) Pglatx) <x} = J & —(la-%—H (%)
- = =0 n! n
for any a>0 and x>0 . Let
(11) ~ o(s) = [ 7% aH(x)
0
for Re(s) > 0 . Then by (10) we get
(12) f e"SX dx,\g{s(a*_x) ; X} = e*)\a[l—lp(S)]

0

for Re(s)>0 . If we know y(s) , then P{8(atx) < x} can be obtained

by inversion from (12).

The asymptotic distribution of B8(t) . If by a suitgble normalization

the vector variables (v n? Gn) have a limiting distribution as n » « ,

then by a suitable normalization 8(t) has also a limiting distribution as

tre. first
In what follows we assume/\that {_(Xn} and {{'?:n} are

independent sequences of positive random variables for which

(13) 1im P{ —n—g-n—)— < x¥ = G{x)

n - «

and



§ - B, (n)
a 1 < X} = H(x)

(1) Lin Bl —gmy <

n > <«

in the continuity points of the distribution functions G(x) and H(x)

ard A2(n)+°° and B2(n)—>f:° as n-+ o« ,

If either G(x) or H(x) is a nondegenerate distribution function,
then there exist a nondegenerate distribution function R(x) and normalizing

functions Ml(t) and M2(t) such that 1\12(‘0) + o gnd

8(t) - My (¢)
W, (%)

(15) lim P{

t-)oo

< X} = R(x)

in every continuity point of R(x) .
' We can prove (15) by using two simple auxiliary theorems.

The first auxiliary theorem is a particular case of a theoram of

A. V. Skorokhod [ 38 1] .

lemma 1. Let Fn(x) (n=1,2,...) and F(x) be one-dimensional

distribution functions. If

(16) 1im Fn(x) = F(x)

n-+>«

in every continuity point of F(x) , then there exists a probability spate

(Q,‘B,E) and real random variables £ (n=1,2,...) and & such that

Plg, <x}=F (x) and P{e £x} =F(x) and



(17). P{ 1im En =¢gb=1.

M™~Mn o> e

Proof. ILet @ be the interval (O, 1) , B the class of Borel sub-

sets of @ , and P the Lebesgue measure. Define an(w) = inf{x : w ;Fn(x)}

and g(w) = inf{x : o <F(x)} . In this case (16) implies that 1lim £ (w) =
n -> o

t(w) for every w e Q@ except possible a countable set of w values.

In the following discussion we use the symbol = for denoting

convergence in probability.

Lema 2. Let {&(n) , n=0,1,2,...} be random variables for which

P{lim §(n) =0} =1 . Let {p(t) , O <t < =} be discrete random variables
n -

taking on nonnegative integers only for which

(18) lim P{p(t) 2m} =1
t » & :
for all m = 0,1,2,... . Then §(p(t)) converges in probability to O as

t » », that is,

(19) lim P{|8(p(£))] 2 e} =0

t+co

for any e > 0, or briefly &(p(t))=> 0 as t + o .

This lemma 1s the same as Lemma 4 in Section 45 and we already proved

it there.

Our aim is to give methods for finding the limiting distribution (15)

if the limiting distributions (13) and (14) are known.
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"In the following discussion we assune that in (13) Al(n) =An,

a b
= i } Y = ( = I
A2(n) A2n and in (14) Bl(n, Bln , Bg\n) B2"1 where Al >0,

A2>O,Bl_>_=O,Bg>O,a>O and b >0 , and if Al>0,then
O<a<1l, and if Bl>O,then O<b<1l, that is,

Y _Aln
(20) 1im P{ Py < x} = G(x)
: n+« A n

2

and

csn—Bln
(21) Um Bl ——5 <%} = #&)
, n-> e B2_‘n ;

in the continuity points of G(x) and H(x) .

In the general case, (15) can be obtained in a similar way.

Theorem 2. If {an} and {Bn} are independent sequences of positive

random variables for which (20) and(21) are satisfied, then there is a

distribution function R(x) and there are constants Ml >0, IVI2 >0,

m > O such that

g(t) - Mt
(22) lim P{ ——————

t > o M2t

< x} = R(x)

in every continuity point of R(x) . The constants Ml’ M2, m and the

distribution function R(x) are given in Table I where y and § are

independent real random variables with distribution functions P{y < x} =

G(x) and P{& < x} = H(x) .



TABLE I.
A By (a,b) My M, m R(x)
1.1 o 0o lasb 0 B2A2—b/a |o/a | Pt b/a 4y
B.s
2. 0 O a=>o 0 1 1 E{ A;YTB-;S' < x}
3.1 0| o lac<o 1 a0 an | piys@® < g
5.l o Iso a1 0 B1A2_1/a 1/a |piy 2 < 53
e | B,
5 0] >0 ja=1 0 1 1 E{ E;-'_‘_—A'Tf_ x}
2
6.1 0 |>0 |a<1 1 Ap~® a |P{-y <x}
7. 150 | 0 [b>1 1 a,B,"L/P /o |P{-s"P < 4
l B,8
8. >0 0] b=1 0] 1 1 P{ mi X}
w M*B,
9. |>0 '] o |b<1 0 BA, ™ b {P(s < x}
B B.A
1 18
10. 1>0 >0 la>0b . a {P{-y < x}
1By
B A 1l4m A B.5— B.Ay
1 1 1556~ By A,
11. | >0 >0 ja =" ( ) a |P{ < X}
) Al+Bl Al+Bl ] — A::lL.+a —
B AB.
12. 150 |0 la < L 12 b (s < x}
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"Proof. First, we shall determine the asymptotic distribution of

8 as t - @ , and then by (6) we shall be able to find the asymptotic

o(t)

distribution of 8(t) as t » = , We can consider & as a campound

p(t)
random function and then we can use an idea of R. L. Dobrushin [14 ] in

finding the asymptotic distribution of Gp ) -

If we apply Lemma 1 separately to the distribution functions P{Yn=;

a b
A1n+A2n x}. (n=0,1,2,...) and WP{‘SniBanran x} (n=0,1,2,...) ,
then it follows that we can construct a probability space (2,B,P) and

.}e
we can define two indeperdent sets of random variables Yo n=0,1,2,...),

| ¥ *
" an{j 8§, (n=0,1,2,...) , & insucha way that P{y <x}=Ply <x} ,

%
m=OJQH),3H;x}=ﬂﬂ,fﬁn;ﬁ=Pwn;ﬁ s, (n=0,1,...),

P{§ < x} = H(x) and

*
| Ko an
(23) P{ lim-g——iA-;'T—'—'Y}=l,
™~ n-=+e A.n
p)
and
5 - B
- B.n
(24) p{ :Lim-—“——%—= §}= 1 .
M~ n-o> e B2 n

%
For each t > 0 1let us define p (t) as a discrete random variable

taking on nonmnegative integers only and satisfying the relation

¥ *
(25) {p (t) <n} o 2t}

[H]

{y

forall £t>0 and n=1,2,... .
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By (6) it is evident that
(26) P{(t) 2 x} = P{G S# () S X}

for O <x.<t . Thus if we determine the asymptotic distribution of
%
§ ok(t) @S t » = , then by (26) we can obtain also the asymptotic distribution

of 8(‘_0) as t >,

' *
Now let us study the asymptotic behavior of § 0% (t) as t -+ e,

By (2% and (25) we can conclude that

o () - X
7)) - =
, ' C2t

as t » < where the constants Cl’ 02 s ¢ and the random variable ¢ depend

i1l Al’ A,, 2 and vy as indicated in Table II .,

TABLE IT

A 4] C2 c o

ol o 1/A21/a 1/a | y /2

1+a
>0 l/A1 A2/Al a =Y
By (27) we can write that
(28) (t) C. t + C £ (p + w(t))

where w(t)=> 0 as t -+ o,
By (24) it follows that
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(29 - 6% = Bn + Byn(s + §(n))

where 6&{n) (n =0,1,2,...) 1is a random variable for which

(30 P{lim 6(n) = 0} = 1.

n->«

Thus by (28) and (29) we have

6::*(1:) = Bl[Clt + C2tc(p+w(t))] +

(3D .
+ Bylets(o (£))I[C1t + Cot (otu(t))1° .

In (31) p*(t)é ©was t -+ e, This follows from (28). For if C; =0,
then p 1is a positive random variable, and if Cl >0, then ¢ <1.
Trus by (30) and by Lemma 2 it follows that in (31) &(p (£))=> O as

t > = , Furthermore w(t)= 0 as t -+« , Taking into consideration

these relations we can conclude from (31) that there are constants D,, D,, 4

12 Dy
and a random variable A% such that

*
é - Dt
(32) ¥ T A

a
D2t

as t >« . The constants D, D,, d and the random variable % depend

on By, By, C;, Cps by ¢ and § and p as indicated in Table III.
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TABLE ITI
BT ¢ | @0 D] D1 4] F
b b
o | o - 0 |B,C | be 5o
> - C
o | o 0 B, | e 0
o |so - o [B.C® | b 5
| 201
>0 {>0 b<ec B:LC1 B1C2 c 0
_ 5
>0 >0 b=c¢ B]_C1 1. b BlCZp + B2Clp
>0 o lb>e [Bo B203 b 5

% _
Since § and ap* (t) have the same distribution for all t > O ,

pLt)
It follows from (32) that

(33) 1m P05, () £ Dyt + 0,67} = Pl x)

t > o
in every continuity point of P{¥< x} .
By (6) we have
(34) P{B(£) £ x} = PL8 (o .y <%
for O<xgst.

=

Finally, by (3%) and (3) we can determine the asymptotic distribution

of B(t) as t»w= .,
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Iet us define

. _ L d
(35) u=t+ Dt o+ XDt

for t > 0, Then by (34) we can write that

. d o _
(36) P8, () Dyt + XDt } —,\E{Gp(t) u-=-t}l=PBu su-t}
for Ost<u.

If d>21 and x>0 ,0or d<1 and -~ < x <= , then there is a
t = t(u) which satisfies (35) and for which O < t(u) <u if u is
sufficiently large and t(u) >« as u -, If we choose t =t(u) in
|
such a!way and let u -+« 1in (36) then by (3%) we obtain that
(37) lim P{8(u) < u -t} = P{¥< x}
1 ke

In every continuity point of P < x} .

If d>1, then Dl=O,andfor x > C we obtain that

_ 1/d
(38) b ) +o (%)

as u-» <=,

If d=1, then D, =0, and for x > 0 we obtain that

1

(39) I e

for u>0.
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Finally, if d <1 , then we obtain that

< ou XDz
(40) t = - (
1+D1 1+Dl 1+Dl

) +0 (v ,

as u + © L]

Thus by (3%7) it follows that if d > 1 , then

1/d

(41) lim P{8(w) £ u - (5} = Plafex}

u > 2 e
for x{>0 ., If d=1, then

J uxD

(42) Lin P(8(u) < g} = PitFs x}

u-+e 2
for x20 ., If d<1, then
(43) lim P{B(u) < el + 2 (2% = prod< 3

yaer M STD] T WD) W TRLVER

for all x . In (41), (42, (43) the limits are valid in the continuity

points of P{'z9’_<.= x} .
Accordingly, we can conclude that

B(t) - Mlt

(Lay) Lim P{ ——— < x} = R(x)

t > s M2t

in every contimuity point of R(x) where the constants M., M2, m and

the distribution function R(x) are given in Table IV.
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TABLE IV
d Ml IVI2 m R(x)
D,V
d=1 0 1 1 —m, = x}
D D
d<1 1 2
a |pit<x}
1+D1 (l +D] )l+d — =

The entries in Table I can be obtained by Tables II, III and IV. This

completes the proof of Theorem 2.

we note that in proving the 7-th 8-th 9-th and 12-th state-
ments of Theorem 2 we can replace thgpssumptlon (20) by the
weaker assumpbtion that

(45) lim -’é;-% = Al

in probability. Similarly, in proving the 4-th,5-th,6-th and
10-th statements of Theorem 2 we can replace the assumption (21}
by the weaker assumption that

SID.
(0-6) lin -_‘EL_ = Bl
N0

in probability.

At the end of this section we shall discuss the problem of
finding the asymptotic distribution of (3(t) as t»0 in the case
where 6&,@1),(d2,@2),...,an,@h),... are mutually independent and
identically distributed vector random variables for which

(7) ’11 P{Tn il gx, AL o5t = Fx,y)
Bpn”

in every contlnulty point of the distribution function F(x,;y)
end &> 0, b> 0, 4,20, B;=0, A,>0, B,>O.
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Examples. First, let us suppose that {a } and ' {8 } are indeperdent

sequences of mutually independent and identically distributed positive random

02
' B
exist and Gi >0 and og >0 . Then the limiting distributions (20) and

1 =9 A=a, By 2=os,a=b=1/2 and G(x) =

H(x) = ¢(x) where %(x) is the normal distribution function.

oy 2 '
variables for which ’E{an} = a, Xiaf{“n} =o_ and E{Bn} = B, X&r{sn} =

(21) exist and A = B, B

In this case by the 1ll1-th statement of Theorem 2 we obtain that

‘ Bt
(18) { B(t) - &E , aosé -Bo Y
1im P < X} = P{
i T A7 372

\
!
|
where ' 6§ and vy are independent random variables for which P{§ < x} =

Ply < x} = ~¢(x) . Hence

Bt

B(t) - =7

(49) lim P{
b > ao +Bo)t/

[ (a+8)3

Second, let us suppose that {an} and {Bn} are independent sequences
of mutually independent and identically distributed positive random variables

for which

°1
(50) ljJnME{an >x}x T =A

t-)oo

where_o<'o<l<1 and A>O0,and E{g}=8<> and

%2
(51)  UmP{g >x}x° =B

X » «
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where 1 < a5 2 and B >0 . Then the limiting distributions (£€0) and
1/ 01 ]_/c,) v
(21) exist and Ay 5 = A »a=1/o; ,B =8 ,B,=B ~,

b = 1/02 and G(x) 4is a stable distribution function of type S(cl, 1,
. o , _
I‘(l—cl) cos —?l , 0) and H(x) is a stable distribution function of type

=0, A

TGO

__C,o).

S‘(ﬁoz, 1, I‘('l—cZ)cos 5

In this case by the U-th statement of Theorem 2 we obtain that

(52) 11m pg A8E) ¢y = pyy

t > =«

fiA

where ,Y is a random variable with distribution function P{y < x} = G(x) .

By (Ll2;l77) and (42.181) we can express (52) as

(53) 1im p 888 <} = ¢ (xr(1-0,))

5]
t > Btl 1

where the Laplace-Stieltjes transform of Gc (x) 1is given by
1

(54) [ €76, (x) = B (-s) .
0 1 1

for Re(s) 20 and E_ (z) 1s the Mittag-Leffler function defined by

1
(55) E, (2) = | triev1y
oy =0 I—?K01+ 1)
.for~ O 204 < 1. 1If %—;cl < 1, then we have
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(56) | G (x) = Bl [R(x; = , -1, -cos 51, 0)-1+0,]

1 1 91 9
for x > 0 where R(x) is a stable distribution function of the Iindicated

type. This follows from (42.184) and (42.192).

We note that if instead of (51) we assume that Var{ Bn} is a finite
positive number, then (52) holds unchangeably.
Third, let us suppose that {an} and {Bn} are independent sequences

of mutually independent and identically distributed positive random variables

for which

(57) 1im Pla_ > x}3x° = A
x> 1

and

(58) lim P{g_ > x}x° = B
x> & B

where A>0 ,B>0 and O<o0 <1 . Then the' limiting distributions €0)

and (21) exist , and A, =0, Ay = A%, a=1/0, B, =0, B, = B/, b = 1
and G(x) and H(x) are stable distribution functions of type S(¢,1,I'(l-g)
‘cos % , 0) .
In this case by the 2nd statement of Theorem 2 we obtain that
( () okl
59) P{B(t) < tx} = P{ < X}
el - ;Al/by + Bl/c:(S

where y and § are independent random variables having the same stable

distribution function of type S(o,1,I'(1l-0)cos Eg—- , 0) . From (59) it



IX-19

fcllows that
(60) PLB(E) St = PL 2 < (B)

for 0 <x<1.

If a random variable £ has a normal distribution of type N(O, 1) ,
and ¢ > Q , then n = c2/'52 "has a stable distribution of type S(-]é‘-, 1, ¢, 0) .
Thus if, in particular, ¢ = 1/2 in (57) and (58), then in (60) we can write
that vy = n/2y*2 and § = n/26*2 where Y* and 6* are independent random

variables having the same normal distribution function ¢(x) .

Thus 1f (57) and (58) hold with o = 5, then by (60) we obtain that

%
=p{ |Y| < & =
E{B(t) < tx} Nli{ 6* l—x}
(61)
= —a_'Lc +an .\/ Tox =—2-arc s_n/
" X + B%(1-%)
for O<xs1.
If A=B and o =1/2 in (57) and (58), then by (61) we obtain that
(62) P{(t) < tx} = %— arc sin vx

for 0<x<1.

By using the theorems of Section 52 we can determine the distribution
of the sojourn time for such processes {n{u), 0 g u < =} - for which

Theoreni 2 can not be applied directly. We shall illustrate this by an
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exaniple .

Let {g(u) , O < u < =} be a separable Brownian motion process. (See

Definition 1 in Section 50.) Let

t
(63) : B(t) =£ §(g(u))du
where

1 for x>0,
(64) §(x) =

O for x<0.
’I‘pen we have
|
2
(65) ’ P{a(t) £ tx} = = aresin vx

for 0 <x <1 . This result is due to P. Lévy [ 33 1.

We can prove (65) in the following way: Let Eys Eoseves Epsens be a

sequence of mutually independent and identically distributed random variables

for which
(66) Pl =1} =P{g = -1} =3 .
Let L, = gl+ g2+...+ &n for r=1,2,... and o= 0 . Define
(67) e (u) = ol
A

for u >0 and n=1,2,... . If
, t
(68) () = [ (g )

where o(x) 1s defined by (64), then by (37.166) we have
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(69) 1im P{g _(t) < tx} = %—arc sin vx

n > «

for t>0 and O <x <1 . The same result can be obtained by (62). See

also Problem 61. Je

If we define

z + (u - [nulk
(70) e =l " nutl]
n
for u >0 and n = 1,2,... and
| :
f *
(71) | XORS| (g, ()

where 6(x) is defined by (6U4), then we can easily conclude from (69) that

(72) ljJnNE{B:I(t) < tx} = -12; arc sin vx

n > «

for t>0 and O<x<1.

If n-» = , then the finite dimensional distributions c¢f the process

4 {E,z('u), s O s u <=} converge to the finite dimensional distributions of the
process {g(u) , O < u < =} . Thus by Theorem 45.7 (Theorem 52.2) and by
(45.,181) we can conclude that (72) implies (65).

Next, we shall study the asymptotic behavior of the moments of Bg(%t)
in the case when {an} and {Bn} are independent sequences of mutually

independent and identically distributed positive random variables. Let
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(73) Piu

Pla, = xb = G(x)
and
(74 Pi8 = x} = H(x)

and define the following Laplace-Stieltjes transforms

<]

(75) _ v(s) = (f) e™>* da(x)
and
(76) ¥(s) = é e % gH(x)
for Re(s) 20 .
Tet
r t r . t r—-1
(77) B (t) = E{[8(t)] } = [ x dp{B(t) 2 x} =r[ x "P{(t) > x}dx
e 0 ~ 0 o _

for t>0 and r =1,2,... .

Theorem 3. If {an} and {Bn} are independent seguences of

mutually independent and identically distribufed positive random variables

for which

: ‘ -s0
(78) . Ele "} =y(s)
and

y(s)

P
-3
\¥o]
S
‘
=
(0]
et
1]
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whenever Re(s) > O , then

-st _1 1-v(s) ]
(80) é €Y a3y (b) = 3 [1 - =7k :)‘(‘5" )
“and
) et ) = 21 AoE) L sO @ E ),
é 2T IENE T T o)

- for Re(s) > O .

i
Proof. By (7) and (77) we obtain that
|

-1
[ () = £+ (DTel1oy(0)] ] [x(e)]" S L)/
) 0 s n=0 as'”

2

r-1
- ZL{1 - (o)) z&ﬁ7-<z[<>PdW“”>}
J=0 R

[ 2]

for Re(s) >0 and r =1,2,... . In the particular cases where r =1

and r =2 we obtain (80) and (81).

Note. If Pg(u) =P{n(u) € B} for u 20 , then obviously

t
(83) B,(t) = é Py(wdu .
Thus by (80) we have
(84) TSt e (pyap = —(8)mu(s)]

5 B STl ()(s0]
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for Re(s) >0 .

There are several examples of processes {n(u) , O < u < «} for which
G(x) and PB(t) can easily be determined. For such processes ¢{s) can

be obtained by (84) and H(x) is determined by inversion.

Formula (80) makes it possible to find easily the asymptotic behavior
of Bl(t) as t » e« 1if we know the asymptotic behavior of G(x) and H(x)

as X -+« ,

We.shall consider only the cases where either
| -
(85) a = xdG(x)
0

#

is 'a finite positive number or

. 01
(86) lim [1-G(x)]x ~ = A

x+oo

where 0O < %9 <1 and A 1is a positive rmumber, furthermore where either

(87) B = fomde(x)

is a finite positive rumber or

0")
(88) 1im [1-H{x)]x € = B

X-)-oo

where O < 02 <1 and B 1is a positive number.

If o <=, then v(s) = 1l<s +0(s) as s~ +0 , and if (86) holds,
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then

g

(89) y(s) = 1-Ar(l-o))s 1

+ 0.(301)

as s>+ 0. Furthermore, if B < = , then ¢(s) = 1-8s +0(s) as s ++0,
and if (88) holds, then

%2 92
(50) ¥(s) = 1-Br(l-0,)s = + o(s )

as s+ + 0 . Equations (89) and (90) follow from an Abelian theorem. (See

Theorem 9.1l in the Appendix <)

If G(x) satisfies either o <= or (86) and if H(x) satisfies either
in .
f <« or (88), then_each case we can determine the asymptotic behavior of
(80) as s+ + 0 , and then by a Tauberian theorem (Theorem 9+.1%# 1in the

Appendix) we ohtain the following results. If o + B < , then

B (t)
t atg °

(91) 1im

t > oo
If G(x) satisfies (86) and B < = , then

Bl(t) Bsinmo

(92) 1im =
£+ o t Am

1

If o <« and H(x) satisfies (88)., then

t—Bl (t) asinmo,

, . _ 2
( 9 3 ) 1im t - o




IX-26

If G(x) satisfies (86) and H(x) satisfies (88), then

\
Bl(t, BP(1~02)

il 11 = =
(9%) " iﬁ;t1+cl-02 AF(L—01>P(1+O

1795

whenever o, < ¢
1 2’

(95) 1im -3 ©_ s
I ————— = e
whenever: 01 = 05 5 and
} t-B, (t) Ar(1-o.)
(96) | lim ———— = 1
| £ > wtl+°2—ol BF(1-02)P(1+02_0i7

whenever a., >0, .
1 72

We note that if Var{an} = 02 and Var{Bn} = 02

g are Tinite, then we

have

22 22
(97) 1im Yem(e(t)}_ 2 % * P %

t>w 0 (o + 8)3

Finally, we note that in some cases Theorem 2 remains valid

even if we remove the restriction that the two sequences s_fxn}

and {(?:n-} are independent.

In what follows we suppose that (o{l,(?)l), (0(2,(52),..., (“n’(?’n);

eee are mutually iﬁdependent and identically distributed vector

random variables for which
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(98) lmP{ 2L <x and 2Ly =P, )

n-+ e A2n B2n

in every continuity point of the distribution function F(x,y), and
the normalizing constants satisfy the conditions %é—aél, Al> o,
A,>0, or a%l, Aj=0, Ay>0, and %£b<1, B,>0, B,>0, or

b1, B;=0, B,>O0.

1
We shall prove that if (98) is satisfied, then Propositions

4 -12 in Theorem‘remain velid with the modification bthat o and

S are Ereal random variables with joint distribufion function

P {'X‘é :i‘:, S = y} = F(x,y). Furthermore, we shall show that Proposi-
tions 1 = 3 in Theorem 2 are valid only if F(x,y) :E{af‘g x}ﬁ{Sé&}‘ )

that is,only if 'X' and & are independent.

In finding the asymptotic distribution of (&(t) as t - o

we shall use formula (6), that is,
(99) O RBO 1= R(R ) S 4]

for 0£x%4+t, and an analogous formula
(100) Pfa(t) < x} =£{Yw(t-x) < x}

for 0£ x£t, where @W(t) (tE20) is a discrete random variable

taking on positive integers only and satisfying the relation

(101) {w(t) < n} = {5n > t}

for a1l t =20 and n = 0,1,2,0e0
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We note that if -'-(al’Bl)’ (a?_”ﬁ’a.)"”"(‘an’ﬁn)"" are mutually in-
dependent and identically distributed vector random variables and if
| -sG -8B
(102) ¥(s,9) = Efe }

for Re(s) > 0 and Re(q) > 0, then

© -sY
Py -qt w(t) _oq o 1-9(s,0)
(103) q}f) e T Efe Tlde =1 - Tty
for Re(s) 20 and" Re(q) > 0, and
, PR TR 1-y(q,0
caon) JT e PPue S

for Re(s) > 0 and Re(q) > O,

If we define I(A) as the indicator variable of the event A, that
is, Y(A) =1 whenever A occurs and I(A) = 0 whenever A does not
occur, then we can alsc write that

-sY o -sY
. t
05) Ble "M} =1-[1-4¢s,0) T Ele 16,50
A n=o

for Re(s) > O,

r

If we anow the asymptotic d;’.stribution of ’Xw(t) as t=> o,
or the asymptotic distribution of 89(1;) as t -» o, then by
(99) and (100) we can determine the asymptotic distribution of(&(t)
as t <> 0.
| In wh_at folloﬁs if we say that a.‘familgslr of' distributidn functions
converges to & limiting distribution function, then by this we mean
that the distribution functions converge in every conbtinuity point of

the limiting distribution function.
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In finding (lwr) we have already demonstrated that if
- Dyt
11m P{-‘Q-LL—-—- <z} =PLY< x}

(106) s
2
where either O{dé_., D;>0, D,> 0, or dZ1,D;= O D,> 0, then
: plt) - Mt .
; lim P ——— = R
(107) tdo0™" { et T =3 =R,

and the constants My, My, m and the distribution function R(x)
are given in Table IV,

In exactly the same way we can demcnstrate that if

(108) lin P{—“—’-QL— oy PII < x} ,
t0 ™ . D2t .
then : , - e
' a(t) - Mlt ' -
(109) lim P{—————" < x} = R(x) ,

toaco M?t
! ‘
and the constants 1, Mz, m and R(x) have the same meanmg; as in (10’2

. The following theorem contains the case a >1, 3<b<1 asa

particular case, .

THEOREM& , If cxl,ag, cee ,an,. s Aare mutually independent and

identically distributed random varjables for which

v

. n _
(110) ' ek AEma. S x p=Plysx}
where a >1 and A2 >0, and if

an
(111) o Mmg= By
in probability where Bl > 0, then we have
a :
ngt} Bl }

PROOF. By (101)and (111) it follows that

A 1
“f - lim Qg.t.). = —
(113} Lin = B

in probability, Thus{112) immediately follows from Theorem 45.4s
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In this case the asymptotic distribution of ra(t) can be obtained by
e ~-a P
(1o9)where now d =a, Dy =0, D, =AB," and N?{»ﬁ's x} = z{yg_ x}.
The following theorem contains the case b>1, £#<a<1l asa

particular case,

~

II‘IEOREM 5 ° I_f Bl, ﬁz’ ceoy 6n, eao are Inutually independent and

jdentically distributed random variables for which_

’ o)
(14) lim P nb < x) =P{® < x}
wfv\" Bn Al
_ 2
where b >1 and B2>0, and if
, Yo
ws) S oum2 e

in probability where A'J. > 0, then we have
Soe) M1
(116) 1m p{ 2L < o} Spsgx] .
ta™" 1 B_t o~
2
m By (5) and (115) it follows that
t 1
(117) 1im ﬂ_l = =
: t4o © Ay
in probability, Thus (I16) immediately follows “by:Theoren 45.4,

In this case the asymptotic distribution of B(t) is given by

. -b :
(107 Yvhere now d =b, D =0, D, =BA " and 39&5 x} =2{d < x}.

THEOREM ‘6, If (an,fin) (n=1,2,.,.) are mutually independent

and identically distributed vector variables for which (98) holds with

3<a<l and 32<b<1, then
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A.B - B, t
(18) lim P 1 fétg 1 <x( =Qx)
exists where d = max(a,b),
P{A1B28_<_xj - for b>a ,
(119) Q) = | P{ABS -BAYSx} for b=a ,
gty < 4 for b <

and P{y <x, 8 <y} = F(x,y).

PROOF. By (98) it follows that

A3 ~-B.Y

(120) Lim p{ LB < =)
n-ee™ n
- where d = max(a,b) and Q(x) is given- by (119). ' -

By (5) and (98) it follows that

: p(t) - -E-

.. . 1 ;
(121) , 11m s (1+a) 2 S X =N1:{"YSX}’ »
and
(122) lim 2%-1 =

t-40 1
45.4

in probability. If we apply '.lheorem“to the random variables
; (n) = Alﬁn - BlYn (n=0,1’2,-o.‘)’ and ':‘ {p(t), 0 S t < m}, t‘h»en ve

obtain that

@ez) lim P - o(e) 1Y(2) = Q(x).

tdoa ™ (t/A yd

IN
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It remains to show that (123) implies (118). This follows from the in-

equalities

Bt <A

(128 OO E T

1%(8) " B1Yp(e)

 for t >0 and from the fact that
()41
(125) lim - = 0
t-&o t

in probability. The relation (125) follows from the inequality

. |
(126) P —-‘%)Ll > ¢! < Pip(t) - ;f‘:' [ > & %} + 2kePla; > t%}
N~ t . N 1 Ay

which holds for ¢ > 0 and K> 0, Siuce P{Ctl S x} belongs to the
domain of normal attraction of a stable distribution function with char-

acteristic exponent 1/a, it follows that

G27) lim P{ocl > t? ej(tae)l/él =c
tdoo A~

where ¢ is a nonnegative constant. (c =0 if a = —%—.) This implies
ﬁhat the second term on the right-hand side of (126) tends to 0 as
t 4o, If t+eo and K -+ o, then by (121) the first term on the right-
hand side of (126) tends to 0, Since ¢ > 0 is arbitrary, this implies
(125). This completes the proof of the theorem,

Now the asymptotic distribution of B(t) is given by(10)) where

d = max(a,b), Dl = Bl’ D‘2 = 1/A<]5_' and P{q?’s x} = Q(x) 1is given by (119).
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THEOREM 7. Iet us suppose that (X o(3,)

(n=1,2,cs. ) are mubually independent, and identically

distributed vector random variables for which (98) holds

with aZ 1 and b= 1. Let

{128) 2(s0) = [ [ eV 4 Fa,y)

o 8
o — 3

for Re(s) > 0 _and Re(q) > 0, Then

y Ba/’b
o i . o)
€129) | iigﬁ{—:)%}/g* < x| =Qx)
i 2
exists and
- *® 1 oo. s
(130) _ x°dQ(x) = x dV(x)
§ | I(l-s) I(1 + 2% {
iciently small |Re(s)| where.
‘ log 4?(1‘-,0)
(131) V(s) = 1 - )

log 2(5,1)
for Re(s) > 0,

PROOF, 1Im proving this theorem we may assume without loss of
generality that A2 = B2 =1, Let
-so:n-qﬁ n

(132) §(s,0) = Efe )

for Re(s) >0 and Re(q) > 0. Then we. havé .
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(133) vmfe(P, 4977 = o(s, @)
n-=>«n n

and

(1%4) 1im nly(3, %) 411 = loga(s, q)

n->x n n

for Re(s) >0 and Re(q) >0 . We note that necessarily

(135) logd(s, 0) = _asl/2

and

(136) 10g¢(0, q) = -Bq'/®

where A/>0O and B> 0 ard

(137) ! logs (s, as™?) = s1/%10z0(1, o)

for Re(s) >0 and Re(q) 20 .

For simplicity let us write ¢(t) = Ym(t;) for £ >0 . By (105) we

have

(138) Ee™5 ) 2 1 _ [1-u(s, 0)mct, 5)

for Re(s) > O where

Sy.
TI(s <t)}

(1%9) M(t, s) = ) Ble

n=0 A n
and I(an < t) 1s the indicator variable of the event {6, <t} , that is,
I—(a,n <t)=1 if {6n <t} occurs and O otherwise. -If we express the sum

in the above formula in the form of an integral, then we can write that
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| ' -3,
@ -st .

b - : Yr

(140)  M(t , st™) =t [ Efe fut]
0

liad

I(G[u‘c] < tb)}du

for Re(s) >0 ard t >0 . If Re(s) >0 , then

-a/b b -a
M(t, st ) = s M(ET, st -
(1) M Jm Ty T e
exists and
w -suay

(182)  u(s) = [ Ble  I(s <uP)lu
O'W

where P{y <x, § <y} =F(x, y) .
At

B‘jrét, let s =0 . Since

[-<]

[ o—at R
(143) ;& T, 0) = 155
for Re(q) > 0 , and since
~1/t _
(]!u*) 1im [l_W(O: Q)]q =B )

q>+0

it follows from a Tauberian theorem (Thecrem 9.13 in the Appendix) that

M(t, 0) _ 1
L/

(145) 1m

t > =

(14 =)
Br{i+ 5’

This proves (141¥or s =0 . For

3 ~ -1/b 1
u(0) = [ P{scu ®yqu = Efs } = —
(1482 0™ ~ © O Br(u+ &)

b
1/b

~which follows from E{e_q6} = 9(0, q) = exp{~-Ba™ "} . Accordingly, we have- -
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lim [ P{s <t}du—«P{<S<u }du.
t+f [ut]

(147)
For u>0 amd Re(s) > O the integrand inQ4QOhas absolute yalue <1 and
it tends to the integrand in (142)as t » = . On the other hand for any
K>0 and Re(s) > O we have

e - .
[utJI(G[ut] < tb)}du] ;éf{a[ut] ;tb}du. + [P{g<u b}du

© -3t
E{e
(148)l é E [X

as t + « and the extreme right member is arbitrarily close to. O If K Is
sufficiel%ltly iarge. Thus by the dominated convergence theorem we can conclude
that in(14O)the integral tends to u(s) for Re(s) >0 as t >« , Thig

proves (121).

Since

-1/a

(149) lim [1 - ¥(s, O)Is =A,

s++0

by (14Dwe obtain that

-a/b : , _
(150) limNEw{e"SC(t)t }=1 - Asl/a u(s)

t-)co 4

for Re(s) 20 . Here |[u(s)| = < u(0) for Re(s) >0 and if s >+ 0, then
the right-hand side of the above equation tends to 1 . Thus by the continuity

theorem of Laplace-Stieltjes transforms we can conclude that the limiting

distribution
- . o (t . . ’
lim P {22~ < x} = Q(x)
(151) g e /D
exists and
(152) [ € da(x) = 1 - 4 u(s)
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for Re(s) >0 . Hence Q(x) can be obtained by inversion.

We can also determine Q(x) in another way. By (103) we have

® gt -sz(t 1 - 0
as3)  af e ¥ e -1 - 1200

for Re(s) >0 and Re(q) >0 . Now let v be a positive real random variable

which is irdependent of the process {z(t), O £t < =} and for which P{v < x} =

1-e* ir X >0 . Then we can write that

-se(v/a)y _ 4 _1-1u(s, O)
Ele e T )

for Re(s) >0 and q > O . Hence it follows that

, 0)1g"MP

Lim E{e'sqa/bC("/Q)} C 1o um [ u(eg®? 75 =
D

. ~~ q b 9L
40 q+0[1-uvs®?, a)lg

- logo(s, O) _ .,/ 1
- g v

(155)

for Re(s) 20 .

If ¢, Vs v, are mutually indeperdent random variables for which
Pl < x} =Q(x) and P{\)1 <x} = P{v2 <x}=1- e for x > 0, then by

the last equation we can write that

(156) Plz vt P < x) = V)
for x » 0 . Hence it follows that
S -S as/b ® s
E{z"1E{v, }E{v; "} = [ x7dV(x)
(157> ARSIy SRV, 3

for sufficiently small |Re(s)| . This proves (130).
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The distribution function Q(x) can be obtained by Mellin's irwersion

formula.

In the particular case when a = b we have

<

(158) [ x%aQ(x) = S +Sqy(x)
0 ™ 9

for sufficiently small |Re(s)| , and hence it follows by inversion that

dQx) _ Vixe™) - v( "ﬁ)
(159) e S xe

for x >/0 where the definition of V(x) 1is extended by analytical continmation

to the cbmplex plane cut along the negative real axis from C to « .
In the particular case when F(x, y) = P{y <x, 8§ <y} = Ply 2x}P{6 <y},
that is, when y and ¢ are independent random variables, we have

(260) Q) = 2y 0 <)

Conversely, we can prove that if Q(x) 1is given by the above formula, then

vy ard § are necessarily indeperdent random variables.

To prove this last statement let us suppose that the vector variasble

ard v, are mutually indeperdent. Iet P{y <x, § <y}

(v, 8) and v 5

F(x, y) with Laplace-Stieltjes transform &(s, q), and P{v] <x}=Plv, <x}=

ro

1-¢e* for x>0 . Then we have

léx’ 6 Vgl_i_y} = @(.];, =

(161) - Blyvp Xy

for x>0 and y > O . Hence we can deduce that
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for x>0.
Tus  (160) holds if and only if
axVi(x) _
(163) T-v -~ )

for x > 0 . The general soclution of this differential equation is

|
Cx‘"/a

: V(x) = —~7
(164) 1+ Cxl/ci

for x >0 where C 1is a positive constant. Hence

(165) Q(S: Q) =e
for Re(s) >0 and Re(q) >0 . Finally, it follows that C = B/A and

that vy and 6 are Indeperderit.

In the above case the asymptotic distribution of (B(t) can
be obtained by (109) where now 4 = a/b, Dl-_— o, D2~_—A2B§a/b

and P e x} = Q).

Thus it follows that

B(t) - Mt
n—l———ix} = R{x)

(166) 1im P{
' t > o M2t

where the constants , M., m ard the distribution function R(x) are given-

2
in the following table. In this table Ay is a random variable with distribution
function P{Y < x} = Q(x) &iven by (130).



(167) | lim P

IZ= 40

(a, b)“ IVI_l M2 m R(x)
a>b || © B2Agb/ %1 b/a g{a‘b/ & < x}

_ A «“.r
a=b 1 1 1 5"{ m—iz < x}
a<b 1 A2B5a/b a/b P{-¥< x}

 We note that in a similar way we can prove that

|
| 5 Ab/a

o) 2 < x| = Q¥x)

~—- b/a
t90
B2t

exists and

& T x°dQ¥*(x) = 1 T x°av#(x)
(168) {; r-s)r(x + ) {)

for sufficiently small |Re(s)| where

o g &( z02
(169) V#(s) = lo 1
log (1, -)
for Re(s) > 0, The asymptotic distribution of B(t) is given by (107)
: -b - \
where now d = b/a, D, =0, D, = oA, /a and NE’{:&'S x§ = Q¥(x).

We observe that

~a/b

€190) V@) =1 - V)

for x>0.

60. Sojourn Time Problems for Markov Processes, Let {g(uw) , ue Tt

be a StOChabtl(" process with state space X where X 1is a metric space

and with parameter set T where T is a Llinear set. We say that {g(u) ,

ue T is a Markov process if for any parameter values tl < t2 “eoe

(n=2,3,...) and for any Borel subset S of X we have

<

t
™

»y

!
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(1) PLe(t) & Slalby),een,elt, 1)} = Pla(t) € Slale, o))

with probability 1 . The probabilities

(2) Af{e(t) e Sle(u) =z,

defined for the parameter values u <t , for x ¢ X and for Borel subsets
S of X , are called transition probabilites. If (2) depends only on x, S

and t-u , then we say that the Markov process is homogeneous.

In what follows we suppose that either T =1{C,1,2,...1} or T = [0, «}
and that {g(u) , u e T} is a homogeneous Markov process with state space X
where X 1s a metric space. Let &(x) be a nonnegative, measurable function

of x defired on the space X .
If T=1{0,1,2,...} , then let

n
(3) wy = L 8(E(r))

r=1
for n=1,2,..., and if T = [0, =) , then let

t
(4 u(t) = [ 8(g(uw))du
0

- for t > O provided that the integral exists.

We are interested in finding the asymptotic distribution of u_ as

n'+'m , and the asymptotic distribution of u(t) as t >« .
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In the particular case where 6&(x) is the indicator functiori of a

Borel subset S of X , that is,

1l 1if xe¢ S,

(5) §(x) =
0O if % £8S,

then .“n and u(t) can be interpreted as sojourn times spent in the interval

[0, n] or in the interval [0, t] in the state S .

In what follows we shall mention a few results for Markov processes

C{E(w) ,‘u e T} .

First, let us suppose that gl, 52,..., gr"" are mutually independent
and identically distributed random varisbles for which «§{gr} =0 and
EE?{gr} =1, Let £(0) =0 and ¢(r) = Bt Eot.t g for r=1,2,.0. .
Then {¢(r) , r =0,1,2,...} 1s a discrete parameter Markov process. Let us

suppose that

"1 if x>0,

(6) §(x) =
0 if x<0

and define M by (3) . Then by a result of P. Erdds and M. Kac 17 1

we have
(7 ' lim P{u_ < mnx} =
for 0 <x<1.

Next, let us suppose that El, 52,..., &P,... are mutually independent
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and identically distributed random varisbles having a stable distribution \

of type S(2,0,1,0) where O < < 2 , that is,

-SE 1 10

(8) . Ele Ty=ei8I

for Re(s) =0 . For a >0 let us define un(a) as the number of subscripts

r=1,2,...,n forwhich [g+ &+t | <a.

If o =1, then we have

(9) 1im P{ n < 2ax}___1_e—x

for x>0, and if 1 <a <2, then

u (a)
(10) n Pt w5 -6 |
n->e l-7zg &ein - 1- =
n [0 ] a3

where Go(x) is defined by (59.54) and (59.55) for O <o <1l . If O<a<1l,
then P{lim p (a) < «»} = 1 . These results were found in 1951 by K. L. Chung
M n ———

< L
n > «

andM. Kac [ 6 1, [ 7 1.

In 1954 G. Kallianpur and H. Robbins [ 25 ] studied the asymptotic

distribution of (3) in the case where &(r) = Ete.tE (r = 1,2,...) and

&;1, 62,..., E_;I,,... are mutually Independent and identically distributed random
variables belonging to the domain of attraction of a symmetric stable distribution
function, and furthermore &(x) is Riemann integrable on some finite interwval

(a, b) ‘and O elsewhere.
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In 1957 D. A, Darling and M. Kac [ 9 ] found the asymptotic distribution

of W, a n->e for a general class of discrete parameter Markov processes
{e(r) , ¢ =0,1,2,...} and the asymptotic distribution of wu(t) as t + =
for a general class of contiruous parameter Markov processes {g(t) ,

0 <t <=}, They proved the following results.

Theorem 1. Let {&(r) , r = 0,1,2,...} be a homogeneous discrete para—

meter Markov process, . ‘Let us suppose that there exists a function g(z)

and a posiftive constant C such that

a1y lim g(z) =
; z > 1
and
( [ £1 -n =
(12) ] +1 g<—y Z E{s(e(n))|g(0) = x}z” = C

where the convergence is uniform in x on the set {x : §(x) >

In order that for some normalir.rs sequence m, (n=1,2,...) the

random variables

o

(13) == RICOP
r=

have a nondegenerate limiting distribution it is necessary and sufficient

that

(14) g(z) = —2— 1, (=)
(l_z)a 1-z

for some a (0 <o <1) and for some slowly varying function L(x) .

TP (14) is satisfied, then
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M .
(15) . o limP{——a-<x} =G (x)

e 1
n->« Cg(l- -ﬁ)

where G (x) 1s defined by (59.54) and (59.55).

-

Theorem 2. Let {g(u) , 0 < u < =} be a homogeneous continuous para-

" meter Markov process. Let us suppose that there exists a function h(s) and

a positive constant C such that

(16) lim h(s) = =
s >0

and

(17) Stﬁ{a(a(t))la(o) =x}dt =¢

s >+ 0

. 1 -
1lim E-(gy(j;e

where the convergence is uniform in x on the set {x : &(x) > 0} .,

In order that for some normalizing function m(t) (0 <t < =) the

random variables

£
(18) oA o ST

have a nondegenerate limiting distribution it is necessary and sufficient

that

(19) n(s) = L2/s)
S

for some o (0 <o <1) and for some slowly varying function L(x) .

~If (19) is_satisfied, then
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(20) 1im p{ ¢

t » o Ch(

ot
p—

= A
< x} Gu(x,

)

where Gd(x) is defined by (59.54) and (59.55).

i

In Theorem 1 and in Theorem 2 the function L(x) defined for O < X < =

1s slowly varying if

. L(wx)
(21) lim i763) =1
X - ooL X
for any o > 0 .
By using Karamata's Tauberian theorem (Theorem Se¢1%  in the Appendix)
i

" D. A. Darling and M. Kac [ 9 ] demonstrated that
T

: . "n | r _ r!
(22) 1im E{(‘——""‘—T)‘) } = T(ratl)

n+«<" Cg(l-=

for r=0,1,2,... . Since

o

r!

(23) é xd GQ(X) = T(ratl)

for r=0,1,2,... and since Ga(x) is uniquely determined by its momente,
. a
by Theorem 41.11 it follows that (15) is true. In.similar way (20) follows

fram the relations

. u(t) T, !
(24) tl?g@{(@) }= m)-

for r=0,1,2,... &

- We mention that S. Karlin and J. McGregor [ 26 ] determined the
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asymptotic distribution of wu(t) for some birth and death processes by using

Theorem 2.

Finally we mention a related result which was found by E. B, Dynkin

[ 56 J. Let us suppose that {£(u) , O < u < =} is a separable stable process

of type S(a,1,c,0) where 0 <o <1 and ¢ >1 . Then

" o
(25) _ pleSE(Wy o gcs

A

for Re(s) 20 and u2>0.

%
|
Le‘t Ra(x) be the stable distribution function of type S{a0,1,1,0) and

let
, -1/u
L a R ((a~u)x )
(26) V(x) = B S du
0 u (1+u)
for x>0,énd a>0 and
. a
‘ _ Sinma du
(27) v (0) = =] .

0  u’(1l+u)
If o(a) denotes the first passage time of the process {&(u) ,

O<uc<=} through a where a >0, and if O < a < b , then we have

(—Z—)

(28) P{6(b) - 8(a) > x} =
S ~ T(1-a)a®

V(b~a)/a

for x>0 and

v _ c(0®= a%)
(29) E{e(b) -6(a)} = Tl
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61. Problems

61.1. Find the probability P{B(t) = x} defined by (59.9) in the

case where H(x) = 1-e ™%

for x>0 . (See R. P. Debrushin [12 p. 1021.)

61.2. Let us suppose that a particle performs a random walk on the

x —axis. It starts at x=0 and at times u = 1,2,... 1t moves either a
unit distance to the right with probability 1/2 or a unit distance to the left
with probability 1/2 . Let us suppose that the successive displacements are
mutually indepeﬁdent random variables. Denote by £(u) the position of the
particle at time u (0 Lu < =) . We say that at time u the process is

in stat;e A if E(u) <O and in state B if &(u) > 1 . Denote by 8(t)
the tot‘al time spent in state B in the interval (0, t) . Find the asymptotic .

distribution of B8(t) as t >« . (See P. Lévy [ 33 ], P. Frdos and M. Kac

[ 17 1, and E. S. Andersen [ 1 J1.)

61.3. Let {&(u) , 0 2 u < =} be a separable stable process of type
S3(¢,0,1,0) where O <a <2 . Let 8{x)=1 for x>0 and 6(&x) =0 for
X < 0 . Determine the distribution function of the random variable

t
B(t) =(J; §(g(u))du

for t>0. (SeeM. Kac [ 22 1].)

61.4. Let {&(u), O £ u < =} be the random walk process defined in
w?r’oblem 61.2. Let m be a given posi‘civebinteger. If g(ti) = 1,2,000, M,
then we say that the process is in state B at time u , otherwiée, the

process is in state A at time u . Denote by B8(t) the total time spent ‘
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in state B in the interval (0, t) . Find the asymptotic distribution of

and K.L, Chung
B(t) as t + = . (See R. L. Dobrushin [ 12 j,/\and M. Xee [ 6 1, [ 7 1.)

61.5. Let us suppose that in Theorem 59.2 (ocl+ at...+ ocn)/n = A as

2

n-> o where A is a positive constant and B'l’ 82,..., Bn’ ... aré mutually

independent and identically distributed positive random variables for which

xaP{Bp >x} =h(x) where O0<a <1 and lim h(uwx)/h(x) =1 forany w >0 .

X = @

Find the asymptotic distribution of B8(t) as t » = .

61.6. Let us suppose that in Theorem 59.2 (Bl+ Bt. ..+ Bn)/n—-::}B

2

as n->« where B 1is a positive constant and G5 Opseees Gpyee. 8X€

mutually independent and identically distributed positive random variables

for which qu{an >x} = h(x) where O <o <1 and 1lim h(wx)/h(x) =1

X > o

for any w > O . Find the asymptotic distribution of B(t) as t » « .

61.7. Iet us suppose that (59.98) holds with a=b=1/2,

1
two-dimensional normal distribution function of type

w(Jos ] i ])

where -1<r<l. TFind the asymptotic distribution of (%(t)
as t -3 0D o

A, >0, By>0, Ay,> 0, B,> 0 and that F(x,y) is a

1 r
r 1

61.8., Let us suppose that in Theorem 59.7 @(s,q) is
=4 X
given either by (i) @ (s,q) =e™° ~¢ or by (i1) D (s,Q)=
ok
ef(s""‘i) where O < X< 1, Find the asymptotic distribution

__of‘{?a(t) as t = o0 .
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