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CHA.PIBR IX 

OCCUPNrION TilVJE PROBLEMS 

59. Sojourn Time Problems. In this section we consider stochastic processes 

· {n(u) , 0 < u < 00 } with state space A u B where A and B are disjoint 

sets. If n(u) s A , then we say that the process is in state A at time 

u , and i.f n(u) E B , then we say that the process is in state B at time 

u • We assume that in any finitt:: interval (0, t) the process changes 

states only a finite munber of times with probability 1 • Let us suppose 

· that P{n(O) s A} = 1 and denote by a1, s1, a2, s2, ... the lengths of the 

successive intervals spent in states A and B respectively. Denote by 

a (t) the total time spent in state A in the ir1terval ( 0, t) , and denote 

by S(t) the total time spent in state B in the interval ro ,_ \ 
\ , (,) . Obvi-

ously, a(t) and S(t) are random variables and a(t) + B(t) = t for all 

t > 0 • 

In what follows we shall deternüne the distribution of 8 ( t) and the 

asymptotic distribution of S(t) as t -+ 00 for a wide class of stochastie 

processes {n(u) , O < u < 00 } • 
1I1he following results were obtained by the 

a.uthor [40 ], [ 41 ], [ 42 ], [43 ], [ 44 l, [ 45 ] " 

11.be dis tribution of 8 ( t) • Let us introduce the notation yn = 

~-l + a2 + ••• + an for n = 1, 2, • • • and y 0 = 0 , furtherrnore 

for n = 1,2, ••• and ö0 ~ O • '•. 
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'11heórem 1. If O < x < t , then we have 

(1) P{8(t) < x} 
"""' 

Proof. For 0 < x < t denote by T = •(t-x) the smallest u e: [O, a:> ) 

for whi ch a ( u) = t-x J. 'Ynen n ('r) e: A and we have 

(2) {B(t) < x} = {8(T) 2. x} • 

This ·rollows from the following identities 

(3) {8(t) < x} = fo(T) 2- a (t)} = {T< t} = fo(T) + 13(T) < t} = {8(T).:. x} • 

Since a(t) and S(t) are nondecreasing functions of t for 0 < t < 00 and 

a(t) + t3(t) = t for all t 2:. 0 , (3) follows easily. 

Since S(T) = ö (n = 0,1, ••• ) 
n 

we obtain that 

00 

for 0 á. x < t and this proves (1) • 

if yn < t-x ~ yn+l :. therefore by (2) 

Now we shall express ( 1) in an equivalent fonn which will be useful in 

find.L!g the as;ymptoti.c d..i.stribution of 8 ( t) as t + 00 • 

For each t > 0 1et us define p(t) as a discrete random variable 
= 

taking on nonnegat:i.ve integers only and sat.isfyi.üg the relation 

,\ 
provided that such a u exists. 
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(5) {p(t) < n} - {yn ~ t} 

for all t > 0 and n = 1,2, •••• By using this definition we can write that 

(6) 

f or O < x < t • == = 

If we can detennine the asymptotic distribution of op(t) as t + oo , 

then by (6) we can find the a'3ymptotic distribu.tion of B(t) as t + oo • 

Examples. Let us suppose that {et } and {B } are independent sequences 
n n 

of mutually independent and identically distributed positive random va.riables. 

Let P{a < x} = G(x) and P{B .5. x} = H(x) • Then by (1) we have 
~ n ~ n-

00 

(7) P{B(t) ~ x} = l 
~ n=O 

[G (t-x) - G +l(t-x)]H (x) n n n 

for 0 ~ x < t where Gn(x) (n = 1,2, ••• ) denotes the n~th iterated 

convolution of G(x) with itself, Hn(x) (n = 1,2, ••• ) denotes the n-th 

iterated convolution of H(x) with itself, G0 (x) = tta<x) = 1 for x > 0 
= 

and G (x) = H (x) = 0 for x < 0 • 0 0 

If, in particula.r, 

(8) G(x) 
= 5 l - e-ÀX 

l 0 

for x > 0 , 

f or x ~ 0 , 

theri (7) reduces to 
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( 9) P{S(t) _<_ x} = ~ e-À(t-x) [À(t-:x)]_~ H (x) 
l n! n 

~ n=O 

for 0 < x < t • By (9) we have = 

00 

(10) P{S(a+x) < x} = l 
n=O 

n 
(Àa~ H (x) 

n. n 

f or any a > O and x > O • Let = 

(11) 
00 

f -sx ( ~(s) = e dH x) 
0 

for Re(s) ;:_ 0 • 11hen by (10) we get 

(12) fooe-sx d P{B(a+x) ~ x} = e-Àa[l-w(s)J 
x fV" -

0 

for H.e(s) > O • If we know ~(s) , then P{B(a+x) .::_ x} can be obtained 

by inversion frorn (12). 

The asymptötic distribution of B ( t) • If by a sui 1'3.ble normalization 

the vector varJables (yn' on) have a limiting distribution as n-+ 00 , 

then by a suitable normalization B(t) has also a lirniting cli.stribution as 

t-+oo • first 
In what follows we assume /\ that -{ °'n} and l 11n} are 

independent sequences of positive random variables for which 

(13) 
Yn - Al(n) 

lim ~{ A (n) < x ) 
n-+ 00 2 

G(x) 

and 
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(14) 
ên - B1(n) 

l:im ~{ B (n) < x} = H(x) 
n-+ 00 2 

in the continuity points of the distribution functions G(x) and H(x) 

and A
2 

(n) -+ 00 and B
2 

(n) -+ 00 as n -+ oo . 

If either G(x) or H(x) is a non:iegenerate distribution function, 

then there exist a nondegenerate distribution function R(x) and nomializirig 

(15) 
B(t) - M1(t) 

l:im P{ M (t) ~ x} = R(x) 
t -+ .;"' 2 

in every continuity point of R(x) . 

We can prove (15) by using two simple auxiliary theorems. 

The first auxiliary theorern is a particular case of a. theorem of 

A. V. Skorokhod [ 38 J . 

Lemma 1. Let F (x) (n = 1,2, ... ) and F(x) be one-d:imensional - n 

distribution functions. If 

(16) l:im F (x) = F(x) 
n-+oon 

in every__ continuity point of F(x) , then there exists a probability space 

(Q,?a,!) and real rand.cm variables ~n (n = 1,2, ... ) and ~ such that 

P{~ < x} = F (x) and P{~ < x} = F(x) and 
,.,..., n = n """'" 
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(17). P( lim ~ = ~} = 1 . 
,.,..,.n-+con 

Proof. Let n be the interval (O, 1) s B the class of Borel sub-

sets of n , and P the Lebe~ue measure. Define c," (w) = inf{x : tu < F (x)} n , = n 

and ç;(w) = inf {x w < F(x)} • In this case (16) implies that lim ç; (w) = 
n-+oon 

ç;( w) for every w e: n except possible a countable set of w values. 

In the f ollowing discussion we use the symbol ~ f or denoting 

convergence in probability. 

Lemma 2. Let { o(n) , n = 0,1,2, ... } be randan variables for W!1..1.cf:l_ 

P{ lim o(n) = 0} = 1 . Let {p(t) , 0 < t < co} be discrete random variables ,.,..,... 
n + co 

taking on nonnegative integers only for which 

(18) lim P{p(t) > m} = 1 
t-+ ~ 

for all m = 0,1,2, .... 11.hen o(p(t)) converges in probability to O as 

t + co , that is, 

(19) lim P{lo(p(t))I > e:} = o 
t +: 

f or any e: > 0 , or brie fly o ( p ( t) ) :::::> 0 as t -+ 00 • 

'Ihis lerrma is the same as Lermia. 4 in Section 45 and we already proved 

it there. 

Our aim is to give methods for f:ïnding the lirrû.ting distribution (15) 

if the limiting distributions (13) and (14) are 1rnown. 



TX-7 

·In the following discussion we assume that in (13) A1(n) = A1n, 

A2(n) = A~a and in (lL~) B1 (n) = B1n , B2(n) = B2nb where A1 ~ O , 

A2 > 0 , B1 > o , B2 > O , a > O and b > O , and if A1 > O , then 

O < a < l , and if B1 > 0 , then 0 < b < 1 , that is, 

(20) 

and 

(21) 
ö - B n n 1 l:im P{ ----,,b- < x} = H(x) 
B

2
n n + "" 

in the continuity points of G(x) and H(x) • 

In the general case, (15) can be obtained in a sim.ilar way. 

Theorem 2. If {an} and { sn} are independent sequences of po si ti ve 

randan variables for which (20) an~(21) are satisfied, then there is a 

d:i.stribution function R(x) and there are constants M1 > O , M
2 

> 0 , 

m > 0 such that 

(22) 
S(t) - M1 t lim P{ ~ x} = R(x) 

t + ;;;--- M tm -
2 

in every continuity point of R(x) • The constants M1, M2, m and the 

distribution function R.(x) are given i.'1. 'Tu.ble I where y and o are 

independent real random va.riables with distribution functions P{y < x} = ,,,.._., -

G(x) and P{ê < X} = H(x) • 
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TABLE I. 

, 

Al Bl (a,b) Ml ~ m n(x) 

1. 0 0 a > b 0 B !\ -b/a b/a P{óy -b/a. 
< x} 2· 2 ,...., -

- --
B?ó 

2. 0 0 a=b 0 1 1 P{ L.. x} ----< 
~ A2y+B2ó = 

'-· 

AB -a/b 
--- -- -8/5--------- . -. 

3. 0 0 a < b 1 a/b P{-yo 2. x} 2 2 ,.,,_ 
L..-- -- . ·--·----- --------·-·------- ---·-----

4. 0 >O a > 1 0 B A -1/a l/a P{y -1/a 
< x} 1 2 

"'--- -
---· 

'. Bl 5. 0 >O a = 1 0 1 1 P{ < x} 
tv-- Bl+A2y -

'--
__ ,_ 

-- ----- ~-----1----·----------
6. >O a<l 1 -a 

à P{-y x} 0 A2Bl < 
°'-'" -

----~---~--- ---- ------1------· -- -··-----

7. >O 0 b > 1 1 A B -l/b l/b P{-ó-1/b < x} l 2 
·~-

-
-~ ,__ 

-- .----- --

8. >O 0 b 1 0 1 1 P{ 
B2o 

X} = 
Al+B2g 

< 
",,,_,, -

-- -·---.- -------

9. >O ' 0 b 1 0 B01-b b P{ó x} < < -""-.___ __ ,__ ____ 
---- ~- --

10. >O >O b 
Bl B1A2 

P{-y x} a > 
Al+Bl (A +B )l+a 

a < -"t'--

1 1 
-- - -··--

Bl Al l+a i A1B2ó- B1A2y 1 
ll. >O >O a = b 

Al+Bl (A +B ) a I,~{ Al+a 
< x} -1 1 1 1 -- --- -·---- ------ ->--------- ---------

Bl A1B,., 
12. >O >O b - c'. b P{ó x} a < 

Al+Bl (A +B )l+b 
< 

,,,.... -
1 l 



IX-9 

Proef. First, we shall determine the asymptotic distribution of 

óp(t) as t +co , and then by (6) we shall be able to find the asymptotic 

distribution of B (t) as t + co • We can consider o P (t) as a canpound 

random function and then we can use an idea of R. L. Dobrushin t 14 ] in 

finding the asymptotic distribution of op(t) • 

If we apply Lemna 1 separately to the distribut~on functions ~{yn < 

a b 
~n + A-;11 x }. (n = 0,1,2, ••. ) and ~{ón < B1n + B~ x} (n = 0,1,2, ••. ) , 

then it fellows that we can construct a probability space (~,B,P) and 
,.,..,.. 

we cap define two indeper,dent * sets of random variables y (n = 0,1,2, •.. ), 
n 1 

1 * * y an~ an (n = 0,1,2, ..• ) , ó in such a way that ,!'{yn ~ x} = ,!{rn ~ x} 
1 

(n = 0,1,; .• ) , * P{y ~x}= G(x), P{ó ~x} = P{ó ~ x} , (n = 0,1, ... ), 
,.,...,... .- (\/\ ... n- ,.......,. n-

P{ó ~x} = H(x) and ,.,... 

(23) 

and 

(24) 

* Y - ~n 
P{ lim n = y} = 1 , 

,,,,.,.. n + co A2 na 

* ó - B n 
P{ lim - n l = ó }= 1 . 

b ,,,.... n + co B
2 

n 

* For each t > 0 let us define p (t) as a discrete randan variable 

taking on nonnegative integers only and satisfying the relation 

(25) * * { p ( t) < n} _ {y n ~ t} 

for all t .?._ 0 and n = 1,2, •.•• 

' 
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By (6) it is evident that 

* (26) ,!'{S(t) .::. x} = "~{o p~(t-x) ~ x} 

for 0 < x .s t • Thus if we detennine the asymptotic d:i.stribution, of = -

* ê p*(t) as t + 00 , then by (éó) we can obtain also the asymptotic distribution 

of S ( t) as t -~ 00 • 

* Now let us study the asyrnptotic behavior of o p*(t) as t -+ 00 
• 

By (2 3) and (25) we can conclude that 

(2?) 

as t + "" where the constants c1, c2, c and the random variable r depend 

on A1, A2, a and y as indicated in Table II • 

TABLE II 

Al cl c2 c p 

0 0 l/A l/a l/a -1/a 
2 

y 

> 0 l/Al A /A l+a 
2 1 a -y 

By ( c;) we can wri te that 

where w(t)==? 0 as t + 00 • 

By (24) it follows that 
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(29) . 

where ó(n) (n = 0,1,2, ••• ) is a random variable for which 

(3-0) P{lim ó(n) = 0} = 1 • 
··~~ 

11 + 00 

Thus by (28) and (29) we have 

* c óp*(t) = B1[c1t + c2t (p+w(t))] + 

+ B2[ó+ó(p*(t))][C1t + c2tc(p+w(t))]b 

* In (31) p (t) ~ 00 as t + 00 • This fellows from (28). For if C, = O , 
.J.. 

then p is a positive randcm variable, and if c1 > O , then c < 1 . 

* Thus by (30) and by Lemna 2 it fellows that in (31) ó (p (t) )===:'> O as 

t + ~ • Furthennore w(t)~ 0 as t + 00 • Taking into con:;ideration 

these relations we can conclude from (31) that there are constants D1 , D2, d 

and a r·andcm variable ri!f such that 

as t + 00 • The constarits D1 , D2, d and the randan variable 19- depend 

on Bl' B2, Cl' c2, b, c and ó and p as indicated in Table III. 
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TABIE III 

cl 1 (b ,c) d 

0 0 0 be 

> 0 0 0 c p 

0 >O 0 b 

> O · >O c p 

> 0 >O 1 b 

> 0 > 0 b 

* Since op(t) and op*(t) have the same distribution for all t > O , 

:tt fellows from (32) that 

(33) 

ln every· continuity point of P{"B"~ x} • 
"""' 

By (6) we have 

(34) _!'{B(t) < x} = _!'.{op(t-x) ~ x} 

f or O < x < t • = = 

Finally, by (33) and (34) we can determine the a.symptotic distribution 

of B(t) as t + 00 • 



IX-13 

Let us define 

(35) 

for t > O • Then by (34) we can wrlte that 
= 

(36) 

f or 0 < t < u • = = 

If d ?_ 1 and x > 0 , or d < 1 and - 00 < x < 00 , then there is a 

t ;:: t(l.t) which satisfies (35) and for which O < t(u) .::_ u if u is 

suf;t'ictently large and t(u) + co as u + ai • If we choose t = t(u) in 
1 

~ch a/way and let u + co in (36) then by (33) we obtain that 

(37) l:im P{S(u) < u - t} = P{-8-< x} ,,..,.,,.. ,..,.., 
u + <Xl 

1n ever; continuity point of Pfi9' s_ x} • 
Nv-

If d > 1 , then D1 = 0 , and for x > O we obta:i.n that 

l/d 
t = (~) + o (ul/d) 

xD2 

as u+ai. 

(39) 

f or 

If d = 1 , then D1 = 0 , and f or x > 0 we obtain that 

u > 0 • = 

u 
t = 1 +xD 

2 
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Finally, if d < 1 , then we obtain that 

. u xD2 ( u )d ( d) 
C40) t = l+D - l+D l+D +o 11 · 

1 1 1 

as u+ 00
• 

Thus by (37) it follows that if d > 1 , then 

(41) 
l/d 

lirn P{ B(u) ~ u - (__1:!_.) } = P{ '3-~ x} . .._. - xD2 ,..,._ -u + co 

for xi> 0. If d = 1, then 
! 

: 

(42) 
uxD2 

lim,i{B(u) < l+xD } = P{f-.< x} 
u+co 2 ~ 

f or x > 0 • If d < 1 , then 

(43) 

for all x • In ( 4:1), ( 4 ~, ( 43) the lirnits are valid in the continuity 

points of P{i(< x} • ..,,,... 

Accordingly, we can conclude that 

(44) 
B(t) - M1t 

lirn P{ < x} = R(x) 
t ·+- ;:;-- ~ tm = 

in every continuity point of R(x) where thE constar1ts Ml' M
2

, m and 

the distribution function R(x) are given in Table IV. 



IX-15 

TABIE IV 

d M, M2 m R(x) 
..L 

d > 1 1 D-1/d 1 P{-'Ü'-1/d < x} 2 d p.,- :::::: 

d = 1 0 1 l 
D2t4t 

,~~{ l+D2;;- < x} . 
d < 1 Dl D,., 

P{izY- < x} c:. d l+D1 (l+D,)l+d ,...,._ 

The entries in Table I can be obtained by Tables II, III and IV. This 

canpletes the proef of Theorem 2. 

--------
We note that in proving the 7-th,8-th,9-th and 12-th state­

ments of Theorem 2 we can replace th~}.ssumption (20) by the 
weaker assumption that 

(LJ-5) lim 't n = A 
n~CD n 1 

in probability. Similarly, in proving the 4-th,5-th,6-th and 
10-th statements of Theorem 2 we can replace the assumption (21) 

by the weaker assumption that 
& 

(46) lim --1! B
1 n-+a:> n 

in probability. 

At the end· of this section we shall discuss the problem of 
finding the asymptotic distribution of ~(t) as t~ in the case 

where ~,~1 ),(~2 ,~ 2 ), ••• ,(~n'~n), ••• are mutually independent and 
identically distributed vector random variables for which 

.. - S t, - Ai n ~ - Bl n } 
(47) lim_! 1. n a !: x, n b. ~ y = F(x,y) 

n~ ~n B2n 

in every continuity point of the distribution function F(x;J) 
and a> O, b > o, A1 ~ o, B1> o, A2> O, B2> O. 
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Examples. First, let us suppose that {an} and {Sn} are independent 

sequences of mutually independent and identically distributed positive randan 

2 2 for which E{a } = a, Var{ct } = a and E{B } = S, Var{B } = 0
0 .,._,n ~n a: ,,,.._n """"'-n µ 

variables 

exist and a~ > 0 and cr~ > 0 • Then the limiting distributions ,(20) and 

(21) exist and A1 = a, A2=cra, B1 = B, B2 = cr 8, a ~ b = 1/2 and G(x) = 

H(x) = ~(x) where ~(x) is the normal distribution f'unction. 

In this case by the 11-th statement of Theorem 2 we obtain that 

(48) 

. St 
S(t) -.ä+S 

lim ,l{ . . 3/2 1/21 < x} = 
t+ 00 a t J f ( a+B.-) 3__,./2....J. 

where o and y are independent random variables for which P{ ó < x} = 

P{y~x}= <t>(x). Hence 
,..,.,.. -

(49) 
St 

B(t) - a+B 
l:im P{ -;:========== 

t + ,;;- r 2 2 + 0 2 2)t 
\a as µ (Ja 

(a + 8) 3 

< x} = <I> (x) • 

Second, let us suppose that {an} and {Sn} are independent sequences 

of mutually independent and identically distributed positive random variables 

for which 

(50) 
crl 

lim P{a > x} x = A 
t + .;;;--- n 

where O < cr1 < 1 and A > O , and E{B } = s < 00 and 
rv-..- n 

(51) 
02 

lim P{B > x} x = B 
~ n x + CXl 
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where 1 < cr2 :< 2 and B > 0 • 'Il1En the ljntiting distrlbutions (20) and 
l/cr1 . l/cr2 

(21) exist and A1 = 0, A2 = A , a = 1/ cr1 , B1 = 8 , B2 = B , 

b = l/cr
2 

and G(x) is a stable distribution function of type S(cr1 , 1, 
7TO' 

r(l-cr1) cos J , 0) and H(x) is a stable distribution function of type 

· · TIO" 

S(a2, 1, r(1-a2)cos T , 0) • 

In this case by the 4-th statement of Theorem 2 we obtain that 

(52) 

where y is a randan variable with distribution function P{y .::;_ x} = G(x) • 

By (42.177) and (42.181) we can express (52) as 

(53) l:im P{ AB(t) < x} = G (xr(l-cr
1

)) 
t + .;:"' 8tcrl = crl 

where the Laplace-Stieltjes transfom1 of G (x) 
O'l 

a> 

(54) J e-sxdG (x) = E (-s) 
0 °1 °1 

is given by 

for Re(s) > O and E (z) is the Mittag-Leffler function defined by 
crl 

(55) 

-; 

-.lf 1 1 th h 
2 .~ cr 1 < , en we ave . for· 0 < o 

1 
< 1 . 
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(56) G (x) = ..1. [H(x· L -1, -cos 201f

1
, O)-l+a1 J 

a· a 'a' 
l 1 1 

for x ~ o where R(x) is a stable distribution function of the ,incli.cated 

type. This follows from (42.184) and (42.192). 

We note that if 1nstead of (51) we assume that ~{f3n} is a firiite 

posi ti ve numb er, then ( 52) holds unchangeably. 

Third, let. us suppose that {a } and {S } are independent sequences 
n n 

of mutually independent and identically distributed positive random variables 

for which 

(57) 

and 

( 58) 

l:im P{a > x}x0 = A 
- n x-+<X> 

lim P{S > x}x0 = B ,...,,... n 
x-+<X> 

where A > 0 , B > 0 and 0 < a < 1 • Then the limiting distributions (20) 

and (21) exist, and A1 = 0, A2 = A110 , a = lla: B1 = O, B2 = B110 , b = l/a 

and G(x) and H(x) are stable distribution functions of type S(cr,l,r(l-a) 

' 1TC1 ) 
cos 2' 0 • 

In this case by the 2nd statement of Theorem 2 we obtain that 

(59) 
Bl/cr ö 

P{S(t) < tx} = P{ ï/ J/ 2_ x} 
..,._ """ A 0 y + B- 0 o 

where y and ó are independent random varj_ables having the same stable 

distribution function of type S(cr,l,r(l-cr)cos Tf~ , 0) • From (59) it 
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f ollows that 

(60) 

f or 0 < x < 1 • 
= 

If a random variable ~ has a normal distribution of type N(O, 1) , 

Md c > O ~ then n;:::; c2/~2 ·has a stable distribution of type S(~, 1, c, 0) • 

Thus if, in particular, a = 1/2 in ( 57) ar1d ( 58) , then in ( 60) we can wrl te 

*2 *2 * * that y = n/2y and ó = n/2ó where y and o are independent random 

variables having the same norma.l distribution function ~(x) • 

Thus if (57) and (58) hold with cr = ~ , then by (60) we obtain that 

(61) 

* 
P{S(t) ~ tx} = P{ 1r*1 .s.. !::. /x} = ~ - """" -BVl-X 0 

= ~ are tan A rx-~ ~ are sin 
TI B y r::x. . TI -2 2 

A x + B (1-x) 

f or 0 < x < 1 . == == 

If A = B and a = 1/2 in (57) and (58), then by (61) we obtain that 

(62) P{B(t) < tx} = ~are sin IX 
Nv- TI 

f OI' 0 < X < 1 . 
== == 

By using the theorems of Section 52 we can determine the distr-ibution 

of the sojourn time for such procesBeB {n(u)!' 0 .s.. u < 00 } for which 

Theorem 2 can not be applied directly. We sball illustrate this bv an . ~ 
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example. 

Let U,;(u) , 0 < u < 00 } be a separable Brownian motion process. (See 

Definition 1 in Section 50.) Let 

(63) 

where 

(64) 

(65) 

Then we have 
! 

for 0 < x < 1 • === =::: 

t 
s(t) = f ó(s(u))du 

0 

{: 
f or x > 0 

' 
6 (x) = 

f or x < 0 

2 c P{s(t) < tx} = - éID:! sin vx 
,......... = 1T 

This result is due to P. Lévy [ 33 ] . 

We can prove (65) in the following way: Let s1, s2, ••• , E.; , ••• be a r 

sequence of mutually independent and identically distributed random variables 

for which 

(66) 1 
P{E = l} = P{t: = -1} = - • 

.......... "'r """'- "'r 2 

Let s. = s1+ ~+ ••• + ~ for r = 1,2, ••• and ~ = 0 • Define 

(67) ~(u) 

for u > O and n = 1, 2, • • • • If 

t 
(68) fb(t) = J ó(~_/u))du 

0 

where ö(x) is defined by (64), then by (3'( .166) we have 
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(69) lim P{S (t) < tx} = 2 are sin fi. ,.,,.,,,._ n 1T n + oo 

for t > O and 0 < x < 1 • The same result can be obtained by (62). See 

also Problem 61. 3 • 

(70) 

(71) 

If we define 

* = ç[nu] + (nu - [nuJ);[nu+l] 
~n(u) 

and n = 1,2, ••• and 

* t * 8 (t) = J ö(~n(u))du 
n 0 

where ö(x) is defined by ( 64) , then we can easily conclude from ( 69) that 

(72) * 2 l1m P{S (t) < tx} = - are sin IX ""- n Tf n + oo 

f or t > O and 0 < x < 1 • 

If n -+ 00 , then the finite dimensional distributions of the process 

. * {ç:
11

(u) , 0 ,i u < 00
} converge to the finite climensiona.l distributions of the 

process · {~(u) , 0 < u < <X>} • Thus by Theorem ~5. 7 (Theorem 52.2) and by 

(45.181) we can conclude that (72) implies (65). 

NeJÇt~ .. we sha.11 study the asymptotic behavior of the moments of s(t) 

in the case when { a
11

} and {S } are independent sequences of mutua.lly n 

independent and identica.lly distributed positive random varia.bles. Let 
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(73) 

and 

(74) P{S ~ x} = H(x) ,..,.. n-

and define the following Laplace-Stieltjes transforms 

(75) 

and 

(76) 

(77) 

00 

y(s) = J e-sx dG(x) 
0 

00 

~(s) = J e-sx dH(x) 
0 

Re(s·) > 0 • 
'= 

Let 

r t t 1 
B (t) = E{[S(t)] } = J xr dP{S(t) < x} = rf xr- P{S(t) > x}dx 

r "'"' O tv.. O "' 

for t > 0 and r = 1,2, •••• 

Theorem 3. If fon} and { Sn} are independent sequences of 

mutually independent and iàentically distributed positive random variables 

f or which 

(78) 

and 

( 79) 

-sa n E{e } = y(s) ,..,... 

-ss 
E{e n} = ijl(s) 
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. whéri.éver Re ( s ) > 0 , then 

(80) 

. ·a.nd 

(81) 

00 J st _ 1 1-y(s) . 
0 e- dBl (t) - s [l - 1-y(s)~] 

J00

e-st dB (t) = ~ [l- 1-y(s) + s[l-y(s)]y(s)ijJ'(s) l 
0 2 s2 1-y(s)iµ(s) [l-y(s)ijJ(s)J2 -

for Re(s) > 0 • 

i 
1 

Proof. By (7) and (77) we obtain that 

co "" .r-1.... ( ) ]n 
J e-std.Br(t) = r! + (-l)rr[l-y(s)] l [y(s)]n a LijJ s /s = 
0 sr n=O dsr-l 

(82) 

for Re(s) > 0 and r = 1,2, •••• In the particular cases where r = 1 

and r = 2 we obta.in (80) and (81). 

(83) 

Note. If PB(u) = !{n(u) E B} for u ~ O , then obviously 

t 
B1(t) = f PB(u)du. 

0 

Thus by ( 80) we have 

(84) fooe-st p (t)dt = y(s)[l-ijJ(s)] 
0 B s (1-y(s)ijJ(s)] 
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for Re(s) > 0 • 

There are several examples of processes {n(u) , 0 < u < 00 } for which 

G(x) and PB(t) can easily be deterrllined. For such processes ~(s) can 

be obtained by (84) and H(x) is detenrnned by inversion. 

Fonnula (80) makes it possible to find easily the asymptotic behavior 

of B1(t) as t + 00 if we know the asymptotic behavior of G(x) and H(x) 

as x + 00 • 

(85) 

We shall consider only the cases where either 

a = J xdG(x) 
0 

is a fini.te positi ve number or 

(86) 
01 

lirn [1-G(x)]x = A 
x + 00 

where 0 < o1 < 1 and A is a posi ti ve number, furthermore where ei ther 

(87) 
00 

B = J xdH(x) 
0 

is a finite positive number or 

(88) 
a..., 

lim [1-H(x)]x ~ = B 
x -~ 00 

where O < o2 < 1 and B is a positive nurnber. 

If a < 00
, then y (s) = l...a.s + o(s) as s + +o , and if (86) holds, 
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then 

(89) 

as s + + 0 • Furthermore, if f3 < 00 , then ijJ(s) = 1-Ss + o(s) as s + + O , 

and if (88) holds, then 

(90) 

as s + + 0 • Equations (89) and (90) follow frorn an Abelian theorern. (See 

T'neorem 9 .11 ir1 the Appendix • ) 

If G(x) satisfies either a < 00 or (86) and if H(x) satisfies either 
in . 

S < 00 or (88), then.,.each case we can determine the asymptotic behavior of 

( 80) as s + + 0 , and then by a Tauberian theorem (Theo rem 9. 14 in the 

Appendix) we obtain the following results. If a + s ~oo, then 

(91) 
B

1 
(t) 

lim t · = - 6-a+s • t + cc 

If G(x) satisfies (86) and S < cc , then 

(92) 
B1(t) 

lim t 
t + 00 

If a < 00 and H(x) satisfies (88)~ then 

(93) 
t-B1(t) asinncr2 lim ·-- - • t + 00 t - --~ 
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If G(x) satisfies (86) and H(x) sat:Lsfies (88), then 

(94) 
. B1 (t) Br(l-o

2
) 

t1~00 t l+o1-o2 = Ar(l-o1}r(l+o1-o
2

) 

whenever o1 < o2 , 

(95) i· Bl(t) - B 
llil t - A+B 

t -+ 00 

whenevel· o
1 

= cr
2 

, and 

(96) 

whenever a 
1 

> a 2 • 

2 2 We note that if Var{a. } = o and uar{ 0 } = ~ are r· "t ti--~ n a ;..;..,..._ 1-'n "s .mi .e, 11en we 

have 

(97) 

Finally, we note that in some cases Theorem 2 remains valid 

even if we remove the restriction that the two sequences l o< n} 

and { ~ n 1 are independent. 

In what fellows we suppose th~t (0{1 ,~1 ), (<X2 ,02), • • •, (O(n,(1 n)' 

• • • are mutually independent and identically distributed vector 

random variables for which 
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(98) lim P{ 
y - An n 1 

a 
A

2 
n 

in every continuity point of the distribution function F(x,y), and 

the normalizing constants satisfy the conditions 

A2 > 0, or a ~ 1., A1 = 0, A2 > 0, and ~ ~ b ~ 1, 

b2."l, B1::::o, B270. 

~=a4'1, A1 >0, 

B1> o, B2> o, or 

We shall prove that if (98) is satisfied, then Propositions 

4 .;.. 12 in Theorem:remain valid with the modification that '( and 

~ are :real random variables with joint distribution function 
1 ! {. f-€ i, ~ ~ y} = F(x,y). Furthermore, we shall show that Proposi-

tions l - 3 in Theorem 2 are valid only if F(x,y) =: ,!-lf~ x\~{~~y} 1 

that is,only if f and ~ are independent. 

In finding the asymptotic distribution of r ( t) as t ...;. co 

we shall use formula (6), that is, 

(99) P{~(t) < x} = P{8 (t ) < x} 
~ - !'°""~ p -x -

for O~ x~ t, and an analogous formula 

(100) P{a(t) < x} = P{Yw(t-x) < x} ,.... ,....,_ 

for o~ x~ t, where w ( t) ('t > 0) is a discrete random variable 

tak:ing on positive integers only and satisfying the relation 

(101) {w(t) ~ n} = [8n > tj 

for all t 2'." 0 and n = 0,1,2, ••• • 
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We note that if ,(a1,t31), (a,.,,~2 ), ••• ,(a ,f-3 ), ••• are mutually in-. ,_ . n n 

dependent and identically <listributed vector random variables and if 

(102) 
. -se: -at3 

v(s,q) = E[e n . n} 
,.,_ 

for Re(s) 2: 0 and Re(q) 2: O, then 

(103) 

for Re(s) 2: 0 and Re (q} > o, and 

{104.) 
CID -SO 

qJe-qt~[e p(t)}dt= 

0 

for Re(s) > 0 and Re(q) > o. 

If we define I(A) as the indicator variable of the event A, that 

is, I(A) = 1 whenever A occurs and I(A) = 0 whenever A does not 

occur, then we can also write that 

-sy oo -sy 
(105) .!'.fe w(t)} = 1 - [1-t(s,O)] n~OJ[e n I(on < t)J 

for Re(s) 2: O" 

If we know the asymptotic distribution of fw(t) as t~ oo, 

or the asymptotic distribution of b §> ( t) as t -+ oo , then by 

(99) and (100) we can determine the asymptotic distribution of r(t) 

as t ~ oo. 

In what follows if we sa:y tha.t a family of distribution functions 

converges to a limiting distribution function, then by this we mean 

that the distribution functions converge in every continuity point of 

the limiting distribution function. 
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în. finding (44) we have already demonstratea. that if 
. êp(t) - D1 t 

( l 06 ) · b.m ! [ d ~ x} == P {'l'.J' ~ x} , 
t-+c>o D t ,.,,.,.. 

2 
where either O~ d<:l, D1> O, D2~ O, or d:> 1,D1 = O,D2> O, then 

13(t) - ~t 

(lrv7) lim P[ ~ x] = R(x) , 
v f t-+oo"'" ~ tm 

and the constants M1 , M2 , m and the distribution functio.n R(x) 

a.re given in .. Table IV. 

In exactly the same way we can demonstrate that if 

V - D t 
lim P[ m(t) d 

1 < x} = P{-8'::; x} , 
t-too""' D

2 
t "-~ 

(108) 

then 
a(t) - Ml t 

lim P [~----_ ::; . x} = R(x) , 
t-+oo ""- -~ tm (109) 

and thé constants M1 , ~, m and R(x) hmre the same meaning as in (10'"/: 

The following theorem contains the case a 2: l; t ~ b < 1 as a 

particular case. . 

prEOREM4. If a1 ,a2 , ••• ,an,." are mutually in~_gml~Llnd.. 

identically gistributed random variables for which 

{ yn < } = ,!l Y::; x) (iîo) lim P -- x 
n-+oo rw- ~na 

where a > 1 and A
2 

> O, and if 

8 
1· n Bl (lll) 1m- = 
~n 

PROOF. By (10l)and (111;) it follows that 

1 (i13) 1 . m't' 1 
1m~ = -

t4oo t Bl 

in probability. Thus( 112) immediately fellows from Theo:r:.~m 45.4. 
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In this case the asymptotic distribution of p(t) can be ob1ïa.ined by 

(iOJ)where now d = a, n1 = O, 

The following theorem contains the case b ~ 1, t S a < 1 as a 

particular case. 

THEOREM5. If 131,t3
2

,.u,(3n,eo• are mutually independent and 

ident:ically distributed random variables for which 

(114) 

where 

(lJ.5) 

Cll?) 

!!:!{B> 5 x} = P{ö :Ç xj 
" ..... 

b > l ..arui B2 > O, .filN .il. 

y 
lim .....!!. = A_ 
n4oo n --i 

PROOF· By C5) and (lJ..5) it follows that 

1 . .2fil. 
l.Dl. t 

t-+oo 
= ..!.. 

Ai 
in probability. Thus (ll6) immediately follows :by-,Theore.m 45.4. 

In this case the asymptotic distribution of f3(t) is g:l.ven by 

-b r Q.. 
(lO?)where now d = b, n1 = O, n2 = B2~ and ,!tv S xj = ,!lB _:5 x}. 

THEOREM ·5 •. If (an,f3n) (n=l,2,".,.) 2-re m.utually independent 

and _identically d~~triputed yector variables _fQ.r_ whicb C<)8) holds with 

~· S a < 1 ..aml i S b < 1, .the.n 
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exists where d = max(a,b), 

,!l~B25 ~ xj for b>a 

·c119) Q(x) = ,!{A1B2o - B1~Y ~ xJ for b = a 

,_:[-B1A2y ~ xJ f or b<a 

and Ply ;5 x, 8 ~ yj = F(x,y). ,..,,,.. 

PROOF. By (98) it follows that 

(120) 
{

A 8 - B y } 
lim P 1 n 1 n ~ x 
n4<x>'..,._ d n 

= Q(x) 

where d = max(a,b) and Q(x) is given by (119). 

By (5) and (9$) it follows that 

(121) 
{

p(t)-..t. } 
. Al -

limP -(l+)- ~ x =P[-y~xJ, 
t-+oo ,,,._ ~Al a t a AA, 

and 

(122) 

in probability. 

lim ..tl!l = 1-
t-+oo t Al 

45.4 
If we apply ~ren:i to the random variables ... 

, 

' 
' 

C (n) =~an - B1yn (n=0,1,2,.".), and_. [p(t), 0 ~ t < c:oJ, then we 

obtain that 

{

A 5 - B y 
lim p 1 p(t) . 1 p(t) 

t-+<x>""" (t/A } d 
1 

< x} = Q(x). 

" 
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lt remains to show that (123) implies (lJB). This follows from the j_n-

equalities 

(124) 

for t ~ 0 and from the fact that 

a 
lim p(t)+l = 0 
t4co ta 

in probability. The relation (125) follows from the ine9uality 

(126) P {Ctp(t)+l > €} ~ Ptl p (t) - At 1 > K ta} + 2Kt~ [a
1 

> t 8 e: J 
,,,._ ta. ""' 1 ""' 

which holds for € > 0 and K > O. Since !_ ta.
1 
~ xJ belongs to the 

domain of norrual attraction of a stable distribution function with char-

acteristic exponent l/a, it follows that 

(J.'Z/) 

where c is a nonnegative constant. (c = 0 if a = ~.) This implies 

that the second term on the right-hand side of (126) tends to 0 as 

t -+ m. If t -+ ~ and K -+ ~, then by (121) the first term on the right-

hand side of (126) tends to O. Since e: > 0 is arbitrary, this implies 

(]25). This completes the proof of the theorem. 

Now the asymptotic distribution of t:l(t) :i.s given by(l07> where 

d = max(a, b), and P["9'< x} = Q(x) 
,.,,,, - is given by (119) • 

" 
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THEOREM 7. Let US suppose that 

( n = 1, 2, ~ o • ) ~e mutually inde_p~nden-lï_,_ and identicall;y 

distributed vector random variables for which (98) Folds 

IDJ1 a ~ 1 and b :::--- 1. ~ 

00 00 

(128) ~(s,q) = J J e-sx-qydx dy F(x,y) 

0 0 

for Re(s) ~ 0 and Re{q) ~ o. Then 

(J:29) 

exists and 

(130) 

lim p ru( t) 2 
{ 

y Ba/b 

t-tco M.- A ta/b 
2 

< x} = Q(x) 

00 00 

J x 8
dQ(x) = 1 

- J x 8 dV(x) 

0 f(l-s) f(l + ~8) 
0 

for sufficiently small 

for Re{s) > o. 

1 log q,(-,O) 
V(s) = 1 - s 

1 
log ~(-,1) s 

PROOF. In proving tM.s theorem we may asmime without loss of 

generality that 

(132) 

~ = B2 = 1. Let 

. -sa -q.13 
t(s,q) = E[e n n} ,,... 

for Re(s) ~ O and Re(q) ~ o. Then ·we. havè 

" 
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(133) lim[lfJ(-~a' 9...1:)-)Jn = tt>(s, q) 
n -+ 00 n n 

and 

(134) lLïl n[lji( 8a' 9t) -1] = log~(s, q) 
n -+ 00 n n 

for Re(s) > 0 and Re(q) _:_ 0 . We note tl1at necessarily 

(135) 

and 

(136) 
1 

where Ai > O 

1 

(13?) 

l/a 
log~(s, 0) = -As 

log~(O, q) = -Bql/b 

and B > 0 ani 

for Re(s) > O and Re(q) _:_ O . 

For simplicity let us write r,;(t) = YCJ.l(t;) for t _:_ O • By (105) we 

have 

(138) E{e-sr,;(t)} = 1 - [1-lji(s, O)]M(t, s) 
IV'-

for Re(s) > 0 where 

(139) 
oo -sy 

M(t, s) = I E{e n I(ó ~ t)} 
M.. n -

n=O 

and I(on < t) is the imicator variable of the event {on< t} , that is, 

I( ón < t) = 1. if' { ón < t} occurs and 0 otherwise. If we express the sum 

in the a'bove fomJUla in the form of an integr'al, then we ca.'1 wr•ite tbat 

... 
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(140) 

-a 
b -a f00 

:--st Yrut] b 
M(t , st ) = t 

0 
!'.{e - I(ê[ut] < t )}du 

for Re(s) ~- 0 a11d t > 0 • If Re(s) > O , then 

(141) 
-a/b b -a 

lim M(t,st )= 1 . M(t,st )= () 
l/b J..ITl t µ s 

t-+ 00 t t-+ 00 

exists and 

(142) 
a 

00 -su y 
µ(s) = J E{e I(ê < u-b)}du 

o~ 

where P{y ..::.. x, ê < y} = F(x, y) • 
/\,'-'! -

Fir~t, let s = 0 . Since 

(143) 

00 

f e-qtd.M(t 0) = _l__ 6 ' 1-~(0, q) 

for Re(q) > O , and since 

(144) lim [1-~(0, q)Jq-l/b = B , 
q-++O 

it fellows from a Ta.uberian theorem (Theorem 9.13 in the Appendix) that 

lim M(t, 0) = _l __ . 
l/b f 1 t -+ oo t Bf\l+ b-) 

(145) 

This proves ( 141 }'or s = 0 . For 

(146) 

which follows from E{e-qö} = 4>(0, q)·= exp{-Eql/b} • 
IV-

Accordingly, we h3.ve· 
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(14?) 
00 h 00 b 

l:im f p { ó [ tJ < t }du :;:; 6r r { ó < u ':"' .}du ' 
t 0

...,., u (VV + 00 . 

For u > O an:l Re (_s) ~ O the integra.rd j.n 0.40)18,s ab:iolute ya,lue, < 1 B,.c"ld 

it tems to the integrand in ( 142)as t + oo • On the otfJ.er hand f o:r;- a~r 

K > 0 and Re(s) ~ 0 we have 

-a 
oo -st Y[ut.., b oo b oo ... (r. 

( 148)1 f E{e JI(ó[ t] ~ t ) }du 1 ~f P{ ó[ t] < t }du + J P{ o ~ u }du 
K""' u K~ 11 K""' 

as t + 00 and the extreiîle right member is arbj_trarily close to 0 if' K 1:.s. 
' 

su.fficiently large. Thus by the dominated convergence theorem we can concluàe 
1 

that in(l40)the integral tends to µ (s) for Re(s t _:>_ 0 as t + '° , Tll.1:}3 

proves (141). 

fünce 

(149) lim [l - w(s, O)]s-l/a = A , 
s·++O. 

by (14J)we obtain that 

(150) 

for Re(s) > 0 • Here lµ(s) 1 < µ(0) for Re(s) ~" 0 an:l if s + + O , then 

the right-ham side of the above equation tenis to 1 . Thus by the continuity 

theorem of La.place-Stieltjes transforms we can conclude that the limitirig 

distr.ibution 

(151) 

exists and 

(152) 

a:> 

f e-sx dQ(x) = 1 - Asl/a µ(s) 
0 
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for Re.(s) > 0 • Hence Q(x) can be obtained by lnversion. 

We can also dete:i:.~nine Q(x) in another way. By C103.) we have 

(153) 

for Re(s) ~ 0 an:i Re(q) > 0 . Now let v be a positive real random variable 

which is in:lependent of the process { d t), 0 ~ t < 00 } and for which P{ v ~. x} = 

-x 1 - e if x ..::._ 0 • Then we can write that 

(154) E{e-sç(v/q)} = l _ l - w(s, O) 
"'- 1 - w(s, q) 

for Re (s) > 0 and q > 0 . Hence it fellows that 

a/b . a/b l/b 
ljm E{e-sq ç(v/q)} = l - l:im [l - iµ(sg , O)]q- = 

q -r ON" q -r 0 [l - ip(sqa/b, q)]q-1/b 

(155) 

for Re(s) ~ 0 . 

If i:;, vl' v
2 

are ITR.ltually in:iepen:ient random variables f'or which 

!{r,; < x} = Q(x) and !_{v
1 
~ x} = --~{v2 :._ x} = 1 - e-x for x > 0 , then by 

the last equation we can write that 

(156) 

f or x > O . Hence it follows that 

(157) 

<X) 

E{çs}E{v-
1

s}E{va
2
s/b} = f xsdV(x) 

,....,.._ ,r._, ,...,._ 0 

f or sufficiently small IRe(s) 1 • This proves (130). 

" 
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The distribution function Q(x) can be obtained by Mellin's irrversion 

fonrula. 

In the particular case when a = b we h.ave 

(158) 

for sufficiently small IRe(s) 1 , and hence it follows by inversion that 

(159) 
1TÎ -Tii dQ(x) _ V(xe ·) - V(xe ) 

dx - 2rr.ix 

for x > O where the definition of V(x) is exten:ied by analytical continu.at ion 

to the complex plane cut along the negative real axis from C to 00 • 

In the particular case when F(x, y) = P{y ~ x, ê ~ y} = P{y < x}P{o -~ y} , 
.v-

that is, when y and cS are indepement random variables, we have 

(160) Q(x) = P{y cS-a/b < x} . 
N-

Conversely, we can prmre that if Q (x) is given by the above fo:rmula _, then 

y an:i ê are necessarily indeper:dent random variables. 

To prove this last statement let us suppose that the vector variable 

( y, o) and \)l and v
2 

are nrutually independent. Let J{y ~- x, o _::_ y} = 

F(x, y) with La.place-Stieltjes transform <P(s, q), and _,!{v
1 

< x} = !{v
2 

< x} = 

-x 1 - e f or x > 0 . Then we have 

. (161) 
-1 -1 1 1 1) P{ y v ~ x, ó v 2.. v, ::= <P (-, -,.,..., 1 - 2 ·- ~ x y 

for x > O and y > 0 . Hence we can deduce that 

• 
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(162) 
-a/b -1 a/b _ a:x.V' (x) !{y ö vl v2 2- x} ·- [l-V(x) J 

f or x > O • 

IJ.rus (160) holds if' and only if 

(163) 

f or x > 0 . 

(164) 

axV' (x) = V(x) 
1 - V(x) 

The general solution of this differential equation is 

Cxl/a 
V(x) :: /r 

1 + Cx1 
ä. 

for x > O where C is a positive constant. Hence 

(165) 
-A(sl/a.fC l/b\ 

~(s, q) = e q / 

for Re(s) > 0 and Re(q) > 0 . Finally, it follows that C == B/A and 

that y and o are ind.ependerit. 

In the above case the asym:ptotic distribution of ~ ( t) can 

be obtained by (109) where now d = a/b, D1: o, D2 =A2B2a/b 
t 

and P {~~ x 1 = Q(x). 

Thus it fellows that 

(166) 
e(t) -M:it 

lim"~{ m .'.:. x} = R(x) 
t -+ 00 Ml 

where the constants ~, M2, m an:l the distribution function R(x) are giveri -

1n the following ta.ble. In this table ~ is a ra.mom variable with distribütion 

function P{-5' -~ x} = Q(x) gi ven ·by ( 130) • 
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(a, b) 

a > b 0 

a=b 1 

a < b 1 

m 

B A-b/a b/a 
2 2 

1 1 

A B-a/b a/b 
2 2 

R(x) 

P{-~ < x} 

We note that in a similar way we can. prove that 

(167) { 

0 Ab/a · } 
lim P p (tb/ ,:5 x = Q*(x) 
t-+oo...- B t a 

2 

exists and 

(i68) 
m m 

J x 5
dQ*(x) = 1 

bs J x 5
dV*(x) 

0 rc1-s)r(1 + -;-) 0 

for suffiëiently small !Re(s)j where 

(169) V*(s) = log ~(1,0) 

log ~(1,l) 
.s 

for Re(s) > O. The asymptotic distribution of f3(t) is given by (107) 

-b/a ·_o.. whe:re now d = b/a, n1 = o, n2 = B2~ and !fv::;xj = Q*(x). 

We observe that 

{l?O) -a/b V*(x) = 1 - V(x )_ 
--------- ---

for x> o. 
60. Sojourn Time Problerns for Markov Processes. Let {ç;(u) , u E 'r} 

be a stochastic process with state space X vlhere X is a metrie space 

and with parameter set T where T is a linear set. We say that U; (u) , 

u ET} is a Markov process if for any parameter values t
1 

< t
2 

< ••• < tn 

(n = 2,3, ••• ) and for any Borel subset S of X we have 
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(1) P{s(t ) E Sls<t1), ••• ,sCt 1)} ~ P{s(t ) E slsCtn_1)} 
~ n ~ ~ n 

1.A.i.th probability 1 • The probabilities 

(2) P{s(t) E S!ç:(u) = x} , 
/v-

defined for the parameter values u < t , for x E X and for Borel subsets 

S of X , are called transition probabilites. If {2) depends only on x, S 

and t-u , then·we say that the Markov process is homogeneous. 

In what follows we suppose that ei.ther 'I' = { 0,1,2, ••• } or 'l' = [O, oo) 

and that {ç;(u) , u E T} is a hornogeneous Markov process with state space X 

where X is a metric space. Let ó(x) be a nonnegative, measurable f\mction 

of x defined on the space X • 

(3) 

If rr = { 0, 1, 2, ••• } , then let 

n 
µn = l ó(t,;(r)) 

r=l 

for n::.: 1,2, ••• , and if T = [O, 00 ) , then let 

(4) 
t 

µ(t) = J ó(t,;(u))du 
0 

for t > O provided that the integral exists. 

We are interested in finding the asymptotic distr·i.bution of 

n -+ 00 , and the asyrnptotic distribution of µ(t) as t -+ 00 • 

µ as n 
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In the particular case where o (x) i.s the~ indicator function of a 

Borel subset S of X , that is, 

(5) ö(x) = [: 
if x e: s ' 

if x i s ' 

then µn and µ(t) can be interpreted as sojourn times spent in the inte1'Val 

[O, n] or in the interval [O, t] in the state S • 

In wriat follows we shall rnention a few results for Markov processes 

{ç:(u) , u e: T} • 

First, let us suppose that t;1 , t; 2, ••• , i;;r'... are rmtually independent 

and identically distributed random variables for which E{t; } = 0 and 
""' r 

~{t;r} = 1 • Let t;(O) = 0 and t;(r) = t;1+ t; 2+ •.• + ~r for r = 1,2, •••• 

Then {t;(r) , r = 0,1,2, ••• }. is a àiscrete parameter Markov process. Let us 

suppose that 

(6) 

and define 

we have 

(7) 

µ by (3) • 
n 

f or 0 < x < 1 . == .= 

if x > 0 ' 

if x < 0 = 

,, 
Then by a result of P. Erdos and M. Kac [ 17 ] 

2 lim P{µ < nx} = - are sin/X 
~ n = 1T n ~· co 

Next, let us suppose that t;1 , c; 2, ••• , t;r' ••• are mutually independent 
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and identically distributed random variab1es ha ving a stable distribution 

of type S(a,0,1,0) where 0 < Ol < 2 , that is, 

-sr 1 1a 
(8) E{e ?r} = e-1 3

1 

"""'"' 

for Re(s) = 0 • For a > 0 let u.s define ~n(a) as the number of subscripts 

r = 1,2, ••• ,n for wb.ich li;;1+ i;; 2+ ••• + srl < a • 

If a = 1 , then we have 

(9) 
µ (a) 

l:lm P{ n < 2ax } = 1 _ e-x 
""' log n = 1T n + oo 

f or x ~ 0 , and if 1 < a .::_ 2 , then 

(10) 
µ (a) 

lim P{-n ___ -!S 2ax } -· 
M., 1- 1T 

n + oo 1- - 0( sin -n a a 

G l (x) 
1- -a 

where G (x) is defined by (59.54) and (59.55) for 0 < a < 1 • If 0 < a < l , 
a 

then P{lim µ (a) < 00 } = 1 • These results were found j.n 1951 by K. L._ Chur1_g 
""'" n n + oo 

and M. Kac [ 6 ] , [ ? ] . 

In 1954 G. Kaj._lianpur and H. Robbins [ 25 ] studied the asymptotic 

distribution of (3) in the case wher~ ç;(r) = i;1+ ••• +i;r (r = 1,2, ••• ) and 

i;;1 , i;2, ••• , ç;r'... are mutually :lndependent and identically distributed random 

variablès belonglng to the dornain of attraction of a syumetric stable distribution 

function, and furthennore ó(x) is Riemann :lntegrable on sorne finite interval 

(a, b) and 0 eJ.sewhere. 
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In 1957 D. A. Darlin__g_ and M. Kac [ 9 ] found the a.symptotic distribution 

of µn as n -+ co for a general class of discrete parameter Markov processes 

{ç;(r) , ~ = 0,1,2, ••• } and the a.symptotic distribution of µ(t) as t-+ co 

for a general class of continuous parameter Markov processes {ç;(t) , 

0 < t < co} • They proved the following results. 

Theorem 1. Let {ç;(r) , r = 0,1,2, ••• } be a homogeneous discrete para-

meter Markov process. Let us suppose that there exists a function g( z) 

and a. positive constant C such that 

(1.1) 

and 

(12) 

lim g(z) = co 

z -+ 1 

co 

lim g~z) l E{<S(t;(n))!ç;(O) = 
z -+ 1 n=O rvv 

n x}z = C 

where the convergence is uniform in x on the set {x : o(x) > O} • 

In order that for sorne norrnali~'-.:f;1; sequence rnn (n = 1,2, .• ") the 

randan variables 

(13) 

have a nondegenerate limiting distribution it is necessary and suff::i.cient 

t:ha.t 

( 14) g(z) = 1 L c-L) 
(1-z)a. 1-z 

for scme a. (0 .2. a. < 1) and for sorne slowly varying function L(x) • 

· ·If ·(14) is satisfied, then 



µ 

(15) , lim !_ { n J ,;, x} = Gc/x) 
n -+ OQ Cg(l- -..:.) 

n 

where G (x) is defined by (59.54) and (59.55). 
a 

'Iheorem 2. Let {ç: ( u) , 0 ~ u < ""} be a homogeneous continuous para-

meter Markov process. Let us suppose that there exists a function h(s) and 

a positive consta~t C such that 

(16) 

and 

(17) 

lim h(s) = OQ 
s -+ 0 

cc 

lim 
s -+ 0 

hts) b e-st ~{o(ç:(t)) jç:(O) = x} dt = c 

where the convergence is unifonn in x on the set {x : 0(x) > O} • 

In order that for sane nonnalizipg function m(t) (0 ;;,, t < OQ) the 

random variables 

(18) 

have a nondegenerate limiting distribution it is necessary and sufficient 

( 19) h(s) = L(l/s) 
a s 

for sorne a (0 ~ a < 1) and for some slowly varying function L(x) • 

· If (19) is satisfied, then 
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(20) lim P{ _µ_(t) < x} = G (x) 
- 1 = a 

t + 00 Ch(t) 

where Ga.(x) is defined by (59.54) and (59.55). 

In Theorem 1 and in Theorem 2 the function L(x) defined for 0 < x < 00 

is slow1y varying if 

(21) lim t~~))= 1 
x -+ 00 

for any, w > 0 ~ 

By using Karamata' s Tauberian theorern (Theorem 9 .11+ 
i 
' 

· D~ A. Darling and M. Kac [ 9 ] demonstrated that 
1 ---
1 

(22) 
µ r 

lim E{( n l ) } = 
n -+ .;;:-- C g(l- -) n 

for r ~ 0,1,2, •••• Since 

(23) 
r! 

r(ra.+l) 

r! 
r(ra.+IT 

in tl1e Append.::1-x) 

for r = 0,1,2, ••• and since G (x) is uniquely determ:ined by its moments) a. 
a 

by 'lheorem 41.11 it follows that (15) is true. In,..similar wa..v (20) follows 

fran the relations 

(24) lim E{ (µ(t) {} = r! 
1 r (ra.+l) t -+ ~ c h(-) 
t 

for r = 0,1,2, •.•• 

We mention that S. Karlin and J. McGregor [ 26 ] determined the 
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asymptotic distribution of µ(t) for some birth and death processes by us:Lng 

Theorem 2. 

Finally we mention a. related result which was fou.nd by E. B. Dynkin 

[ 56 ] . Let us suppose that { ç; ( u) , 0 ~ u < 00 } is a sepa.rable stable process 

of type S(a,l,c,O) where 0 < a < 1 and c > 1 • Then 

(25) 

for Re(s) > O and u > O 

i 
Lef Ra.(x) be the stable distribution i'tlnction of type S(a,1,1,0) and 

let 

(26) Sin7ra 

7T 

a R ((a-u)x-l/a) J _a ______ du 

0 ua(l+u) 

for x > 0 , and a > O and 

(27) 
. a 

V (0) = SID7ra f 
a 7T 0 

du 

If a(a) denotes the first passage time of the process {ç;(u) , 

Ü < U < 00 } through a where a > O , and if O < a < b , then we have 

(28) P{6(b) - a(a) > x} = v ( ex ) 
""' (b-a)/a ~'l )aa !\ -a 

f or x > O = and 

(29) 



61. Problems 

61.l. Find the probability P{S(t) ~~ x} def'ined by (59.9) in the 

case where 
-µx H(x) = 1-e for x ~ 0 . (See R. P. Dobrushin [ 12 p. 102].) 

61.2. Let us suppose that a particle performs a random walk on the 

x - axis. It starts at x = O an:1 at times u = 1,2, •.. it moves either a 

unit distance to the right with probability 1/2 or a unit distance to the left 

with probability 1/2 . Let us suppose that the successive displacements are 

mutually independent random varj_ables. Denote by ç;(u) the position of the 

particle at time u (0 < u < 00 ) • We say that at t~ime u the process is 
1 

in stat,~ A if ç; (u) 2_ O and in state B if ç; (u) ~ 1 • Denote by S (t) 
i 

the total time spent in state B in the interval (O, t) . Find the asyrnptotic 

distribution of 8(t) as t + 00 • 

/ # 

(See ~-Le~ [ 33 ] , r. Er-dos and M. Y.ac 

[ 17 ] , and E. S. Ar1dersen [ 1 ] . ) 

61.3. Let {ç;(u) , 0 .:::_ u < 00 } be a separable stable process of type 

S(a,0,1,0) where 0 < a 2_ 2 . Let o(x) = 1 for x > 0 and o(x) = 0 for 

x < 0 • Detennine the distribution f1rriction of the random vari.able 

t 
8 ( t ) = J o ( ç; ( u) ) du 

0 

for t > 0 . (See M~ Kac [ 22 ] . ) 

61. 4. Let { i; ( u) , 0 -~ u < 00
} be the ra..."1.dan walk process defined in 

__ Problern 61.2. Let m be a given positive integer. If ç;(u) = 1,2, ... , m, 

then we say that the process is in state B at time u , otherwise, the 

process is in state A at time u . Denote by 8 (t) the total time spent. 
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in state B in the interval (0, t) . Find the asymptotic distribution of 
r, a-1!:d [! L. Ghru1g 

f3(t) as t + 00
• (See R. L~~brushin L 12 ],/\and M. Kac [ 6 ], [ 7 ].) 

61.5. Let us suppose that in Tneorem 59 .. 2 (c't
1
+ a.

2
+ ... + a.n)/n ~ A as 

n + co where A ·is a positive constant and 81' s2, ••• , sn' ... aré mutually 

independent and identically distributed positive random variables for whl.ch 

xa.P{f3 > x} = h(x) where 0 < a. < 1 and 
NV r. 

lim h(wx)/h(x) = 1 f or any w > 0 • 
x + 00 

Find the asymptotic distribution of S(t) as t -)- co • 

61.6. Let US suppose that in Theorem 59.2 (f31+ S2+ ... + f3n)/n =:;'> B 

as n ->- 00 where B is a positive constant and a.1 , a 2, ... , an' ... are 

:mutually independent and identically distributed positive random variables 

for which xaP{a. > x} = h(x) where 0 < a. < 1 and lim h(wx)/h(x) = 1 
tv- n x+co 

for any w > 0 . Find the asymptotic distribution of S(t) as t + co • 

I.iet us suppose that (59.98) holds with a=b=l/2, 

B'"'~ 0 and that F(x,y) is a 
c. 

two-dimensional normal distribution function of type 

1 r 

r 1 ) 
where -1<.r ~l. Find the asymptotic distribution of 0Ct) 

as t ~oo. 

61.8. Let us suppose that in Theorem 59.7 <j>Cs,q) is 
o( o< 

given either by (i) 
cl.. 

~ (s ,q) = e-s -q or by (ii) ~ (s,q) =· 

e-(s+q) where o<o<<1. Find the asymptotic distribution 

of ~ ( t) as t .-,. oo • 
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