
VIII-1 CHAPrER VIII 

THE DISTfilBlJrION OF THE SUPHEMUM 

FOR STOCHASTIC PROCESSES 

54. · · Cornnound Recurrent Processes. We have already defineà ~he not ion 

of a canpound recurrent process in Section 49 (Definition 2). In this 

section we shall use a slightly more general definition. 

Let us suppose that t - '[ n n-1 (n = 1,2, ••• , 'o = O) is a sequence of 

mutually independent and identically distributed positive random variables 

with distribution function 

(1) P{T - '[ 1 :5.. x} = F(x) 
tv'- n n- -

and Xn (n = 1,2, ••• ) is a sequence of mutually independent and identical­

ly di.stributed real random va.riables with distribution f'unction 

(2) 

Furiihermore, let us assurne that the two sequences (Tn} and {x
11

} are 

also independent. 

Let us define 

(3) ç; (u) = l 
Ü<T <U 

rF 

x - cu n 

for u > 0 where c is a real constant. = 

We say that { ç; ( u) 0 < u < ex>} 
' = 

is a (general) cornpoillld recurrent 

process. • If c = 0 , then this definition reduces to Defin"i.tion 2 in 

Section 49. 



VIII-2 

Let us introduce the f ollowing notation 

(4) 

for Re(s) > O and 

(5) 

for ReCs) = 0 • 

00 

~(s) = J e-sxdE(x) 
0 

00 

y (s) = J e-sxdH(x) 

Denote by Fn(x) (n = 1,2, ••• ) the n-th i.terated convolution of F(x) 
i 

with i~self and by Hn(x) (n = 1,2, ••• ) the n-th iterated convolution of 

H(x) with itself. Let F0(x) = H0(x) = 1 for x ~ o and F0(x) ~ H0(x) = o 

f or x < 0 • 

Our aim is to give rnathematical methods for finding the distribut1on 

function of the random variable" 

(6) n(t) = sup s(u) 
O<u<t == 

for t > 0 where · { ~ ( u) , 0 < u < 00 } is a sep'.3rable compound recm"Tent 

process defined by (3) • 

To solve this problei11 we shall deduce first some basic relations for 

the process {~(u) ' 0 ~ u < 00
} • 

In what fellows we assume that T (n = 0,1~2, ••• ) n and xn (n = 1,2, ••• ) 
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are numerical (non-randan) qua~tities and that 'o = 0 < • 1 < • 2 < ••• < •n < ••• 

and •n + oo as n + 00 • Let us define r,(u) for u > 0 by (3) where c 

is a real constant and let us define n(t) for t > O by (6) • Further-

more, let us- introduce the following notation 

(?) ó(q,s,v,t) = e-qt-s[n(t)-F,(t)]-vr,(t) 

for t > 0 where q, s, v are complex or real nurnbers. , 

We note triat 

(8) F,(t) = F,(T + 0) - C(t-T ) n n 

for •n < t < •n+l (n = 0,1,2, ••• ) and 

(9) 

for 

that 

( 10) 

n(t) = max(n(• + 0) , F,(• + O) - c(t-T )) n n n 

T < t < T +J n n . (n = 0,1,2, ••• ) • By (8) and (9) we can also write 

+ 
n(t)-F,(t) = [n(• + 0) - ~(T + 0) + c(t-• )] n n n 

+ for •n < t < •n+l (n = 0,1,2, ••• ) • Here [x] = max(O, x) • 

Now we shall prove two auxiliary theorems which express certain relations 

between the functions F,(t) , n(t) (0 < t < 00 ) , and the Sequences T , n 

F,(T + 0) , n(• + 0) (n = 0,1,2, ••• ) • 
n -- n -



• 

VIII-4 

Lemma. l. If {t;(u) , 0:;, u <co} is a deterministic process as defined 

above., and if c .~ 0 , Re(q) > 0 , He(s) ~ Re(v) ~ 0 , then we have 

(11) 
00 00 -(q+cs-cv) Crn+l-'n\ 

(q+cs-cv)f ó(q,s,v,t)dt = 2 ó(q,s,v,T +0)[1-e J • 

0 n=O n 

· Próof. If c > O , and 'n < t < 'n+l , then n(t) = n(Tn+o) , t;(t) = 

~(< +O) - c(t-• ) and n n 

-( q+cs-cv) ( t-T ) 
(12) ó(q,s,v,t) = ó(q,s,v,•n+O)e n • 

If we :integrate (12) from T to T +l and add for n = 0,1,2, ••• , then n n 

we obta:in (11) which was to be proved. 

We note that if c > 0 , then we have the following relations: 

(13) l;(î + Q) + X ~1 - C(T +l - î ) n n.~ n n 

and 

( 14) n.(în+l + 0) = max(n('rn + 0) , ~(tn+l + 0)) 

for n = 0,1,2, •••• By (13) and (14) we obta:in that 

for n = 0,1,2, ••• and evidently n(•0+ O) = t;(T0+ 0) = O • 

· 'LèmITJa ~. If { ~ ( u) , 0 < u < 00 } is a deterministic process as 

defined above, and if c ~ O , Re(q) > O , Re(s) > Re(v) > 0 , then we 

have 
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(16) 

C'O 

(q+cs-cv)J o(q,s,v,t)àt 
0 

00 00 

= \ ê( +o) + ~ \' ê( g_ +o) l q,s,v,Tn q-cv l q,v- c'V'Tn 
n=O n=O 

00 00 

- l o(q,s,V,Tn-Ü) - q~~V l ê(q,V- % ,V,Tn-Ü) • 
~l ~1 

· Proof. The proof of (16) is based on the following identity: If a < S, 

a and b are real nunbers, s and w ":I 0 are complex or real numbers, then 

s + + + 
(w+bs) J. e-wt-s[a+bt] dt = {e-wa-s[a+ba] _e-wS-s[a+bB] } 

(17) a 

+ + + bs {e-wa.+w[a+ba] /b _ e-wS+w[a+bB] /b } 
w & 

If b = 0 , then the second expression on the right-hand side of (17) is O. 

If Tn < t < -rn+l , then ç;(t) and 11(t) - t;(t) are g1.ven by (8) and 

(10) respectively. If we integrate (7) from Tn to Tn+l , then by (17) we 

obtain that 

Tn+l 
(q+cs-cv) f ê(q,s,v,t)dt = [o(q,s,v,-rn+o)-ó(q,s,v,Tn+l-0)] 

(18) 
•n 

• 

for n = 0,1,2, ••• and cv~ q • If c = 0 , then the second expression on 

the right-hand side of (18) is 0 • If we add (18) for n = 0,1,2, ••• , then 

we obtain (16) which was to be proved. 

We note that if c .::_ O , then we have the follow:Lng relations: 



VIII-6 

(19) 

and 

( 20) 

for n = 1,2, •••• By (19) and (20) we obtain that 

(21) 
. . + 

n(T + 0)-~(T + 0) = [n(T - 0)-~(T - 0)-x J n n n n n 

for n = 1,2, ••• , 
1 

+hennore, if c < 0 we have 

(22) 

and 

( 23) 

for n = 1,2, •••• By (22) and (23) we obtain that 

• 
(24) 

If we suppose that {Tn} and {~} are random variables and 

P{ l:im T = "'} = 1 , then the identitj_es (11) and (16) hold for almost all 
IV'~ n -+ "' n 

realizations of the process {~(u) , 0 < u < 00 } • These identities make 

it possible to study the time dependent behavior of the process {~(u) , 
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0 ..5.. u < co} if we know the behavior of the bequence {~(• + 0) , n = 0,1,2, ••• } • n-

Now let us asswne that { ~ ( u) , 0 < u < 00 } is a separab1e compound 

recurrent process defined by (3). In this case n(t) , defined by (6) for 

t > 0 , is a random variable and the distribution function of n(t) is 
= 

uniquely detennined by the Laplace-Stieltjes transfo:rm E{e-sn(t)} for --
Re(s) ~ 0 • This transform can be determined by the next two theorems. 

In what follows we shall make use of the transformation T which we 

:tntroduced in Section 3. 

1 1 Section 3+we assumed that q,(s) = !'.{z;;e-sn} belongs to ~ and defined 

T{q,(s)} = E{z;;e-sn } for Re(s) ~ 0 • Now if q,(s) E R and v is a given 
"""' ,.......,_ - /YV"'" 

comple..ic or real number, then it>(s-v) does not necessarily belong to R , 
+ ,v'-

however, we can define J{it>(s-v)} = ~{z;;evn e-sn } for Re(s) > Re(v) • 

The function T{ IP ( s-v) } is urüquely determined for Re ( s) ~ Re ( v) by IP ( s) 

gi ven for Re ( s) ::: 0 • The function T{ q, ( s--v) } is regular in the domain . ,.,,,. 

Re(s) > Re(v) and continuous for Re(s) ~ Re(v) • If Re(v) = 0 , then 

we can use fo:rmula (5.1) for finding T{IP(s-v)} for Re(s) > O • If ,...,._ 

' Re(v) > 0 , then we have 

(25) T{IP(s-v)} s 
1f
000 

ip(z) dz = 27Ti . (z+v) (s-v-zT 
-100 

for Re(s) > Re(v) • 

We note that Theorem 6 .1 can be fom1ulated in the followir1g more general 

form: :r:r y.(s) E R , 1P1 lh Il < 1 and ,,..,.... 
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(26) 

for Re(s) = O where + r (s,p) satisfy the requiI'ements 

(27) T{log[l-py(s-v)]} = logr+(s-v,p) + logr-(-v,p) 
NV' 

for Re(s) > Re(v) > 0 . 

Theorem 1. Let { ç; ( u) , 0 < u < 00 } be a separable cornpoun.d recurrent 

process defined by (3). If c > 0 , Re(q) > O , Re(s) > Re(v) ::_ O } ~hen_ 

we have 

00 

(q+cs-cv) f e-qt E{e-sn(t)-(v-s)~(t)}dt = 
0 "'"' 

(28) 

[l ,i,( + )] -T{log[l-<P(q+cs-cv)lji(v-s)]} 
-'f' q es-cv e ~ 

where <P(s) and lji(s) are defined by (4) and (5) respectivel~ and T 

operates on the variable s. 

, 
Proof. Let us introduce the notation 

-QT -sn(• +o)-(v-s)ç;(, +o) 
(29) Un(s,v,q) = !{e n n n } 

for n = 0,1,2, ••• and Re(q) > O , Re(s) ~ Re(v) ~ O • 

Let us define ó (q,s, v, t) . by (7) • Since c ~" 0 ) the ider.titiy (11) 

holds for aJmost all realizations of the process {t;,(u) , 0 ::_ u < 00 } • If 

we form the expectation of (11), then we obtain that 
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(30) (q+cs-cv)f
00

e-q~{e-sn(t)-(v-s)~(t)}dt = [1-~(q+cs-cv)] Ï U (s,v,q) • 
0 ~ ~ n 

Sta.rting fran u0(s,v,q) = 1 and by using the relations (13) and (15) 

we can determtne Un(s,v,q) recursively for n = 1,2, •••• If we introduce 

the linear transformation T defined in Section 3 , then by (13) and (15) 

we obtain that 

(31) Un+l (s;v,q) = !{cj>(q+cs-cv)iji(v-s)Un(s,v,q)} 

for ni = 0,1,2, ••• and Re(q) > O , Re(s) > Re(v) > O , and ,.! operates on 

the vJiable s • Hence by Theorem 4 .1 i t follows that 
1 

(32) ~ U ( ) n _ -T{log[l-p~(q+cs-cv)~(v-s)]} 
l svqp -e~ 

n ' ' n=O 

f or IPI ~ 1 , Re(q) > 0 and Re(s) > Re(v) > 0 . 

If we put p = 1 ir1 (32), then by (30) we obtain (28) which was to 

be proved. If v = s in (2 8), then we obtain the Laplace transforrn o.f 

~{e-sn(t)} ,and E{e-sn(t)} can be obtained by inversion.' 
,.,,..~ 

We can also express (32) in the following equivalent form 

co co n 
(33) l U (s,v,q)pn = exp{ l ,e__T{[~(q+cs-cv)~(v-s)]n}} • 

n=O n n= 1 n M.,-. 

Since 
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; 00 00 

T{[~(q+cs-cv)~(v-s)]n} = T{f e-(q+cs-cv)u dF (u) J e-(v-s)x dH (x)} 
·"'- ,.,,... 0 n -oo n 

(34) 
co cu+o oo 

= J e-(q-cv)u [ J e-csu-(v-s)x df-In(x) + f e-vx d.B (x)]dF (u) ' 
0 _oo cu+o n n 

it follows that 

oo oo n oo cu+o 2 Un(s,v,q)pn = exp{ 2 ~ J e-(q-cv)u [ J e-csu-(v-s)x dH (x) + 
n=O n=l 0 -~ n 

(35) 
00 

+ J e-vx dH (x)]dF (u)} 
cu+O n n 

for IP 1 < 1 , Re(q) > 0 and Re(s) > Re(v) ~ 0 • 

Theorem 2. Let { ç; ( u) , 0 ~ u < 00 } be a separable cmpou..vid recurrent 

process defined by (3). If c ~ 0, Re(q) > 0, Re(s) > Re(v) > O, then 

we have 

(36) (q+cs-cv)b
00

e-q~{e-sn(t)-(v-s)ç;(t)}dt = Q(s,v,q) + q=~v Q(v- ~ ,v,q) 

where 

(37) Q(s,v,q) = 1-~(q-cv)T{[l-~(v-s)]e-T{log[l-~(q+cs-cv)~(v-s)]}} 
,,,_ 

and T operates on the vari_?.ble s • ,,.,.,,. 

Proof. Let us introduce the notation 
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-q1 -sn(T. +o)-(v-s)s(1 +o) 
(38) Un(s,v,q) = E{e n n n } 

for n =~1,2, ••• and 

-q1 -sn(1 -O)-(v-s)s(1 -0) 
(39) Vn(s,v,q) = !{e n n n } 

for n = 1,2, ••• where Re(s) > Re(v) > O and Re(q) > 0 • Furthermore, 

let 

( 40) 

(41) 

and 

( 42) 

00 

U(s,v,q) = l Un(s,v,q) , 
n=O 

00 

V(s,v,q) = l Vn(s,v,q) , 
n=l 

Q(s,v,q) = U(s,v,q) - V(s,v,q) • 

Let US define o(q,s,v,t) by (7). Since c < 0 , the identity (16) 

holds for aJmost all realizations of the process {ç;(u) , O ~ u < 00 } If 

we use the above notation, and if we form the expectation of (16), then 

we obtain (36) • It remains to find U (s, v ,q) and V (s, v ,q) for n n 

n·= 1,2, •••• 

In this case by (19) and (21) we obtain that 

(43) U (s,v,q) = T{~(v-s)V (s,v,q)} n ~ n 

for n = 1,2, ••• and Re(s) > Re(v) ~ 0 and Re(q) > 0 , and evidently 

u0(s,v,q) = 1 • If we add (43) for n = 1,2, ••• , then we get 
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(44) ' U(s,v,q)-1 = T{ij!(v-s)V(s,v,q)} • 
,.._ 

On the ether hand, by (22) and (24) we obtain that 

(45) V +l(s,v,q) = T{<j>(q+cs-cv)ij!(v-s)V (s,v,q)} 
n """" n 

for n = 1,2, •.• ar1d Re(s) > Re(v) .:: 0 and Re(q) > O , and evidently 

v1(s,v,q) = <j>(q-cv) • Thus by ~heorem 4.1 it follows that 

( 46) Ï vn (s, v,q)pn = P<I> (q-cv)e -;:EUog[l-p<t> (q+cs-cv)iJ!(v-s)]} 
n=l 

1 for lq I < 1 and Re(s) ~ Re(v) ~ O and Re(q) > O • If we put p = 1 
1 -· 

:in (46}, then we get V(s,v,q) • FinaJ.ly, by (44) we have 

(47) Q(s,v,q) ;:; 1 - T{[l-iji(v-s)]V(s,v,q)} • ,_.,,._ 

This completes the proof of the theorem. 

Since 

(48) 

co [ n _ I iµ(v-s)] 

l-iji(v-s) = elog[l-iji(v-s)] = e n=l n 
' 

we can also express Q(s,v,q) as follows: 

(49) 
co n n 

Q(s,v,q) = 1-<l>(q-cv)T{exp[ l ~î{[<j>(q+cs-cv)w(v-s)] }-[iji(v-s)] J} 
rv~ 1 n n= 

for Re(q) > 0 and Re(s) > Re(v) ~ 0 • 

In both cases, if ei ther c > . 0 or c :5_ ü , we cél..n use the method of 

factorization to obtain 
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Since ll<P(q-cs)ll ~ <P(Re(q)) < 1 for Re(q) > 0 élnd lil/IC s)ll,= 1, 

therefore by the results of Section 6 we can write that 

(51) 

~or Re(s) = 0 and Re(q) > O where q,+(s,q,c) is a regular functions of 

s :in the domairi R(s) > 0 , continuous and free from zeros in Re(s) ~ 0 

and satisfies lim[log<P+(s,q,c)]/s = 0 (Re(s) > 0) , f'urthermore <P-(s,q,c) 
1 jsj+"'l 
1 
1 

is a regular function of s in the danain Re(s) < O , continuous and free 
1 

from zeros in Re(s) < 0 and satisfies lim [log4>-(s,q,c)]/s = O 
1 s !+ 00 

(Re(s) < 0) • Such a factorization always exists. 

By Theorem 6.1 and by (27) it fellows from (51) that 

(52) T{log[l-ip(q+cs~cv)l/J(v-s)]} = logq,+(v,q,c) + log4>-(v-s,q,c) 
NV-. 

for Re(s) > Re(v) > O and Re(q) > O • We can use (52) both in (28) and in 

(37). 

Finally, we shall determine the distribution function of 

(53) n(00 ) = sup ç;(u) 
Ü<U<00 

= 

which is anonnegative randan variable (possibly 00 ) • Let 

(54) W(x) = P{ sup ç;(u) ~ x} ,.,. O<u<
00 

-
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If x < 0 , then W(x) = 0 • In the interval [O, 00 ) the function W(x) 

is nondecreasing and lim W(x) = W( 00 ) < 1 • 

(55) 

x + 00 

In the following theorem we detennine 

00 

n(s) = J e-sx dW(x) 
-0 

for Re(s) > O and thus W(x) can be obtained by inversion. 

· Theórern 3. If c ~ O , then we have 

(56) 
00 00 00 

n(s) = exp { I 1 f [ J (e-s(x-cu)_l)dH (x)]dF (u)} 
n=l n 0 cu n n 

for Re(s) > O , and if c < O , the:;i. we haye 

(57) 
00 00 00 

n(s) = ~(-cs)exp{ I ~ J [f (e-s(x-cu)_l)dH (x)]dF (u)} 
n=l 0 cu n n 

!'or Re(s) > O • 

Proef. By the continuity theorem for probabili tj_es ( see ( 41. 6)) we 

have 

( 58) lim P{n(t) ~ x} = W(x) 
t+.;- -

for evecy x • Hence by an Abeliar1 theorem for La.place transforms (Theorem 9.J.O 

in the Appendix) we obtain. that 

(59) 
00 

n(s) = lirn q f e-qt E{e-sn(t)}dt 
q+ +o 0 ...,..,... 
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for Re(s) > 0 • The right-hand side of (59) can be obtained by (28) for 

c;:;,. 0 and by (36) for c.::.. O • Thus we can get (56) and (57). However, 

the fol1owing proof is sanewhat simpler. 

We can easily see that if c > O , then 

(60) W(x) = lim P{n(• + 0) < x} , ...,.___ n 
n + CX> 

and therefore 

(61) n(s) = lim Un(s,s,O) 
n + CX> 

t'or Re(s) > 0 where Un(s,s,O) is defined by (29). Thus by the Abel 

theorem for power series we obtain that 

CX> 

(62) n(s) = lim (l-p) l U (s,s,O)pn 
p+l-0 n=o n 

f or Re(s) > 0 • If in (62) we write 

CX> n 
(63) 1-p = exp{- l ~ } 

n=l 

f or IPI < 1, and if we use the representation (35) with v = O and q = O , 

then we get (56). 

If c < O , then we can easily see that 

(64) W(x) = lim P{n(• - O) .::.. x} 
~ n -n + oo 

and therefore 

(65) n(s) = 1irn Vn(s,s,O) 
n ->-"' 
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for 'Re(s) > 0 where Vn(s,s,O) is defined by (39). Thus by the Abel 

theorem for power series we obtain that 

(66) 
00 

n(s) = lim. (l-p) n-_I
1 

Vn(s,s,O)pn 
p-+l-0 

for Re(s) > 0 • If we write v = s and q = 0 i.D (46) and if we use (63), 

then by (66) we get (57). 

Theorem 4. Let W(x) be defined by (54). The function W(x) is a 

proper distribution function if aDd only if 

(67) 
00 00 

l ~ f [1-f\i(cu)]dFn(u) < 00 
• 

n=l 0 

· ·Pröof. If c > 0 , then we can write that 

(68) 

and if c < 0 , then we have 

Thus by Theorern 43.12 we can conclude that 

(70) P{n(oo) < co} = 1 
rv-

if and only if 

(71) 
00 

I 1 P{xl+ ••• + x > ei } < "° • ni""- n n n=l . 
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Theorem43 .12 and if c < O , then we define i; = x - c ( • - - • ) for r r rtJ. r 

r = 1,2, ••• ln Theorem 43.12 • 

If the series (67) is convergent, then W(x) is a proper distribution 

fUnction and n(s) is given by (56) or by (57) for Re(s) > 0 • , If the 
and 

series (67) is divergent, then W(x) = 0 for every x , Q(s) = 0 for 

Re(s) ~ 0 • 

In the case where E{x - c(• - • 1)} exists, the fUnction W(x) is r.vr r r-

a distribution function if and only if either _!{xr.- c(•r- -cr_1)} < 0 or 

P{x - c(-c - • 1 ) = 0} = 1 • If E{x - c(• - • 1)} > O and P{x - c(• - • 1) = ,,,._r r r- """r r r-· = .-vvr r r-

ol < t , then W(x) = 0 for all x • This fellows from Corollary 43.1 

of Th~orern 43.12 • 

We note tb.at by using the representations (68) a~d (69) we car1 also 

obtain Theorem 3 fran 1'heorem 43.13 • 

1he results of this section have been obtained by the author in his 

paper [ 211 ] . 

55. Compound Poisson Processes. We have already defined the notion 

of a compound Poisson process in Section 48 (Definition 2). In this section 

we shall use a slightly more general definition. 

Let US suppose that {v(u) , 0 < u < 00 } is a Poisson process of 

density À • Let x1, x2, ••• , xn,··· be mutually independent and identical­

ly distributed real random variables which are independent of the process 

{v(t) , 0 ..'.:_ t < 00 } • Let 

(1) P{x < x} = H(x) 
(V._ n = 

and let us de fine 
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(2) f; (u) = l . xn - cu 
l~~v(u) 

for u 2:. 0 where c is a real constant. 

We sey that {f;(u) , 0 ~ u < 00 } is a (general) compound Poisson 

process. If c = 0 , then this defin.ttion reduces to Definition 2 in 

Section 48. 

A compound Poisson process is a particular case of a compound recurrent 

process. If we suppose that 

(3) t 
-ÀX 

1 - e 

F(x) = O 

f or x > 0 , 

for x < 0 , 

in the pr'Ocess U;(u) , O < u < 00.} defined in Section 54, then {f; (u) , 

0 < u < co} reduces to a compound Poisson process. 
== 

For a separable canpound Poisson process { f; ( u) , 0 < u < co} , the 

distribution function of the random variable 

(4) n(t) = supf;(u) 
~~t 

for t > 0 can be obtained by Theorem 54 .1 and by Theorem 54. 2 • 

Theorem 1. If { f; ( u) , 0 < u < 00 } is a separable compound Poisson 

process ciefined by (2), then we have 

!
00 

·-qt E{ -sn ( t )-( v-s);; ( t) 1dt q e e J . = 

(5) 
0 "-'-' 

00 -qu +o I ) 

exp{f _e _ [f e-\ v-s_ x dP{~ (u) ~ x} 
0 u -co ""' 

00 

f -vx } } + e dP{f;(u) ~ x -l]du 
+o ,.,._.. 
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for · H.e(q) > 0 and Re(s) _:_ Re(v) :_ 0 • If v = s , then (5) reduces to 

(6) 
co . _ co -qu co 

q J e-qtE{e-sn(t)}dt = exp{f _e_ [ J e-sxdP{ç;(u) < x} -l]du} 
0 tv- 0 u -0 ,,,,.. , 

for Re(q) > 0 and Re(s) > 0 . 

Proof. If c ~ O , then (5) is a particular case of (54.28) • If we 

put ~(s) = À/(À+s) in (54.28) and if ~(s) is the Laplace-Stieltjes 

transform of H(x) , then (54.28) reduces to (5) • Actually, it is more 

convenient to use (54.30) with (54.35). By (54.30) we have 

(7) q /"e-qtE{e-sn(t)-(v-s)ç;(t)}dt = _ _.q~-
0 "'" À +q+cs-cv 

co 

l U (s,v,q) 
=O n 

n 

and by (54.35) 

co co 1 co e-Àu-(q-cv)u( ·)n 
l U (s,v,q) = exp{ l -, J ÀU 

n=O n n= 1 n · O u 

(8) 

cu+O co 

[ J e-csu-(v-s)x d.Hn(x) + J e-vx dH (x)]du} 
_.., cu+o n 

for Re(q) > 0 and Re(s) > Re(v) > O • 

If we take into consideration that 

(9) 
oo n 

P{f;(u) ~- x} = l e-Au (Àu~ H (cu+x) 
IV'- -· _

0 
n. n 

n-

where Hn(x) denotes the n-th iterated convolution of H(x) with :i.tself 
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and 'H0(x) = 1 for x ~ O and 8a(x) = 0 for x < O , and that 

(10) 
oo -qu ( ) 

exp{- r _e _ Cl-e -Àu+c v-s u,du} = 
J u ' I 

0 

q 
À+q+cs-cv 

for Re(q) > O and Re(s) ~ Re(v) ~ 0 , then by (7), (8), (9) and (10) we 

obtain ( 5) for c > 0 • = 

If c ~ 0 , then (5) is a particular case of (54.36). However, it is 

simpler to reduce the case of c ~ 0 to the case of c ~ 0 for which the 

theorem just has been proved. Since the two processes {ç;(t)-~(u) for 
1 

1 

0 < u ! < t} and {ç;(t-u) for 0 ~ u < t} have identical finite dimensional 

distrlbution functions, we can conclude that n(t)-ç;(t) and -s(t) have 

exactly the same joint distribution as sup [-ç;(u)] and -ç;(t) • F'L:rther­
O<u<t 
== 

more, if c < 0 , then for the process {-ç;(u) , 0 < u < 00 } we cari apply 

(5). By replacing ç;(u) by -ç;(u) in (5) we obtain that if c < O > then 

(11) 
oo -qu ffi "" 

exp{j ~ [ f e-(v-s)x cJ!{-ç;(u)<x}+ J e-vx ~{-ç;(u) ~ x} -l]du} 
0 - 00 ffi 

for Re(q) > 0 and Re(s) > Re(v) ~ 0 • If we replace v by s-v in (11), 

then we obtain (5) for c ~ 0 • This completes the proof of (5). 

If v = s in(5), then we get (6). 

Formula (5) makes it possible to detennine the joint dtstribution of 



VIII-21 

n(t) and t;(t) for all t 2-- 0 • By (6) we can detennine P{n(t) .:5.. x} 

f or all t > 0 and x • = 

Let 

(12) 

and 

( 13) 

for Re(s) ~ 0 • 
1 -

1 

W(x) ~ P{ sup t;(u) ..::_ x} 
,,.,..,. O<u<00 

= 

co 
n(s) -· f e-sxdW(x) 

-0 

~~ -

'Iheorem 2. If {t;(u) , 0 ..::_ u < co} is a separable compound Poisson 

2rocess defined by (2), then we have 

(14) 
co co 

f 1 f -sx ( n(s) = exp{ - [ e dP{ç; u) ~ x}-l]du} 
0 u -0 --

for Re(s) > 0 • 

Proof. In exactly the same way as in the proof of Theorem 54. 3 we 

have 

(15) n(s) = lim q /coe-qt E{e-sn(t)}dt 
q++O 0 -v... 

for Re(s) > 0 • The right-hand side of (15) can be obtained by (6) a'1d 

. thus we get ( 14) • Of course 'l'heorem 2 is a particular case of Theorem 54. 3 • 

Theorem 3. The function W(x) defined by (12) is a proper distribution 

pmction if and only if 
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(16) Jco ~{~(u) > 0} du< co 
u e: 

where e: is some positive nu.'Tlber. 

Proof. By Theorem 54.4 it follows that lim W(x) = W(co) = 1 if 
x + co 

and only if 

(17) 
co co 

l 1. f [1-H (cu~e-:\u (:\u)n-ldu < co • 

n=l n. 0 n 

If c > 0 , then (17) can be expressed in the fonn of 

(18) !co P{~(u) > 0} d u < co 

0 u 

and if c < 0 , then (17) can be expressed in the fonn of 

(19) 
co -ÀU 

J • .f,H;(u) > O} - e d u < co • 

+o u 

This follows fran (9). The conditions (18) and (19) are equivalent to (16). 

If (16) is not satisfied, then W(x) = 0 for every x • 

In the case when ~{xn} exists we have W(co) = 1 if and only if 

:\E{x } < c • If :\E{x } ~ c , then W(x) = O for every x • 
·"''-n ('/"'n-

We can also detennine the distribution and the limiting distribution 

of n ( t) by us:lng the method of factorization. 

Let us define 
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<XI 

(20) ~(s) = f e-sx dH(x) 
-00 

for Re(s) = 0 • 

Theorem 4. Let us assume that 

(21) 

for Re(s) = O and Re(q) > O where ~+(s,q) is a regu1ar function of s 

·in the domain Re(s) > 0 , continuous and free fran zeros in Re(s) ?._ 0 

and satisfies lim [log~+(s,q)]/s = O (Re(s) ~ O) , furthem1ore 1>-·cs,q) 
i lsl-+ 00 -

is a Ii'egular function of s in the danain Re ( s) < 0 , . continuous a'1~ 

free frc:m zeros in Re(s) < 0 and satisfies lim [log~-(s,q)J/s = 0 

(Re(s) ~ 0) • If {~(u) , 0 < u < oo} 
-- - = 

!si-+ 00 · 

is a separable compound Polsson 

proces-s· defined by· (2), then we have 

(22) 

· for Re(q) > O ·and Re(s) > Re(v) > o In particular, we have 

(23) 

for Re(q) > 0 and Re(s) ~ 0 • 

Proof. Since the La.place-Stieltjes tra'1Sform of F(x) , defir1ed by 

(3), is given by q,(s) = À/(À +s) fcr Re(s) > -À , we can write-that 

in (54.51) 
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(24) 1-<j>(q-cs)ljl(s) = q [1- cs--/,[l-ljl(s)] ] 
· À+q-cs q 

for Re(s) = O • Since l1<1>(q-cs)1Ji(s)ll ~ l~CRe(q))I < 1 for Re(q) > O, 

we can conclude by the results of Section 6 that the factorization (21) 

always exists, and <P+(s,q) and <P-(s,q) are determined up to a factor 

independent of s • 

In the proof of (22) we shall distinguish two cases. If c > O , 

then by (24) and by ( 54. 27) we obta.i'1 that 

T{log[l-<j>(q+cs-cv)iJi(v-s)]} = 
/'\"-'• . 

(25) 

= log Hq+~s-cv + log<P+(v,q) + log<P-(v-s,q) 

for Re(s) .::_ Re(v) > 0 and Re(q) > 0 • Now if we put <j>(s) = ~./(:>,+s) 

in (54.28), then by Theorern 54.1 we get (22) for c ~ O • 

If c < 0 , then (22) can be obtained by Theorem 54.2 • However~ it 

is s~ler to reduce the c~e c .::_ 0 to the case c ~ 0 • If we apply the 

result (22) to the process {-~(u) , 0 .::. u < 00 } where c < 0 ' then in 

( 21) c should be replaced by -c and 1Ji ( s) by 1Ji (-s) • Thus we obtain 

that 

(26) -cs-À[l-1/i(-s)J _ +c ) -( ) 1- - ~ -s,q <P -s o q '· 

for Re(s) = 0 and Re(q) > 0 where now <P-(-s,q) is defined in the 
. + . 

domain Re(s) ~ 0 and <P (-s,q) in the dc:main Re(s) .:S. 0 • '11.h'J.S by using 
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the ;:;ame cor1>espondence which we used in the proof of 'Iheorern 1 we obtain 

that 

(27) q J00

e-qt E{e-s[n(t)-ç;(t)]+(v-s)ç;(t)}dt = 1 , 

0 ~ cp-(-v,q)~+(s-v~q) 

for Re(q) > 0 and Re(s) > Re(v) > O whenever c ~ 0 • If we replace 

v by s~v in (27) , then we obtain (22) for c < 0 • This completes the 

proof of (22). If v = s in (22), then we get (23). 

We note that the following functions 

(28) 
oo -qu oo 

cp+(s,q) = exp{-f _e_ [ J e-sx dP{ç;(u) ~ x} - P{~(u) > O}]du} 
0 u +O .._ ~ 

for Re(s) > O and Re(q) > 0 and 

oo -qu +o 
(29) cp-(s,q) = exp{-f e u [ f e-sx ~{ç;(u) < x} - P{~(u) < O}]du} 

Q _oo ,.,,_ 

for Re(s) < O and Re(q) > O satisfy the requirernents in Theorem 4. 

In particular, we have 

(30) 

oo -qu 
cp+(s,q)cp-(s,q) = exp{-f _e_ [ecsu-À[l-ljl(s)]u -l]du} = 

0, u 

= q-cs+À[l-ljl(s)] 
q 

for Re(s) = 0 and Re(q) > 0 • 

Theorem 5. Let us assume that 
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(31)' 
00 J P{ç;(u) > 0} du 

u e: 
< 00 

· · fór · some e: > O , and that 

for Re(s) = 0 where cli+(s) ~atisfies the requirements: 

and 

+ cli (s) is a regular function of s in the domain Re(s) > O , 

A
2 

cli + (s) is conti.nuous and free fran zeros in Re ( s) ~ 0 , 

lim [logcli+(s)]/s = 0 whenever Re(s) > 0 , 
Is!+ oo 

satisfies the reguirements: 

8i cli.,..(s) is a regular function of s i..'1 the domain Re(s) < O , 

B2 4>-(s) is cont:i..nuous in Re(s) 5- 0 a.11d free from zeros in Re(s) < O , 

B
3 : lim [logq>-(s)]/s = 0 whenever Re(s) < O • 

lsl+ 00 

If { ~ ( u) , 0 < u < 00 } is '.3- separable compound Poisson process defü1ed by 

(2), then the Laplace-Stielt.ies transfonn of W(x) = P{ sup ç; (u) < x} is 
""'" O<u<00 

given by 

(33) 

for Re(s) > 0 • 

+ 
n(s) = cli (O) 

cli+(s) 

= 

Proof. Pirst we shall prove that if (31) holds, then there ex..i.st two 

functions cli+(s) and cli-(s) which satisfy all the requirements and that 
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(33) is satisfj_ed too. 

Let us suppose that 4>+(s,q) is defined by (28) and 4>-(s,q) by (29). 

Then q,+(O,q) = 1 and 4>-(0,q) = 1 for Re(q) > 0 . 

If (31) holds-, then by (28) we obtain that 

(34) 
00 00 

4>+(s) = lim~+(s,q) = exp{-f 1 [ J e-sxdP{~(u) < x}- P{~(u) > O}]du} 
q +·O 0 u +o ~ N-

exists for Re(s) > 0 • Since in this case n(s) is given by (lll,) for 

Re(s) z_ O and since 4>+(0) = 1 , it follows that (33) is satisfied. The 
i 

ftmctton $+(s) obviously satisfies the requirements A1, A2, A3 • 

~f we take into consideration that 
co ( -u -qu'l J e -ue 'du 

(35) q = elogq = e 
0 

for Re(q) > 0 , then by (29) we obtain that 

00 +o 
4>-(s) = lim q4>-(s,q.) = exp{-f 1 [ J e-sx dP{~(u) ~ x} + P{~(u) > 0} -

q++Q QU _co ,..,.._ - "-v 

(36) 
-u - e ]du} 

exists for Re(s) < 0 , and 4>-(s) satisfies the requirements B1, B2, B
3 

• 

If we multiply (30) by q and let q + + 0 , then we can see that (36) 

exists for Re(s) = 0 , and that (32) is satisfied for Re(s) = O • 

In exactly the same way as in the proof of Theorem 43.15 we can prove 
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+ that· the requirements (32), A1, A2, A
3 

and B1, B2, B
3 

determine ~ (s) 

and <P-(s) up to a. constant factor. Thus the theorem follows. 

The limit distribution of n(t) as t -+ 00 and the distribution of 

nC:t) for t > 0 for a general compound Poisson process was found in 1954 
/ 

tiy R. Crarner [ 41 ] ,[ 42 ] • 

Finally, we shall consider compound Poisson processes for which the 

distributlon and the limit distribution of ri(t) can be determined explicit-

ly. 

1 

1 

First 

1 ' 

(37) 

let us suppose that 

x(u) = l x 
l<n5_v(u) n 

for u > O where x1, x
2

, ••• , X
11

, ••• is a sequence of mutuaJ .. ly independent 

and identically distributed positive random variables with distribution 

function P{x ~ x} = H(x) and {v(u) , 0 < u < 00 } is a Poisson process 
~ n-

of density t.. which is independent of {xn} 

We already considered the process {x(u) , 0 < u < 00 } in Sec.tion 48 

(Definition 2) • By using Theoran 48.13 we can find the distribution of 

the supranum for the processes {x(u) - u ' 0 2- u < 00 } and {u - x(u) , 

0 < U < 00 } • 

We shall mention only briefly the following results which were found 

in 1962 by the author [202 ], [ 203 ], [ 205 ], [209 ] . Fora more 

detailed aceount of these resUlts see· refePence [ 210 ] • 
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Throughout the rest of th:Ls s2ction we assume that {x(u) , 0 _:::_ u < 00 } 

is a separable compound Poisson process defined by (37). Then 

(38) 
"° n 

P{x(u) ~x} = K(u,x) = l e-Àu (Àu~ H (x) 
,-....., - n=O n. n 

where H (x) is the n-th iterated convolution of H(x) with itself and n 
> H0 (x) = 1 for x = O and H0(x) = O for x< O • We shall also use the 

notation 

"" 
(39) ~(s) - J e-sx dH(x) 

0 

!'or Re(s) ::__ O • 

In what fellows we shall make frequent use of the follow:L.11g type of 

întegral: 

(40) 
b 00 b n 

f g(u)duE{x(u) < u+x} = l f g(u)e-Au (Au) d H (u+x) 
a n=O a n! u n 

where the integrals on the_ right-hand side exist. If the random variable 

x(u) has a density function, then (40) reduces to 

(41) 
b ( ) axJx(u) ~u+x} du f g u ax ' 

a 

and if x(u) is a discrete random variable, then (40) reduces to 

(42) I g(u)P{x(u) = u+x} 
a<u<b ""'" ::;; = 

where the sum ±s extended for all those u e: [a,b] for which P{x(u) = 
.tv-

u+x} > 0 • 
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Let 

co 

(43) a = J xdH(x) • 
0 

Theorem 6. Let 

(44) W(t,x) = P{ sup [x(u) - u] < x} 
""" O<u<t == 

for t > 0 • Then we have 
= 

(45) 
t x 

W(t,o) = J (1- -t)dP{x(t) 2. x} 
0 /""' 

f'or 

t 
(46) W(t,x) = ,,~_{x(t) < t+x} -+6 W(t-v, O)ayt{x(v) < v+x} 

for all x and t > O • If x < O , then W(t,x) = O • 

Proof. First,by formula (48.100) it follows imrnediately that 

(47) 

for t > 0 and this proves (45). We shall prove that the subtra.hend in 

(46) is the probability that x(t) ~ t+x ar1d x(u) > u+x for some 

u E (O,t] and thus (46) follows. Let v ~ sup{u : x(u) > u + x and 

0 < u < tl = If there exists such a v , and x(t) < t+x , then x(v) -

v+x and . x(u) < u+x for v < u < t , or equj_val.ently x(u) - x(v) 2- u-v 

for v 2. u ~ t • The latter event has probability W(t-v, 0) and thus 
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(46).follows by the theorffil of total probability. Obtlously W(t,x) = O 

if x < o and t > o . 

Theorem 7. Let 

(48) W(x) = P{ sup [x(u) - u] .::_ x} • 
,..,... 0St<00 -

If Àa < 1 , then we have 

(49) W(O) = 1-Àa 

··and 

"" 
( 50) W(x) = 1-(1-Àet) J duf{x(u) 2_ u+x} 

+o 

.f or all x • 

If Àa ~ 1 , then W(x) = 0 for all x· • 
--', --

· Pröof. Since E{x(t)} = Àa t for t > 0 and X(tj/t~ Àa as ,......_ = 

t -+ 00 , it follows from (47) that 

(51) W{O) = lim W(t,O) + = [1-Àa] • 
t -+ "" 

Let first Àa < 1 • Then by ( 47) we have 

(52) W(t,O) > !{1- x~t)} = 1- /..a 

'Illus by ( 1~6) we obtain that 

(53) 
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for all t ~ 0 • Furthe:rrnore)if' Àa < 1 , then lirn P{x(t) ~ t+x} = 1 
t -+ ~ 

for all x • Thus if t-+ c.o in (46), then we obtain (50). 

If Àa > 1 , then lirn P{x(t) < t+x} = 0 for all x , and'the 
t ~ ~v-

inequality 

(54) 0 ~ P{ sup [X(u) - u] ~ x} ~ P{x(t) < t+x} 
- ,._ Os~t - - """ 

:ünplies that .W(x) = O • 

If Àa = 1 , then by (51) W(O) = 0 • If x < 0 , then obviously 

W(x) = 0 • If x > 0 , then we can find a y such that O < x < y and 

P{x(y) < y - x} > O • Then the obvious inequality 
/VV-

(55) P{x(y) < y - x} W(x) .s. W(O) = 0 
r-- -

:bnplies that W(x) = 0 for x > 0 . This canpletes the proof of the 

theorem. 

Theorem 8. If Àa < 1 , then 

ClO 

(56) n(s) = J e-sx dW(x) - 1 - Àa 
0 - 1-À 1-ip(s r 

s 

for Re(s) > 0 where the right-hand side of (56) is 1 if s = O . 

Proof. If O < y and O < y + x , then we can write down trat 

(57) 
y+x Y 

W(x) = J W(y+x-z)d P{x(y) ~ z} - W(O)f d P{x(z) < z+x} • 
0 'ZI'"- - 0 Zt"' 
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By fonning the Laplace-Stieltjes transform of (57) we obtain that 

(58) n(s) = ey[s-À(l-iJ;(s))] n(s) - W(O)fy ez[s-HÀljJ(s)]dz 

for all y > 0 • Since 

(59) 

for Re(s) > 0. , it follows that 

(60) _ W(O)s 
n(s) - s-À+Àl}J(s) 

0 

for Re(s) > O • This implies (56) for Re(s) > O too. 

we can also obtain (5ó) by 'I'heorem 5. In this case c = 1 and in 

(32) we can choose 4> + (s) = i - À[l-l}J(s) ]/s for Re(s) > 0 and <P-(s) = -s 
= 

for Re(s) < O • 

'I'heoran 9. We have 

t 
(61) P{ sup [u -x(u)] ~ x} = 1 - f x d P{x(v) ..5.. v - x} 

"" O<u<t O v V rvv- -
== = 

f or 0 < x < t • 

Proof. We shall find the probabili.ty of the canplementary event of 

{sup [u - x(u)] < x} , that is, the probability that u - x(u) > x for 
O<u<t == 

sane u e; ( O, t] . 'lhls latter event can occur in suc.h a way that 
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inf{u : u - x(u) > x} = v where 0 2_ v < t • Then x(v) = v - x and 

u - x(u) ~ x for O ~- u ~ v , or equivalently, x(v) - x(u) < v - u for 

0 < u < v • By r.Theorem 48 .13 we have . = 

(62) P{x(v) - x(u) < v - u for O ~ u ~ vlx(v) 
NV 

= v - x} 
x = -v 

for 0 < x < v where the conditional probability is defined up to an 

equivalence. By· the theorem of total probability we get the subtrahend 

1n (61) and this proves (61). 

Theorem 10. For x > 0 we have = 

(63) P{ sup [u - x(u)] ~ x} = 1 - e-
~ O~u<00 -

ulX 

where w is the largest real root of the equation 

(64) À[l - ~(w)] = w • 

If Àa < 1 , then w = 0 and if Àa > 1 , then w > 0 • 

Proof. . " By using Rouche's theorem we can prove that if Àa < 1 , then 

(65) À[l - ~(s)] = s 

has a single root s = 0 in the domain Re(s) > O , whereas if Àa > 1 , 

then (65) has tw:o roots s = 0 and s = w in Re(s) ~ O where w is a 

positive real rn.nnber. Thus 'I'heorem 10 can be obtaineà by Theorem 5. 

We note that if Àa > l , then by Lagrange's expansion we obtain that 
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co n-1 co 

(66)' w = À[l- l ~ f e-ÀX xn-1 dH (x)] • 
n. 0 n n=l 

As a further example for compound Poisson processes, let us suppose 

that 

( 67) 

for u > 0 where v1 , v2, •.• , vr,··· is a sequence of mutually independent 

and identical1y distributed discrete randcxn variables taking on nonnegative 

integers only and {v(u) , 0 < u < co} is a Poisson process of d.ensity À 

which.is independent of {vr} • 

i We shall also consider the process 
1 

(68) * ~ (u) = -~(u) = l (l-v ) 
l<r~v(u) r 

f or u > 0 • 

Let us introduce the following notation 

(69) N = v1+ v2+ ••• + v r- r 

for r = 1,2, ••• , N0 = O , 

(70) h(z) = E{z"r} 
Mr. 

for 1 z 1 ~ 1 and 

( '(l) E{v } = y 
,.,.~ r 

(possibly y = ,") • 
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(72) 

As a particular case of Lerrrna 20.2 we have the followir.g result: 

,.. k . 

t
l - - if k == 0,1, ... ,n , n 

P{N < r for r = 1,2, ••• ,njN = k} = , 
""'"' r n 

0 othe:r-wise , 

where the conditional probability is defined up to an equivalence. 

By using (72) we can easi1y find the distribution of the supremurn for 

the processes U;;(u) , 0 .::. u < 00 } and u;* (u) ' 0 ~ u < 00 } defined by (67) 

and (68) respecti vely. The particular case where 
i 
1 

1 

(73) i P{v = 2} = p and P{v = O} = q ,,,,... r ,,,.._ r 

(p > 0 , q > 0 , p + q = 1) has been considered by the autl1or in refere;.1ce 

[ 208 ] and the general case in reference [ 210 ] . In what follows we shal.l 

s-umnarize these results. 

Theorem ll. If {t;(u) , 0 -~ u < 00 } is defined by (67), then we have 

(74) 
t * + 

P{supt;(u) < k} = P{t;(t) < k} - J Ji{[t; (t-u)] 1P{i;(u) = k}du 
"""o<u<t """ o t-u ~ 

== 

* for k = 1,2, ••. where ç (u) = -Ç(u) for u ~ 0. 

Proef. 'I'he conditional probability P{ sup t;(u) < klv(t) = n} can 
"""O<U<t 

be obtained by Theorem 20 .1, and ( 7 4) follows by the theore.m of total 

probabilities. 

We note that in the particular case when t::-te distr·j_bUtion of v is 
r 

given by (73),by (37.11) we have 
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(75) P{ sup ~(u) < k} = P{~(t) < k} - (2.)k P{~(t) < - k} 
""" O<u <t .·v- q ,,,_ 

== 

for k = 1,2,. eo' and by (37. 8) we have 

P{-b < ~(u) < a ,,,._... for 0 < u < t} = = == 

(76) 
= Ï (E..)-j(a+b) P{2j(a+b) - b < ~(t) < 2j(a+b) + a} -

j=-o:>q ""' 

. I (E.)j(a+b)+a P{-2(j+l)(a+b) + b < ç;(t) < - 25(a+b) - a} 
j= _coq ,..,.,.. 

i 
if a: and b are positlve integers. 

1 

J 

. Theórem 12. Let US SUppose that the process {~(u) , 0 !:_ U < co} is 

defined by· ( 67) and let 

(77) Qk = P{ sup ~(u) < k} 
·-""'· O..::_u<00 

f or k = 1,2, •••• 

If y < 1 , then 

('{8) I Q_ zk = (1-y)z 
k=l '""k h(z)-z 

· for 1 z 1 < 1 • If y .?'_ 1 , and "~ { v r = 1} < 1 , then ~ = 0 for k = 

1,2,.4 •• 

l'roof. In this case we have 

W.. = P{ sup (N - n) < k} 
~k ,,,_ n 

l<n«0 

= 

f or k = 1,2, ••• and (78) can be obtained by Theorern 20.5 • 
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* '.l'heorem 13. If the process {~ (u) , 0 .::_ u < 00 } is defined by (68), 

· ·then we have 

(8o) *· P{ sup ~ (u) < k} ,..,._. 
t * = 1 - k f P{~ (u) = k} du 

0 "...., u 
O~t 

for k = 1,2, •••• 

* Proof. The conditional probability P{ sup ç; (u) < kjv(t) = n} can 
,.,.... O<u<t 

be ob.tained by Theorern 20.2, and (80) follows by=the theorem of total 

prababilities. 

1 

Theorem 14. * If the process {ç; (u) , 0 < u < 00 } is defined by (68), 

then we have 

(81) P{ sup ç;*(u) < k} == 1- êk 
,.,.._ O.::_u< 00 

for k = 1, 2, • • • ~ere z = ê is the smallest non.-iegati ve real root of 

the equation 

(82) h(z) = z • 

If y < 1 and P{v = l} < 1 , then ó = 1 , and if y > 1 or P{v = l} = 1 , -- ,.__ r ,.,._ r 

then ê < 1 • 

Praof. In this case we have 

(83) * P{ sup ç; (u) < k} = P{ sup (n-N ) < kl 
...,.. O<u<00 ,..,.._ l<n<m n · 

= = 

f'or k = 1,2, •.• and (81) can be obtained by Theorem 20.6 • 
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In this section we 

assume that { ~ ( u) , 0 _<_ u < co} i.s a hanogeneous real stochastic process 

with :independent increments and that P{~(O) = O} = 1 • We have-already ,.,,..... 

defined such processes in Section 51 and we saw that 

(1) E{e-s~(u)} = eu!(s) 
~ 

exists for Re(s) = 0 and the most general form of 'P(s) is given by 

(2) 

-0 
'P(s) =-as+~ cr2s2 + J (e·-sx_l + sx2)dM(x) + 

_co l+x 
00 

+ f (e-sx_l + ~)dN(x) 
+o l+x2 

where a is a real constant, cr
2 is a nonnegative consta11t, M(x) (-c' < x < O) 

and N(x) (0 < x < 00
) are nondecreasing f:mctions of x satisfying the 

cond.itions lim M(x) = O , lim N(x) = 0 and 
X-+ oo 

(3) 
-0 e: 
J x2dM(x) + J x2dN(x) < oo 

-e: +o 

f or sane e: > O • 

If we suppose that the process {~(u) > O < u < oo} is separable, 

then 

( 4) n(t) == sup t;(u) 
O~u~t 

:ts a random variable for every t ~. 0 and our aim is to g:î.ve rnathematical 

methods for finding the distribution of n ( t) • 'füis problem was solved 
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:in 1957 by G. Baxter and ~..!....Donsker [ 8 ] • In this section we follow 

a different approach ba.sed on the results of Section 55. 

We sha.11 approxj_mate the process {ç;(u) , o < u < 00 } by a ~equence 

of ccrnpound Poisson processes . {E; (u) , 0 ~ u < QQ} in such a way that the 
n 

,t':inite d.:i.mensional distribution functions of the process {ç;n(u) , 

0 ~ u < oo.} converge to the finite dimensiona.l distribution functions of 

the process {ç;(u) , 0 < u < 00 } as n + 00 • If 

(5) 
E{e-st;n(u)} = eu'l'n(s) 

rvv-

for ~e(s) = 0 where 
1 

(6) 'I' (s) = c - À [l - ~ (s)] 
n n n n 

and en is a real constant, Àn .is a. positive constant and ijin(s) is 

the Laplace-Stieltjes transf'orm of a real random variable, then {ç;n(u) , 

0 < u < 00 } converges to {ç;(u) ' 0 < u < co} 1n àistribution if and only if 

(7) 

for Re(s) = O • 

sequence {qr (s)} 
n 

l:im 'I' (s) = 'l'(s) 
n + co n 

We can easily see that for a.rw 'I' ( s) we can find a 

such tha.t (7) is satisfied. 

If we suppose tha.t {ç;(u) , 0 < u < 00 } and {ç;n(u) , 0 < u < 00
} are 

sepa.rable processes a11.d if (7) is satlsfied, then by Theorem 52.3 we can 

conclude that 
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lim P{ sup Ç, (u) -~ x} = P{ sup ç: (u) ..:::... x} ,....,...,., n -- rvv- -

n + ro O<~t O~u<t 
(8) 

in every continuity po]nt of the distribution f)mction on the r:lght-hand 

side. The left-hand side in ( 8) can be obtained by 'l1heorem 55 .1 'and thus 

the right-hand is also determined. 

· Theorem 1. If { Ç, ( u) , 0 < u < °'} is a separable, hornogeneous, real 

stochastic process with independent incrernents for which ,l{E;,(0) = 0} = 1 

and if n (t) i.s defined by ( 4) for t > O , then we have 

(9) 

(10) 

1 

1 

oo ( ) ~ -qu "° 
q J e-qtE{e-sn.t }dt = exp{f _e_ [ f e-sx dP{ç;(u) :-_x}-1]du} 

0 """ 0 u -0 ,..,.. 

Re(q) > 0 and Re(s) > 0 

Proof. Let 

n (t) = sup Ç, (u) 
l< O<u<t k 

== 

f or t > O • By Theorern 55.1 we can conclude that (55.6) holds for the = 

process . {E;,k(u) , 0 < u < 00 } • If k + 00 , chen by the cont].nuity theorern 

for Laplace-Stieltjes transforms we obtain (9). 

We note that (55.5) holds uncha.ri..geably for the process {Ç,(u) , 

0 < u < oo} too. 

Let 

(11) W(x) = ?{ sup ~(u) ..:::.. x} 
,.,,... O<u<00 

= 
and 
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(12) 
00 

Q(s) = J e-sx aw(x) 
-0 

tor Re(s) .:_ 0 • 

Theorem 2. If {E,;(u) , 0 ~ u < 00 } is a separable, homogeneou.s, real 

stochastic process 'v'.1.th independent increments for which P{t,;(O) = 0} = 1 

and if 

(13) Joo·j;{E,; (u) > 0} du < oo 

u 
e: 

for some positlve e: , then W(x) is a proper distribution function arn~ 

co co 
Q(s) = exp{f 1 [ J e-sx dP{t;(u) < x} - l]du} 

0 u -0 ,.,,.. 
(14) 

for Re(s) > 0 • If (13) is not satisfied, then W(x) = 0 for every x 

and n(s) = 0 for Re(s) > O • 

Proof. By using the sarne method as in the proof of Theorem 1 we can 

prove Theorem 2 by Theorem 55.2 and Theorem 55.3 • 

We note that if E{t,;(t)} exists and ,.,,_ 

(15) E{~(t)} = pt 

for t ~ 0 , then W(co) = 1 if and only if p < 0 • If p > 0 , then 

W(x) = O for every x • 

We can also determine the m.stribution and the limit:Lng distribution 

of n(t) by using the method o.f factorization. 
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Theorem 3. Let us assume that 

( 6) 'l!(s) + I ) -c ) 1 1 - -q- = <P \.S ,q <P S ,q 

+ for Re(s) = 0 and Re(q) > 0 where the f'unctions i!' (s,q) and <P-(s,q) 

satisfy the same regaj.rements as in Theorem 55. lt • If { t;, ( u) , 0 < u < 00 } 

~s a separable, homogeneous, real stochastic process with independent 

increments for which (1) holds, then we have 

(17) 

for Re(q) > 0 and Re(s) > O • 

?roof. + If we define <P (s,q) by (55.28) and <P-(s,q) by (55.29), 

then these functions satisfy all the requirements. In exactly the same 

way as in the proof of Theorem 43.15 we can prove that the functions 

+ 
<P (s,q) and <P-(s,q) are deterrnined by the requirements up to a factor 

independent of s • If we_ apply (55.23) for each of the processes {t;k(u) , 

O < u < a:.} , then by the limiting procedlU'e k -+ 00 we obtain (17) which 

was to be proved. 

We note that (55.22) holds unchangeably for the process U;(u.) , 

0 < u < 00 } too. = 

Theorem 4. Let us assume that {t;,(u) , 0 ~ u < 00 } is a sepa.rable)_ 

hanoSieneou~ real stochastic process with ~ndependent increments for which 
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P{i;(o) = O} = 1 and 
""""'" 

(18) 

If 

( 19) 

JooP{i;(u)u> 0} du< ro. 

e: 

+ ) -~(s) = -~ (s <P (s) 

for Re(s) = O where <P+(s) and <P ... (s) satisfy the requirements .A1, il2, 

ti.3 · and B1, B2, B
3 

respectively in Theorera 55.5, then 

(20) n(s) 

for Re(s) > O • 

Proof. The proof of this theorem follows along the same lines as 

the pl'OOf of Theorem 55.5 • 

Examples. Let us suppose that {i;(u) , O ~- u < oo} is a separable 

stable process of type S(a,s,c,O) where either O < a < 1 , 1 < a < 2 , 

..... 1 < ê <; 1 and c > 0 or a. = 1 , s = 0 , c > O • In this case either 

(21) ~(s) = -clsla(l + S s tan an) TST 2 

where 0 < a < 2 , a '11 1 , -1 ~ S ~ 1 and c > 0 or 

(2~) ~(s) = -cisl 

where c > 0 • · Our aim is to find the d:Lstribution of 
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(23) n(t) = sup ç;(u) 
O<u<t == 

for t > 0 • (See also 'I'heorern 45.11.) = 

Now:-the random variable ç;(u) ha.sa stable distribution of type 

S'(~,(5,cu,O) and thus by the solution of Problem 46. 8 we have 

(24) 

cos 12!.. 
2a. 

=1----
TI 

-cu.xa.sa./cos l2!. 
00 2 f 1-e dx 

0 1 2 . YTI 2 - ~ sm 2a. + x 

for Re(s) > 0 where 

(25) y = ; are tan ( s tan ~TI) 

and ... 1 < y < l • 

Thus by ~1heorem 1 we obtain that 

(26) 

Cl. Cl. 
lo [l + ex s J, 

YTI g YTI 
00 cos -;...--- 00 q cos -

q J e-qt E{e-sn(t)}dt = exp{- .::'.a. J 2 dx} 

0 ,,.,.._ TI Û 1 2 in 12!:_ + 2 
- x s 2a. x 

for Re(q) > 0 and Re(s) > 0 • Hence P{n(t) < x} can be obtained by ,..,,..... 

inversion. 

We obser1e that n ( t) bas the same distribution as t 11 an ( 1) and 

this. makes possibJ.e some simpl.iflcation :in finding ?{n(t) ~ x} 
l'~\,r-. -
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Let 

(27) H(x) = P{n(l) < X} 
N-.,.. 

and 

Cl 

log[l + ex J 
yn a yn 

cos 2 00 y cos -;;--
= exp { - __ _:2_ J "" dx } 

n 0 l-2x sin r!'... + x2 
(28) Q(y) 

2a 

for y > 0 • (We note that Q(y) = G((cos f">l/a y/el/a) where G(x) is 

defined by ( ~5.233).) 

1 

$ince P{n(t) ~ x} = H(xt-l/a) for t > 0 , if we put q = 1 and 
1 ('<V -

s· =- 1/y in (26), then for y > 0 we get 

(29) 

where 

(30) 

f or x > O • = 

00 

f I (:z'.:.)dH(x) ~ Q(y) 
0 x 

co l/a 
I(x) = J e-t-t /x dt 

0 

11le function I(x) cart be considered as a distribution function of 

a positive random va.riable. Thus by (29) we can interpret Q(y) as the 

distribution function of the product of two independent positive random 

variables havîng distribution f'unctions I(x) and H(x) respectively. 

The urumov..'11 H(x) can be obtained from (29) by usjng Me1lin-Stieltjes 

transform. Since 
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00 

(31)· f x8 d I (x) = r(l-s)r(l + .ê.) 
0 a 

if -a < s < 1 , we obtain from (29) that 

(32) 
00 1 00 

J x8
H(x) = --- . J y 8

d Q (y) 
o r(l-s)r(l + ~) o 

a 

if -a < s < 1 and -1 < s < a • By inversion we cari deterrnine H(x) arid 

thus 

( 33) P{n(t) < x} = H(xt-l/a) 
,..,._ = 

f or t > O and x .2'_ O • 

1 

In the pa.rticular case where a = 1 , 13 = 0 and c = 1 we have 

(34) 1 
oo log(l + !.) 

Q (y) = exp { - - J L dx } 
7T 0 1 + x2 

for ~r > 0 and (32) reduces to 

(35) 
CO CID 

J xsd.H(x) = sin7Ts f ysd Q (y) 
Ü 7TS 0 

for -1 < s < 1 • Hence 

(36) ( ' ( ·7Ti) ( -7Ti dH x; _ Q xe - Q xe ) 
x dx - 27Ti 

for x > 0 where the definition of Q(s) is extended by analytlcal 

continuation to the complex plane cut along the negative real axis from 

the orig:in to infinity. By evalûating (36) we get 
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(37) dH(x) 1 l Jx log y --- = -"ï7 ;-;:;7ïï exp{ - -- . dy } 
dx TIX 2(l+x2)31~ rr 0 l+y2 

for x > 0 , This result is due to D. A. Darling [ 46 ] • 

In the particular case where 1 < a < 2 , S = -1 , and c > O , we 

have 

(38) 
· _ 

1 
J:U;(t) > x} 

,!{n(t) -~ x} - - P{dt) > of 
,........ 

for x > 0 and t > O • This result is due to A. V. Skorokhod [ 185 
i 

- • 1 

p. 15V] • If we take into considera.tion that in this case PU;(t) > O} = 
1 /""-' 

Î?{s(l) ;> 9} for all t > 0 , then we ha.ve the obvious relation 
N"-. 

(39) P{ç;(t) > x} = P{ç;(l) > O}P { sup ç;(u) > x} 
rv-- tv- Ü<U<t 

== 

for t > O and x > O and this irnplies (38). To prove (39) we note that 

the event · {ç;(t) ;> x} can occur in such a way that inf{u : ç;(u) > x} = v 

where 0 < v < t , and i;(t) - ç;(v) > O • The last event has probability 

,!{ç;(t) - ~(v) > 0} = ,,f{s(l) > O} regardless of v • We note that in this 

case P{s(l) > O} = l/a • ,,...,,,. 

The problem of finding the distribution of the ~mprerrum for stable 

processes has also been studied by Q:__Baxter: and M. D. Donsker [ 8 J, 

C. C. Heyde [ 87 ] , and the author [212 J • 

StochastlL processes with independent increments having eith~T...!!9.: 

negative jumps or no positive jumps. Let {ç;(u) , O ~ u < co} be a 



VIII-1+9 

hanogeneous, real stochastic process with independent increments for Vlhich 

the sample functions have no negative jumps and vanish at u == 0 with 

probability 1 • Then 

(40) E{e-si;(u)} = ewl'(s) 
,.,,...,, 

exists for Re(s) > O and the most genera]_ form of 't'(s) is given by 

(41) 
00 

'l'(s) =as + 2-
2
- c/s2 + J (e-sx - 1 + _s~x-)d.N(x) 

+o l+x2 

wbere · a al t t 2 a is re cons ·an , a is a nonnegative constant, ar1d N(x) 

(0 < f < 00 ) is a nondecreasing function of x satisfying the conditions 
1 

1 

lim ~(x) = O and 
x ->- <X> 

(42) 
f: 2 f x dN(x) < "" 

+o 

for ~oine (any) e: > 0 • 

* -i; (u) If i; (u) = f or 0 < u < 00 , 

0 < 
= 

u < 00 } is defined above , then 

where the process {ç; (u) , 

* { i; (u) 
~ O~u< 00 } 

is a hcmogeneous, real stochastic process with independent increments 

fo1"' which the sample functions have no positive junps and vanish at u = O 

* with probability 1 • Conversely, every such process {.; (u) , 0 < u < co} 

can be represented in the way mentioned above. 

In what follows we shall consider sim.J.ltaneously the processes U: (u) , 

0 < U < oo} * and {1; (u) ' () ~ u < co} where * .; (u) = -Ç(u) f or 0 :;, u < co • 

We shall demonstrate that the distribution üf the supremum for the processes 
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, * U:Cu) , o < u < 00 } and {ç: (u) , o ~ u < m} can be determined expli0it-

ly. Seè V. M. Zolotarev:_ [ 227] and the author [ 210 pp. 83-8S]. 

In the f ollowing we shall need the f ollowing type of integral 

t 
(43) J g(u)P{x < ç:(u) < x + du} • 

0 ,.,._ 

To define (43) let us subdivide the interval [O,t] by partition points 

* Let L\u. = u.- u. 1 and u. e: [u. 1 , ui.] 
l l. l- l l-

for i = 1, 2, ••• , n • If for any parti tion of the :interval. and for any 

* choice of u. 
1 ]. 

1 

(44) i 

the sums 

n * * l g(u.)P{x < ç:(u1) < x + L\ul.} 
i=l i~ 

have a cQIDJ.on limit as max L\u1 -i- 0 , then we say that the integral (43) 
l.:SJ.Sl 

exists and is equal to thë corrmon limit of the sum ... c:; ( 44). 

If t,:(u) is a discrete random variable, then (43) reduces to the sum 

(45) I g(u~{ç:(u) = x} 
O<u<t == 

wnere the Surrillation is extended for all those u e: [O,t] for w!lich 

P{~(u) = x} > 0 . 
'""' 

If ~(u) has a density function, then (43) reduces to 

( Ji6) J t g( u) st_{ t; ( u) ~ x} 

0 ax du • 

We define 
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(47). 
00 

J g(u)P{x < ç;(u) ' x + du} 
0 ,,..,... 

= l::L11 J 
t+ 00 0 

+­v 

g(u)P{x < t;(u.) < x + du} 
N..-. 

provided that the li'Tiit exists. 

To find the distribution of the supremum for the processes {t;(u) : 

* 0 < u < 00} a."ld { ç; (u) ' 0 2. u < 00 } we shall approximate the process 

{ç;(u) , O < u < oo} by a sequence of compound Poisson processes {ç;n(u) , 

0 < u < oo} is such a way that the fini te dimensional distribution functions 
= 

of the process {ç;n(u) , 0 < u < 00 } converge to the finite dinEnsional 

d.1.str:Lbution fu.nctions of the process { t: ( u) , O ::. u < ""} as n + °'' • 

lf we suppose that 

(48) = c I <; .- i) 
n l<i<v (u) m 

==n 

for u > 0 where en is a positive constant, ;nl' ;n2, ••• , ;n.1 , ••• is a 

sequence of mutually independent and identically distributed discrete random 

variables taking on nonnegative integers only and {vn(u) , 0 < u < 00 } is 

a Poisson process of density Àn which is jndependent of the sequence 

{ç;ni ; i = 1,2, ••• } and if we choose the parameters c ,À and h (z) = n n n 

ç; 
E {z ni} in such a was that 

c s -c s 
(49) lim Àn[e n h(e n ) - l] = l!'(s) 

n + oo 

for Re(s) ~ 0 where 'Y(s) is given by (41), then the process {F,;n(u) , 

0 < U < oo} 
= 

any l!'(s) 

satisf ies the desired properties .. We can easily see that for -
by 

given"'( lU) we cal'l find st.Li.table c , À and h (z) such that n n n 

(119) is satisfied. 
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· If we suppose tha.t { t; ( u) , 0 .5- u < 00 } and · { ç; ( u) , O ~ u < 00 } are ··-· n -·-
processes 

separaISle and if (49) is satisfied, ther! by ~[heorern 52.3 we can conclude 

that 

( 50) lim P { sup ç (u) ~ x} = P { sup ç(u) ~ x} 
n + .;;- O<u <t n - ,,,.._ O<~.~t 

in every continuity point of the distribution function on the right-hand 

:side. If we write * ç (u) = -ç(u) * and ç; (u) = -s (u) n n 

then we have also 

(51) *c , . * lim P { sup l; u; < x} = P { sup é; ( u) ~ x} ,.,.... n 'V'-

n + 00 O~~t O~u<t 

for O < u < 00 

' 

in every continuity point of the distribution function on the right--hand 

si.de. 

The probabilities on the left-hand si.de of (50) and (51) can he obteJ.ned 

by Theorem 55.11 and by rl'heorem 55.13 respect:i.vely. Thus the proba.bilities 

on the right-hand side of (50) and (51) are also dete:mûned. 

The l:im:Lt.ing case t = 00 can be obtai..ned by Theorem 55 .12 and by 

Thecrem 55.14 • 

If for the process {s(u) , 0 < u < 00 } we have (40) where ~(s) is 

given by (41), then 

(52) E{~(u)} = -pu 
rv-

f or u > O where = 
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"" x3 
(53) P = a - f -- dN(x) 

+o 1 +x2 • f:.~ 
~or u;;o. 

r:: " It is possible that P = -"' ; however, p = (X) l.s :impossible.:J In what follows 
we shall exclude the trivial cases l'{f (u)~O}=l for u ~ 0 and P{~ (u)~O~ 

~ 

Theorern 5. If {E;,(u) , 0 < u < 00 } is a separable2 homogeneous, real 

stochastic process with independent increments for which (40) holds with 

1:11(s) é,.'1._ven by (51), then we have 

(54) P{ sup E;,(u) < x} = P{E;,(t) ~ x} - Jt J;,{[E;,*(t-u)J+)p{x < E;,(u) < x +du} 
~ O<u <t w..... 0 t-u ,..,..,.. 

=:; :;:: 

* for x > O where E;, (u) = -E;,(u.) for u > O • 

~roo~ If we apply Theorem 55.11 to the process {E;,n(u)/cn , O ~ u < 00 } 

and if k. = [.x/ en] , then we obtaln ( 51-1) by letting n + 00 l.n ( 55. 7 4) • 

Theörem 6. Let 

(55) W(x) = P { sup E;,(u) < x} 
. l\t"y.. . = 

Ü2_U«10 

where the process {E;,(u) , O < u < 00 } is the same as in Theorem 5. If 

p > 0 , then we have 

(56) 

for x > 0 and 

(57) 

co 

W(x) = 1 - pf ~{x < E;,(u) < x + du} 
0 

<10 

~c ) - r -sx wc )ax - p ~' s - J e x • - IJl (Sî 
0 s. 
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for Re(s) > 0 • If p < 0 and P[t:(u) = O} < 1 for u > 0 , then 
- """' 

W(x) = 0 for all x . 

Proor·. Formula ( 56) can be deduced from ( 54) and formJ.la ( )7) f'rom 

(55.'{8) • 

* Theorem 7. If t; ( u) = -t;:Çu) f or u ~- 0 where the process { ç: ( u) , 

0 < U < co} is the same as in Theorem 5, then we have 

(58) * t * P { sup t; (u) _-:_ x} = 1 - f !. P{x < t; (u) < x + du} 
0 t 0 

u,,,_ 
<u<, 
== 

· ·ror x > o • 

Proof. If we apply Theorem 55.13 to the process {t;n(u)/cn , 0 .:::_ u < 00 } 

and if k = [x/cn] , then we obtain (58) by letting n + 00 in (55.80) • 

Theorem 8. * If the process { t; ( u) , 0 < u < 00 } is the same as ir1 

Theorem 7, then we have 

(59) * 00 * P { sup t; (u) < x} = 1 - f !. P{x < t; ( u) < x + du} 
tv-....0 . au""' 

~u<oo 

f or x > O , or 

(60) * -wx ]!_ { sup E; ( u) ~ x} = 1 - e 
Ü2_U<co 

· for x > 0 , where w is the largest nonnegati ve real root of the e~atj_on 

(61) 'l'(s) = O • 
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* If p > 0 and .!_U; (u) == O} < l , for u > 0 then tJ = 0 , and if.. p ~ O 
. * 

or P{~ (u) = 0} = 1 for u 2:. O , then w > O . - ,.,,_ - -

Proof. If we let t + 00 in (58), then we get (59). Fonnula (60) 

can be obtained by Theorelil 55.14 • 

We note that if 

(62) 
e: 

J x dN(x) < "' 
+o 

f or ~ane e: > 0 , then (41) can be reduced to the following form 
1 1 

(63) 
00 

'l1(s) = äs + 1 cis2 + J (e-sx - l)dN(x) 
2 +o 

-where a is a real constant. If 

00 

(64} J xdN(x) < oo 

for sorne e: > 0 , then (41) can be reduced to the f'ollowing form 

(65) 
00 

l 2 2 f ( -sx ~(s) = as + 2 cr s + e - 1 + sx)dN(x) 
+o 

-where a is again a real constant, but it is, in general, not the sarne 

constant as in ( 63). 

In the pa.rticular case when 

00 

(66) J sx ~(s) = s + (e- - l)dN(x) 
+o 

- for Re(s) ~ 0 where N(x) is a nondec!.'easing function of x in the 

interval (0, 00
) for which lim N(x) = 0 and 

x + co 
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(67)' 
e: 

f xdN(x) < "" 
+o 

for some e: > 0 , Theore.'TIS 5, 6 , 7, 8 can also be deduced from 'lheorems 

7, 8, 9, 10 in Section 55. Ir. the particular case of (66) we can also 

prove Theoren~ 5, 6, 7, 8 directly by usir.g Theorem 51.8 • 

Examples. First let US suppose that {~(u) , 0 < u < 00 } is él general 

Bro\'.man motion process which we defined in Section 50. Let 

(68) z;(u) ::: au + crs(u) 

for u .:_ 0 where a is a real constant and cr is a positive constant. 

Then 

( 69) 

f or all x where 

(70) 

P{ z;;(u) < x} 
tvv. = 

x 2 
4>(x) = _]_ J e-y 12 dy 

&-0> 

1s the nonnal dtstr~bution function. 

In this case we have E{du)} 2 = au and Var{ç(u)} = a u for 

and 

( 71) 

f or u ~ 0 where 

(72) 

""-

l 2 2 
~(s) = -as + 2 cr s 

~ 

u > 0 = 
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.Now we can apply Theorems 5, 6, 7, 8 in finding the distribution of the 

suprerm.un for the process { r,; (l1) , 0 ~ u < 00 } , however, we shall show that 

it :ts s.impler to use fonnula (55.75). 

We observe that 1f we de fine the process { ~ ( u) , O :__ u < 00 } by ( 48) 

where now en = <J/./TI. , "n = n and 

(73) P{ç; . = 2} = p = 12 + _a_ ' P{ç;m. = 0} = a = 12 - ~-
,........ nJ_ n 2cr fr1 AA "'!1 2cr rn 

for n > a2/cr2 , then the finite climensional áistribution functions of the 

process {ç;n(u) , 0 ~ u < 00 } converge to the finite dimensional distribution 

functions of the process {r,;(u) , 0 ~ u < co} • This follows from the fact 

that 

ers 

rn - 1) = -as + ~ cr
2

s
2 

f or all s . 

For the process {~n(u) , 0 ..::_ u < 00 } we have by (55.75) that 

(75) P{ sup ç; (u) < ko }= P{ç; (t) 
Nv- Ü<U <t n rn /V'- n 

= == 

ko 
< -}-

/ii. 

p k 
(-12) P{ç; (t) < - kcr } 
~ """' n rn 

for k = 1,2, ••• If we put k = [xV-rJ/o] in (75) and let n ~ 00 , then 

we obtain that 

2 
P { sup r,;(u) < x} = P{z:;;(t) .::_ x} - e2ax/o P{r,;(t) ~ -xJ 

,...,... O<~t '"'-' ,......_ 

(76) 
2 

= ~ex-at ) _ 2ax/cr o(-x-at) 
"' 1/2 e · · .1/2 

ot crt 
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for ·x > 0 • 

If a < O and if we let t -+- co in (76), then we obtain that 

(77) P{sup ç(u) ~ x} = l - e2a:x/cr 
2 

""' O~<"" 

f or x > O • 

We note that in a sind.lar way we can detennine the probability 

(78) f{-~· < ç(u) < x far o < u < t} ,__ 

if x and y are positive real rn.unbers by using fornula (55. 76). 

If in (77) we put a = 1 a~d a = -y , and if we use the representation 

(68), then we obta.in that fora separable Brownian motion process {t,;(u) , 

0 < u < co} we have 

(79) P{t,;(u) > x + uy for some u i:: [O, "")} = e-2xy 
Nv-

for x > O and y > 0 • For another proof of (79) we refer to J. L. 

Doob [ 58 ] . 

As a second example let us suppose that {v(u) , 

separable Poisson process of density À • Then 

(Bo) 
-ÀU (:\u)k 

P{v(u) = k} = e 
~~ k! 

for k = 0,1,2, ••• and u ~- O • 

0 < U < cc} = is a 
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. In this case the distribution functions of sup [ v(u)-u] and 
O<~t 

sup [u-v(u)J can be detennined by Theorern 55.6 and1 Ibeoran 55.9 respectively. 
C<u<t == 

Here we shall mention another method for finding the probabilities 

(81) W(t,r,k) = P{v(u) < u + r for 0 < u < tlv(t) = k} ,,.,,.._ 

f or O < k < t + r and t > 0 , and 

(82) W(t,r) = P{v(u) < u + r for 0 < u ~ t} ,.,,.,.. 

for;- r = 0,1,2, ••• and t > 0 • 

(83) 

By Theorem 48. 6 we have 

k 
W(t,O,k) = 1 - t 

for O < k < t , and by (~8.57) we have 

(84) W(t,O) = P{v(t) ~ t} - ÀP{v(t) ~ t - l} 
,.,.__ - ~ -

f or t > Q • 

Start:ing fran (83) we can obtain W(t,r,k) for r = 1,2, ••• by t'he 

following recurrence f ormula 

(85) 
k r 

r.r( 1 k) = ( t+l.L W(t+l r k) - \' r.,k) l W1(t r+l . k . ) vv t ,r+ ., k ' ' l j -. ' -J' -J . 
t j=l tJ 

This fellows fran the equation 

(86) W(t+l,r,k) 
,.., k-j 

= Î (~) t k W(t,r+l-j,k-j) 
j=O J (t+ 1) 
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. In provj.ng ( 86) we take into consideration that the event { v ( u) < u+r = 

for 0 < u < t + l} can occur jn such a way that v(l) = j where j = 
=== = 

0,1,2, ••• Since 

(87) . 1 (k.") tk-j P{v(l) = j v(t+l) = k} = 
""" J (t+l)k 

for j = 0,1, ••• , k , the eqm.tion ( 86) follows easily. 

(88) 

By (85) we obtain that 

W(t,l,k) = (t+l-k)(t+l)k-l 
tk 

for 0 ~k < t+l, and 

(89) W(t,2,k) = (t+2-k)[(t+2)k-l - (t+l)k-2] 
tk 

tor 0 < k < t+2 • (See Problem 58. 2. ) 
= = 

Ina simi.lar way, starting fran (84), we can obtain W(t,r) for 

r = 1,2, ••• by the following recurrence fo1mula 

(90) 
À r Àj • 

W(t,r+l) = e W(t+l,r) - l -:-rW(t,r+l-J) • 
j=l J. 

This follows fran the equation 

(91) W(t+l,r) 
r -À Àj 

= l e -:-r W(t,r+l-j) , 
j=O J. 

which can be proved by tak:Ln3into consideration that the event {v(u) ~ u+r 

for 0 .;:.,, u .:.. t+l} can occur in such a way that v(l) = j where ,j = 0,1,2, •••• 
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, By ( 90) we obtain that 

(92) W(t,l) = eÀ [P{v(t+l) ~ t+l} - ÀP{v(t+l) < t}] 
N'- N\.r = 

f or t > 0 • 

Finally, we mention an interesting result for Poisson proc~~~/which 

is a particular case of a more general result fou.rid in 1959 by S. Karlin 
,.. 

and J'. Mc,..Gregor [ 101 ] . 

Theorern 9. Let {v (u) , 0 < u < co} 
- r 

(r = 1,2, ••• , m) b~ independent 
1 

:separ$1).le Poisson processes of density À • Let 
1 

1 c1 < c2 <. • • < cm be integers. Then we have 

(93) 
a. ! 

for r = 1,2, ••• , m} = Det ~J )r \a"• c.- c .. 
J J l . ·-1 2 i,J- , , ... ,m 

where the right-hand side of (93) is an m x m determinant. In (93) 

l/x! = 0 if x = -1, -2, •••• 

Proof. for O < u < co and let b = a + c = r r r 

We shall prove that if O ~ a1 < a2 <. •• < '\n and b
1 

< b
2 

< ••• < bm , 

then 

(94) 
for r = 1,2, ••. ,m} = Det ku:r(t) = b

3
} 1 

r,s=l,2, ••• ,m 
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Let 

(95) Dm= Det!P{ç (t) = b }I . 
-......r s 12 r,s= , > ••• ,m 

Since 

(96) 
a +c -c 1 a. a 1 

D = Det e-Àt(Àt) s s rl = e-mÀt(Àt) .i ••• (Àt) m D t 
m (a +c -c ) ! a. ! • . . . am! e 

a ! j 
(a +c 

3
-c ) ! s s r ! s s r .L 

.where l/x! = 0 for x = -1, -2, ••• , therefore (94) implies (93). 

Nowwe shall prove (94). Denote by C the event that at least two 
i 
1 

paths! {ç (u) , 0 < u < t} (r = 1,2, ••• ,m) coincide for some u 
j r . 

Co < 'u < t) • Let us write that == = 

(97) D = m = bl ' ••• ' 
1 

t: (t) = b. } 
m im 

where the si.mnation is extended over all permutations (i1, i 2, ••. , j_m) 

of (1,2, ••• , m) and I is the mmber of inversions in the perrrrJ.tation 

Cï1 , i 2, ••• , ~) • Let us express each term in ( 97) in the follrn<Ting way: 

lU;l (t) :::: b.i ' ••• ' ~(t) = b } = 
\i 

(98) 
l 

=,~{çl(t) =bi, ••• , çm(t) = b. , C} +"~{t:1 (t) = b. , ... , çm(t) = b. l 11 lm 1 m 

We have 

, C} . 
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l (-1)1 P{s1(t) = b. , ••• , ç;m ( t) = bim' C} = 
(11, ••• ,im) ~ ll 

(99) 

- - I c-1)1 P{s1Ct) = b. , ••• , s (t) = b. 
' 

C} . 
ll m l (il, ••• ,im) ,..__ m 

For if C occurs, then at least two paths {sr(u) , 0 < u < t} (r = 1,2, ••• ,m) 

co:incide for some u (0 < u < t) • Let us suppose that the r-th and the 
= = 

s..-th paths coincide for the first time in the interval [O, t] • Af'ter this 

coîncidence let us intercharige the rana..i.ning parts of the two paths. By 

this :1nterchange, on the one hand, the surn (99) rernains unc:ha..."lgead, and on 
i 
1 

the o~her hand it is multiplied by -1 • For 
1 

(100) 

J?{ ••• , t. (t) =b1 , ••• , s(t) =b •• c}= 
·~ '!> r s is, • ' 

= p { ••• ' 
IV--

=bi , ••• , 
s 

s (t) s 

and the number of inversions in the two pennutations ( . . ) \•••,l , ••• ,1 , ••• r s 

and ( ••• ,i , ••• ,i , ••• ) differ by an odd nurnber. This implies that the . s r 

sum (99) j:s necessar11y 0 • 

(101) 

Thus by (97) 

D = m l (-1)
1 P{s1(t) 

11 i ' ,.,._ \ l' · · ·' m' 

= b. , ••• , 
ll 

~(t) =bi ' c}. 
m 

Obviously, every teim in (101) is 0 except one which corresponds to 

11 = 1 , i 2 = 2, ••• , im = m • Thus we have 

(102) D = P { t:
1

C t) = bJ , ••• , s ( t) = b , c} m rv- ~ _ m m 

which canpletes the proof of the theorem. 
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.57. First Passage Time Problems. L€t {ç;(u), 0 < u < oo} be a 

separable real stochastic process for wh.i.ch P{~(O) = 0} = 1 For x > O = 

let us de fine 

(1) e (x) = inf{u ç;(u) > x and 0 < U < oo} = 

and e(x) = 00 if ç;(u) < x for• all u s [O, 00 ) • We can interpret e(x) 

as the first passage t.ime of the process U;(u) , o < u < 00 } through x • 

For every x .:::._ 0 the first passage t.ime e(x) is a nonnegative random 

variable (possibly 00 ) • 

wide 

(2) 

±t is 

61ass 

of some .importance to determine the distribution of e(x) for a 

of stochastic processes { ç; ( u) , O < u < oo} • Si nee obviou.sly 

P{e(x) ..5. t} = P{ sup ~(u) 2- x} 
,..,._ - ,-.,,,,. Ü<U<t -

= =:: 

for all x > 0 and t .:::._ 0 , the proble.'ll of fincling the distribution of 

e(x) can be reduced to the problem of finding the distribution of sup ç;(u) • 
O<u<t == 

In the previous section we determined the distribution of sup ç;(u) 
Ü<U..5_t 

for a separable, hcmogeneous, real process {ç;(u) , 0 < u < 00 } with 

independent increments and thus by (2) we can also find the distribution of 

e(x) for x > 0 • 

In what follows we shall mention a few processes {ç;(u) , 0 < µ < ~} 

for which sirnple explicit results can be obtained. 

The first result concerning first passage time problems was obtained 

in 1708 by A. De Moivre [ 52 ] • A. De Moivre's result can be fonrulated 
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in the following way: Let us suppose that a parti.cle performs a random 

walk on the x-axis. It starts at x = O and at times n = 1,2,3, •.• it 

moves a unit dista.nce to the right with probability p or a unit distance 

to the left with probability q where p > 0 , q > 0 and p+q = l • Let 

us suppose that the successive di.splacements are rnutually independent random 

variables. Denote by f.(n) (n = 0,1,2, ••• ) the position of the particle 

inmediately after time n , and denote by e(k) the first passage time 

through x = k (k = 1,2, ••• ) • By the result of A. De Moivre [ 52 ] we 

have 

( 3) P{e(k) = n} = k P{ç;(n) = k} 
··"'·- n,..,.,.. 

for n = k, k+2, ••• and k = 1,2, •••• 

, 
By a result of~· Barbier [ 4 ] wbich was found in 1887 we cétn 

conclude that the result (3) is valid under more g,-eneral circumstances. 

If we suppose that in the random walk process rnentioned above the successive 

displacements r.1, r. 2, ••• , f.n' ••• are rm1tually jndependent and identically 

distributed random variablel~fü.ch P{ç; = l} = p and P{ç; = -µ} = q 
" """" n '"'"" n 

where µ is a positive integer, p > 0 , q > 0 and p + q = 1 , then (3) 

holds unchangeably for n = k, k+2µ , ••• and k = 1,2, •••• 

In 1960 the author [ 199 ] , [ 200 ] proved a generalization of the 

classical ballot theorem and this Jmplies that (3) is valid if we suppose 

that r.1, r. 2, ••• , F.
11

, ••• are rnutually independent and identically distributed 

discrete random var1ables taking on integers _:_ l only. 
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This last resul ts irnpliE:s :immem_ately the following more general 

result: 

(4) 

Let us suppose that 

i; Cu) = I s 
l<i<v(u) i 

for u. > 0 where {v(u) , 0 < u < 00 } is a Poisson process of density À 

and i;
1

, i;
2

, ••• , t;i'""" are mutually independent and identica11y distributed 

d:;Lsc1"ete random variab.les taking on intégers ~:. 1 only and that { t;i} aYld 

{v(u) , 0 < u < 00 } are independent. If e(k) denotes the first passage 

time through k where k = 1,2, ••• , then we have 

(5) 
t 

P{e(k) ~ t} = J k P{t;(u) = k} du 
~ - 0 u,,,_ 

f or t > O • = By (5) we have also 

(6) ag{e(k) < t} = ~ P{t;(t) = k} 
at t ,,_ 

for t > 0 and k = 1,2, ••.• 

Now let us suppose that {x(u) , 0 .::_ u < oo} is a separable compound 

Poisson process whose sample functions are nondecreasing functions of u 

with probability 1 • Let t;(u) = u - x(u) for u > 0 and denote by e(x) 

the first passage time of the process { t; ( u) , 0 < u < ""} throug.'1 x where 

x > 0 • By a result of the author [ 209 ] obtained in 1961 we have 

t 
('7) P{e(x) .::. t} = f ~ d P{x(u) 

,.,... x u u-
"- u - x} = 
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for 0 < x 5- t . If we suppose 0:11.y that {x(u) , 0 :_ u < co} is a 

separable, homogeneous process with independent increments almost all of 

whose sample functj_ons are nondecreas:irig step functions vanishi...~ at u = 0, then 

(7) remains valid tmchangeably. This was pointed out by the author [ 209 ] 

in 1962. See also [ 203 ] , [ 204 ] , [205] . This last result wac:; stated 

in 1957 by D. G. Kendall [ l 06 ] , however, he did not prove it. 

It is interesting to mention that if {ç;(u) , 0 -~ u < co} is a separable 

Brownian motion process f or which 

(8) P{E;(t) ~ x} = et>(..!..) 
/"""- - rt 

for t > 0 where ct>(x) is the normal distribution function and lf e(x) 

denotes the first pass.age t:ime through x where x > O , then we have 

(9) aJ:{e(x)~ t} x a.r_{ç;(t)~ x} x -x2/2t 
at = t ax = --- e 

h7ft3 

for x > 0 and t > 0 • This result can be deduced from a result found 

in 1900 by L. Bachelier [ 3 ]. 

From (5) we can deduce amore general result. Let {F;(u) , 0 < u < 00 } 

be a separable, homogeneous stochastic process with independent increments 

for which the sample functions have no negative jumps and vanish at u = 0 

with probability 1 • The trivial cases P{ç;(u) > O} = 1 for u > 0 and ,...,._ = = 

* 2'.{ç;(u) 5_ 0} = 1 for u ~- 0 will be excluded. Let ç; (u) = -ç;(u) for 

* * u > 0 and denote by a (x) the first passage time of the process {ç; (u) , 

0 ~ u < co} through x where x > 0 • Then we have 
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(10) 
* t x . * P{ e (x) ~- t} = J u. ,!{x < ~ (u) < x + du} 

tv--- 0 

for x > 0 and t > 0 • This result was proved in 1964 by V. M. Zolotarev 

[ 228 ] • His proof is based on a result of A. V. Skorokhod [ 185 pp. 129-

134] • See also the author [ 210 pp. 83-89] • 

*· In this case { e (x) , Ü < X < 00 } = is also a homogeneous stochastic 

process with independent increments. The sample ~..111ctions of the process 

* { e (x) , O ~ x < 00 } are nondecreasing f\mctions of x and vanish:i.ng at 

x = o with probability 1 • 

Let 

(11) 

for Re(s) > 0 and u > 0 where 't'(s) is given by (56.41). Then we can 

write that 

(12) 

for Re(s) ~ 0 and x > O where 

(13) 
OC< 

* * r -sx * w (s) = a s - ; (e -l)dN (x) 
+o 

for Re(s) > 0 and * * a is a nonnegative real nurr.ber, and N (x) is a 

* nondecreasing fu.nction of x in the interval (O, 00 ) for which lim N (x) = 0 

and 

( 14) €.'. * J xdN (x) < "" 

+o 

f or some E > O • 
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* ·We can prove that if Re(s) ?... 0 , the?.1. z = w (s) is a root of the 

equation 

(15) 'i'(z) = s 

in the domain Re(z) > O • Actually, we can prove that if Re(s) > O , 

* then z = w (s) is the only root of the equation in the domain Re(z) > Q • 

See A. V. Skorokhod [ 185 pp. 129-134] • 

In 1961 V. M. Zolotarev [ 228] demonstrated that for some '!'(s) 

* defined by (56.41) for Re(s) .:_ 0 there exists a ...:J (s) defined for 
1 

1 

Re(s) i ~- 0 which can be represented in the form (13) and which satisfies 
* ,-

'i' Cw (á)) = s for Re (s) ,;:. 0 • He also showed that for the corresponding 

. . * * processe& U,; (u) , o < u < co} and {e (x) , o ..::.. x < 00 } (10) holds; how-

* ever, he did not demonstrate that {e (x) ' 0 ~- x < 00 } is the first 

* passage time process of {~ (u) , 0 < u < ""1 J • 

Example. In accordance with the notation of Section 42 let us denote 

by f(x ; a,13,c,O) the density function of a stable distribution function 

of type s.(a,8 ,c,O) where c > 0 • 

Let US suppose that {~(u) , 0 ~ U < co} is a stable process of type 

S(a,l,c,O) where 1 < a < 2 and c > 0 . Then 

(16) af{~(t) ~ x} 1 ( x o( 1 0) 
ax = tl/e< f tl/o< ~ ' ,c, 

f or t > 0 and all x • 
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* If { e (x) , 0 ..::_ x < 00 } is the first passage time process wW.ch 

* corresponds to s (u) = -s(u) for ü < u < 0o ·' then by (10) we have 

(17) 
*, ag{e \x) ~t} 

at 
= - x ~ ( x • 1 0) 

tl+l/a - tl/CL 'CL' - ' c, 

f or t > O and x > 0 . 

(18) 

On the ether hand by (42.173) we have 

CSCL 
~(s) = - cos(an/2) 

for Re(s) > 0 in (11). Thus by (15) we have . = 

(19) 
l/a l/ 

w(s) = (- ëosCan/2) ) s a 

for Re(s) > 0 in (12). Hence by (42.171) we can conclude that {e*cx) , 

0 .i x ~ ""} is a s.table process of type 

(20) 1 (-cos(an/2) )l/CL .!!_ O) 
S (ëi", 1, c cos 2CL , • 

Accordingly we have 

(21) ag,{e*(x) ~t} 1 t 1 c-cos(crn/2))1
/CL n ...... _.....____,_.._ __ == - f (- • - 1, cos -

2 
, O) 

êt CL Cl ' Cl' C CL x x 

f or t > 0 and x > 0 • 

If we compare (17) and (21), then we obtain that the identity 
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l+ 1 
. a 

f(t~/a. ~a.,-1,c,O):. t xa·H 

., I 

"'(t l ~. "-cos(a:rr/2)).J.../et. 1r O) 
I ~' a'l.' ' C COS 2a ' 

x 
(22) 

holds far t > 0 and x > 0 . 

If put t = 1 and c = -cos(an/2) in (22), then we get 

(23) f i • l O.TI O) _ 1 f (1 • 1 l TI O) . ,x,a,- ' -cos 2 ' - a.+l a , ~' ' cos 2a.' 
x x 

for x > 0 and. 1 < a. < 2. = 

Conversely, (23) implies (22). This follows from the relation 

(24) f(x;a,8,cu,O) = Î;a. f ( ~/a;a,8,c,O) 
u u 

which holds for all c > O and u > O whenever a ~ 1 • 

'I'he identity (23) is indeed true. If a = 2 , then this fellows from 

(42.108) and (42.116). If 1 < a. < 2 and if we use the notation (42.128), 

then we can express (23) in the following equ.1valent form 

(25) 1 1 1 1 h(x·a. 2-a.) = -- h (- · - -) ' ' a.+l a. ' a' a. x x 

for x > 0 and 1 < a. < 2 , and this is true by Theorem 42.7 • 

By using Theorem 56.5 we can determine explicitly the distribution of 

a(x) for a separable, homogeneous stochastic process {;(u) ' 0 .::. u < co} 

with :independent increments for which the sample functions have no negative 

jumps and vanish at u = 0 with probability 1 • 
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'11.he following problern is ccmnected with the first passage time probJ.em. 

Let {~(u) ' 0 < u < 00 } be a separable, homogeneous stochastic process with 

independent ir1crements for wh1ch P{~(O) = 0 }= 1 • Then by Theorem 51.4 
"'"' 

the lim.tts, ~(u+o) and ~ (u....O) exist for all u e: (O, 00 ) with probability 1 • 

For a > 0 let us define 

(26) e(a) = inf{u : ~(u) ~ a and 0 < u < 00 } 

and e(a) = 00 if ~(u) < a for all u e: [O, 00 ) • 

If] e(a) is finite, then let us define 

(27) 1 y'(a) = ~(e(a) + O) - a, 

(28) y"(a) = a - ~(e(a) - O) , 

and 

( 29) y(a) = y' (a) + y"(a) 

for a > O • The problem arises to find the distributions of tbe random 

variables y'(a) , y"(a) and y(a) if they ex:tst. 

In 1955 E. B. Dynkin [61 ] deterrnined the distributions of y'(a) , 

y"(a) and y(a) in the case where {~(u) , 0 < u < 00 } is a separable 

stable process of type S(a,l,c,O) where 0 < a < 1 and c > 0 . Then 

we have 

(30) E{e-s~(u)} = e-ucsa 
Nv-

for Re(s) > 0 and u > O • 



VIII-73 

If' a > 0 , then P{e(a) < 00 } = 1 and we have 
!"--

(31) . y'(a) 
P{ .::_ x} = HN(x) 

·"''- a .... 

and 

( 32) Y'(a) y"(a) x+y 
P{ > x ----- > y} = 1 - H ( ) ,.,,.,,. a ' a a 1-y 

f or x > O and 0 < y < 1 where 

(33) 

and furthennore, 

(34) 

f or x > 0 where 

(35) 

and 

(36) 

1 for x > 1 , 

sinalr x 
du = f or 0 Ho<(x) J < x < 1 ' 1T 

0 ua(l+u) 

0 

P{ y(a) < x} = K (x) 
~ a = a 

sina1T K (x) = 
et 1T 

x 
J ~du 
0 ua+l 

{ 

1 - (1-uJa 

q(u) = 
1 

f or x < 0 
' 

f or O < u ~ 1 , 

for u :-- 1 . 

The above results can easily be deduced fran (49.176), (49.183) a.vid 
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(49.184). It is sufficient to prove (32) because (31) and (34) follow from 

(32). In (49.183) let us define the randan variables Xt and nt for the 

sequence ek = i;(k) - i;(k-1) (k = 1,2, ••• ) and for t > O • Then we have 

(37) P{ y'(a) > x, y"(a) } - l" P{ > ax ~} = 
IY'-' a a > y -h ~er xa/h h ' na/h > h 

1-H (x+y) 
et. 1-y 

for x > O and 0 < y < 1 and this proves (32). To prove the first equa1ity 

in (37) let us apply (49.183) first to the sequence Tk = i;(vha.) where 

k = 0,1,2, ••• and h > 0 , and then to the sequence T = h"° (k) k ':> 
where 

k = 0,1,2, ••• and h > 0 and let h -+ 0 • Since !;(kha.) and hl; (k) have 
i 
1 

the sanif distribution, it fellows that the first equality is true in (37). 

If we refer to Note 2 in Section 49 and if we use the solut1on of 

Problem 53. 6 , then we can easily extend the previous results to a 

separable stable process of type S(a.,S,c,O) where eithe:t' O < cY. < 1 or 

1 < ~ < 2 , and -1 < B < 1 and c > 0 • If a > 0 , then P{e(a) < oo} = 1 , 

and we have 

(38) P { Y' (a) < x} = H (x) 
/VV' a = aq 

and 

(39) 
'() Il' ) P{ y a > x r..J.~ > y} = 

,,,,_ a ' a · 

f or x > 0 and 0 < y < l , furthermore 

(40) P{ tl& < x} = K (x) 
"~ a = a.q 

1 - H (x+y) 
aq 1-y 
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for x· > 0 where H (x) and K (x:) are defined for 0 < a. < l by (33) a. ~ 

and (35) respectively and where 

(41) 

with 

( 42) 

and 7T 
""" - < 2 

7f are tan x < 2 . 

q = !+ L 
2 2a. 

2 ( Ct1T 
Y = - are tan 8 tan -) 

7f • 2 

These results are due to Ya. G. Sir1ai [ 182 ] . 

We note that in this case by (42.192) we have P{.;(u) > 0} = q for all ,....._ 
1 

u > 0 hnd that O < aq < 1 always holds. 
1 

1 

1 

Finally, we mention the papers of D. V. Gusalc [ 74 ] , E. A. Pecherski.i 

ánd B. A. Rogozin [ 14-2 ] , and E. S. Shtatland [ 178 ] in which the joint 

distribution of e(a) and y'(a) and the distr1bution of T = inf{u : t;(u) = 

sup t;(u) are dete:rmined for some hornogeneous processes with independent 
O<u<t == 
increments. 
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58. Problems 

58 .1. In a ballot candj_dates A1 , A2, ... , l\n score a1 , a2, •.. , am 

votes respectively. Denote by o:(r) a(r) o:(r) the number of votes 1 ' 2 , ... , m 

registered for Al' A2, ••• , Am respectively among the first r vetes recorded. 

Let us suppose that all the possible votirig records are equally probable. 

Let c1 < c2 < ••• <cm be integers. Prove tha.t 

a. ! 
1= Det ,) -

(a.+ c.- c
1

)! 
J J 11,j=l,2" •• ,m 

i 
1 

where l/x! = 0 for x = -1, -2, .••• 

[ 6 J.) 

58.2. Let {v(u) , 0 ~ u < co} be a sepa.rable Poisson process cf density 

À • Fin:i 

W(t,r,k) = P{v(u) < u + r for 0 < u < tlv(t) = k} 
""" 

for O < k < t + r , t > 0 and r = 0,1 • (See N. V. Smirnov [ 187 ] . ) 

58.3. Let {x(u) , 0 ~- u < co} be a compound Poiason process defined 

by (55,37). Give a direct method for finding W(t, x) == P{x(u) ~-.u + x for ,..,._ 

0 < u < t} . 

58.4 Let {x(u) , 0 .::__ u < 00 } be a separable compound Poisson p:r·ocess 

def'ined by (55.37) where H(x) = 1-e-µx for x _:_ 0 . Find 
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W(t, x) = P{ sup [x(u) - u] < x} . 
IV'-- O~µ~~t 

(See G. Arfwedson [ 2 ] • ) 

58.5. Let fx(u) , 0 < u < en} be a separable ccmpound Poisson process 

defined by (55.37) where H(x) = 1-e-µx for x > 0 • Find 

V(t, x) = P{ sup [u - x(u)] ~x} • 

(See G. Arfwedson [ 2 ] . ) 

Let 

,.,.,.. O<u<t --
= = 

x(u) = L x 
O<T <u n 

n= 

for u > o where T - T 1 (n = 1,2, ••• , TO= O) and xn (n = 1,2, •.. ) = n n-
are independent sequences of mutually independent random variables. We 

are 
suppos(e that Tn- Tn-l 

-S T -T ) 
(n = 1,2, •.. )~positive randoffi variables for which 

E{e n n-l } = ~(s) for Re(s) ~ 0 and xn 
""" -sx 
randan variables for which E{e n} = tji(s) 

(n = 1,2, •.. ) are real 

for Re(s) == 0 . Give a meth:xl ,..,_,._ 

f or finding the distribution function of 

n(t) = sup [x(u) - u] . 
O<u<t == 

58.7. 

(n = 1,2, •.. ) 

Let us consider P:Poblem 58.6 in the particular case when xn 
nonnegative 
are random variables. Give a method for findi.>ig the distribution 

" function of 

* . n (t) = sup [u - x(u)] . 
O~u<t 
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58 • 8 . Prove tha.t if q f. 0 and o. .:__ 8 , then 

8 + + +1S 
( ) J -qt-s[ y-t] dt _ -qt-s[y-t] s -qt-q[ y-t] 1 s-q e . - e - - e 1 

a ç 'a 

+ + + = {e-qs-s[y-8] _ e-qa-s[y-a] } _ ~e-qS-q[y-8] 
q 
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