VIII-1 CHAPTER VIII

THE DISTRIBUTION OF THE SUPREMUM
FOR STOCHASTIC PROCESSES

S, " "Compound Recurrent Processes. We have already defined the notion

of a campound recurrent process in Section 49 (Definition 2). In this

section we shall use a slightly more general definition.

ILet us suppose that T -1 n=1,2,000, T

=0 is & sequernce of
n_ n-l ) a sequel

0]
mutually independent and identically distributed positive random variablies

with distribution function

|
(1) % AE{Tn - T < x} = F(x)
and

Xn (n=1,2,...) 1is a sequence of mutually independent and identical-

ly distributed real random variables with distribution function
(2 o Plx, 2 x} = H(x) .

Furthermore, let us assume that the two sequences {rn} and {x_} are

also independent.
Let us define

(3) g(u) = ) X, = CU
O<t_<u °
IF

for u> 0 where c¢ 1is a real constant.

A}

We say that {g(u) , 0 < u< =} 1s a (general) compound recurrent
process. 1If ¢ = 0 , then this definition reduces to Definiticn 2 in

Section 49.
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Let us introduce the following notation

o«

(1) o 4(s) =(,g e *ar(x) )
for Re(s) > 0 and
(5) Y (s) = [ e XaH(x)

for Re(s) =0 :.

Dénote by Fn(x) (n=1,2,...) the n-th iterated convolution of F(x)
with i’t:lself and by H n(x) (n=1,2,...) the n-th iterated convolution of
H(x) with itself. Let Fo(x) = Ho(x) =1 for x>0 and Fo(x) = Ho(x) =0

for x <0 .

Our aim is to give mathematical methods for finding the distribution

function of the random variable.

(6) n(t) = sup £(u)
: Ozuxzt

for t >0 where {g(u) , 0 2u <=} is a separable compound recurrent

process defined by (3) .

To solve this problem we shall deduce first some basic relations for

the process {g(u) , 0 g u < =} ,

In what follows we assume that t (n=0,1,2,...) and X, (n=1,2,...)
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are numerical (non-random) quantities and that T =0 €T €Ty eae< T, <al

and T, a8 n-e. Let us define g{u) for u >0 by (3) where c

is a real constant and let us define n(t) for t > O by (6) . PFurther-

more, let us introduce the following notation

- 5(q,8,0,b) = eTSIN(E)=E(E)I-vE(®)

for t > O where q,s,v are complex or real numbers.

We note that

(8) g(t) = E(Tnf 0) - C(t—Tn)
for T < t < Tl (n=0,1,2,...) and
() n(t) = max(n(r + 0) , £(r + 0) - C(t-rn))
for v, <t <t 4 (n=0,1,2,...) . By (8) and (9) we can also write
that
' +
(10) n(t)=-g(t) = [n(Tnf 0) - S(Tnf 0) + C(t-Tn)]

for 7 <t < T+l (n=0,1,2,...) . Here [x]+ = max(0, X) .

Now we shall prove two auxiliary theorems which express certain relations

between the functions £(t) , n{t) (0 £t < =) , and the sequences LI

Er +0), n(r, +0) (n=0,1,2,...) .
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lemma 1. If {&(u) , O gu < «} 1is a deterministic process as defined

@m@Laﬁif ¢ >0, Re{q) >0, Re(s) 2 Re{v) >0, then we have

® ® —(gtes=-cv) ( Ty T )
(11) (gtes—-cv) [ 6(a,s,v,t)dt = ) 6(q,s,v,rn+0)[1—e 1.
0 =0

" Proof. If ¢ >0, and T, < t < Tl 2 then n(t) = n(rnfo) , £(t) =

E(Tnfo) - c(t—rn) and

-(q+cs-cv)(t—rn)
(12) §(q,s,v,t) = 6(q,s,v,rn+0)e .

If we integrate (12) from T, To 1,,, and add for n=0,1,2,..., then

we obtain (11) which was to be proved.

Wé note that if ¢ > O , Then we have the following relations:

(13) E(tyg +0) =&(r +0) +x ., - ety = 1)
and
(14) n(t4q + 0) = max(n(z, +0) , &(r , +0))

for n=0,1,2,... . By (13) and (14) we obtain that
- N +
for n=0,1,2,... and evidently n(ro+ 0) = g(ro+ 0) =0.

" Lemma 2. If {g{u) , 0 < u< =} is a deterministic process as

defined above, and if ¢ <0 , Re(q) > O , Re(s) 2 Re(v) > O , then we

have




ViIiI-5

0

(gtes-cv)[ 6(q,s,v,t)dt =
0

1 8(q,s,v,t +0) + ES yoo8(q,v- 4 v,t +0)
=0 n a-cv 2y c n

(16)
cs v

- Z S(Q,S,v,TI{-O) - q_cv Z 6<qﬁv- % ’V,Tn-o) .
n=1 =1

" Proof. The proof of (16) is based on the following identity: If o < B,

a and b are real numbers, s and w # 0 are complex or real nunbers, then

B + + . . . +
(17) *
4+ b8 {e~wa+t~r[a+ba]+/b _ e—w3+w[a+b8]'_"/b ;.

W

If b =0, then the second expression on the right-hand side of (17) is O.

It T, b < then &(t) and n(t) - &(t) are given by (8) and

ntl ?

(10) respectively. If we integrate (7) from T, to L) , then by (17) we
obfain that
Tl
(qtcs~-cv) Tf 8(q,s,v,t)dt = [8(q,s,v,T ¥0)-8(q,s,V,T ,;-0)]
(18) n |
cs )

q—cv [S(Q,V— %’ ,V,Tn+0)-15(q,V— (9:" ’V’Tﬁl'o)]

for n=0,1,2,... and cv#q . If c =0, then the second expression on
the right-hand side of (18) is O . If we add (18) for n = 0,1,2,..., then

we obtain (16) which was to be proved.

We note that if c¢ < O , then we have the following relations:



VIII-6

(19) . E(Tn+ 0) = E(Tn- 0) + X
and
( 20) n(r+ 0) = max(n(r - 0) , E(t - 0) + x,)

for n=1,2,... . By (19) and (20) we obtain that

(21) ~ (it O)-e(ryt 0) = [nlxr O)=&(r 001"

for n =1,2,..., and evidently n(~c0+ 0) = g(ro+ C) =0.

|
F\%.r’chemor.e » if ¢ <0 we have

(22) £t 41— 0) = &lr,- Q)+xn— (T, = )

and

(23) n(t 47~ 0) = max(n(r - 0) , &(r 44~ 0))
for n=1,2,... . By (22) and (23) we obtain that

(24)  n(t,,,=0)=E(r,,1=0) = [n(r,0)=g(c _-0)-x + c(r , -1)7"
for n=1,2,..., and evidently n(rl-o) = g(rl—O) = -ctq .

If we suppose that {rn} and {xn} are random variables and

f{ 1im T, = o} = 1 , then the identities (11) and (16) hold for almost all

~ n - ©©
- realizations of the process {&(u) , O < u < =} . These identities make

it possible te study the time dependent behavior of the process {g(u) ,
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0 < u' < »} if we know the behavior of the sequence {g(rn +0) ,n=0,1,2,...} .

Now let us assume that {&(u) , O < u < =} is a separable compourd
récurrent process defined by (3). In this case n(t) , defined by (6) for
t>0 , is a random variable and the distribution function of n(t) is
uniquély detérmined by the Laplace-Stieltjes transform E{e_sn(t)} for

Re(s) 20 . This transform can be determined by the next two theorems.

In what follows we shall make use of the transformation T which we
intmdticéd in Section 3. |

|

1 Section 3 we assumed that ¢(s) = N@{ce—sn} belongs to R and defined
N"E{d:(s)} =ﬂ§;{;e’sn+} for Re(s) > 0 . Now if ¢(s) e R and v is a given
compléx or real number, then ¢(s-v) does not necessarily belcng to R
howéver;. we can define E‘{@(s—v)} =E{z;evn e—sn+} for Re(s) > Re(v) .

Tne function N‘E‘{@(s—v)} is uniquely determined for Re(s) > Re(v) Dby @(s)
~given for Re(s) = 0 . The function N’;‘{é(s--v)} is regular in the domain
Re(s) > Re(v) and continuous for Re(s) > Re(v) . If Re(v) = 0 , then

we can use formula (5.1) for finding T{¢(s-v)} for Re(s) >0 . If

Re(v) > O , then we have

(2 _ s 1= o(z)
5) Te(s-m} = 53 :{ () (5v=z) %2

for Re(s) > Re(v) .

We note that Theorem 6.1 can be formulated in the following more general

form: If y(s) eR, ol ]yl <1 and
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(26) ° 1-py(s) = P+(S,9)P'(S,p)

+ -
for Re(s) =0 where T (s,p) and T (s,p) satisfy the requirements

s ivel
Al’ A2, A3 and Bl’ -B2, B3 respectively, then

i1

(27) T{log[1-py(s=v)1} = logl' (s-v,0) + logl (=v,p)
for Re(s) » Re(v) >0 .

Theorem 1. Let {&(u) , O < u < =} be a separsble compound recurrent

process defined by (3). If ¢ 20, Re(q) > 0, Re(s) > Re(v) >0 , then

we have

(qtes-cv) [

" oGt SN (E)=(v-8)E() 14y
[ ek

(28)

[1-¢(ates—cv) Je X {log[1-¢ (q+es~cv) y(v-s) 1}

where ¢(s) and w(s) are defined by (4) and (5) respectively and T

operates on the variable 8.

Proof. Let us introduce the notation

~qt_=-sn{t _+0)-(v-s)£(t_+0)
(29) Un(s,v,q) =N§{e n n o

for n=0,1,2,... and Re(q) > O , Re(s) > Re(v) 0.

Let us define ¢&(q,s,v,t) by (7) . Since c 2 0 , the identitiy (11)
holds for almost all realizations of the process {&(u) , O £u < «} ., If

we form the expectation of (11), then we cbtain that
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. © ) _ N (e i . ®
(30) (q+CS-CV) Jf e"nt{e Sn(t/ 8% S)a\t)}dt = [l—¢(q+cs—cv}] Z Un(s,v’q) .
0 W n=0
Starting from -UO(S ,v,q) =1 and by using the relations (13) and (15)
we can determine Un(s,V,q) recursively for n = 1,2,... . If we introduce
the linear transformation T defined in Section 3 , then by (13) and (15)

PtV

we obtain that

(31) Unﬂ(s,‘v,q) =N'£{q'>(q+cs—cv)w(v—-s)Un(s,v,q)}

for n§=70‘,l,72,... and Re(g) >0, Re(s) 2Re(v) 20, and T operates on

the vaJ,’f'iable s . Hence by Theorem 4.1 it follows that

«

~T{log{ 1-pd (gtcs—cv)P(v-s) ]}
(32) I U (s,v,e" = gll-eé(q )¥(v-s)]

n=0

for |pl <1, Re(q) > 0 and Re(s) 2 Re(v) V;O .

Ifweput p =1 in (32), then by (30) we obtain (28) which was to

be proved. If v =s in (28, then we obtain the Laplace transform of

E{e—sn(t)} yand E{e_sn(t)} can be obtained by inversion.’
We can also express (32) in the following equivalent form

n

(33) Z Un(s,v,q)pn = exp{ ) ?—;—T{[¢(q+cs—cv)¢(v-s)]n}} .
n=0 n=1"" "

Since
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T{[¢(g+es—cv)p(v-s) 17} = T{ e~

(34)

(g+es-cv)u an(u) fwe—(v;s)x

-—C0

dHn(X)}

[+ ]

- =(g=ev)u cuto —csu~-(v=-s)x . —VX
= [e [ [ e A (x) + [ e aH (O (W) ,

o —

it follows that

Z U (s ,V,q)e™ = expl Z
n=0 & n=1 1

(35)

+ cu£O e dHn(x)]an(u)}

cutO

f e—(q—cv)u [ f —csur(v;s)x dHn(X) +

for |p] £1, Re(q) >0 and Re(s) 2 Re(v) 20 .

Theorem 2. Let {g(u) , O < u < »} be a separable compound recurrent

process defined by (3). If c¢c <O

we have

(36) (gtes—cv)f e_qﬁﬁie—sn(t)-(v;s)g(t)}dt = Q(s,v,q) +

0

where

(37)  Q(s,v,q) = 1-¢(q-cv)T{[l—w(v s) e~

and T operates on the variable s .

» Re(q) > 0 , Re(s) > Re(v) 2 O, then

-C— ,V,Q}

T{logrl—¢(q+cs-cv)w(V-S)]}

Proof, Let us introduce the notation
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. ~qt_=-sn{1_+0)-(v=-s)£g(t _+0)
(38) U (s,v,q) = Efe n o oy

for n =01,2,... and

-qt_~-sn(t_-0)=(v-s)&(t_-0)
(39) | v, (s,v,q) = Efe noon S

for n=1,2,... where Re(s) 2 Re(v) 20 and Re(q) > O . Furthermore,

let
( 40) U(S:V:q) = z Un(s,v,q) P
v n=0
| ®
(41) | V(s,v,q) = } Vn(s,v,q) ,
! n=1
and
(42) Q(s,v,q) = U(s,v,q) - V(s,v,q) .

Let us define 6(q,s,v,t) by (7). Since c¢ <O , the identity (16)
holds for almost all realizations of the process {g(u) , 0 <u < «} . If
we use the above notation, and if we form the expectation of (16), then
we cbtain (36). It remains to find U (s,v,0) and V_(s,v,q) for

n=1,2,... .
In this case by (19) and (21) we obtain that
(43) Un(s,v,q) =£{w(v—s)Vn(s,v,q)}

for n=1,2,... and Re(s) > Re(v) >0 and Re(q) > 0 , and evidently

Uy(s,vsa) =1 . If we add (43) for n = 1,2,..., then we get
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(Ly)y - U(s,v,q)-1 =:£{¢(V~S)V(S,V,q)} .
On the other hand, by (22) and (24) we obtain that
(45) V 41(85v,a) = Tl (ates-cv)y(v-s)V (s,v,Q)}

for n=1,2,... and Re(s) 2 Re(v) >0 and Re(q) > O , and evidently

Vy(s,v,q) = ¢$(g-cv) . Thus by Theorem 4.1 it follows that

@

(48) T V. (s,7,0)6" = po(gev)ert LoBLLpe(gres—en)y(v-s )]

n=1

for |é| <1 and Re(s) 2Re(v) 20 and Re(q) >0, Ifweput p =1

1) Qs,v,q) = 1 = T{{1~y(v=-s)IV(s,v,q)} .
This completes the proof of the theorem.

Since

-7 [ T®
(}48) l—-\p(V—S) = elOg[:l—w(v_s)] = e n=1 &

we can also express Q(s,v,q) as follows:

v-5) 1"} (v-s) " 3}

(49)  Qs,v,q) = 1-¢(q-cv)T{expl . ] T{[¢(q+cs—cv)¢(n

n=1
for Re(q) > C and Re(s) 2 Re(v) 20 .

In both cases, if either ¢ >0 or ¢ <O ; we can use the method of

factorization to obtain
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[+~

(50) [ emat E{e—Sn(t)-(v—S)E(t)}dt
5

Since |l¢(g=c9)l|l < ¢(Re(q)) <1 for Re(q) >0 and |[w(s)|l=1,

’chéréfor*e by the resuits of Section € we can write that
: + -
(51) 1-¢(ges)y( s) = ¢ (s,9,c¢)¢ (s,q,¢)

for Re(s) =0 and Re(q) > O where <I>+(s,q,c) is a regular functions of
s 1in the domain R(s) > O , continuous and free from zeros in Re(s) > O

and satisfies Tﬁ?tlogﬁ(s,q,c)]/s =0 (Re(s) > 0) , furthermore ¢ (s,q,c)
l S|+ e
I

is a régular function of s 1in the domain Re(s) < O , continuous and free

from zeros in Re(s) < O and satisfies 1im [logd (s,q,¢)]/s =0
Su+ [-+]

CRé(s) < 0) . Such a factorization always exists.

By Theorem 6.1 and by (27) it follows from (51) that

(52) rA'IN‘{log[l—¢(q+cs-f-cv)w(v—s)]} = log<b+(v,q,c) + loge (v=s,q,cC)

for Re(s) > Re(v) >0 and Re(q) >0 . We can use (52) both in (28) and in
(37).

Finally, we shall determine the distribution function of
(53) . n(=) = sup £(w
Ozux<=

which is a nonnegative random variable (possibly « ) . Let

(54) ‘ W(x) = P{ sup £(u) < x} .

,,,,, ===

O<u<=
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If x <0, then W(x) = C . 1In the interval [0, «») the function W(x)

Is nondecreasing and 1lim W(x) = W(=) <1 .
X > «©

In thé following theoiein we detennine
(55) a(s) = [ ™% qu(x)
-0

for Re(s) > 0 and thus W(x) can be obtained by inversion.

|
(56) | as) =ewp { § 170/ (S Wonyan (x)IaF, (w))
| =1 "0 cu

for Re(s) >0 , and if ¢ <O , then we have

>

(57) a(s) = o(-es)expt | = [ [ (W 1)aH (x)1aF (w)
n=1 "0 cu

_:f_'_(_)_{'_ Re(s) > 0 .

Proof. By the continuity theorem for probabilities (see (41.6)) we
have |

(58) lim P{n(t) < x} = W(x)

t—)oo

for every x . Hence by an Abelian theorem for Laplace transforms (Theorem 9,10

in the Appendlx) we obtain that

(59) a(s) = limq [ e g™ (Plyge
gq+-+0 O e
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for Re(s) > O . The right-hand side of (59) can be obtalned by (28) for
c >0 and by (36) for ¢ <0 . Thus we can get (56) and (57). However,

the following proof is somewhat simpler.
We can easily see that if ¢ > O , then

(60) W(x) = lim P{n(x_+ 0) < x} ,
n-> o n
and therefore
(61) ’ 2(s) = lim U_(s,s,0)

1 > <«

for Re(s) > O where Un(s,s,O) is defined by (29). Thus by the Abel

théorem for power series we obtain that

(62) a(s) = 1im (1~p) ] U (s,5,0)0"
p+1-0 R=0

for Re(s) > 0 . If in (62) we write

t~18
BIDS
()

(63) 1-p = exp{~
n=1

for |p| <1, and if we use the representation (35) with v=0 and q =0,

then we get (56).
If ¢ <0 , then we can easily see that

(64) W(x) = lim P{n(1 - 0) < x}
n > o«
and therefore

(65) | a(s) = lim Vn(s,s,d‘,-
n <> x
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for Re(s) > O where Vn(s,s,o) is defined by (39). Thus by the Abel

theorem for power series we obtain that

(66) a(s) = lim (1-p) ] V _(s,s,0)p"
' p~>1-0 n=1

for Re(s) >0 . Ifwewrite v=s and q =0 in (46) and if we use (63),

then by (66) we get (57).

" Theorem 4, " Let W(x) be defined by (54). The function W(x) is a

proper distribﬁtion function if and only if

L [ 1K (cw)IdF, (w) < = .

|
(67) |
| n=1 70

He~18

"Proof. If ¢ > 0O , then we can write that

(68) ﬂ(°°) = Sup(O,Xl- CTl: X1+X2"CT2:°--) s

and if ¢ < 0 , then we have

Thus by Theorem 43.12 we can conclude that

il
=

(70) Ein(=) < =}

if and only if

(71) 2 H/\E{X]j" e + xn > cTn} < ®
n=1 .
If ¢20, fchen we define £, = X~ clr~ 1, ;) for r=
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Theorem#3.12 and 1f c < O , then we define £, = Xp = c(r

r r+l Tr) for

r = i,2,... in Theorem 43.12 .

If the series (67) is convergent, then W(x) is a proper distribution
function and @(s) is given by (56) or by (57) for Re(s) > 0 .. If the
: ' and
series (67) is divergent, then W(x) =0 for every x , Q(s) =0 for

Re(s) 2 0 .

In the case where E{Xr— c(rr- rr_l)} exists, the function W(x) is
a distribution function if and only if either E{xr— C(Tr— Tr—l)} <0 or

le{xr—- c({r_ T = O}y=1. If E{xr- C(rr— Tr*—-l)} >0 and Nli{xr- C(Tr—- T

r—l) =i
0} <1, then W(x) =0 for all x . This follows from Corollary 43.1

of Theorem 43.12 .

We note that by using the representaticns (68) and (69) we carn: also

obtain Theorem 3 fram Theorem 43,13 .

The results of this section have been cbtained by the author in his

paper [ 211 ] .

55. Compound Poisson Processes. We have already defined the notion
of a compound Poisson process in Section 48 (Definition 2). In this section
we shall use a slightly more general definition.

Let us suppose that {v(u) , O 2 u < =} 1is a Poisson process of
density X . Let X715 Xpseees Xpseeo be mutually independent and identical-
ly distributed real random variables which are independent of the process

{v(t) , 0t <=}, Let
(1) Py, < %} = H(x)

and let us define
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(2) g(u) = ] X, — cu
1<nzv(u)

for uw> 0 where c¢ 1is a real constant.

We say that {g(u) , O < u < =} is a (general) compound Poisson
pr'océss. If ¢ =0 , then this definition reduces to Definition 2 in

Section 48.

A compound Poisson process is a particular case of a compound recurrent

process, If we suppose that

1-e™  for x>0,

(3) F(x) =
0 for x <0,

in the process {g(u) , O £ u < »} defined in Section 54, then e(w) ,

0 < u < »} reduces to a compound Poisson process.

For a separable compound Poisson process {g(u) , O < u< «} , the

distribution function of the random variable

() n(t) = sup &(u)
xust

for t2 O can be obtained by Theorem 54.1 and by Theorem 54.2 .

Theorem 1. If {€(u) , 05 u < =} is a separable compourd Poisson

brocess defined by (2), then we have

af smat E{efsnkt)—(w'—S)t:(t)}dt -
5 o ,
(5)

memau 0 ok -VX
exp{é T [f e ’ %{g(u) <xt+[e dP{e(u) £ x} ~1ldu}
oo +0 ™

A
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“for ‘Re(q) >0 and Re(s) » Re(v) 20 . If v=s, then (5) reduces to

] v _ . «© —qu ) oo _
6)  af e TrEe™ M ar = expt] [ [ ¢ Fapte(u) £ x) -1)aud
C e 0 =0 ~ ,

for Re(q) >0 and Re(s) 0.

Proof. If ¢ > 0 , then (5) is a particular case of (54.28) . If we
put ¢(s) = A/(As) in (54.28) and if ¢(s) is the Laplace-Stieltjes
transform of H(x) , then (54.28) reduces to (5) . Actually, it is more

convenient to use (54,30) with (54.35). By (54.30) we have

o]

(7 | q(}; E{ -sn(t)- (V—b)a(t)}d‘t = m%cs—cv nzo Un(s,v,q)

and by (54.35)

o0 - __( -—?
R Au~(q cv)u(m)n

A

Un(s,v,q) = exp{

He~18

1 ™0 u

it\/) 8

n

(8)

b -VX
dH (x) + cuiO e dH,_(x)Jdu}

[ cu}-O o—CSU~ (v=8)x

for Re(q) >0 and Re(s) > Re(v) 0.

If we take into consideration that

(9) Ple(u) <x} = § eV (“‘) H_(cutx)
~ =0

where H n(x) denotes the n-th iterated convolution of H(x) with itself
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and 'Ho(x) =1 for x20 and Hy(x) =0 for x <0, and that

©o -qu
o & (qoetute(v-s)uy oy L g
(10) exp{ 6 = (1-e Ydu} pETeTv—

for Re(q) > 0 and Re(s) > Re(v) > O , then by (7), (8), (9) and (10) we

obtain (5) for ¢ > 0 .

If ¢ <0, then (5) is a particular case of (54.36). However, it is
simpler to reduce the case of ¢ <O to the case of c¢ > 0 for which the

theorem just has been proved. Since the two processes {£(t)-g(u) for

|
O<u<t}l and {&(t-u) for O <u £t} have identical finite dimensional

l
distribution functions, we can conclude that n(t)-g(t) and -£(t) have

exactly the same joint distribution as sup [-g(u)] and -g(t) . Further-
Ozus<t

more, if ¢ < O , then for the process {-g(u) , O < u < =} we can apply
(5). By replacing &(u) by =-g£(u) in (5) we obtain that if ¢ < O , then

[~}

qfe
0

~at e=SIN(E)-E(E) I (v=8)E() ¢

P

(11)

© —qu +0 v ©
exp{ [ —e-—u—[ i e~(V-8)x dP{~g(w)<x}+ [ e % dP{-£(u) < x} ~1lau}
0 - +0 -

for Re(q) > O and Re(s) > Re(v) > O . If we replace v by s-v in (11),

then we obtain (5) for ¢ < 0 . This completes the proof of (5).
If v=1s5 1in(5), then we get (6).

‘Formula (5) makes it possible to detemmine the joint distribution of
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n(t) and &(t) for all t >0 . By (6) we can determine AE{n(t) < x}

for al1 £t >0 and x.

Let
(12) | W(x) = P{ sup g(u) < x}
Ogu<e
and
(13) ' a(s) = [ e an(x)
-0

for Re(s) 20 .
{

|

Theorem 2. If {g(u) , O 2 u < =} is a separable compound Poisson

process defined by (2), then we have

<O, o«

[ [ &% ap{e(w) < x}-1]du}
2 P

i

(14) Q(s) = exp{f
0

for Re(s) >0 .
Proof. In exactly the same way as in the proof of Theorem 54.2 we

have

(15) als) = Lim q [ e 9F e (Pyqe
g+0 O "

for Re(s) > O . The right-hand side of (15) can be obtained by (6) and

thus we get (14). Of course Theorem 2 is a particular case of Theorem 54.3 .

Theorem 3. The function W(x) defined by (12) is a proper distribution

function if and only if
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(=4}

E{E(u& > O} 4u <

(16) /
€

where e 1s some positive number.

Proof. By Theorem 54.4 it follows that 1im W(x) = W{x) =1 if

X & »

and only if

fm[l---lrin(cu)}e">‘u ,(Au)n—ldu <,
°0

2|

(17) )
=1

If ¢ > 0, then (17) can be expressed in the form of

(18) [ AREW 2 O g,

0

and if ¢ < O , then (17) can be expressed in the form of

. ‘ © -AUu
(]_9) f ...E.{g(LI) > 8} - &
+0

du < .
This follows from (9). The conditions (18) and (19) are equivalent tc (16).
If (16) is not satisfied, then W(x) = 0 for every x .

In the case when M'E}{xn} exists we have W(e) = 1 if and only if

}g{xn} <c. If ANEE{xn} >c, then W(x) =0 for every x .

We can also determine the distribution and the Hmiting distribution

of n(t) by using the method of factorization.

Let us define
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(20) ¥(s) = [ &% GH(x)
for Re(s) =0 .

Theorem 4. Let us assume that

(21) 1 - CS-A[l“w(S)]

- + -
q =9 (S,Q)@ (S,Q)

for Re(s) =0 and Re(q) > O where ¢+(s,q) is a regular function of s

'in the domain Re(s) > O , contimuous and free from zeros in Re(s) > O

and satisfies }J_m [log<1>+(s,q)]/s =0 (Re(s) > 0) , furthermore ¢ (s,q)
| S[> «

is a ﬁ'egular function of s in the damain Re(s) < O , .continuous and

free from zeros in Re(s) < O and satisfies 1im [loge (s,q)1/s = 0O

IS -+ @

(Re(s) <0) . If {g(w) , 0 <u <=} is a separable compound Poisson

process defined by (2), then we have

(22) q [ &t pemSn(E)-(v=8)e(E)yqp SR
0 ~ ¢ (v,q)e (v-s,q)

“'for Re(q) > 0 ‘and Re(s) > Re(v) > O . In particular, we have

]

(23) | qaf e~ g~ (Byy - - L
o) ~ ¢ (s,q)e (0,q)

for Ré(q) >0 and Re(s) > 0.

- Proof. Since the Laplace-Stieltjes transform of F(x) , defined by
(3), is given by ¢(s) = A/(r +s) for Re(s) > -r , we can write that

in (54.51)
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(2b) 1-(a-cs)¥(s) = ypgies [1- CS"’*%“P(S)] ]

for Re(s) =0 . Since |[¢(g-cs)v(s)|| < |¢@Re(a))}< 1 for Re(q) >0,
we can concludé by the results of Section 6 that the factorization (21)
always exists, and ¢+(s,q) and % (s,q) are determined up to a factor

independent of s .

In the proof of (22) we shall distinguish two cases. If ¢ >0 ,

then by (24) and by (54.27) we obtain that

! T{logl1-¢(qtes~cv)yp(v-s)1} =
(25)

= __..g___. + . T e

for Ré(s) > Re(v) >0 and Re(q) > O . Now if we put ¢(s) = A/(x+s)

in (54.28), then by Theorem 54.1 we get (22) for ¢ > O .

If ¢ <0, then (22) can be obtained by Thecrem 54,2 . However, it
is simpler to reduce the case ¢ < O to the case ¢ >0 . If we gpply the
result (22) to the process {-g(u) , O £ u < =} where ¢ <O, then in
(21) ¢ should be replaced by =-c and ¢(s) by ¢(-s) . Thus we obtain

that

(26) 1- ~cs=A[1~-y(-s)]

3 = <I>+(-S,q)®_(—s,q)

for Re(s) =0 and Re(q) > O where now ¢ (-s,q) 1is defined in the

domain Re(s) >0 and ¢ (-s,q) in the damain Re(s) < O . Thus by using
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the same correspondence which we used in the proof of Theorem 1 we obtain

that

(27) a fme'qt E{e—S[n(t)—E(t)]+(V—S)g(t)}dt _ . 1 + |
- Q-(_V:Q)‘f' (S-—v,q)

for Re(g) > O and Re(s) > Re(v) > O whenever ¢ <O . If we replace
vV by s=v in (27) , then we obtain (22) for c¢ <O . This completes the

proof of (22)., If v =s in (22), then we get (23).

We note that the following functions

i
|

[+

© -qu
(28) | 2" (s,q) = exp{-] &—1[ [ &% dP{E(u)

0o % 30

ia

x} - P{g(u) > O}]du}
for Re(s) 20 and Re(q) > O and

o =qu

+0
(29) ¢ (s5q) = exp{-(f) [ ™ apie(w)

A

x} - P{g{u) < O}]du}

for Re(s) <O and Re(q) > O satisfy the requirements in Theorem 4.

In particular, we have

esu-AL1-p(s) U 39413 =

_ ® U
2t (5,0)07(s,q) = exp{—é E—Ie

(30)

_ g-cstAll-y(s)]
q

for Re(s) =0 and Re(q) > 0.

Theorem 5. Let us assume that
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(31) du < o«

® ple(u) > 0}
e TR
£

“for some € > O , and that

(32) cs-A[1-y(s)] = —6"(s)6™(s)

for Re(s) = 0 where <I>+(s) satisfies the requirements:

Ayt <I>+(’s') is a regular function of s in the domain Re(s) >0 ,

A2' : <I>+(s) is  continuous and free from zeros in Re(s) > O ,

A3 : lim [logd>+(s):|/s = 0 whenever Re(s) >0,

S>> =

and ¢7(s) satisfies the requirements:

B, : ¢ (s) 1is a regular function of s in the domain Re(s) < O ,

B2‘ : ¢ (s) is continuous in Re(s) < O and free from zeros in Re(s) < O ,

B3 +  1im [log® (s)]/s = O whenever Re(s) <O .

S+oo

If {&(u) , 02 u <=} is a_separable compound Poisson process defined by

(2), then the Laplace-Stieltjes transform of W(x) = P{ sup £(u) < x} is
Ogu<e
glven by

(33) | as) = &

for Re(s) 20 .

"~ Proof., First we shalil prove that it {31) holds, then there exist twe

functions d>+(s) and ¢ (s) which satisfy all the requirements and that
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(23) is satisfied too.

ILet us suppose that ®+(s,q) is defined by (28) and ¢ (s,q) by (29).

Then ®+(O,q) =1 and ¢ (0,q) =1 for Re(q) >0 .
If (31) holds, then by (28) we obtain that

(34)  o'(s) = 1met(s,q) = expi-f %[ [ e5%ap(g(u) < x}- P{e(u) > O}]dw
O g faad

q >0 +0
exists for Re(s) » C . Since in this case 2(s) is given by (i4) for
Re(s) > O and since ®+(O) =1 , it follows that (33) is satisfied. The

|
functTon ®+(s) obviously satisfies the requirements A,, A2, A3 .

Tf we take into consideration that

© —‘u_ -qu\
[ le=e Dy,
0 u

(35) q=e8q =
for Re(q) > O , then by (29) we obtain that

o 10
¢7(s) = 1im q¢ (s,q) = exp{-[ 2 [ [ ™% @p(z(w) < x} + P{e(w) > O} -
g+ O 0 -0 A

(36) |
- e Yau}

exists for Re(s) <0 , and ¢ (s) satisfies the requirements Bys By, B3 .

If we multiply (30) by q and let q » + O , then we can see that (36)

exists for Re(s) = O , and that (32) is satisfied for Re(s) =0 .

In exactly the same way as in the proof of Theorem 43.15 we can prove



VIII-28

that' the requirements (32), Ay, A, Ay and By, B,, By determine ¥ (s)

and ¢ (s) up to a constant factor. Thus the theorem follows.

The 1imit distribution of n(t) as t » «» and the distr*ibl,}tion of
n(t) for t > 0 for a general compound Poisson process was found in 1954

by H. Cramér [ 41 1,0 421 .

Finally, we shall consider compound Poisson processes for which the
distribution and the limit distribution of n(t) can be determined explicit-
1y ‘.

|
First, let us suppose that

(37) x(u) = )X

1<n<v(u) n

for u > 0 where Xl, )(2 seeey Xn,... is a sequence of mutually independent
and identically distributed positive random variables with distribution
function P{x, < x} = H(x) and {v(uw) , O <u < =} is a Poisson process

<

of density A which is independent of {xn}

We already considered the process {x(u) , O £ u < «»} in Section 48
(Definition 2) . By using Theorem 48.13 we can find the distribution of
the supremum for the processes {x(u) —u , O <u<«} and {u- x( ,

O<uc< =},

We shall mention only briefly the following results which were found
in 1962 by the author [202 J, [ 2031, [205 1, [209 ] . For a more

detailed account of these results see reference [ 210 ] .
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'Throughout the rest of this section we assume that {x(u) , 0 2 u < =}

is a separable compourd Poisson process defined by (37). Then

® n
(38) Pix(w) £x} = K(u,x) = | —hu ()

H (X)
!
0 ni n

H

where Hh(x) is the n-th iterated convolution of H(x) with itself and

}{O(x) =1 for x 20 and Ho(x) =0 for x<0 . We shall also use the
notation

(39) ¢ y(s) = é e™5% dH(x)

for Re(s) 20.

In what follows we shall make frequent use of the following type of
Integral:

b © b . ~.ahn
(40) g g(u)dugﬁx(u) < utx} = nzo £ g;(u)e")‘u iﬁ%%— dan(u+x)

where the integrals on the right-hand side exist. If the random variable

x(u) has a density function, then (40) reduces to

(41) et EUL 28 g,

[
a

and 1f x(u) 1s a discrete random variable, then (40) reduces to
(42}

) s(WP{x(u) = utx}
asush 7

where the sum s extended for all those u e [a,b] for which P{yx(u) =

' utx} > 0 .
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Let
(43) o = [ xdH(x) .
0
Theorem 6. Let
cul) W(t,x) = P{ sup [x(u) - ul < x}
: Ozu<t
for £2>0 Then we have
t X
(45) | W(t,0) = [ (1~ DaP{x(t) < x}
O Lagd
for >0 , and
‘ t
(46)  W(t,x) = P{x(t) g t+x} ~ [ W(t-v, O)d Pix(v) < v+x}
B +O N =

for all x and t>0. If x<0O, then W(t,x) =0.

Proof. First,by formula (48.100) it follows immediately that

(47) W(t,0) = E([1- XB)7*

for t > 0 and this proves (45). We shall prove that the subtrahend in
(46) is the probability that x(t) < t+x and x(u) > utx for some

ue (0,t] and thus (46) follows. Let v = sup{u ¢ x(u) >u+x and

0 <ux<t) . If there exists sucha v, and x(t) < thx , then x{v) =
vix and x(u) < utx for v <u <t , orequivalently x(u) = x(v) < u-v

for v <, u<t . The latter event has probability W(t-v, 0) and thus
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(46). follows by the theorem of total probability. Obviously W(t,x)

if x<0 and £t 20,

Theorem 7. let

(u48) W(x) = P{ sup [x(u) - ul 2 x} .
O<u<e
Ir .Aoz < 1 , then we have
(49) W(0) = 1-xa
( 50) W(x) = 1-(1-ra) [ 4 P{x(u) < utx}
+# U -

for all x.
If xe 21, then W(x) =0 for all x.

" Proof. Since E{x(t)} = xat for t >0 and X(t)/t=» X as
t + o , it follows from (47) that
(51) | W(0) = lim W(t,0) = [1-xa]’ .
t >

Let first Aa <1 . Then by (47) we have

' (52) | W(e,0) 2 E(l- X8y =1 - e .
Thus by (46) we obtain that

' .t )
(53) [ dPix(w) < wx} g o
: +0

1-Xo
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for ail t > O . Furthermore if' ia < 1 , then lﬁnf{x(t) < t+x} =1
t > »

for all x . Thus if t = « in (46), then we obtain (50).

If X > 1, then 1im P{x(t) < t+x} =0 for all x , and‘the

( t >

inequality

(54) 0 < P{ sup [X(u) - ul < x} < P{x(t) < t+x}
O<ust ™

implies that W(x) =0 .

If X =1, then by (51) W(0) =0 . If x <0, then obviously
Wx)=0, If x>0, thenwecan finda y such that 0 <x <y and

Plx(y) <y -x}>0. Then the obvious inequality
(55) Pix(y) <y - x} W) £W0) =0

implies that W(x) = Q0 for x > 0 . This completes the proof of the

theoremn,

Theorem 8. If Xa < 1, then

[}

(56) a(s) = [ e Qi) = SR
’ {) | 1) 2208)

for Re(s) > O where the right-hand side of (56) is 1 if s =0 .
Proof. If O<y and O <y + x, then we can write down that

yix

.
(57)  W(x) = [ W(ytx-z)d R{x(y) £z} - W(O)[ dPix(z) £zl .
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By forming the Laplace-Stieltjes transform of (57) we obtain that

(58) a(s) = JLSHA-ENT grgy _ oy 2L MM()]g,
0

for all y > O . Since

_ez[S—AH\tp(s)] _

y zls=A+ap(s)] 1
(59) é e dz S—AFAU(S)
for Ré('s)_ > 0 , it follows that
_ W(0)s
(60) Q(s) = SO (E)

for Re(s) > O . This implies (56) for Re(s) > 0 too.

We can also obtain (56) by Theorem 5. In this case ¢ =1 and in
(32) we can choose <1>+(s) = 1= A[1-y(s)]1/s for Re(s) 20 and ¢ (s) = -s

for Re(s) £0.

Theorem 9. We have

. t
(61) P{ sup [u -x(wl <x}=1- X4 P{x(v) < v - x}
™ O<ust o vV v~

for O<x<t.

Proof'. We shall find the probability of the complementary event of

{sup [u - x(u)] < x} , that is, the probability that u - x(u) > x for
Ozuzt

sane u e (0,t] . This latter event can occur in such a way that
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inf{u : u=-x(u) >x}=v where O<v<t. Then x(v) =v-x and

u-~x(u) =£x for O0<ugv, orequivalently, x(v) - x(u) < v-u for
0 <u <V . By Theorem 48.13 we have
(62)  P{x(v) - x(w) 2 v-u for Of__u;le(v)zv_x}=_§_

for 0 < x < v where the conditional probability is defined up to an
eqﬁivalence. By the theorem of total probability we get the subtrahend

in (61) and this proves (61).

Theorem 10. For x > O we have

—wX

(63) P{sup [u-x(wWlzxl=1-c¢

ot O<u<e

where ¢ Is the largest real root of the equation

(64) Afll - yp(w)l=w.
If Ao <1 ,then w=0 and if Xa > 1, then w >0 .

~Proof. By usirig Rouché's theorem we can prove that if Xa 21, ‘then
(65) M1 - y(s)] =s

has a single root s =0 in the domain Re(s) > O , whereas if o > 1,
then (65) has two roots s =0 and s =w in Re(s) >0 where w is a

positive real number. Thus Theorem 10 can be obtained by Theorem 5.

-

We note that if Aa > 1 R ‘then by Lagrange's expansion we obt'ain that
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, . Xn_l * ax n-l
(66) w = A[1- nzl' = ée x T aH (0] .

As a further example for compound Polsson processes, let us suppose

that

(67) cw = ] (D

l<r<v(u)
for u > 0 where Vis Voseees Vpseeo is a sequence of mutually independent
and identically distributed discrete randon variables taking on nonnegative
integers only‘and {v(u) , O g u <=} is a Poisson process of density A

which is independent of {vr} .

|

;
We shall also consider the process
!

(68) £ =g = [ (-v)
for u>0.

Let us introduce the following notation

(69) N, = vyt vyt v
for r=1,2,.4., NO =0,

(70) 7 n(z) = E{z’T)

for |z] £1 and

(71) jg{vr} =y

(possibly v = =) ,
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As a particular case of Lemma 20.2 we have the following result:

(72) PN, < for r = l,2,...,n|Nn = k} =
0 otherwise »

where the conditicnal probability is defined up to an equivalence.

By using (72) we can easiiy find the distribution of the supremum for
the processes {g(u) , O cu <=} and {g (u) , O < u < =} defined by {(67)

and (‘.\58) respectively. The particular case where
|
N
(73) | Flo, =2t =p and Plv, =0} =gq

p>0,q>0, p+q=1) has been considered by the author in reference
[208 1 and the gereral case in reference [ 210 ]. In what follows we shall.

sumarize these results.

Thecrem 11. If {g(u) , 0 £u < »} is defined by (67), then we have

{g{g(u) = k}du

A £ % +
(74 P{supg(u) < k} = P{E(t) < k} - [ AE{[Et(’c-—u)]
"Osust v 5 -u

*
for k=1,2,... where g (u) =-g(u) for ux>0.
" Proof. The conditional probability P{ sup £(u) < k|v(t) = n} can
™ O<ust

be obtained by Theorem 20.1, and (74) follows by the theorem of total

probabilities.

We note that in the particular case when the distribution of v, 1s

given by (73),by (37.11) we have
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(75) P{ sup &(u) <k} = Plg(t) <kl - (g)k P{g(t) < - k}

Ozust

for k =1,2,..., and by (37.8) we have

P{-b < g(u) <a for O<uzxt}=

(76)

=T &) projia) b < e(t) < 23at) + a) -

J':_ca

©

_ 7 ®IEa b o) (ath) + b < £(E) < - 25(ath) - a)

j= -4

if ai and b are positive integers.

[

" Theorem 12, ILet us suppose that the process

defined by (67) and let

(77 - Q = P{ sup g(u) <k}
7 Oguce

for k= 1,2,0es &

If y <1, then

{e(u) , O gu <=} is

for |zl <1. If yz1,and P{v,=1} <1, then Q =0 for k=

1,2500. &
Proof. In this case we have

(79) 9 =~§{1fﬁfm(Nn' n) < k}

for k =1,2,... and (78) can be obtained by Theorem 20.5 .
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' %
Theorem 13. If the process {& (v) , O £ u < «} 1s defined by (68),

" 'then we have

%, t * du
(80) Plsup g (u) <kl =1-k/[ Plg () =k}
Osust o

for k= 1,204 W

%
Proof. The conditional probability P{ sup £ (u) < k|v(t) = n} can
‘ , " Qzucgt
be obtained by Theorem 20.2, and (80) follows by the theorem of total
prohabilities. |

|

| %
Theorem 14. If the process {£ (u) , O < u < «} 1is defined by (68),

then we have

% .
(81) P{ sup ¢ (u) < k} =1 - s

O<u<=

for k= 1,2,... where z = ¢ 1s the smallest nonnegative real rooct of

the equation

(82) h(z) = z .

If y£1 and Plv, =1} <1, then §=1,andif y>1 or Plv,=1t=1,

then § < 1.

Proof. In this case we have

%
(83) P{ sup £ (u) < k} = P{ sup (n—Nn) < ki
; o~ Oéu(d” A l;n<°° : ..

for k= 1,2,... and (8l) can be obtained by Theorem 20.6 .
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56. Processes with Independent Increnments. In thils section we

assume that {g(u) , O < u < «} is a homogeneous real stochastic process
with independent increments and that P{£(0) = 0} =1 . We have.already
defined such processes in Section 51 and we saw that

(1) E{eqsg(u)} - eu‘i‘(s)

P

exists for Re(s) = 0 and the most general form of Y(s) is given by

¥(s) = -as + %-0252 + [ (71 4+ ng)dM(X) +
—o 1+x

| -
| + [ (71 + Han(x)

+0 14%°

2 . - |
where a 1s a real constant, ¢~ is a nonnegative constant, Mi{x) {-= < x < Q)
and N(x) (0 < x < =) are nondecreasing finctions of X satisfying the

conditions 1im M(x) = O , 1im N(x) =Q and
X >e= X> o

0 5 € >
(3) fXdM.(X)++éXdN(X)<m

—-£

for some ¢ > O .

If we suppose that the process {&(u) , O < u < =} is separable,
then

() n(t) = sup g(u)
Ocust

is a random variable for every t 2 0 and our aim is to give mathematical

methods for finding the distribution of n(t) . This problem was solved
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in 1957 by G. Baxter and M. D. Donsker [ 8 ] . In this section we follow

a different approach based on the results of Section 55.

We shall approximate the process {g(u) , 0 < u < =} by a sequence
of campound Poisson processes {g (w) , 0 ;; u < @} in such a way that the
finité dimensional distribution functions of the process {En(u) .

0 ; u < =} converge to the finite dimensional distribution functions of

the process {g(u) , 0 <u<e}as n+wo, If

-s€, () uy_(s)
(5) Ele " 1=e "
for lfie(s) = 0 where
(6) ¥ (s) =c =21~y (s)]

and ¢, is a real constant, )‘n is a positive constant and ‘R’n(s) is

the Laplace-Stieltjes transform of a real random variable, then {En(u) .

0 < u < =} converges to {&(u) , 0 £ u < «} in distribution if and only if

(7 1im ‘Pn(s) = ¥(s)

n ~» o«

~for Re(s) =0 . We can easily see that for any ¥(s) we can find a

sequence {‘Pq(s)} such that (7) is satisfied.

If we suppose that {&{u) , O £ u < »} and {gn(u) » O<u <=} are
separable processes and if (7) is satisfied, then by Theorem 52.3 we can

conclude that
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(8) 1im P{ sup £ (u) < x} = P{ sup £(u) < x}
n -+« Qust ™ 0<ust

in every continuity point of the distribution function’ on the right-hand
side. The left-hand side in (8) can be obtained by Theorem 55.1-and thus
the right-hand i1s also determined.

"Theorem 1. If {g(u) , O < u < «} is a separable, homogeneous, real

stochastic process with independent increments for which E{E(O) =0} =1

and if n(t) 1is defined by (4) for t > O , then we have

© _ ‘ - oo -qu ]
qfe Agre Sn(’t)}d‘c = exp{[ =
~ 0

J
0

(9)

| — L [ ™% aPie(u) < xI- 1]du}
s 50 %

“for Re(q) » 0 and Re(s) 2.0 .

Proof. ILet

(10) n (t) = sup £ (u)
k Osust k

for t > 0 . By Theorem 55.1 we can conclude that (55.6) holds for the
process {gk(u) s Ogu<ew}, If k- =, then by the continuity theorem

for Laplace-Stieltjes transforms we obtain (9).

We note that (55.5) holds unchangeably for the process {&(u) ,

0O <u <=} too.
Let

(11) W(x) = P{ sup £(u) < x}

Ogui<e
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(12) als) = [ e qu(x)
9

for Re(s) >0 .

Theorem 2. If {&(u) , O g u < =} 1is a separable, homogeneous, real

stochastic process with independent increments for which P{g£{(0) =0} =1

and if

. ® Rle(u) > 0}
(13) £ L-u__ du < =

for some positive ¢ , then W(x) 1is a proper distribution function and
1

| -

(1) a(s) = exp{] T [e™* Ple(w) < x} - Llau}

0] -0 ~
for Re(s) >0 . If (13) is not satisfied, then W(x) =0 for every x
and a(s) = 0 for Re(s) >0 .

'Proof. By using the same method as in the proof of Theorem 1 we can

prové Theorem 2 by Theorem 55.2 and Theorem 55.3 .
We note that if M@{g(t)} exists and
(15) E{g(t)} = ot

for t >0, then W(e) =1 if and only if o <0 . If p 0 , then

W(x) =0 for every x .

We can alsc determine the distribution and the limiting distribution

of n(t) by using the method of factorization.
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Theorem 3. Let us assume that

(16) 1- w(;) = 6" (5,087 (5,q) )

for Re(s) =0 and Re(q) > O where the functions 2" (s,q) and ¢ (s,q9)

satisfy the same requirvements as in Theorem 55.4 . If {g(u) , O g u < =}

‘1s a separable, homogeneous, real stochastic process with independent

increments for which (1) holds, then we have

(7 | ‘ qa [ et oS (B)ygp = — L -
| 0 ~ ¢ (s,q)¢ (0,q)

|

for Re(q) >0 and Re(s) 20 .

_lf_r_ogg_ If we define <I>+(s,q) by (55.28) and ¢ (s,q) by (55.29),
then thesé functions satisfy all the requirements. In exactly the same
way as in the proof of Theorem 43.15 we can prove that the functions
<I>+(s ,q) and ¢ (s,q) are determined by the requirements up to a factor
independent of s . If we. apply (55.23) for each of the processes {e:k(u) ,
0 < u < =} , then by the limiting procedure k + «» we obtain (17) which

was to be proved.

We note that (55.22) holds unchangeably for the process {g(u) ,

0 £u <=} too.

Theorem 4. Let us assume that {&(u) , 0 g u < «} 1is a separable,

homogeneous, real stochastic process with independent increments for which
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P{g(0) =0} =1 and

(18) ROy < w
4
+ —

( 19) ¥(s) = =% (5)¢ (s)
for Re(s) =0 where <I>+(_s) and @7 (s) satisfy the requirements Al’ 1:-.2,
A3 and By, 32, B, respectively in Theorem 55.5, then

rt——— _) T

| X
(20) | a(s) = L0

1’ o (s)

for Re(s) 20 .

Proof. The proof of this theorem follows along the same lines as

the proof of Theorem 55.5 .

Examples. Let us suppose that {g(u) , O < u < »} 1is a separable
stable process of type S(~a,s,c,0) where either C<a <1, 1 <a< 2,

~-1<B8s1 and ¢>0 or a=1,8=0,c>0. Inthis case either

(21) ¥(s) = —c|s]%(1 + B-I-:-Ttan%l

where O<a<2,a#l, -1<

<l and ¢ >0 or

() s = 3]

where ¢ > 0 our aim is to find the\d"t'tétribution of
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(23) n(t) = sup g(u)

for t >0 . (Sce also Theorem 45.11.}

’

Now the random variable £(u) has a stable distribubion of type

S(a ,B,cu,0) and thus by the solution of Problem 46, 8 we have

co

[ e aple(u) £x} = T{eu‘i'(s)}
-'O - e
(24)
—eux®s®/cos LT
cos YT w cux’s"/cos =
=1 - 2a I 1l -e ax
T 01l-2sinfE+x°

for Re(s) > O where

(25) y = %arc tan (8 tan %ﬂ
aIld "l < ‘Y < l [}
Thus by Theorem 1 we obtain that
oo
log[1 + —SX8 — 3

® CoS =— o q Ccos =—
26) q [ &% eyt = expi- — - 22 dax }

0 ~ 0 1-2x sin L=+ x

for Re(q) > O and Re(s) 20 . Hence P{n(t) < x} can be obtained by

inversicn.

1/a

We observe that n(t) has the same distribution as t~ “n(1l) and

this makes possible some simplification ip finding 2{n(t) < x} .
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Let
c27) H(x) = P(p(1) < %)
and
o
logfl + ——-——C—X———-]
ym o Y7
- oS H= y~ cos 5
(28) Ay) = exp{ - -—= / 5— dx }

0 1-2x siny2—“—+ X
o

for y >0 . (We note that Q(y) = G((cos E—E)l/a y/cl/a) where G{(x) 1is

defined by (45.233).)

%ince P{n(t) <x} = H(xt“l/a)

for t >0, ifweput gq=1 and

|
s = 1/y in (26), then for y > 0 we get

(29) [ T D) = )
0
where
© l/
(30) I(x) = [ et /% gg
0] .

for x>0.

The function I(x) can be considered as a distribution functicn of
a positive random variable. Thus by (29) we can interpret Q(y) as the
distribution function of the product of two independent positive random -

variables having distribution functions I(x) and H(x) respectively.

The unknown H(x) can be obtained from (29) by using Mellin-Stieltjes

transform. Since
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(31)- [ 354 T (x) = T(1-s)r(1 + )
O (o4

if -a < s <1, we obtain from (29) that

o [>4]

(32) [ Hx) = ———c [ 5% ()
: : 0 I(1-s)r(1 + a) 0

if -a <s <1 and -1 <s < a . By inversion we can determine H(x) and

thus

( 33) Pin(t) £ xb = HGxe™®

)

for % >0 and x 20 .
|
|

In the particular case where o =1, 8 =0 and c¢c =1 we have

o log(l + &)
(34) Qy) = exp (- = S ax )
0 1+ x

for y >0 and (32) reduces to .
(35) [ $Ba(x) = Z2 4% q (y)

0 0
for -1 < s <1 . Hence

dH(x) _ Qxe ™) - q(xs™)

(36) X% ol

for x > O where the definition of Q(s) is extended by analytical
continuation to the complex plane cut along the negative real axis from

the origin to infinity. By evaluating (36) we get
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dH(x) 1 1 2 1o
(37) = — exp{~ = [ =203 gy}
dx Tr>c*/2(1+x2)3ﬂl "0 l+y2

for x > 0, This result is due tc D. A. Darling [46 ] .

In the particular case where 1 <o <2 ,B8=-1,and ¢ >0 , we

havé

. T 4 = {g(t) > X}
(38) N‘.E{T](b) = x} =1 -.:%{-Tt—,y—;ﬁ‘j‘_

for x>0 and t >0 . This result is due to A. V. Skorokhod [ 185
p. 1571 . If we take into consideration that in this case P{(t) > O} =
E{ECL) > O} for all t > Q , then we have the obvious relation

(39) P{g(t) > x} = P{&(1) > OIP {sup £(uw) > x)
” " " Ogust

for t >0 and x > 0 and this implies (38). To prove (39) we note that
the event {&(t) > x} can occur in such a way that inf{u : () > x} = v
where O <v <t , and &(t) - £&(v) > O . The last event has probability’
Mlj{é;(t) - &(v) > 0} = P{g(1) > O} regardless of v . We note that in this

case ng{a(l) >0} = 1/a .

The problem of finding the distribution of the supremum for stable

processes has also been studied by G. Baxter and M. D. Donsker [ & ],

C. C, Heyde [ 87 1, and the author [212 ] .

.Stochastic processes with independent increments having either no

negative jumps or no positive jumps. ILet {g(u) , O cu < =} be a
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homogeneous, real stochastic process with independent increments for whnich
the sample functlons have no negative jumps and vanish at u = 0 with

probability 1 . Then
(Ll'O) ' E{e"SE (u)} = eu‘y(S)

exists for Re(s) > O and the most general form of ¥(s) is given by

2 S o ]
(41) ¥(s) =as + 1 023“ + [ e 1+ -—"-X--)dN(x)
J

2 +0 14x°
. . a . : 2 .. . SR \
where a 1s real constant, ¢© is a nonmnegative constant, and N(x)
~

(0 < }F < ») 1is a nondecreasing function of x satisfying the conditions

1im N(x) = 0 and

X - o

(42) [ a(x) < =
+O

for gome (any) e > 0 .

If z-;*(u) = -g(u) for O < u < », where the process {g(u) ,
O<u<®} 1is defined above , then {g*(u) , Ozu<w}
is a hamogeneous, real stochastic process with independent increments
for which the sample functions have no positive jumps and vanish at u =0
ﬁth probability 1 . Conversely, éver;y such process {g*(u) , O u< w}

can be represented in the way mentioned above.

’

In what follows we shall consider similtaneously the processes {g(u) ,
* . %
Oz<u<w} and {£ (u) ,0xu<=} where £ (u) = -g(w) for O u< =,

' We shall demonstrate that the distribution of the supremum for the processes
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. ¥
{g(u) , 02u<=} and {£& (u) , O 2 u <} can be determined explicit-

ly. See V. M. Zolotarev [ 227 ] and the author [ 210 pp. 83-85].

In the following we shall need the following type of integral
t
(43) [ g(uP{x < g(u) < x + du} .
O A
To define (43) let us subdivide the interval [0,t] by partition points

; %
0 T Uy < U Sews < U= t . Let Au, = U~ Uy and u e [ui—l’ ui]

n 1-1
for 1=1,2,..., n. If for any partition of the interval and for any
%
choiceia of U‘i the sums

) | I ewhes : -
(4k) | izl glu )P{x < g(uy) < x + syl

have a cammon limit as 1max Aui + O , then we say that the integral (43)
: sdsn
exists and is equal to the common limit of the sums (44).

If g(u) 1is a discrete random variable, then (43) reduces to the sum

(45) ) g(u)Ple(u) = x}

Ozust
where the sumation is extended for all those u e [0,t] for which
Plg(u) =x} > 0.

If £(u) has a density function, then (43) reduces to

t <
(46) A ] e glﬁ_gg_;%_i}i_ du .
. 5

" We define
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© +

(s7)’ [ g(u)P{x < g(u) < x + du} = lim fv g(uw)P{x < g(u) < x + du}

provided that the 1limit exists.

To find the disitribution of the supremum for the processes {&(u) .
0<uc< m}. and {g*('u) ,» 0 < u < «} we shall approximate the process
{g(u) , 0 cu<=»} bya séquence of compound Poisson processes {gn(u) s
0 <u <=} 1is such a wey that the finite dimensional distribution functions
of the process‘ ' {gn(u) , O 2 u < =} converge to the finite dimensional

distribution functions of the process 1&(u) , 0 su<e«} as n-»>eo .

If we suppose that

(48) g,(w) = ¢ ] (e.-1)

1;i=<__vn(u) L

for u > 0 where C, is a positive constant, €1 Eppotees €gsoee is a
sequence of mutually independent and identically distributed discrete random
variables taking on nomnegative integers only and {vn(u) 5 O 2 u<w} is
a Poisson process of density A n which is independent of the sequence

{Eni ; 1 =1,2,...} and if we choose the parameters c ,A ~and hn(z) =

By
E{z "7} in such a way that

P

c S -C S
(49) Lmafe™ he ™) - 1] =¥(s)

n > o

for Re(s) z O where ¥(s) is given by (41), then the process {g_(u) ,

£
n

0 < u < =} satisfies the desired properties. We can easily see that for -
, by
any Y¥(s) given (41) we can find suitable Ch oo Ay and hn(z) such that

(4g) is satisfied.



VIIT-52

" If we suppose that {g(u) , U < u < =} and '{En(u‘) ,0<uc<=} are
rocesses Lo
separable and if (49) is satisfied, ther by Theorem 52.3 we can conclude
that

(50) 1im P { sup gn(u) < x}=P{sup £(u) < x}
n + o O<ust - Ozuge

in every continuity point of the distribution function on the right-hand
: * %
side, If we write £ (u) = -g(u) and En(u) = —F,n(u) for O cuc<mw=,

then we have also

(51) 1lim P {sup gn(u.) 2x}=P{sup £ (u) 2 x}
n -+ o O<u<t Ozus<t

in every continuity point of the distribution function on the right--hand

side,

The probabilities on the ieft-hand side of (50) and (51) can he obtained
by Theorem 55.11 and by Theorem 55.13 respectively. Thus the probabilities

on the right-hand side of (50) and (51) are also determined.

The limiting case t = » can be obtained by Theorem 55.12 and by

Theorem 55.14 .

If for the process {g{u) , O < u < »} we have (40) where ¥(s) is

given by (41), then
(52) , E{g(u)} = -pu

for u > 0 where
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) s X3
(53) p=a- > dN(X) .
+0 1+x

[=~]

(;l for u2z O

It is possible that p = —=» ; however, p = = 1is impossible.jIn what follows )
we shall exclude the trivial cases P{f(u)x0}=1 for uz 0 and P{§(u)<0
A

Theorem 5. If {g(u) , O 2u <=} is a separable,homogeneous, real

stochastic process with independent increments for which (40) holds with

y(s) givén by (51), then we have

: £ % +
(54) P{ sup £(u) < x} = P{e(t) = x} - [ ”E{[Et(t'u)] Ypix < z(u) < x + du}
™ Ozust ~ 0 e -~

%
for x>0 where £ (u) =-g(u) for u>0.

Proof. If we apply Theorem 55.11 to the process {En(u)/c , 0 2 u < =}

n
and if k= [X/cn] , then we obtain (54) by letting n + » in (55.74) .

" Theorem 6. Let

(55) W(x)

]
$rd
~=
Ccll:
fo]
¥y
~
[
~
II A)
>
et

where the process {g(u) , 0 < u < «} 1is the same as in Theorem 5. If

p > 0 , then we have

@

1-pfP{x<glu) <x+du
0

(56) W(x)

for x>0 and

Qv

(57) Q(s)

e % w(x)ax = ,(33-

-€
U
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(for Re(s) >0 . If ¢ <0 and Plg(w) =0} <1 for u>0, then
WC_X) =0 forall x .

Proof. Formula (56) can be deduced from (54) 'and formula (57) from

(55.78) .

. . |
Theorem 7. If & (u) = -g(u) for u > O where the process {z(u) ,

0 < u < «} 1iIs the same as in Theorem 5, then we have

t
* *
(58) Plsup £ (W) <x}=1-{ % {x <& (u) < x + dul
T Osgust o -

for x>0,

Proof. If we apply Theorem 55.13 tc the process {En(u)/cn » O 2u < =}

and if k = [x/cn] s then we obtain (58) by letting n + « in (55.80) .

%
Theorem 8.  If the process {¢ (u) , O < u < =} 1is the same as in

Theorem 7, then we have

w©

(59) Plswpe@ext=1-]
O<u<e 0

I

%
Plx < g (u) < x + dul

-

1

for x>0, or

~-wX

. *
(60) Plsup g (u) < x}
Q__<=u<co )

l-e

for x>0, where w is the largest nonnegative real root of the equation

(61) ¥(s) =0 .
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¥
If 020 and P{g (W) =0t <1, for u>0 then v =0, and if o <C

*
"g_l_"_Ng{g(u)=O}=lf_o_r_ u>0, then w>0.

Proof. If we let t » = in (58), then we get {59). Formula (60)

can be obtained by Theorem 55.14 .

We note that if

(62) j'ex aN(x) < =
+0

for some e > O , then (41) can be reduced to the following form

¥(s) = 8 + 305" + [ (% - Dan(x)

63) |
f, +0
|

where a is a real constant. If

w

(61"') fXdN(X) <

<

for some € > 0 , then (41) can be reduced to the following form

(65) W(s) = 85 + 2022 + [ (€% -1+ sx)aN(x)

+0

'__J

o

where a 1is again a real constant, but it is, in general, not the same

constant as in (63).
In the particular case when

(66) ¥(s) = s + [ (7% - 1)aN(x)
+Q

fdr'v Re(s) 2 0 where N(x) is a nondecreasing function of x in the

interval (0, ) for which 1lim N(x) =0 ang

X >+
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(67) [ xdN(x) < =
.*.O

for some ¢ > O , Theorems 5, 6, 7, 8 can also be deduced from Theorems
7, 8, 9, 10 in Section 55. In the particular case of (66) we can also

prove Theorems 5, 6, 7, 8 directly by using Theorem 51,8 .

Examples. First let us suppose that {g(u) , 0 < u < =} is a general

Brownian motion process which we defined in Section 50. Let
(68) g(u) = au + oglu)

for u >0 where a 1s a real constant and o 1s a positive constant.

Then
(69) P{z(u) < x} = o(F=E5
i ou’ ©
for all x where
X 2
(70) o(x) = - [ &V 2 4
Vor —w

is the normal distribution function.

In this case we have E{z(u)} = au and Var{z(u)} = o°u for u >0

and
(71) RS Wy - WH(s)
for u > O where

(72) ¥(s) = -as + %‘-o s° .
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_Now we can apply Theorems 5, A, 7, 8 in finding the distribution of the
suprémum for the process {z{u) , O < u < =} , however, we shall show that

it 1s simpler to use formula (55.75).

We observe that if we define the process {gn(u) » 0 2u <o} by (48)

where now c = o/fn , A, =n and

a
20vn 20vn

=01 =p =2
(73) Ple = 2} = p,=35%
for n > a2/02 , then the finite dimensional distribution functions of the
procéss {gn(u) » O 2 u <=l converge to the finite dimensional distribution

functions of the process {z(u) , O <u < =} ., This follows from the fact

that
o8 - 98
(74) 1im n(aq. e'/H +p e /n - 1) = -as + %-0232
n n 2
n > «
for all s .

A

~ For the process {E,‘n(u) , 0 <u < »} we have by (55.75) that

; ko ko pn k ko
(75) P{ sup £ (u) < =—=1=P{g (t) < =}- (=) P{e (£) <~—=%
™ o<ust Mmoo~ n 4 ~ 1 /n

A

for k=1,2,... . Ifweput k= [x/n/c] in (75) ad let n » = , then
we obtain that

2
P {swp c(u) < x} = PLz(t) < x} - 9 p{g(t) < —x)

. 2
Q(X—E{;z) _ eZa_X/O ® (-XI%:)
ot ot
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for ‘x> 0.
If a<0 and if we let t » o in (76), then we obtain that

2
(77) P{sup z(u) < x} =1~ R

A O§l<°°

for x>0,

We note that in a similar way we can determine the pfobability
C%Bj N?{;y\< g(w) <x for O gu gt}
if x and y are positive reai numbers by using formula (55.76).

Ifin (77) weput o=1 and a=-y , and if we use the representation
(68), then we obtain that for a separable Brownian motion process {£(u) ,

0 U< w} we have
(79) P{g(u) > x + uy for some u e [0, =)} = e_2Xy

for x>0 and y > O . For another proof of (79) we refer to J. L.

Docb [ 58 1.

As a second example let us suppose that {v(u) , O L u <=} 1is a

separable Poisson process of density A . Then

- Q¥

(80) Plo(w =k} = AN

for k =0,1,2,... and u2>0 .
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.In this case the distribution functions of sup [v(u)-u] and
O<ust
sup Lu-v(u)] can be determined by Theorem 55.6 and Theorem 55.9 respectively.
Czust

Here we shall mention another method ror finding the probabilities
(81) ,W(tt,-r',’k) %ﬁ{v(u) csu+t+r for O<ucgt|vt) =k}
for O<k<t+r and £t >0, and
(82) W(t;r) =£{v(u) <u+r for O<ucgt}
for r = O‘,'1,2‘,“..‘. and t>0.
By Theorem 48.6 we have
(83) W(E,0,6) = 1 - &
for 0 <k <t , and by (48.57) we have
(84) W(t,0) = P{v(t) <t} - AP{v(t) <t -1}

for £t >0 .

Starting fram (83) we can obtain W(t,r,k) for r = 1,2,... by the
following recurrence formula

(85) W(t,r+l,k) = fi’f-l—)— W, ey - ) (5 5 WP Eed)

£ j=1 9
This follows from the equation
k~j

(86) W(eHL,rk) = 1 () S (e, L k)
3=0 Y (t+1)
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. In proving (86) we take into consideration that the event {v(u)

fia

utr

for O cuxtt 1} can occur in such a way that v(1) =] where
0,1,2,... . Since

k=]

(87) P((1) = Jlv(e41) = kI = () Trpp
o I (g4)”

for j =0,1,..., k , the equation (86) follows easily.
By (85) we obtain that

_ (t+1-k) (t+1)k'l
(88) W(t,1,k) X

for O <k g t+l , and

(t+2-1) [ (t+2) 5L
K

t

k~2
(89) W(t,2,k) = (t1) " ]

for 0 <k < t+2 . (See Problem 58. 2.)

In a similar way, starting from (84), we can obtain W(t,r) for

r=1,2,... by the following recurrence formula

| .
(90) | W(t,r+l) = eMW(t+l,r) - :]’?-,—W(t,ﬁl-j) )
g1 9t

This follows fram the equation

Ty
(91) W(t+l,r) = ) e 5 Wit,r+l-3) ,
120 J!

J

A
=
I
=

which can be proved by takinginto consideraticn that the event {v(u) <

for 0 < u < t+l} can occur in such a way that v(1) = J where Jj = C,1,2,...
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By (90) we obtain that

(92) W(t,1) = e [P{u(t+l) < t+1} = AP{u(t+1) < t}]
for £t >0.

Finally, we mention an interesting result for Poisson proc-égss which
iIs a particular case of a more general result found in 1959 by S. Karlin

and J. McCGregor [101 1.

Theorem 9. Let {"r(u) » 0<u<w® (r=12,..., m) be independent

’ |
separable Poisson processes of density A . Let O < a) < a2 Sees < B and
T — i

ci<41:

gSeee < C be integers. Then we have

Pluj(u)tey < v (wite,cieicy (wte, for 0 gu <ty (t) =a

2 T

(93)

a,l 5
J

for r=1,2,..., m} = Det (Z.F cim )]
I M R

1,§=1,2,...,m

where the right-hand side of (93) is an m xm determinant. In (93)

l/X! =O ;.-f: X=—l, "'2,9.0 .
= X I 1 = .
Proof. let F,r(u) vr(u) + c, for O <u < and let br' ar+ c,

We.s\hall prove that if O;al<a2 Seee < B and b1<b2 <enn <bm,

then

Ag{il(u) < gz(u)<...<§m(u) for O <u <t ard gr(t) = b,
(94)
for r=1,2,...,m} = Det \P{g (t) = b_} .

Tys5=1,2,...,0
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‘Let
(95) D_ = Det|P{g_(t) = Db_}| .
m w~ T 5 351,200 ,0
Since
_ a_tc_~-c ) _ a . .
(96) D = Det| & At(xt) s 8 fl _€ m}‘t(xt)al...(xt) m Det &’ ’
v o : aTe =TT
. m (as+cS cr)! ‘ al! ceee 2! (as-kcS c, !!

where | 1/x! =0 for x= -1, -2,..., therefore (G4) implies (93).

Now we shall prove (94). Denote by C the event that at least two
i

paths| {g.(u) , 0 cusxtl (r
! B
(O <'u<t). Let us write that

1,2,...,m) coincide for some u

(97) D = DT Pl (8) = b, ,..., E(t) = b,
M (ig,e01) w1 4 m In

where the sumation is extended over all permutations (il’ Ioseers im)
of (1,2,...,m) and I 1is the number of inversions in the permutation

(il, 12,..., j}r) . Let us express each term in (G7) in the following way:

PLe,(t) = by ,ee., E(£) =Db.} =
A l 11’ gn’l l‘n
(98) |
= Plg,(b) = by seees g (t) = o; C} + Plg,(8) = by sees g (t) = by > Y .

We have
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I Y = 3 -
<il"§':"im)(_l) P{g (%) = by seess £ (£) = by » C} =
(99)
=- 1 DR ®) =y ..., £ (6) = b, C) .
(L500051) 1 m

For if C occurs, then at least two paths {gr(u) » 0 zu <t} (r=1,2,...,m
coincidé for some u (0 <u <t) . Let us suppose that the r-th and the

s+th paths coincide for the first time in the interval [0, t] . After this
coincidénce lét us interchange the remaining parts of the two paths. By

this %nter'change, on the one hand, the sum (99) remains unchangead, and on

the other hand it is multiplied by -1 . For

b

Plows, £(8) by seers C =

S

10 £.(t)
(100)

=Pl.., &(¢) by seees o

Ds seees Es(t)
s r

and the number cf inversions in the two permutations (... ’ir" eesl

seee)

and ("”is""’ir"") differ by an odd number. This implies that the

S

sum (99) is nécessarily 0.

Thus by (97)

» - I, _ I
(101) Dp =, ) \(-1) Pl (€) =y ,eee, £ (8) =1, , Tl
\il’ono,im/ l m

Obviously, every term in (101) is O except one which corresponds to

i, =1, i2=2,..., im=m . Thus we have

1
(102) Dy = Pl (8) = bysee, 8 (8) = by, CF

which campletes the proof of the theorem.



VIII-64

.57. First Passage Time Problems. Let {g{u) , O <u < »} be a

separable real stochastic process for which P{g(0) =0} =1, For x >0
let us define

’

(1) ' 8(x) = inf{u : g(u) 2 x and C < u < =}

and 08(x) =« if g(u) <x for all ue [0, ») . We can interpret o(x)
as the first passage time of the process {g(u) , O < u < «} through x .
For every x > O the first passage time 6(x) 1s a nomegative random

variable (possibly = ) .

it is of some importance to determine the distribution of e(x) for a
wide ch:lass of stochastic processes {g(u) , 0 £ u <o} . Since obviously
(2) P{e(x) gt} = P{ sup ¢(u) 2 x}

™ " Ogust
for all x>0 and t > 0 , the problem of finding the distribution of

9(x) can be reduced to the problem of finding the distribution of sup £(u) .
' O<uc<t

In the previous section we determined the distribution of sup g£(u)
Osu<t
for a separable, homogeneous, real process {g&(u) , O < u < =} with
independent increments and thus by (2) we can also find the distribution cf

8(x) for x20.

In what follows we shall mention a few processes {g(u) , O g u < «}

for which simple explicit results can be obtained.

The first result concerning first passage time problems was obtained

in 1708 by A. De Moivre [52 ] . A. De Moivre's result can be formulated
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in the following way: Let us suppose that a particle performs a randcom
walk on the =x-axis. It starts at x=0 and at times n = 1,2,3,... it
moves a unit distance to the right with probability p or a unit distance
to the left with probability q where p >0 , G >0 and ptg=1 . Let
us suppose that the successive displacements are mutually independent random
variables. Denote by £(n) (n = 0,1,2,...) the position of the particle
immediately after time n , and denote by 6(k) the first passage time

through x =k (k =1,2,...) . By the result of A. De Moivre [ 52 ] we

have

(3) P{e(k) = n} = = P{e(n) =k}

SN

for n=k, kt2,... and k =1,2,... .

,
By a result of E. Barbier [ 4 ] which was found in 1887 we can
conclude that the result (3) is valid under more general circumstances.
If we suppose that in the random walk process mentioned above the successive

Vdisplacements El, &2 seeey & are mutually independent and identically

n, e o
. ; for. -1} = - -

distributed random variables which P{g n= 1} =p and P{En = -u} =g

where u 1s a positive integer, p > 0, q >0 and p+ q =1, then (3)

holds unchangeably for n = k, k+2u ,... and k = 1,2,... .

In 1960 the author [ 199 ], [ 200 ] proved a generalization of the
classical ballot theorem and this implies that (3) is valid if we suppose
that El, 52 seees gn" .. are mutually independent and identically distributed

discrete random variables taking on integers 2 1 only.
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This last results implies iImmediately the following more general
result: Let us suppose that

) | gw = ] g

1<i<v(u)

for u >0 where {v(u) , 0 2 u <=} 1is a Poisson process of density A
and &l, 152 seees Ei,... are mutually independent and identically distributed
discrete randam variables taking on integers < 1 only and that ' {gi} and
{v(u) , 0 2u <=} are independent. If e(k) denotes the first passage
time through k where k = 1,2,..., then we have

t

(5) P{o(k) £t} = {)

-

ol |-

P{e(u) = k }du

Ay

Y

for t >0 . By (5) we have also

(6) ap{e(k) < t} -

K oo o
= ¢ Fle(t) = k)

P~

for t>0 and k= 1,2,... .

Now let us suppose that {x(u) , O <u < «} 1is a separable compound
Poisson process whose sample functions are nondecreasing functions of u
with probability 1 . Let &(u) =u - x(u) for u > O and denote by 6(x)
the first passage time of the procéss {g{u) , O g u <=} through x where

x > 0 . By a result of the author [ 209 ] obtained in 1961 we have

T
(7) Plo(x) £t} =] %duP{x(u) <u - x}
. X taa
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for 0 <x <t ., If we suppose only that {x(u) , 0su <=} is a

separable, homogeneous process with independent increments almost all of

whose sample functions are nondecreasing step functions vanishing at u =0,then
(7) remains valid unchangeably. This was pointed out by the author [ 209 ]

in 196‘2.. See also [ 2031, [ 204 1, [205] . This last result was stated

in 1957 by D. G. Kendall [ 106 ], however, he did not prove it.

It is interesting to mention that if {g(u) , O < u < =} is a separable
Brownian motion process for which

|
8) | P{£(t) < x} = o(2)

| - %
for t >0 where ¢(x) is the normal distribution function and if 6(x)

denotes the first passage time through x where x > 0 , then we have

aP{e(x) S t} _ x oP{e(t)= x} _ x -:x2/2t
(9) s - X = e
ot t X e——-g
/ot
for x>0 and € > 0O . This result can be deduced from a result found

in 1900 by L. Bachelier [ 2 1.

From (5) we can deduce a more general result. Let {g(u) , O 2 u < =}
be a separable, homogeneous stochastic process with independent increments
for which the sample functions have no negative jumps and vanish at u =0
with probability 1 . The trivial cases _P{g(u) >0} =1 for u>0 and
N\Ii{g(u) <0} =1 for uz>0 will be excluded. Let g*(u) = ~g(u) for
u > 0 and denote by e*(xj the first passage time of the process {g*(u) ,

0 <u<w=} through x where x > 0 . Then we have
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. t .
(10) Plo"(x) £t} = [ EPlx<g (w <x+du)
lAand o laad

for x>0 and t > O . This result was proved in 1964 by V. M. Zolotarev

[228 ] . His proof is based on a result of A. V. Skorokhod [ 185 pp. 129~

1347 . See also the author [210 pp. 83-89] .

%
In this case {6 (x) , O < x < »} 1is also a homogeneous stochastic
process with independent increments. The sample functions of the process
* .
{6 {x) , O 2 x <=} are nondecreasing functions of x and vanishing at

x = O with probability 1 .

Let

(11) pre~SE(W)y _ Ju¥(s)

for Re(s) 20 and u >0 where ¥(s) 1is given by (56.41). Then we can
write that

,(12) g{e‘ss*(X)} = e‘x‘“*(s)

for Re(s) >0 and x > O where

(13) | w(s)=as-[ (€ 1)av (x)
10

#* %
for Re(s)>0 and a 1is a nomnegative real number, and N (x) is a

#*
nondecreasing function of x in the interval (0, =) for which 1lim N (x)
X > o

and

(11) [ 3 () <«
+O

for some ¢ > O .

0
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- %
'We can prove that if Re(s) 20, then z = w (s) is a root of the

equation
(15) C¥(z) =5

in the domain Re(z) > O . Actually, we can prove that if Re(s) > 0,
%
then 2z = w (s) 1is the only root of the equation in the domain Re(z) > 0 .

See A. V. Skorokhod [ 185 pp. 129-134] .

In 1961 V. M. Zolctarev [ 228 ] demonstrated that for some Y¥(s)

déf‘ingd by (56.41) for Re(s) > O there exists a w*(s) defined for

Ré('s) 3 2 0 which can be represented in the form (13) and which satisfies
W(m*(!s-)) = s for Re(s) >0 . He also showed that for the corresponding
pr'ocessés ' {E*(u) 5 02u<® and {o"(x) » 0 < x <=} (10) holds; how-
ever, he did not demonstrate that {6*(x) > 0 2 x <w} 1is the first

%
passage time process of {£ (u) , 0 g u < «} .

Example. In accordance with the notation of Section 42 let us denote
by f(x ; a,8,c,0) the density function of a stable distribution functicn

of type 8(a,B,c,0) where c >0 .

Let us suppose that {g(u) , O < u < =} 1is a stable process of type

S(a,l,c,0) where 1 <a <2 and ¢ >0 . Then

(16) PLe(t) £ x)

_ 1 X .
3% R f(tl/o(’ % 41,¢,0)

for t >0 and all x .
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%
If {6 (x) , 0 <x <=} 1s the first passage time process which

* .
corresponds to £ (u) = -g{u) for O <u < o , then by (10) we have

ES
ople (x) Sty _ _ X o .%X_ .
(17) ' 3t = tl+l/0t X <tl/°‘ ya, =1, ¢, 0)

for t>0 and x>0 .

Cn the other hand by (42.173) we have

18 ) = - Sty
for Re(s) > O in (11). Thus by (15) we have

1/a

(19) w(s) = (- EO—S((:—JW) %

*
for Re(s) 20 in (12). Hence by (42.171) we can conclude that {8 (x) ,

0 s x <=} is a stable process of type

1/a
1 —cos (am/2) T
(20) S, 1, cos 5=, 0) .

Accordingly we have

*
3t o + a ? o’ ’

X

_cos(om/2))1/0‘coS _T_l’_’ 0)

(21) c 2a

]

for t >0 and x>0 .

If we compare (17) and (21), then we obtain that the identity
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. 17
X . t ot 1. —cos{an/2) "% g
(22) f(217; 30,=1,C40)= ~—- I(;;,‘gal, \—-j§———~l) cos 5=, 0)

holds for t >0 and x> O .

Ifput t =1 and c = —cos(an/2) in (22), then we get

%17—,O)=—-—l I‘(%}T;%,l,cosTT

(23)  f(x3a,-1, -cos T s

0)
for x>0 and-1<a 2.

Conversely, (23) implies (22). This follows from the relation

1 X .
(24) f(x;0,8,cu,0) = 75 £ ( l/a,a,s,c,O)
u u
which holds for 211 ¢ >0 and u >0 whenever a # 1 .

The identity (23) is indeed true. If o = 2 , then this follows from
(42.108) and (42.116). If 1 < o <2 and if we use the notation (42.128),
then we can express (23) in the following equivalent form

(25) h(x;a,2-0) = —=—h (& ; -i—, -i:-)

a+l a2
X X
for x>0 and 1 <a <2, and this is true by Theorem 42,7 .

By using Theorem 56.5 we can determine explicitly the distribution of
8(x) for a separable, homogeneous stochastic process {£{u) , O < u < =}
with independent incraments for which the sample fUnctions have no negative

Jumps and vanish at u = 0 with probability 1 .
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The following problem is comnected with the first passage time problem.
Iet {g(u) , O < u < =} be a separable, hamogeneous stochastic process with
indépéndent increments for which P {€(0) =0}=1. Then by Theorem 51.4
the limits £(ut0) and g£(u-0) exist for all ue (O, ) with probability 1 .
For a >0 1let us define
(26) 8(a) = inf{u : &€(u) >a and O L u < =}

and o(a) =« if &£(u) <a forall ue [0, «) .

If] 6(a) 1s finite, then let us define

@en y'(a) = g(e(a) +0) - a ,
(28) - y"(a) = a-¢g(e(a) -0) ,
and

(29) y(a) = y'(a) + y"(a)

for a > 0, The problem arises to find the distributions of the random

variables vy'(a) , Y"(a) and vy(a) if they exist.

In 1955 E. B, Dynkin [61 ] determined the distributions of vy'(a) ,

y"(a) and y(a) in the case where {&(u) , O <u < =} is a separable
stable process of type S(e¢,l,c,0) where O <a <1l and ¢ >0 . Then
we have

a
(30) = E(emSE(W)y o g7uCs

A~

for Re(s) 20 and uzo0.
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If a >0, then P{e(a) <=} =1 and we have

5 Y'(a) -
(31) P{I==~<x} =H ()
and
y'(a) y"(a) - x+y,
(32) Mg x, >y}—1—Ha(l_y)
for x>0 and 0 <y <1 where
1 for x>1,
o X

(33) Hy(x) = S—MT?—M— — M for 0<x<1,

| 0 u¥(1+u)

I

| 0 for x <0,
and furthenmore,

y(a) -
(34) P2 < x) =k @
for x > O where
(35) K (o) = S0er 0 ) o
o if at+l
O u
and
1 - (1-uj® for 0 <us<l,

(36) qlu) =

1 ' for v>1.,

The above results can easily be deduced fram (49.176), (49.183) and
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(49.18h). It is sufficient to prove (32) because (31) and (34) follow from

(32). In (49.183) let us define the random variables and n,_ for the

Xt

sequence 8 = (k) - g(k-1) (k =1,2,...) and for t >0 . Then we have

y'(a) Y"'(2) - 14 ax ay, _ . (XY
(BN RUIZE> %, S5 b = U Bl > 575 nyp 2 5 7 18 ()

for x>0 and O <y <1 and this proves (32). To prove the first equality

in (37) let us apply (49.183) first to the sequence T = £(kh®) where

k = 0,1,2,... and h >0, and then to the sequence r, = he(k) where

k=0,1,2,0..and h>0 and let h~>0. Since £&n") and he®) have
“ .

the sam# distribution, it follows that the first equality is true in (37).

If we refer to Note 2 in Section 49 and if we use the solution of
Problem 53, 6 , Then we can easily extend the previous results to a
separable stable process of type S(a,B8,c,0) where either 0 <o <1 or
l<a<2,and-1<pg<1 and ¢c>0. If a>0, then Ng{e(a) <o} =1,

and we have

(38) Ng{*';a) <%= ()
and
i [
(39) AR SRR R e

for x>0 and O <y < 1 , furthermore

(a) -
(40) ML cx =k ()
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for x >0 where H (x) and K (x) are defined for 0 <a <1 by (33)

and (35) réspective]y and where

- = 1Y
(41) 1=5+5 ,
with
2 am
(42) y=;arctan(_6tan-2——

and -~ -g- < arc tan x < —g— . These results are due to Ya. G. Sinai [182 ] .

We note that in this case by (42.192) we have P{eg(u) > 0} = q for all

u>0 and that O < og < 1 always holds.
I
|

Fiﬁally, we mention the papers of D. V. Gusak [ 74 ], E. A. Pecherskii

and B. A. Rogozin [ 142 ], and E. S. Shtatland [178 ] in which the joint

distribution of 6(a) and y'(a) and the distribution of 1 = inf{u : g(u) =

sup £(u) are determined for some homogerieous processes with independent
Osust
increments.
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58. Problems
58.1. In a ballot candidates Al’ A2,..., A score a., Boseees &
votes respectively. Denote by air), aér),..., uér) the number of votes

registered for Al’ A2,..., Am respectively among the first r votes recorded.
t us suppose that all the possible voting records are equally probable.

ILet ¢, < ¢, <...< ¢ be integers. Prove that

1 2 m
- (r) (r), . (r) _ -
P "Nﬁ{“l + ¢y < 05 + CoSenn< o + Cy for r=1,2...., al+...+ aﬁg
a,!
= Det

J -
4+ Cc.- C,)!
(aJ 5 i)

| (i,j=1,2,...,m
where Il/'x! =0 for x=-1, -2,... . (See D. E. Barton and C. L. Mallows

Le 1.

58.2. Let {v(u) , 0 < u < =} be a separable Poisson process of density

A . Find

W(t,r,k) = P{v(u) cu+r for O <uc<tlv() =k}

for Ozk<t+r,t>0 and r=0,1. (SeeN. V. Snirnov [ 187 1.)

58.3. Let {x(u) , 0 < u< =} bea compound Poisson process defined
by (55.37). Give a direct method for finding W(t, x) = P{x(u) < u + x for

O<ucxtl.

58.4 Iet {x(u) , O <u < =} be a separable compound Poisson process

defined by (55.37) where H(x) = l-e "* for x >0 . Find
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Wit, x) = P{ sup [x(u) - ul <x}.
" Ogust

(See G. Arfwedson [ 2 1.)

58.5. Let {x(u) , 0 2 u < =} be a separable compound Poisson process

X

defined by (55.37) where H(x) = 1~ " for x > 0 . Find

V(t, x) = P{ sup [u - x(u)J < x} .
‘ ™ Ozust

(See G. Arfwedson [ 2 1.)

5%.6. Let

|
! x(u)

"
~1
pad

n
O<1_<u
=

for u >0 where Tt - Tl (n=1,2,...,-ro=0) and X (n=1,2,...)

are independent sequences of mutually independent random varisbles. We

are
suppose that T~ Thel (n=1,2,.. .)Apositive random variables for which
-s(t -t_ .)
E{e n n-l } = ¢(s) for Re(s) >0 and X (n=1,2,...) are real

rrr~

-3X
random variables for which Efe ny - y(s) for Re(s)= 0 . Give a method

for finding the distribution function cf

n(t) = sup [x(u) - ul .
Ozuc<t

58.7. Let us consider Problem 58.6 in the particular case when X

ronnegative
(n=1,2,...) areArandom variables. Give a method for finding the distribution

function of

n(t) = sup [u - x(w] .
Ozu<t
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58.8. Prove that if g #0 and o < B , then

8 +
(s-q) [ R L R

o

=e-

' + + + L+
- (o~@-s[y-8]" _ -qo-sly-al’y _ %{e-qs-qtv—s] _ e domaly=al 'y
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