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CHAPI'ER.VII 

S1I'OCHA.S'l1IC PRCCESSES 

47. Basic Theorems. We start this section with the definitior1 of a · 

stochastic process. Let (n"B,P) be a probability space where n is the ,.,._, 

sample space with sample points w e: n 3 B is a o-algebra of subsetsof 

n , and P is a probability rreasure defined on B We may assurre with-
"""'-

out loss of gp....nera1.ity that the probability space (n, B, P) j s complete. 
"""' 

A probability space is said to be complete if A e: B , P{A} = 0 
·"""""" 

and E c A :împly that B e: 13 • Every probability space can always be 
1 

' 

completed, Iet T be an infinite pararreter (index) set. Fm·· each t e: T 

let t;; (t J =1 ~ Ct, w) be a random variable defined on îï , that iB, for each 

t t' T , ~ (t, w Y is a rreasura.ble f'unction of u; with respect to B • We 

sey that the family of' random varia.bles s (t) , t E. T , forms a stocL.a.sti: 

proce~. Tbac :ts,, a stochast ic process is any infin:t te family of ranöom 

varia.bles · { s Ct 1 , t e: T} • 

In this section we shall consider onl,y real stochast5-c processes, but 

more g,tmerall.y we can consider al.so complex, vector or abstract stochastic 

processes. 

In most applicatlons t can be considered as t:im::) and then T is the 

time range involved. If' T is an lnfirrl.te sequence, e.g., T = {0,1,2, .. "} 
-

or T = {. •• ,-1,0,l, ... } , then U~(t), t € T} .i.s callcd a. discrete para-

meter stochastie proceP':. If T is a finite or infinlte intsrva1, <c~.g., 

.· 
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T = [O,l], T = [0, 00 ) or T = (-00 , 00 ) , then {t.;(t) , t E: r.I.1 } is called a 

continuous pararreter stochastic process. 

, 
For an,y fixed w e: n the function ~ ( t) = ç; ( t, w) defined for t E: T 

is- called a sample function of the process. 

For arJY' f:i.r.tite subset (t1, t 2 , •.• , tn) of the para.meter set T , the 

joint di"'strî.b.ution function o.f the random variables ç;Ct1 ), ç;(t2), .•. , E;(tn) 

t'S called a fînite dimensional distrioution function of the process. The 

finite dim::ms:tê.m.al distribution functions of the process, 

def'ined for all finîte sets Ct1 , t'), ••• , t ) c •r and for all real ,_ n 

x1 , ~, ••• , \i , are the basic distributions and we shall classify stochastic 

processes-- accord:îng to the propertie? of their fini te dtmensional dtstribution 

runctions. 

~:t ip oby:loUS' that tI:Le distrihution functlons Ft t t (x1 , x2, .. ,x ) 
l' 2, ..• , n n 

defined by (1) must be consistent in the sense that if (i1 , 12, ... , in) is 

a pernru.tation of (1,2, .•. ,n) , then 

and if 1 < m < n , then 

lim Ft -- t t- ( xl' x2, ... 'xn) 
:xj_"'*"" 'l' 2,"., 'n ... · • 

(j=rn+ 1, ... ,n) 

f or all t +l' ..• , t . m n 



A. N. Ko1mogorov [ 55 ] proved that the consistency conditions (2) and 

(3) are the only conditions wh1ch the fini.te d:i.rrensional distributions of 

a stochastic process should satisfy. Kolmogorov's result can be fornrulated 

in the follow:i.ng way. 

Theorern 1. If the distribution functions 

( 4) Ft t · t (xl,x2, · · · ,x ) l' 2, ••• , n n 

a.-re defined for any finite subset (tp t 2 , ••• , tn) of a parameter set T :1 

and if thet satisf'y the conditions (2) ~ (3), then there exists a probabiJity 

space i (n,B,P) and a family of random va_riables ç;(t) = ç;(t, w) (t c T, 
1 }. !"';\, " 

w e: n J si:ich that 
/\ 

(51 P r \ (t ) ( ) ( ' .. {ç;1,._tl;' < xl, ç; - 2 ~ ~, ••• , ç; tn < xn} = Ft t t XpX··n···,;'<Ti_; 
·- l' 2" · · · ' 'n "- ··· 

Proof. In what f ollows we shall introduce sorne convenient term:inology 

and , "e.!. lmnulate the theorem in the new terrninology. 

The set R = (-oo, 00 ) of all finite real mrrnbers w is cal.led a real 

line. A set A in R is called an elernentary set if it can be represented 

as the union of a finite nurrber of intervals in R • Denote by B the 

minimal o-algebra which contains all the jntervals in R • 'lh.e elernents of 

B arie called Borel sets jn R • 

Iet T be a parameter set and -for each t s T let P't be a real l:i!K~ 

with points wt • We ._"!r-f.ü1e the produet space 

/\ T 
/1 
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(6) ~== x 1\ 
teT 

as the space with points· ~ = (~ > t e 'l1) where wt e ~ . A set 

(7) 

with points ~ = Cwt, t e T) where wt e At is called a product set in 

Brr • 

Let Tn = (tl' t 2, ••• s tn) be a finite subset of the parameter set 

T. A·set J\r in the product space Brr is called an elementary set if it 
' . n n 

can té represented as the union of a fini.te mnnber of such n-dirnensional 
! 

intervals in l\r whose sides are parallel to the coord:tnate axes. Denote 
n 

'by 8rr the minirrial a-algebra which contains all these n-dimensional inter­
n 

vals :tn ~ • The elerr~nts of Brr are called Borel sets in Rr . 
n n n 

Le c Arrn be a set in the product space !\in . The set 

(8) Air X ~-T 
n n 

is caJ.led a cylinder set in ~ with base Air • 
n 

If Air is a Borel set 
n 

in R.:rn , then (8) is called a Borel cylinder. If Arrn is a product set 

in R.:r , then (8) is called a product cylinder. 
n 

'I'he minimal a-algebra wh:i.ch contains all the Borel cylinders in R.:r 

is called.the product a-algabra of Bt for t e T and is denoted by 

(9) 



If ! T is a probability rneasure defined on BT , that is, if 

~' ST,)_'T) is a probability space, and if Tn = (t1, t 2, ... , tn) is 

any finite subset of T , then we can define a probability rneasure ~'r 
n 

on ~ by as·sîgning 
n 

to evecy· Borel set ~ in ~ • 'lhe probability rneasure ,!T is called 
n n n 

the rrarginal probabiltty or the proj ectiou of !'r on J3tr • 
. n 

_ ~1 wha.t f'ollow.s- we shall prove that there is. a uni:que probabî:.lity, 

· re~ ~ T def:tned on BT for which 
1 

CllI PT{A-} = Ft t t Cx1 , x'), •.• ;; x.
1

) 

- -~ l' 2'"" 0
' n . ~ ~TI 

wh:enever ~ = Är1 X ~.,..T with 
.. · n n 

(12) ~· = t(wt , wt , ••• , wt ) wt ~ x1 for i = 1,2, ••. ,n} 
n 1 2 n i 

anà. ~1 = Ct1 , t 2, ••• , tn} is any finite subset of T • 'lhis iL'lplies that 

1f we consider the probabi1ity space (~, BT, l'T) and if we define the 

random variables E; (t) for t € T by 

Cl3I t;Ctl =; t;Ct, Wir} = wt 

where ~ = Cwt, t e: T) , then we have 

(14). _!{E; __ Ct1 ) ~xl.' t,:(t 22 ~x2 , ••• , F;(tn) sxn __ } = Ft·:t- t (x1.,x2, ..• ~x) 
'l' 2' · · ·' n · n 
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ror~ all fin..tte subsets Ctp t 2, ••• , tn) of rr • By proving the above 

formulated statement we sha.11 have proved Theorem 1. 

We note that .for every finite subset Tn = (t1 , t 2, ••• :; tn) of T 

the di:stribution function Ft t t Cx1, x", ••• , xn) uniquely determines 
l' 2)•••) n L 

a probabîlity measure ,] T on BT in such a way that ! T {A,r } = 
n n n n 

F t t t (x1 , x2, ••• , xn) whenever Air = { ( wt , wt , .•• , wt ) : wt 
1' 2'""' n n 1 2 n i 

< 
= 

x
1 

for 1 < i 5-. n} . ( See Theorem 2. 2 in the Appendix. ) Thus the 

distribution fu:nction F t t (x1, x2, ... , x) induces a probability 
tl' 2, ••• , n n 

_space CRir , BT ,J'T) • If we define ç;(t1 ) = ç;(t1 , ~ ) = i:i{\ for /\-/.:, 
n n- n n "L 

Wrr1 = Cwt , wt ··, ••• , wt ) and i = 1,2, ••. ,n , then the random variables 
""n l, 2 n 

~Ct'l,1, ç;(t2}.""' ~Ctn) have the joint dtstribution runctton Ft +- +-
..l - l'Ll2, ... ,vn 

B.r 1;he ?.ssumptions· (2} and (3) the probabilities l:T m->e consistent 
n 

:in the following sense. If T
11 

= Ct1 , t 2, .•. , t
11

) and Tm = (t1 , t 2,.", tm) , 

where l < · m < n , are fînite subset of T , then the proj ection of 1' T on 

Ri:rm coincides with 1' T 
m 

n 

Theorem 1 states that consistent probabilities J' T on all fini te 
n 

product cr-algebras BT 
n 

determine uniquely a probability r!T on the cr-algebra 

BT in such a way that every ! T 
n 

is a projection of !T on 

Now we are going to prove this last staterrent. 

Denote by CT t~.:.e SiP·-~.::: of all those product cylinders A.rri X ~-T for 
n n 
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which 1r = (t,, t 2 , ••• , t ,) is any fii"lÜe subset of T and AT is the 
n ...... 11 n n 

uni on Gf a fJ.":..."û:te m.u1iber of product sets of the form X At where each At 
i=l i i 

i'S· an elementary set in R or equi valently each A is an interval Lri 
t1 ti 

To evèr•;t set Arr X Rir·--T in CT let us a::mign the probability 
n n 

05I 

whlch ls uru:quely detennined by· Ft t t (x1 , x2, ••• , xn) • 
l' 2,.", n 

It is easy to see that CT is an algebra of subsetSof F'T and ,.JT is a non­

negative and finitely additive set function on CT • Obviously _f T{RrrJ == 1 . 

Next we shall prove that LT is o--add1tive on CT • Since JT is 

fînitely additive on CT , it is sufficient to prove that J:T is contin1.ious 

at the empty set, and this implies cr-addi-tivity. Having proved that Pm is 
"""J 

~ddltiv~ on CT by Carath~odory's extension theorem (see Theorem 1.2 

in the Appendi.x) we can extend the r'lefinition of ~rr to BT , the minimal 

a~.lge!'.lra. which contai.1'18 CT , in such a wey that !T remains a nonnegative 

and q-additive set function and the extension is unlque. 

Now let us prove that J T when defined on CT is continuous at the 

em:pty set, that is, if Ane: CT for n = 1,2, ••• , A1 :::> A2;, ••• ::>An::>··· 
(l() 

and lim A = Il A = G , then lim Pm{A } = 0 • n n '"'°.L n n ~ 00 n=l n ~ 00 

Since evecy cylinder set depends only on a finite nurnber of parameters, 

{A } is 
n 

countable. By· interchanging, if necessary, the pararr.eters and by incluèling 
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or removing sorne cylinder sets we may assurre w:tthout:; loss of general:i.ty that 

there i'S' a sequence of parmneters tp t 2,"., tn, •.. such that in the 

5equence {An} each set An is a. cylinder set in ~ with base B!'l where 

B is- the union or a finite number of intervals in Rt X Rt X ..• X Rt 
n 1 '2 n 

Wè sfla.11 prove the continuity of Rt at 0 by contradiction. We s:b.a.11 
00 

show that :i::f 1im PT. {A } = E: > 0 , then l:i.m A = IT A is not empty. - -n n n n + oo n + ..,. n=l 

(16} 

f or 

Accordingly·, let us assume that 

1 

\ 

n = 
1 

00 

We shall prove that IT An 
n=l 

is· not empty. 

To sinrpl:tfy· notation let us w:rite ! = fT and l'n = ,!T for n .., 1,2, •.•• 
n 

']}li:- set f'unction 1' n is a probability on BT 
n 

Thus !n :i.s a-additive 

and therefore it is continuous on BT Consequently Bn contains a bounded 

* n 
and c Lseà Borel set Bn such that 

(17) * P {B - B } < E: 
,.,...n n n zi+l 

For Bn is the union of a finite number of intervals in Hirn and each 

constituent interval in B conta1.ns a bounded and closed interval whose . . . . n 

P - measure is ,,,._n arbitrarily near to the P_ - measure of the original intAr'Val. 
~il -

* * If An denotes the cylinder set in Hrr w:tth base Bn ~ then by (17) we have 

(18) 

let 

' * * s "PH - A } = P {B - B } < ---
,_,__ n n -n n n- zi+l • 

* A n 
Since * C c::: A C A and A C = A "R!. + A. ~ +. . • + n n n n n n l. n '--
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n 
( 19) P{A } - P{C J = P{A - C } .:S.. l P{Ak - Ä*k·} < 2e: • ,.,. n ,..,.. n ~ n n -- k?l ~ 

. . 
By 0.6} we have P{A } > e: and therefore (191 inplies that 

/Vv n = 

(20) 

for n ~ 1,2, •••• 'Ihus C is not empty and we can select in it a point n , 

aCnY = (at CnI ,_ t e: Tl • Since Cn c Cm if n ~ m , therefore a(n) 

if n ~m • 

(21} 

Hence 

* (at (n), at (n), ••• , at (n)) e: Brn 
1 2 m 

* 

e: c m 

P0r n ~ m • The set Bm is bounded for every m = 1, 2, • • • . Thus the sequence 

· {a(~)} contams a subsequence {a(n~l))} for which at (n~l)) -~ 8t as k -+ ~ • 

(1) 1 1 
Furthe:rmJre, the sequence {a(nk )} contams a subsequence {a(n~2))} 

for \'mich ~ (~2 ))-+ 8t as k -+ <». Cr"lntinuing in this way for ea.cll 
. 2 2 

i = 1,2, ••• we can define a sequence {a(~i))} such that {a(~i))} is a 

Ci-1) (i) 
subsequence of {a(nk ) } and at

1 
Cnt ') -+ ati as k -+ 00

• Then the 

. (k) 
d.iagonal sequence {a(Ilk ) } has the property that 

(22) 

exists for 1 = 1,2, •.•• J...et a = (at, t e: T) where at is defined by 

(22) for t = tp t 2,.", ti_,, .•• and é\· = O, say, f01" t :f ti (1=1,2, ... ). 
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(k) (k) ' (k) * 
Since (at (!\ ) , at? (nk ) j ••• , at (11k ) ) e: Bm 

1 1 * ~ rn 
and since \the set B is closed by (22) j_t follows that , rn 

(23) * (at, at, ... , at ) c B c. B 
1 2 rn rn rn 

f or k = 1,2, ••. , 

and conseQuently a e: Arn == BmX ~-T for m = 1,2, .... 'Ibis proves that 
~ rn 
II A is not empty which was to be proved. rn rn=l 

Accorclingly, we have proved that the probability rneasure Pm defined ,..,,, 1 

I 
by (15) on CT is cr-add.itive. By Caratheodory's extension theorem the 

definition of Y·r can uniquely extended over BT in such a way that 1' T 

rernains nonnegative and a-additive. Thus there exists a probability spa.ce 

CT' Bir' JT) and every !~ is a projection of ]'T on ~rn . 

If we defi.ne the random var>lables ~(t) for t e: T by ~(t) = ~(t, ~) --

~ ~lhere ~ = Cwt' t e: TJ , then (5) holds for every finite subset 

Ct1 , t 2 , • •• , tn) of T • Thts corrpletes the proof of Theorern 1. 

'Iheorern l w:as proved in 1933 by A. N. Kolrnogorov C,55 ]. r...- sorre 

particular cases, Theorern 1 can be deduced frorn sorre results found in 1917 

by _P. J. Dartiell [21 ] , [ 22 ] for tntegrals in a space of an infinite nu;-;iber 

/+ 

/ - J of' à.irrensions. For the thecry of abstract integrals we refer to M. Fréchet L 4 3 , 

A~ N. Kölrnöe;orov [ 5ll- ] and B. Jessen [ 47 ]. 

In the above discussion we considered real stochastic processes. In 

general we can consj_der vector stochastic processes or stochastic processes 

taking values in a rretric space and we can demonstrate that the approprtate 

version of Theorern 1 ls valid for such proc·=sses too. That is if vrc assur:.:e 

• 
that each Rt (t e: T) is a finite dimensional Euclidean space or a metrJc: 
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spacè, if Bt denotes the class of Borel subsets of Rt , that is, if Bt 

is the minimal 0 -algebra w11ich contains all the open sets in Rt , and if 

!T (T c: T) 
n are consistent probabilitîes deftned on all finite product 

n 
o-algebras BT = X Bt 

n te:T 
, then there is a unique probability reasure JT 

n 
defined on the cr-algebra Brr = X Bt in such a wey that every J>T is a 

- td n 
projection of !T on R.ri The proof of Theorem 1 can easily be extended 

n 
to stochastj_c processes taking values in a fi.ni.te dirnensional Euclidean space 

or in a rr.etric· space. However, in general, the appropriate vers ion of 

Theorern 1 is not valid anymore for abstract stochast.ic processes. That 

(t €.: T) is an abstract set, if Bt is a if weja.ssurne that each I\ 
a-algébra of subsets of Rt , and if YT (Tn c..-_ T) are consistent probabilitJes 

n 
defined on all finite product cr-algebras BT = X Bt , then, in general, we 

. n te:T 
cannot define a probability measure JT on the cr-a~gebra BT = X Bt in 

te:T 
·· such a wey tbat every P", is a proj ection of pT· on R_: · In 1938 

~~ ~ -~ 
n n 

J. L. P~ob [ 26 ] and in 1944 E. S. Al1dersen [ 2 ] believed that they have 

proved the abstract version of Theorem 1, but in 1946 E. S. Ander~n and 

B. Je~~en [ 3 ] pointed out that these proofs were 1ncorrect. In 1948 

E. S. Andersen and B. Jessen [ 4 ] constructed an example which shows that 

in fact the abstract version of Theorem 1 is not valid in general. 

It should be noted.that in the particular case where the finite d:imensionaJ.. 

probability measures are consistent pröduct measures the abstract version 

of '11heorem l is valid. This re.sult was formulated for the first time in 

1934 by Z. ·I:iomnicki and S. Ulam [ 59 ] , but their proof contains an error 

which was polnted ou'.~ .L1 J :>+6 by E. S. Ander·sen and B. .J essen [ 3 
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the proof of the extension th~orem fm"' product measu.res in abstract product 

::>etS' we re.fer to J. v. NeumElYL.'1 [ 65 pp. i;~2--11!8], B. Jessen [ 48 ] , 

s. Andersen and B. Jessen [ 3 ] and~ Kakutani [ 50 ]. 

In the proof of Theorem 1 we actually constructed a probability space 

Cn,B,P} and a family of real random variables t;(t) , t s T , such that the . ,,,.., 

Nn,ite climensional distribution functions of the process { s (t) , t E: T} are 

the prescribed di;;tribution functions (LJ) • However ~ this is not the only 

possi:ble construction. i·re can construct in.fi.nitely many probability spaces 

Cn,B,P} and on each probability space we can defi_ne infinitely many families 
"'"' 

of random varia.bles {t;(t) , t s T} having the given fini..te dimensional 

cli'strîbution fUncttons (4}. In fact if (n,B,P) is a probability space and ,,,,. 
. . * {.; Ct ) , t e:. T} · and U; ( t ) , t s T} are two families of random variab les 

for which 

(241 * PU:Ct l :::; t; Ct)} - ... - ... ,..,,_ 

fot' all, t c: T , then both { t; (_t ) , t s T} and * { t; (t) , t s T} h.ave the same 

finite dimensional distributions. · In chis case we say that {t;(t) , t e: T} and 

* {.; ( t) , t s T} are equivalent stochastic processes. Accordingly, we can 

replace every stochastic process {t;(t) , t s T} by an equivalent stochastic 

* process {.; (t) , t s T} without changing its finite dimensional distribution 

functions. 

lf we want to construct a stochastic process { t; (t) , t s T} with give~1 

finite dimensioilal distribution ftu1ctions, then we can choose among infinitely 

many posstble versions. Sorne versions may have :l.e0i ~::ih~.; properties and in this 

case it is reasonable to cho,)se such a version. Te see the differences among 

the possib1e versions of a stochastic process let us consider the follow:ing 



VII-13 

s:irrrple example. Let n be the interval [O,l] , B " the class of lebesgue­

measurable subsets of [O,l] , and P , the Lebesgue rneasure. Then (n,B,P) ,,.,..., . ,.,,.. 

is a complete probability space. Let {ç:(t)! be a family of randcm variables 
' ' 

define.d for< t E. T = [ O, l] for which 

(2'.)} PU;Ct1 = O} = 1 

for all t E T • 'Ihe f:i:nite dimensional distribution functions of { ç: Ct) , 

Cl .;:. t <. l} a.re- uro~uely determined by (25) and they are consistent. 'Ihus 

by Theorem 1 it fellows that indeed there exists a process {ç:(t) , O ~- t :i: 1 

f'or wh:tch C25) holds. 

1 

5Y' j (25} tt fellows that 
i 

P{ç:(tl = O :for t s S} = 1 
/'.~ 

for ~ fi.nite or countably- :!nfinite suhset S of [O,l] . For rnan.v pt!.rpcises it 

would be :lesîr.able to conclude from (26) that 

(27) P{ç:(t) = O for all t E [O,l]} = 1 . 
""'-

However, (27) does not follow from (26) in general, unless we cheose some suitable 

vers ion of the process { ç: C t) , 0 .::_ t < 1} • Por exarnple if M is a subset of 

[O,l] and if we define ç:(t) "" ç;(t, w) for t e: [O,l] and w E [O,l] in the 

following îtffiY 

0 if t E M 
' 

w e:: [O,l] 
' 

ç;(t,w) = 0 if t iM w -1- t 
(28) 

, , 

1 if t i M , w = t 
' 

then (25) and (26) are sacisfied, and {w : ç;(t,u;) = 0 f or 0 < t ~ l} = = 

{ (J.) : w E M} . New if ME B , then U;(t) = 0 f or O<t'<l'J.EB = = .,, and 
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P { ç; ( t ) = 0 f or 0 ~ t ,;, 1} :: µ (M) where µ (M) is the Lebesgue me as ure of 
~ 

M , whereas,, if M i B , then · {t;(t) = O for 0 ~ t ~ l} i B and we cannot 

speak about the probabilit:t of { t; ( t) ::: 0 for 0 ~ t < 1} , that is, the 

' 
fîntte di.1ensîonal distriflutions of the process do not detennine the probability 

0f . {~(tI::: 0 for 0 < t < l} • If we choose M = [O,l] or M is any Borel 

subset of [O,l] with.Lebesgue measure 1, then (27) holds. 'Ibis is of course 

the desirable case but we cannot exclude the other cases without :imposing sone 

restriction on the stochastic process to be chosen. The simplest and the most 

useful criterion in choosing the stochastic process {t;,(t) , t e: T} is the 
1 

crîteriqn of separa.bility which was introduced in 1937 by J. L. Doob [ 25 ]. 
1 

' 1 •• 

see al~ Jl. L. Doob [ 28 ],[ 29 ], W. Ambrose [ 1 ], J·. L. Doob and ~· 

~J'.lrose [ 33 ], J. L. Doob [ 30 ],[ 31],[32 ], P. A. Meyer:_ [ 61 ], [ 62 

pp. 55-64], and I. I. Gikhrrian and A. V. Skorokhod [ 44 pp. 150-156]. 

Definition 1. Let {ç;(t) , t e: T} 9e a real stochastic process with 

arbitrary linear parameter set T . Let the random varia.bles ç;(t) , t e: T J 

be defi:--~d on a probability space (n,B,!) and let ç;(t) have value ç;(t,ru) 

at w E. n The process { t; ( t) , t e: T} is said to be separable if there is 

a countable subset S of T and a set A e: B with P{A} = 0 such that if A. 
-- N\, 

;ts an~, closed set of the real line and if.l is any open. interval. of the 

real line, then 

(29) {w : t;(t,w) e: A for t e: IS} - {w:t;(t,w) e: A for t e: IT} c A • 

The set S is called a separability set of the process, and A , an 

exceptional. set. Since "V"''... '::1 open set can be represented as a countable 

uni.on of' open intervals, it is obvious that the above defini.tion rema.ins va:Lid 
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unchangeably if we assIBne that I is any open set. 

The advantage of a separable process of i.s evident. Let us consider the 

proce~ · { i; Ct I , t e: T} in thR above definition. If A is q. closed set _and 

I i'S an open interval, then in general the set {w : i;(t,w) E A for t e: IT} 

does not be long to B • However, if the probabiJ.ity space (r2,B,P) is ,_ 

complete and if the p:rocess is separable, then {w : i;(t,w) e: A for t e: IT} 

belongs to B and 

(30) P{!;(t) e:· A for t e: IT} = P{!;(t) e: A for t c IS} 
~ ""'-

For ey.ample, if there is a separable stochastic process {1;(t) , 

0 ~ t < l} defined on a complete probabllity space and if (25) holds for 

t e: [O,l] , then (27) is true. As we have alr'€ady seen (27) is not true with­

out scme hypothesis f or the process { ~ ( t ) , O 5:. t 5:. 1} • 

n' { E; (t I , t e: T} is a separable stochastic process defined on a 

probability· space (~,B,f_) which is complete, then we can define the probabilities 

Qf suchevents as· that the sample functions are bounded, are continuous, are 

mtegrable and so on. 

We note that if {!;(t,w) , t e: T} is a separable stocriastic process d2fined 

on a complete probability space Jif S is a separability set and if w t !t where 

A is an exceptional set, then 

(312 inf t;(t,(JJ) = inf 1;(t,w) and sup 1;(t,w) = sup !;(t,w) 
te: IT te:IS te:l"T te: IS 

f'or every open interval I • Conversely, if there is a 8r-:>t A e: B \.dth 

P{A} = ö such that if w i A it fellows that (31) is true for every open 
r---

interval I , then the procesf\ {1;(t,w) , t e: T} is obvJously separab1e. 
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If the process { t,: ( t) , t E T} i.s separable and if I is any open 

interval, then inf F,:(t) ' 
tdT 

sup t,:(t) · lim inf t,:(t) .. , 
tdT t + u 

are all (finite or infinite valued) random variables. 

and lim sup t,:(t) 
t+u 

We have demonstrated that a separable process has rnany desirable properties. 

'Ihe problern arises what restrictions should we impose on a process in order to 

te separable. · We shall prove that every stocha..c;tic process { t,: (t) , t E T} 

. * has a separable versi:on {F,: Ct) ' t E T} which has the same fintte dirnensiona.l 

distribution functions as the original process. 'Ihis is the best possible 
1 

1 -

result *1fch we can expect. The proof of this result is based on the following 
.. 1 

two · auxiliary' theorems. 

Lemma 1. Let U;;(t,w) , t €' T} be a real stochastic process witr1 an 

arbitrary parameter set T • To each linear Borel set A there corresponds 

a countable sequence {tk} such that 

02). JU;;(}:;k,w1 E A for k ~ 1 and t;;(t,w) IA} = 0 

for all t E T . 

Proof. Let t 1 be any point of T • If t 1 , t 2 , ••• , tn have already 

been chosen, then let us defi.Yle 

(33) a = sup ,EH;(tk,w) e: A for k < n and t,:(t,w) /; A} • 
·n tET 

. 'Ihen 1 > a1 > a2 ~ •.. ~an,;. •.• .?::. O. If an= O, then (t1 , t 2, ... , tn) 

satisfies (32). If ~ > 0? then let us choose tn+l as any.value for wh1ch 
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(34) 

If a > a for ai1 1 2 th h -n n = , , ••• , en we ave 

(35) ,!U;Ctk,w) t: A for k ~ 1 and ç;(t,w) i A} ~ lim ~ 
n+w 

f or p.11 t t: T • 

S:i'nce the sets· {w : ç;(tk,w) t: A for k .::._ n and ç;(tn+l'w) i A} for 

n = 1,2, ••• are disjojnt, we have 

(36) I z{s;(tk,w) i A for k .::. n and i;(tn+l'w) i A} ~ 1 , 
n=l ·· 

whence l:im,f{S:(tk,w) i A for k < n and ~(tn+l'w) i A} = a . By (31i) we 
n +""'" . 

obtatn that l:im ~ = O • Finally (35) irrplies ( 32) wh:i.ch cornpletes the pn)of. 
n + = 

'Ihe follow:i.ng auxiliary theorem follows easily from. th@ previollii one. 

Lemma 2. Let { ç; Ct 2 , t E: T} be a reai stochastic process with a..11 

arbitra!Y pararreter set T • Let . A
0 

be a countable class of linear Bore_~ 

~ets, and let A be the class of sets which are the intersections of sets 

belonging to Aa • !hen there exists a countable set of points tl' t 2 , ••• " 

tk, • • • such that to each t C T there corresponds an w-set At wi th 

!{i\} = a and 

(37) {~(tk,w) t: A for k ~ 1 and ç;(t,w) i A} c \ 

for each A c: A • 

Proof. For each A E: Aa there is a countable parameter set such that 

(32) hold.'3. Obviously (32) holds for each A E: A0 if {tk} is chosen as 

- / 
f 

I 
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the union of all these parameter set3. Iet 

(38) '\ = U { w ç; ( tk, w) E: A f or k ~ 1 and ç; ( t , w) i A} . 
Ae:'YJ 

with the above definition of {tk} • 

If A e: A and A c Ao E: Aa ' then 

and hence (37) follows because each A e: A is the intersection of a sequence 

of sets in A0 • 'Ibis completes the proof of the lerrma. 

'lheorern 2. Iet { ç; ( t) , t E: T} be a real stochastic process w1 th linea.r 

parameter set T defined on a probability space (n,B,;t) • There exists a 

* separable stochastic process {i; (t) , t e: T} defined on the sarne probabi].ity 

· space such that 

(40) 
* . 

P{ç; (t) = ~:t)} = 1 
, ... " 

* for all t e: T • The random variables ç; (t) (t e: T) rnay take on the values 

+co and - 00 

Proof. We note that (40) implies that the finite dirr.ensional distribution 

* functions of the process { i; (t) , t e: T} a.i.~ the same as the corresponding 

finite dimensional distribution funct:ions of the process {ç; (t) , t E: 'r} , that 

is, if we replace a stochastic process by its separable version, then all the 

finite dimeri.Sional distribution functions remain unchangeä. 
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* We note also that for each t ET the set {w: s (t,w) 1 s(t,w)} has 

* probability 0 , but this set m.--:iy vary with t . If the union V{w : s (t,w) i 
tET 

s(t,w)} has probability 0 ' then the process {~(t) ' t ET} ltself is 

separable. 

To prove the theorem let A0 be the class of linear sets which are finite 

untons of open or closed intervals with rational or infinite endpoints, and 

let A be the class of sets which are intersections of sequences of sets ir1 

·4.a • 'Ihen A includes the closed sets. 

Fo* any open interval I with rationai or infinite endpoints let us 
1 

cons:tdef the stochastic process {s(t) , te: IT} and apply Lemna 2 w.ith A0 

ànd A as just defined. By Lemma 2 there is a countable set S(I) Cl"T and 

an w-set At (I) such that j>{At (I)} = 0 for t e IT and 

(41) {s(s,w) E A for s E S(I) and sCt,w) i A}C: At(I) 

for A E A and t E IT • Defi11e 

(42) S' =; y S(I) and ft = ~ At (I) 

where the union is taken for all open intervals I with rational or infinite 

endpoints. 

For fi.xed w let A(I,w) be the closure of the set of values sCs,w) 

as s var:5,.es in IS • 'Ihe set A(I,w) may include the values +oo and -oo • 

It is closed, none""!IPtY, and 

(1-13) ~(t,w) E A(I,w) if t t. IT and w i At • 
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I f we de ~..ine 

(44) A(t,lü) = fl A(I,w) 
I~t 

where the intersection is taken for all those specifi.ed intervals which contain 

t , then A(t,w) is closed, nonempty, and 

(45) t;(t,w) E A(t,w) if t E T and w i 1\.t • 

* Now let us de fine E;. ( t , w) f or t E 'r and w E Q as .follovvs : 

(46) * ç: ( t, w) = t; ( t, w) if t E S or t /. S and w l 1\.t , 

*I 
and t; ~t ,w) is arry value in A(t ,w) if t i S and u> E 1\.t • 

1 

*c . 'Ihe process {ç: t,w) , t E T} obviously satisfies the condit:!.on (40). 

* It re."Ilains to prove that { ç: ( t ) , t E T} is separab le. 

Let A be a closed set and let I be an open ir.terval with rational or 

infinite endpoints. Suppose that w has the property that 

(l-17) * t; (s,w) E A if s E IS • 

Then A(I,w) C..A necessarily holds. * It follows frcm the definition of s (t,w) 

that if t e IT , then 

. (48) * ç; (t,w) = ç:(t,w) E: A(I,w) for t e S and for t i S , w 1. 1\.t 

and 

( 49) * F;, (t ,w) c A(t ,w) C::: A(I)w) C::: A for t f. S ~ w ::: 

fuus 
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( 50) * * . { t; ( s , c-i) t: A f or s E IS} = U; ( t , td e:: A f or t e:: IT} 

if A is a closed set and :i.f I is an open jnterval with rational or infinite 

endpoints. Since any open interval can be expressed as the union of a countable 

munber of open intervals w:Lth rat:i.onal or infin:i.te endpoints, it follows from 

(50) that (50) is true for any open interva1 I . This completes the proof of 

the theorem. 

* We observe that we cannot exclude infinite values f'or t; (t,w) , since 

the set A ( t, w) above may contai.n no fini te values. 

Tneorem 2 and the above proof are due to J. 1. Doob [ 30 pp. 57-60]. 

In rnany cases it is necessarJ to specH'y the separability set S of a. 

stochastic process. 'Ihe following theorem shows that for a large class of 

stochastic processes we can ea.s1ly find separability sets. 

~eorem 3. Let {t;(t) , t e:: T} be a separable, real stochastic process 

with linear parameter set T • If for every t: > 0 we have 

(51) Pf lt;Ct) - t;(u)I > e::} ~ 0 as jt-ul ~ 0, ,,,.... 

then any countable and everywhere dense subset S of T is a separability 

set of the process. 

Proof. Let {t;(t) , t e:: T} be defined on a probability space Ui,B,~ . 

Let S be a. sepa.rability set of the process and let A be an exceptional set. 

Tnen (29) holds for any closed set A and A e:: B and !_{A} = O • 

* Iet S be any countable and everywhere dense subset of T • We shal~. 

prove that there is a set 11.* * * such that . fi. t: B , p{ A } = O and 
~ 
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* * (52) {w: ~(t,w) e: A for te: IS} - {w: E;(t,w) e: A for te: IT}C.AVA 

* for any closed set A • 1nis j_mplies that S is a separability set of the 

process. 

For any open interval I w-lth rational or infinite endpoints and for 

fixed w denote by B(I,w) the set of values of t,;(s,u.i) as s varies in 

* IS • 'Ihen we have 

(53) P{~(t,w) i B(I,w)} = 0 
"""' 

for all\ te: IT. To prove (53) for each t E IT let us choose a sequence 
1 

{tk} sJch that tk e: rs* and tk -+ t as k -+ 00 • 'Ihen we have 

(54) 

PU;(t ,w) i B(I,w)} < lirn JU.im inf 1 r;(tk) - ç (t) 1 

"""' m~ 00 k+cc 

.::_ lim lirn inf !{ 1 E;(tk) - ç;(t) 1 > ~} = 0 • 
m_ .. " ook+ oo 

'Ibis implies (53). 

Let 

(55) A* '""U U {w:ç;(t,w) i B(I,w)} 
I te:IS 

1 
> - } m 

where the uni.on is taken for all open intervals with rational or infinite 

* * endpoints. We have A e: B and by (53) P{A } = 0 • 
r--

* ·Now if w i A u A and s ( t , w) e: A f m' all 

closed set, then for every t E IS we have 

(56) ç;(t,w) e: B(I,w) CA • 

* t e: IS where A is a 
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Fi.na.1ly by (29) we can conclude that (56) implies that 

(57) .;(t,w)cA 

* for all t e I 'T whenever ui i A U A This proves (52). 

Note. The notion of separability and 'lheorern 2 and 'lheorem 3 can also 

be extended to abstract valued processes. We shall mention here sane results 

for the case when {!;(t) , t s T} is a stochastic process with state space X 

and parameter set T where X and T are metric spaces. r111at is let 

(n,B,P) ·. be a probability space and for each t e T let i;(t) = ç;(t,ui) be 
,.,.. 1 

! 

a measutable function of w e n taking values in X • 
1 

Definition 2. The process {!;(t) , t E: T} is said to b_f separable if 

there is a countable subset S of T and a set A E B with P{J\} == 0 st.;ch -- ""' 

that if A is any closed set in X and I is any open set in T , then 

(58) {w .;(t,w) s A for t c IS} - {w i;(t,w) E A for t E IT}C A 

In -;xactly the same way as we proved 'lheorem 2 and 'Iheorem 3 we can prove 

the following more general theorems. (See I. I. Gikhrnan and A. V. Skorokhod 

[ 44 pp. 150-156].) 

'llieorem 4. If X is a compact metric space ans!_ T is a separable 

metric space, then there exists a separable stochastic process 

t e T} defined on the same probabili ty space as {.; ( t) , t e T} 

the same state space X as_ {~(t) , t e T} such that 

* [F, (t) ' 

and having 
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(59) * P{ç; (t) = ç(t)}= 1 

· · f or all t e: T • 

If X is a se12arable and locally compact rretric space and 'I; 

is a separ§ble rnetric space, then there ~xists a separable stochas~~c procet;~ 

. * {ç; (t) , t e: T} defined on the same probability space as {t;(t) , t e: T} §.'J..c!. 

* * ha.ving state space X :::7 X where X is some c~t extension of X such 

that 

(_ 60) * P{t; (t) - ~(t)} = 1 
f'A.,-

f or all t c T • 

rfheorem 6. 

st~_t;e space X and parameter set_ T whe~ X is a metric space with m~trJe 

o(x,y) 9J.lfL. T j_s a separable metriq space with rnetric r(t,u) . I:t::_ for. ev::_ry_ 

c > O we have 

(61) P{p(ç;(t) , l(u))}-+ 0 §§. r(t,u)-+ 0, 
.....,... 

~~-countable and everywhere dense subset S of T is a sepa:i;:,.?Pility 

set of the process. 

48. Poisson and Compound Poisson Processes. Before introducJng the 

notion of Poisson and compound Poisson processes it is necessary to deal with 

the Potsson distribution. We say that a. r..andcm variable ç; has a Poisson 

dist;ribution with. parameter a where a is a positive number j_f 
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(1) 

for k = 0,1,2, •.•• 

al{ 
P{E_;· = k} = e-a 

,,..,..,. k ! 

The Poisson distribution appears for the first tnne in connection with 

the matching problem. In 1713 ~· Bernoulli and P. R. Montmort (see [143 pp. 301-

3 02 ] ) found that 

(2) 
(-l)j -.-,-
J. 

is the probability that exactly k maten.es occur if we draw all the n cards 

:f'rcm. a box which contai.ns n cards numbered 1, 2, ••• ,n and i.f all th"= n ! 
i 
1 

possiblEt results are equally probable. Both L. Euler [ 112 ] and A. De Moivre 
1 

[ 109 ] 'observed that the sum in (2) tends to l/e as n + oo and k = 0,1,2, ..•. 

Thus in the middle of the eighteenth century L. Euler and. A. De Moivre encountered 

an instance of the Poisson distribution prece,)ling S. D. Poisson by nearly u 

century. 

In 1837 S. D. Poisson [ 149 ],[ 150PP· 171-172] demonstrated tbat i.f we 

consider n Bemoulli trials with probability p for success and Jf we suppose 

that n -+ 00 and p -+ 0 in such a way that np -+ a where a is a posi ti ve 

number, then the l:lrniting distribution of the number of successes is a Poisson 

distribution with parameter a , that is, 

(3) 
k 

.l-lIIl· (n) k(l . )n-k _ -a a k P -p - e k! 
n ·+ oo 

np-+ a 

for k = 0,1,2, •••• 
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In 1898 .~· v. Bortlüew:icz [102 ] provided a thorough study of the Pol~1scn 

dtstribu.tion a.'1.d he observed that in several cases when instantaneous random 

events occur 5.n t:L11e, then wi th good approximation the number of events 

occurring in anyone interval has a Poisson distribution. L. v. Bortkiewicz "l.._ 
/\ 

considereà. examples such as the occurrence of accidental deaths by horse l.:::lck 

in the Prussian Anny over a 20 years period, and he found that the observa.tions 

were in agre5nent with the Poisson distribution. 

At the beginning of the twentieth century several researe:hers conside.red 

!'andom phe:n.ornena which obey the Poisson law. 

In 1903 F'. Lurtdbe:r.:g_ [ 134] assumed in r1is research that j11surllilce cla5rns 

happen accordirig to the Poisson law. In 1909 _A. K. Erlang [ 111 ] appliecl the 

Poisson law for the incarti..ng calls in a telephone exchange. In investigatirg 

the nature of radioactive disintegration in 1910 E. Ruth~ford and H~. Geiger. [ 122 J, 
[ 16? ] observed the mnnber of a-particles reaching a counter in consecuti ve 

intervals and their data showed good a.gr'eement with the Poisson law. In 1918 

W. Schottky [ 172] assumed .in his ii1vestigati.ons that electron emi.ssion fr·om 

metals occurs according to the Poisson law. 

The first explanations of the appearance of the Poisson distribution in 

the randan phenanena mentioned above were based on the Poisson approx:imation 

of the Pemoulli distribution. In 1910 H. Bateman [ 97 ] ,[ 98 ] demonstrated 

that if a ra.'1.dom phenomenon satisfies some pla.usible conditions, then the 

number of events occurring in any interval neeessarily has a Poisson distriLution. 

'füis was the first :result in which the Poisson distribution appeared as an 
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exact distributlon and not an approximatJng di2tribution. In 1921 M. BYJiwara 

[ 121 ] considered mor.e general assurnptions than H. Bateman and deduced the 

Potsson law as a particular case of amore general law. In 1953 K. F'lorek, 

· E~ Marczewski and C. Ryll-Nardzewski [ 117 ] weakened further the assumptions 

which lead to the Poisson law. 

Now we are going to deduce the Poisson law under general assumptions. If 

we observe instantaneous random events occurring in the time interval ( O, 00 ) , 

then it is convenient to introduce the randan variable v(t) denoting the 

number Qf events occurring .in thè time interval (0, t] • The fanüly of 
1 

1 

randan -}ariables { v ( t) , O ~ t < 00 } is said to form a point process. We 
1 
1 

say that the random phenanenon obeys the Poisson law if f or every u ~ O and 

t > 0 , the random va...~able v(u+t) - v(u) , that is, the number of events 

occurring in the time interval (u, u+t], has a Poi.sson distribution. Our ·· 

aim is to find conditions under which the point process {v(t) , 0 ~ t < 00 } 

obeys the Poisson law. 

let US suppose that in the time interval (0, 00 ) instantaneoUS events 

occur at randan and denote by v ( t) the rn.unber of events occutTing in the 

tirre interval (0, t] • We shall study point processes which satisfy sorne or 

all the following conditions: 

(a) Independence. For ê!1Y_ 0 ~ t 0 < t 1 < ••• < tn and for nonnegative 

Îl}tëgers k1 ,.k2, .•• , kn, where n,., 2,3, •.. , the eve:nts {v(tj) - v(tj_1) = 

k,j} for j :::: 1~2, ... , n are mutually independent. 
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'Ihe_pr-übabllity of the event {v(u+t) - \>(u) = k} where 

u?:.. 0, t > 0, k = 0,1,2, ... does not depend Or:!_ u. 

(c) Orderliness. In a!?Y__interval (O~ t] events occur singly with 

probability one. 

'lhe followi.ng result is the main result for point processes defined above 

an it leads to the definition of the basic Poisson process • 

• IJ..heorem 1. If v(t) ~enotes the nurnber of events occurring in the tirre 

interval .. (0, t] in a random point process and if {v(t) , 0 < t < co} satisfies 
1 

the conditions (a), (b) and (c) , then there exists a nonnegative constant ), 
! 

such that ----

(4) -Àt ().t)k 
P{v(u+t) - v(u) = k} = e 

,v... k! 

for u ;;,,,o, t > o and k = 0,1,2, ••.• 

Proof. If we want to describe mathematically a desired random point 

process defined in the time interval [O, 00 ) , then we should constru.ct a 

probahility space (n,B,P) and we should define a famil.V of random vari.ables 

v(t) = v(t,w) (0 < t 

satisfïed. 

""'" 
< 00 

' 
w E n) such that conditions (a), (b), (c) are 

It is natural to assume that ~i contains all those real ftmctj_ons w(t) 

defined· for t > 0 which take on only nonnegati ve integ;ers, are nondecreasirîg ) · 

continuous on the right, and satisfy w(O) = O • Iet us assurne tha.t B is 
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the srr.all.est cr-.':llgebra which contains the events {w : w(t) = k} for all 

t > 0 and k = 0,1,2, •••• Por every t > 0 define the random variable 

v(t) = v(t ,w) = w(t) if w = w(t) • We shall show that there exists a 

probability rreasure P such that (a), (b) and (c) are satisfied and P 

depends only on a nonnegative real parameter À • 

Let 

(5) 

for t 4 .o and k = 0, 1, • • . • We shall prove that necessarily 
1 

(6) 

fo:r t .::. o and k =: 0,1,2, ••• where À > O • -. 

.. 

By using same simple properties of the Poisson distribution we can prove 

that by (5) and (6) the probability P{A} is uniquely determinecl for A e: A 
""'-

where A is the small.est algebra which contains the events {w : w(t) = k} 

for all t ~- O and k = 0,1,2,... • By Car,athèodory's e:Ktension theorem 

('Iheorem 1.2 in the Appendix) the definition of P{A} can unj_quely be extended 
. """ 

to B • That is, there exists :indeed a probability space (n,B,P) and a ,.,._ 

family of randcm variables {v(t) , 0 < t < 00 } for which the conditions (a), 

(b), and (c) are satisfied. It remains to prove that (6) holds with scme 

À > 0 • = 

S:ince the event {v(t+u) = k} occurs if and only if {v(t) == k-j} and. 



VII-30 

{v(t+u) - v(t) ,..~ j} for at least one j = 0,1, ... ,k, by the conditions (a) 

and (b) we obtair1 that 

for t .~o, u > o and k = 0,1,2, .••. 

If k = 0 , then ( 7) :r>educes to 

(8) 

f or t > 0 
=;= and u ?_ o We shall pro-..re that ( 8) irnpl1es that 

1 

(9) 
1 

f or all t > 0 • 

From (9) it follows that either P0 (t) = 1 for all 

f or all t > 0 , or 

t > O or P (t) = 0 
= ' 0 

for t > 0 where >.. is a fintte positive number. For there are three 

possibilities P0(1) = 1 or P0(1) = o or o < P0(1) < 1 • If P0(1) = 1 , 

then by (9) P0(t) = 1 for all t > o . If P0(1) = o , then by (9) P0(t) ~ o 

for all t > 0 • If 0 < P 0 ( 1) < 1 , then there exists a fini te po si ti ve >. 

such that P
0

(1) = e-À and then (10) follows from (9). 

- Since 0 <:0 (t) < 1 for all t > 0 , it follows fran (8) that P0(t+u) ;;.~ 

P0 (u) for t > O and u ~ 0 • If r and s are positive jntegers, then by 
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the r-epeated appli.cation of ( 8) we ohta.1r1 tha.t P0 (~) = 
1 s 

r - s then P (1) - [P ( ·) l • Th~1s it follows that 
- ' ' 

1 o - '-o s -

r 

(11) 

for any positive rational mmlber r/s • If t > 0 , then for evecy sufficientl.y 

large s 

P cr-1) 0 s . 

there is a11 r > 2 such that r-1 ,;, ts < r . 
r r-, t 

By ( 11) liJn P 
0 

( s) = lim P 0 ( s .L) = [ P 0 ( l) ] 
s + 00 s + 00 

for t > 0 • si!-ice necessarily P0 (o) = 1 , therefore 

t > 0 . 
= 

Then P0 (~) 2- P0 (t) -~ 

and this proves (9) 

(9) is true for all 

If P0(t) = 1 for all t ?_ O, then Pk(t) = O for all k = 1,2, ... , snd 

t > 0 • 1Ihis corr-esponds to the degenera.te case when vvlth probability one no 
= 

events occur in an..v interval (O, t] . This proves (6) for ), = 0 • 

If- P0(t) = O for all t > 0 , then by (7) it follows that Pk(t) ~ O 

for all k = 1,2, ••. and t > O • This case is rneaningless and should be 

excluded. This case can be considered as (6) with >.. = 00 • 

-Àt Now we shall prove that if P 0 ( t ) = e for t > O where À is a 

finite positive nurn.ber then (6) holds for all t > O and k = 0,1,2, •••• 

( -Àt If P0 t) = e for all t ,;;;,, O where À is a finite positive number, 

then by (7) we obtai.n that 

(12) 

f''Jr t; > 0 and u ~ 0 • Let f(t) = eÀt P1 (t) for t > 0 • r.lhen by (12) 

we have 
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(13) f(t+u) = f(t) + f(u) 

for t > 0 and u ~ O • Obviously O :;... f(t) _:::. e" for 0 ~ t _:_ 1 • 'lhe 

only solution of (13) which j_s bounded i.11 the interval [O, l] is 

(14) 

where Àl is a real constant. For if we def'ine g(t) = f(t) - tf(1) for 

t > 0 , then by (13) 

(15) g(t+u) = g(t) + g(u) 

1 

for all; t > 0 and u .:_ 0 • On the otho;t' hand by definition g(l) =' O , and 

this irrPlies that g(t+l) = g(t) for all t ~ O • Since g(t) is bounded 

in the jnterval [O, l] , therefore g(t) is bounded in the lnte.r'Val [O, 00 ) • 

If g(t) ;': 0 for some t > 0 , then g(nt) = ng(t) is arbitr·arily :urrge for 

sufficiently large n values. 'Ihis, however, contradicts to the boundednem:>. of 

g(t) in [O, 00 ) • 1.'.herefore g(t) = 0 for all t > 0 , that is, f(t) = tf'(l) 

for all t > 0. Obviously f(O) = O. 'Ilüs proves (14). By definition 

'Ihus we proved that 

(16) 

for t > O where Àl ~ O • Since 

for all t > O , it follows that necessarily "i < À • 

Now we sha.11 prove that condition (c) imp1ies that 1..1 ::o-= À. According-



to conditi.on (c) in ruzy fini.te tnterval (0, t] 
discontinuities of the 

the sample functions of thE.; 
A 

process _ are _ jumps of rnognitude 1 with probabil.ity 1 • This condition 

can be stated in the follow'..i..ng wa:y: If 

for m = 1,2:···' then 

(19) P{ > A } = lim P{A } = 1 
N>- l m A-ffi ' 

ITFl In + co 

or 

(20) t t zri lim [P0(~) + P1(..Jîl)J = 1 
m+c:x> ~ ê. 

for all t > 0 • By (10) and (16) it follows from (20) that e-Àt+Àlt = l 

f or all t > 0 , that is , Àl = À • This proves ( 6 ) for lc = 1. • 

Ha.ving proved that ( 6) is tru.e for k = O and k = l , by rnather1atical 

L11duction we can prove th2.t ( 6) is true for all k > O • 

If k > 2 , then 

k k 
(21) 0 ~ l Pk-j(t)P~(u) < I P.(u) < 1 - P0 (u) - P1 (u) 

j=2 d j=2 J 

for all t > O and u > O. Since l-P0 (u) - P
1

(u) = o(u) 

it follows fran (7) that 

where l:iJn o(u)/u = 0 , 
u .+ 0 

(22) 
Pk(t+u) - Pk(t) l-P0(u) P~(u) r ) 

= -P (t) - + p (t) _J. __ + o,u 
u k u k-1 u u 

f or t > 0 , u > O and k > 1 . = If u -~ 0 in ( 22) , then we have 
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(23) 

f or t > O and k ~ 1 • If we multiply (23) by eÀt , then we get 

(24) 

for t .:_ O and k ~ 1 • Since P
0

(0) = 1 , therefore P
1
/0) = 0 for k ~ 1 

and by integratiI1g (24) we obtain that 

(25) 
-Àt t ÀU 

Pk(t) = Àe b e Pk_1 (u)du 

for k > 1 and t .:_ 0 . Starting frorn P0(t) = e-Àt for t > O we can 

obtrun Pk(t) for every k = 1,2,... and t ~- 0 by (25). By mathematical 

induction it follows immediately that (6) is tru.e if À is a fjnite positive 

nurnber·. 'Ibis completes the proof of the theorem. 

Now we can def:ine the not:;_on of a homogeneous Poisson process. 

Definition 1. We say that a family of real random variables lv (t) , 

0 ::__ t < 00 } forms a homogeneous Poisson process with _Qar?JIBter >.. where À is 

a finite positive nurnber, if for an.y O -~ t 0 ~ t 1 < ••• ~ tn (n = 2,3, ••• ) ~he 

random variables v(tl) - v(to) 'v(t2) - v(t1), ••• , v(tn) - v(tn-1) ~­

mutually independent, P{v(O) ~ 0} = 1 , and 
~~ -

(26) 

for all 

~t (Àt)k P{v(utt) -· v(u) = k} = e-, 
N-- k! 

t ~- O , u ~ O and k = O, 1, 2, • • . • 

By Theorem 1 we can conclude that such a process exists, and if we excl.udé 

the trivlal case when P{v(t) = 0} = 1 for all t ,;= 0 , then the cond:Ltio11s 
,'\A, 

(a), (b), and ( c) deterrnine the distributl.on (26) up to the parameter À • 
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'Ibe pararreter >.. has a simple probabllity interpretation. 'fo see this 

let us calculate the expectation of v ( t) • We have 

(27) 
~ ->..t (>..t )k 

E{v(t)} = l k e ·--,-= Àt. 
,,,.__ k=O k. 

Accordingly E{v(t+l) - v(t)} = >.., that is, the expected number of events 

occu:rTing in any interval (t, t+l] of length 1 is just >.. • For this 

reason we shall call >.. the density of the process. 'Ihe knowledge of this 

single parameter corrrpletely detennines the finite dimensional distributions 

of.a homogeneous Poisson processJrn what follows we shall acid various ran.a.rks to. 

the notion of a hanogeneous Poisson process. 
' 

F'iJf3t, we observe that condition ( c) can be replaced by the follovJing 

equivalent condition 

(28) lirnJ:i.v(t) > l} = 0 . 
t + 0 t 

For ( 20) holds if and only if 

(29) 0 . 
t+O 

Obviously, condition (c) could be replaced by any other condition v..hlch guai"'ai"1tees 

that in (16) >..1 = >.. • For example, if we exclude the trivial case when 

P{v(t) = 0} = 1 for all t > 0 , then condition (c) can be replaced by 

(30) 

If {v ( t) , 0 .s. t < 00 } is a hanog,-eneous Poisson process of densi ty >.. , 

then 
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(31) Ph1(t) = 0}=1-Xt+o(t) , P{v(t) = l} = t..t+o(t) and P{v(t) > l} = o(t) 
,.,,... ""' """ 

·where lim o(t)/t = O • 
t ~· 0 

Conversely, if instead of cond1tion (c) we ass1.une 

that Ph>(t) = l} = 'X.t+o(t) where /.. is a positive constant, and P{v(t) > l} = .....,.. 

o(t) , then these conditions together with (a) and (b) imply that {v(t) , 

0 < t < 00 } is a homogeneous Poisson process of density À 

We can easily determine the moments of the distribution 

(32) 

! 

where k = 0,1,2, ••• and t ~ O The r-th binornial moment of v(t) is equal 

to 
1 

(33) 
(Àt) 

r! 

r 

for r = 0,1,2, ••• and the r-th moment of v(t) is equal to 

(34) 

for r = 1,2, ••• where G)j (j = 1,2, ••• ,r) are Stirling numbe1sof the second 
r 

kind defined by 

(35) 0 j = .L Î (-l)j-i (~ )ir 
r j ! i=O 1 

We note that the procel:;s { v (t) , 0 ,;,. t < 00 } which we constructed in the 

proof of Theorem 1 is obviously a separable process. Conversely, if we suppose 

that {v(t) , 0 < t < 00 } is a separable, hanogeneous Poisson process, then 
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with probability l its sample functlons a.."'e nondecreasing step functions which 

increase only by jumps of magnitade 1 and which vanish at the orlg:in. 

let {v(t) , 0 .::_ t < 00 } be a separable Poisson process of density .>.. • 

Denote by p(S) the sun of all positive jumps v(t+O) - v(t-0) for t E S , 

that is, p(S) is the number of events occurring in the set S . In 1953 

E. Marczewski[ 136] proved that if S is a Borel subset of [O, 00 ) , then 

p(S) 

(36) 

is a random variable for which 

k 
-À1J(S) [/,11(SJ\] 

P{p(S) = k} = e ' ~ 
NV k! 

if k = 0,1,2, ••• and µ(S) is the Lebesgue rneasure of S • Furthermore, :l.f 

s,..,, .•• ' sn c. 
(n = 2,3, ••• ) are disjoint Borel subsets of [O, 00 ) , then 

p(S1 ), p(S2), ••• , p(Sn) are mutually independent random varia.bles. 

and 

(37) 

Let {v(t) , 0 < t < 00 } be a point process for which P{v(O) = 0} = l 
""'--

k 

P{v(u+t) - v(u) = k} = e-Àt (Àt) 
Nv. k! 

for u > 0, t > 0 and k = 0,1,2, ••• , and À is a positive constant. By 

our definition, {v(t) » 0 < t < 00 } is a Poisson process if and only if 

condition (a) is satisfied for every n = 2,3,... . Actually when we deduceä 

(37) we used coi!dition (a) only in the particular case when n = 2 • We needed 

condition (a) Iór every n = 2,.3,.,. only in proving that (37) uniquely determine~:; 

the probabilit~r measure P{A} for all A E B. 
'""' 
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The following problem ar-lses naturally: Does there exist a point process 

{v(t) ' 0 < t < 00 } for which (37) holds and condition (a) is not satisfied. 

The answer is affirmati ve. L. Shepp (see J. R. Gold.man [ 124 PP. 778-779]) 

and P ~ A. P. Moran [ 145 ] constructed point processes h 1 (t) , 0 < t < 00
} for 

which (37) holds but condition (a) is not satisfied. 

Let us suppose more generally that { v ( t) , 0 ~ t < 00 } is a point process 

and if p(S) is defined as above, then (36) holds fora class F of Borel 

subsets of [O, 00 ) • How large should F be in order that (36) imply condition 

(a) • If F is the class of intervals j_n [O, 00 ) , then as we already mentioned 

condition (a) is not satisfi.ed necessarily. A. Ré~ [ 164] proved that if F is 
1 
! 

the cl~s of the unions of!finite munber of disjoint finite intervals in [O, 00 ) , 

! 
then (36) implies condition (a) . See also P. M. Lee [ 130]. 

Next we shall prove a few basic theorems for homogeneous Poisson processes. 

'Ihese theorems have rtm1Y useful applications in the theory of stocha.Stic 

processes. 

Sane results of S. O. Rice [ 396 pp. 299-301] make it plausible the vallàity 

of the followi.ng theorem. See also J. L. Doob [ 30 pp. l~00-401], Ç. RylJ.­

Nardzewski [ 169 ] and the author [ 178 ]. 

· 'Iheorem 2. Let { v ( t) , 0 < t < m} be a homogeneous Poisson process of 

density_. >- • Under the condition that 1n the interval_ (0, t] exactly n · 

(n =: 1, 2, ••• ) events oecur, the joint d.istribution of the occurrence. t;i.mes ,of 

~ n events ~es with the joint distribution of the coordinates arranged 

... :gi increasing order of magnitude of n random points distributed independerig_ 

and uniforrnly in the interval (0, t] • 
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Proof. The proof of trüs theor-em is based on the following s1mple 

rema.rks. 

Suppose that n random points are distributed in the interval (O, t] . 

Denote by Tl' T2, ... , Tn their coorclinates arra.'1ged in increasing order of 

magnitude. Divide the interval (O, t] into r subintervals by pa.i..-wtition 

points 0 = t 0 < t 1 <. • • < tr = t and let (n1 , n2," • , nr) be a partition 

of n into nomegative integers, that is, n1+ n2+ ••• + nr = n . Denote by 

Pn
1

, n2 ~ •• -. ,"nr Ct1 , t 2,. ", tr) the probability that the interval (ti-l' t 1J 

contaînq. exactly n~ points for i = 1,2, ••• ,r. 
! l 
1 

rrlwe know the joint distribution function of the random variables 

Tl' T2, ••• , ' , then the probabilities P (t1 , t 2, ... , t ) are n n1 , n2 , ••• ,nr _ r 

uniquely detennL1ed, and conversely if we know the probabilities P (t
1

, 
-- . nl,n2' ... ,nr 

t 2, ••. , tr) for all part:itions of (0, t] and n , then the joint distr·ibu.tion 

. function of T1, , 2, ..• , 'n is unique1Y detennined by these probabilities. 

If we choose n points independently of each other in the interval (0, t] 

and if the random points have a uniform distribution over ( 0, t] , then 

(38) 

f or < t 
r 

Conversely, if (38) holds for all partitions of (0, t] and n , then the 

joint distribution function of Tl' ' 2 , .•. , Tn • agrees with the joint distribution 

fu.nction of the coordinates arranged in increa.sing order of n random points 
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distributed independently and u..Y"Jiformly in the interval (0, t] • 

Now to prove the theorem let 0 == t 0 < t 1 < • • • < tr = t änd n1 + n2 + ••• 

+ nr = n where r = 1,2,... • Then we have 

(39) 
= 

P{v(t.) - v(t. 1) = n
1 ,.,.._ 1 l-

for i = 1,2, ••• ,rlv(t) = n} = 
n. 

r r -À(t.·-t. 1 ) [À(t.-t. 1)] 1 

( ) ( ) 
l l- 1 l-

II P{ \) t. - \) tj 1 = n. } II e ----·-,---
i=i"" 1 -- 1 i=l ni. 

Pfv(t") = n} = 
n! 

n 
t - t r 
(-r_r-1) 

t 

= 

Accordingly, ( 38) holds for the distribut:ton of the n points in the 

Poisson process in ( 0, t] and therefore the theorem is true. 

Theorem 3. Let { v ( t) , 0 á.. t < 00
} be a hanogeneous Poisson process of' 

density À Denote by T 1 , T 2, ••• , T n, . • • the occurrence times of the 

succes si ve events occurring in the time interval [ O, 00
) • Let ek = T k- T 1 1 - ~c-

for k = 1,2, ••• where 'o = O • The random variables e1 , e2,. ", ek, ... aJ."e 

mtwüly independent and identically distributed with distribution function 

(40) 
-- f 1-eÜ -ÀX j_f 

l if x<O. 

Proof. We shall prove that 

(41) 

for k = 1, 2, • • • and x1 > O , x2 > O, ••• , ~ > O • 
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(42) 

In what follcws we shal1 m:1ke use of the inequalities 

00 -- ~-
1 .À. \ 

-· -··· < t. e 
n j;O 

n - -n e À -<l n-

which are valid for n = 1,2, ... , and which follow from 

(43) 

(44) 

00 

l e 
j=l 

_& 
n À 

- < n 

00 -ÀX 

À f e 
0 

dx < 

00 

l e 
j=O 

_& 
n À 

n 

If n is suffïciently large then we have the inequalities 

2À (k-1) 
n 

To prove the first inequality let us place consecutive intervals or· 1enr5ths 

j 1/n, l/n,x2, j 2/n, l/n, ... ,xk-l' jk_1/n, l/n, xk on the interval [O, oo) 

:x~ ' J.., 

startlng at the origin. If for some J1 =O,l,2, •.• ,j 2 =0,1,2, ... ,jk-l = 0,1,2, ... 

one event occurs in each of the k-1 intervals of length l/n and no event 

occurs in the ~11aining intervals, then this event implies that { 81 > x
1

, 82 > x2, .. , 

ek > ~} If we calculate the appropriate probabilities and use (42), then 

we vbta.in that the first inequality in ( 44) is valid for n ~ À • 

To prove the second inequality in (44) let us place consecutive interva.ls 

of lengths xl' j 1/n, l/n, x2-2/n, j 2/n, l/n, ••. , ~-1-2/n, jk_1;n, l/n, ~-2/n, 

where. n > 2/x. for i = 1,2, ... ,n , on the interval [O, 00 ) starting at the 
l 

origin. . If {e1 > x1 , 82 > x2,. "., ek > ~ } ) then this event irnplies that .. 

for--some. j 1 = 0,1,2, ... , j 2 = 0,1,2, ••• , ,jk-l = 0,1,2,.~. no event occurs in 

axiy of the intervals of lengths x1 , x2-2/n, •.. , ~-2/n • By calculaUng the 

probability of thi.s event, we obta.in that the second inequality :in ( 44) is 
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vali.d for n.:::. 2/x. (i = 1,2, ..• ,n) • 
-- l 

If we let n + ro in ( 44), then we obtain ( 41). From ( ~l) it follows 

that e
1

, e
2

, ••• , ek are mutually independent random variables for l<: = 2,3, •.• 

and each variable has the distribution fimction ( 40). If every x. + O 
l 

(i = 1,2, ••• , k) in (41) except xj , and xj = x > 0, then we obtain that 

(45) -ÀX 
!{6j > x} = e 

for j = 1,2, •• • 3 k and x > O • Thus by (41) and (l15) we obtain that 

for k = 1, 2, • • • and x1 > 0, x2 > O, ••• , ~ > O , By ( !~5 ) and ( 46 ) we can 

conclude that the theorem is true. 

'Il'leorem 3 makes it possible to define a hornogeneous Poisson process in 

a constructive way. Let us suppose that e1 , e2 , ••• , ek,." is a sequence of 

nrutually independent and identically distributed random variables with 

distribution function 

f or x 2:.. O , 
(47) 

f or x < 0 > 

where À is a positive constant. 

Pefine •o := O and 'k = e1+ -e2+.".+ ek for k= 1,2, •••• For ever:1 

t > 0 let '"' ( t) be a randan variable which takes on only nonnegati ve integsrs 

and satisfles the relation 
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(48) 

for all t .::_ O and k = 0,1,2, •..• 

By this defirri.tion the fa.1111.ly of random variables {v(t) ' 0 < t < 00 } 

fonns a Poisson process of density . >.. Thi.s fact can easily be proved by 

using the following characteristic property of the exponential distribution 

function. If e is a random variab le f or whi ch J'.. { e ~ x} =- F ( x) is gi ven 

by (47), then for any u ~ 0 and x ~ 0 we have 

(49) · 1 °{u < e < u+x} F(u+x) F(u) P{ e ~ u+x e > u} = "*- - - - - F(x) ,.... - P{ e > u} - 1 - F(u) - ' 
"""' 

that :ts, the conditional probability ( 49) does not depend on u . 

'Ihe possibility of the above constructive definition of the Poisson 

process wa'3 essentially observed in 1911 by H. Baternan [ 97 ] . 

'Ihe next two theorerr~ deal with the superposition and decomposition of 

Poisson processes. 

'Iheorern 4. Let {vi (t) ' 0 ~ t < 00
} (i = 1,2, ..• ,r) be rnutually 

independent Poisson !2.rocesses wtth densities .\i (i = 1,2, ••. ,r) • Iet 

v(t) = \)1 (t) + "2(t) + ••• + "r(t) for t > 0 • 'lhen . {v(t) ' 0 < t < oo} 

is~ Poisson process of density .\ = A1+ .\2+ ••. + .\r 

· Próof. Obviously the point process { v ( t) , O < t < oo} satisfies 

conditioris ·(a) and (b). · Sj_nce 
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(50) 

-Àt ~ 
= e l 

kl+k;:i+ .•• +k =k 
- r 

for k = 0,1,2, .•• a.~d t .?._ 0, therefore we can conclude that {v(t) , 

0 < t < 00 }. is a Poisson process of density ?. • 

Theorem 5. ~t {v(t) , 0 ~ t < co) be a Poisson process of density >.. • 
~ . -

J!:).dependently of each other· let us mark each event in the pröcess by one of. 

the munbers 1,2, .•• ,r • Let p. 
- l 

(i = 1,2, •.. ,r) ~e the probability that 

an event is marked by i where p. 2:. 0 and p
1
+ p2+ ••• + p = 1 • Denote 

1- - r ----

Qx. v.(t) (i = 1,2,".,r) the number of everits rnarkedÈ.l_ i and occur:ring · 
.i 

in the interval (0, t] • Then {vi (t) , 0 ~ t < co} is a Poisson process_ 

of density Àj_ = Àpi and the processes {vi (t) ' 0 ~ t < 00 } (i = ~,2, ... ,r) 

are mutually independent. 

· Proof. Obviously each point process { v i ( t) , O ~ t < 00 } satisfi.es 

conditions (a) and (b) and by Theorem 2 we obtain that 

00 . \' ( ) en k n-k ,!{vi(t) = k} = l P{v t = n} k)p.(1-p.) = 
n=k~ l J.. 

( 51) 
À t (À )k ( /. ' )n-k -À. t (À. t )k . é:- ~ · pi .-Api l 

= l = e i ___;-.__ 
k! n=k (n-k) ! - k! 

for k = 0,1,2, ••• and t ~ 0 .~ Consequently . { vi (t) .$ 0 < t < oo} is a 

Poisson process of density Ài for each i = 1,2, ••• ,r • 
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If 0 == t 0 < t 1< ••• < tn where n = 2,3, •.• , then f.'or j = 1,2, ... ,n 

the n sets of random variables {v.(t.) - v.(t. 
1

) for i = 1,2, •.• ,r} 
l J l J~·-

are clearly mutually independent. Furthem1ore, withln each set all the r 

randan variables ar-e mutually independent because for u > O , t > O and 

kj_ = 0,1,2,... (i = 1,2, ••• ,r) we have 

!{vi(u+t) - vi(u) =ki for i = 1,2, •.. ,r} = 

(52) (kl+k2+ •.. +kr) ! kl k2 
= P{v(u+t) - v(u) - k +k + +k } p p "'"- - 1 2 · • • r k

1 
! k,1 ! .•. k ! 1 2 

k ~ r 
'-. 

(À
1
t) 1 r 

= IT P{v1(u+t) - v.(u) =k.} 
~! ~1- l l 

1 • 

1r ->...i; 
= lrr e 1 

i=l 

k 
I' 

p = r 

Fran the above facts it follows easily that the processes { \) i ( t ) , 

0 < t < 00 } (i = 1,2, ... ,r) are mutually independent. 

The following s1Inple combinatorial result for Poisson processes has many 

important applications. 

Theorem 6. Let { v (t) , 0 ~ t < 00 } be a separable Poisson process of 

densi ty >. , Then we have 

(53) 1 
k + 

P{v(u) < u for 0 < u .::_ t v(t) = k} = [1- t] 

for k = 0,1,2, ••• ar1d t > 0 where 
-t 

[x] = max (O, x) • 

·Pröof. Let us define vi = v(i.) - "V(i-1) for i = 1,2, ~.. • Then { v1 J 

are mutually independent and identically distributed random variabJ.es taking on 
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ncnnegati ve integers orüy. 

If k > t , then (53) is cbviously O • If k ~ t , then we have 

(54) ~{v(u) < u for 0 < u ::_ tlv(t) = k} =_!'{v1+ ••• +vr < r for r = 1,2, •.• ,k 

lvCt) = k}. 

°'B'J Lenrna 20.2 we have 

(55) P{v1+ •.• + v < r ,.,,,., r for 
; + 

r = l,2, ••• ,klv1+ •.. + vk = j} = [l- ItJ 

for j = 0,1,2, •••• Hence if k < t , then 

k . 
P{v(u) < u 

/Vv 
for 0 s_ u < t jv(t) = k} =- l (1- J.)P{v(k) = j lv(t) = k} 

j=O k,..... 
(56) 

1his proves (53) for O -~ k < t and t > O • 

We note that 

(57) P{v(u) < u for 0 < u 2_ t} = P{\i(t) :5. t} - ;\P{v(t) ~ t-1} 

f or t > O • For by (53) 

[t] . 
(58) P{v(u) ~ u for 0 ~. u ~ t} = l (1- ~)P{v(t) = k} • 

k=O v ,...._ 

If' we take into consideration·that 
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(59) . P{v(t) = k} = J..t P{v(t) == k-1} 
"'' k I\~ 

for k = 1,2, ••• .t then (58) reduces to (57>. 

We can define more general Poisson processes than the homogeneous Poisson 

process discussed previously. In what follows we shall mention briefly non-

hanogeneous and abstract Poisson processes. 

, 
First >let us consi.der nonhomogeneous Poisson processes. (see A. Rényi 

[ 161 ] and C. Ry 11-Nardzewski [ 168 ] . ) We can prove that. if { 'J ( t ) , 

0 < t < 00 } is the most general point process which satisfies the conditions 
i 
1 

(a) i (c) and furthennore 

( 60) p { \) ( t ) - \) ( t-0 ) == 0} = 1 ,._.. 

for all t > 0 , then there exists a continuous, nondecrea.sing function A(t) 

(Q < t < 00 ) with A(O) = O such that 

(61) 
k 

P{v(t) _ v(u) = k} = e-[A(t)-A(u)J rA(t)-A(u)J 
"""' k! 

for 0 á u á t and k = 0,1,2, •••• Then E{v(t)} = A(t) 
fV'-

f or t > 0 

If {v(t) Ü < t < 00 } , = is a point process which satisfies the condition 

(a) and (61) with a function A(t) (0 ,.:::. t < 00 ) specified above, then we say 

that . {\i(t) , 0 ~ t < 00 } ls a Poisson process for which E{ \> ( t)} -- f, ( t) . ,........ 

for t > 0 • If A(t) (O ~ t < 00 ) is absolutely continuous, that is, if 

it can be represented in the fonn 
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(62) A(t) ' = J À(u)du 
0 

for t .:_ 0 , where À(u) ls a nonnegatj_ve and integrable function of u , 

then we say that {v(t) , 0 ~ t < 00 } is a Poisson process with density 

f or t > O . 
= 

If A(t) = H for t ~ 0 where À is a positive constant, then 

. {v(t) , 0 < t < oo} reduces to a hanogeneous Poisson process of density "\ 
/1. • 

If A(t) is not a linear function of t , then we say that {v(t) , 

0 < t < oo} is a non11omogeneous Poisson process. 
= 

Most of the results proved for homogeneous Poisson processes can easily 

be extended to the general case wh1ch includes bath hanogeneous artd non-

hanogeneous· Poisson processes. 

Theor'é.ïi 7 • Let { v ( t) , 0 ~ t < 00 } be a general Poisson process_ f'o~-

which E{v(t)} = A(t) for t ~ 0 . Under the conditions that A(t) > 0 and 

v(t) = n (n = 1,2, ••• ) the joint distribution of the coordinates of the n 

randcm points in (O, t] is the same as the joint distribution of the co-

9rdinates arranged in increasing order of n random points distributed 

independently of each other in the interval (O, t] in such a way that for 

each point A(x)/A(t) is the probability that it lies in the interval (O, x] 

Pröof. If we replace tlle un:i.f'orm distribution function by A(x)/A(t) 

in the interval x i:: (0, t] in the proof of Theorern 2, then we obtain 

T'heoran 7. See also the author [ 17 8 ] • 
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Theorern 3 has an essentially different form for nonhanogeneous Poisson 

processes. .See ~Mycielski [ 14-7 ] • 

Theorem 8. Let {v.(t) , 0 ~ t < oo} 
-- l --

(• - ] 2 ) ,i - _, ., ... ,r be independent:._ 

general Poisson processes for which E{ v. ( t) J = A. ( t) for t ~ 0 • Let 
- ,.,..... l l 

v(t) = v1 (t) + v2(t) + ••• + vr(t) for t > 0 and A(t) = A1 (t) + A2(t) + .•• 

+ Ar(t) for t ~ 0 . 1'hen {v(t) , 0 < t < 00 } is a general Poisson process 

for wh.ich E{v"(t)} = A(t) for t ~ 0 • ,..,._ 

}fTöof. The proof of Theorem 4 can easily be extended to cover this 
1 

more ~eneral case. 
i 

.. Thèórem 9_. Let . {v(t) , 0 < t < 00 } bs a general Poisson__J2rocess for _ 

which v~{v(t)} = J\(t) if t > Ü • Ir1depen~ently Of each other let US mark 

each event in the process by one of the numbers 1,2, ••• ;r. Denote by 

pj_ ( t) ( i = 1, 2, ••• ,r) the probabili ty that an event is marked by i if 

it occurs at time t. We suppose that p1(t) ~ O and p1(t) + p2(t) + ••• 

+ pr(t) = 1 for t > 0 • Denote by v1(t) the number of events marked by 

i and occurring in the interval (0, t] . Then {v.(t) , 0 < t < ro} 
--- l = 

(i = 1,2, .•. , r) are independent Poisson processes for which 

t 
(63) E{v1(t)} = A.(t) = J p.(u)dA(u) 

~ l 0 l 

for t > 0 provided that the integral (63) exists. 



VII-50 

Proof. If lnstear:i of Theorem 2 we lJEe 'l111eor811 7 then the pr'Oof of this 

theorem follows on the sarne lines as the proof of Theorem 5. The only 

difference in the proofs is that p. in (51) and (52) should_be replaced 
l 

by Ai(t)/A(t) • In particular, now we have 

(64) P{v.(t) = k11v(t) = n} 
N- l' 

A.(t) k A.(t) n-k n i 1 = (k)[-A(t)J [l- A(t)J 

fo:c 0 < k < n and n > 1 • r.I'hus it follows that 

(65) 

f'or 

k 
-A. (t) [A. (t)] 

P{v.(t) :.:: k} = e 1 
-

1
--

,,... l k! 

k = O , 1, ~= , . . . and t ,;;,, 0 • 

Both hanogeneous and nonhanogeneoüs Poisson proces~3es can l)e defined 

for more general spaces than the real line. Instead of the real line we 

can corIBider Euclidean spaces, metric spaces or general abstract spaces. 

See A. Blapc-LapierTe and R. Fortet [ 100 ] , and the author [ 179 ] . 

Let us consider a randan point distribution in a metric space X . 

Denote by F the class of Borel subsets of X • For each S € F denote 

by p(S) the number of randan points in the set S • Then {p(S) , S E FJ 

detennines a point process on X . 

If µ(S) is ameasure, _that is, a nonnegative and o-additive set 

function, defined on F , then there exists a point process {p(S) ' s E n 
such that if' S E: F and µ(S) < 00 , then p(S) is a randan variable with 

distribution 
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(66) P{p(S) = k} 
tv--

k 
= -µ ( s) [ µ ( s ) J 

e k! 

where k = 0,1,2.,,, and for any n (n = 2,j, ••• ) disjoint sets s1 , s2, ..• ,Sn 

ha.ving fini te measures and belonging to F J tlle randan varia.bles p (S1), p (s2), ••• , 

p(Sn) are independent. We say that {p(S) , S E F} is a Poisson point 

peocess on X • This process is canpletely eharacterized by the set function 

E{p(S)} = µ(S) defined for S E F • 
"'" 

'Iheorems 2, 4, 5 or 'Iheorems 7, 8, 9 have natural analogues also for 

the s~ochastic process {p(S), S E F} • 
1 
1 

1 

óur next subject is the definition of compound Poisson processes. Before 

defi.ning the notion of a general canpound Poisson process we shall consider 

a s:Unple but :important particular case which can be obtained from the 

definition of a Poisson process by removing condition (c). The definition 

of this part.icular compo».md Poisson process is based on the following result. . 

.'Iheorem 10. If v(t) denotes the number of events occurring in the 

time interval (O, t] in a random point process and if [v(t), 0 < t <co} 

satisfies ( a) and (b) , then there exist nonnegati ve cons tants ~.1 , À2, " •• , 

and À such that À
1
+ À2+ ••• = À and 

(67) 

for u > 0 , t .?. 0 ai1d k = 0,1,2, .•. where the summa.tien is extended to 



VII-52 

all those ki= 0,1,2, ••. [.or which j 1+ 2j 2+ ••• + kjk = k . 

Proof. rlhis theorem is a direct generalization of Theorem 1 and in the proof 

we .s:f;lall use the same notation as ir1 the proof of; 'Iheorem 1. We can easily see 

that indeed ther~ exists a probability space (n,B,P) ancf family of randan 
" ""' 

variables {\)(t) , 0 _:_ t < 00 } for which conditions (a) and (b) and (67) &"'E' 

satisfied. 

Now we shall prove that if 

(68) P{\1(t) .,, k} = P1r(t) , 
Nv- !. 

then 

(69) 

f'or t -~ O and k = 0,1,2, ••. where Àl' >.2 , ••• _,_and À are nonnegative 

constants and À1+ À2+ .•• =À • 

As we have seen i.ri. the proof of Theorem 1 the probabilities {Pk(t)} 

satisf.y the following equation 

k 
(70) = I P1 .(t)P.(u) 

j=O K-J J 

for t > 0, u ~ O and k = 0,1, .... 

FrITT _ (70) it follows that either P
0
(t) - 1 - .J. fo:rall t~O,or P0 (t)=O __ 

for all t > 0 , or 

(71) 
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for t ~- O where /, is a finite positive number. 

If P
0
(t) = l for all t > O , then by (70) Pk(t) = O for all 

t ~. O and k = 1,2,... . 1his corresponds to (67) with À = O . 

If P0 (t)- = O for all t ~ O , then by (70) Pk(t) = O for all 

t > 0 and k = 1,2, •.•. 'Ibis case is meaningless and should be excluded. 

Thi.s ~orresponds to (67) with À = 00 • 

i 
1 

It rema:ins to prove (67) in the case where P0 (t) is given by (71) 

w'i.th a f:inite positive A 

Now we shall prove by mathernatical induction that the probab:i..lity 

Pk(t) is given by (69) for k-= 0,1,2, •.• where ,>..1 , À2 , ..• , A, a.renon-
- K 

negative constants for which À1+ À2+ ••. + Àk < À • 

let us suppose that ( 69) is true for 0, 1, ••• ,k where k :_ 1 'lhen 

we have 

(72) 

and 

( '73) 

for i = 1,2, ••• ,k. 

l-P0(t) 
l:lln t = À 

t + 0 

pi (t) 
J.im -- =À 

t + 0 t i 

Defïne 
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(74) 

for k = 0,1, •••• rrhen by (70) we obta.L'1 that 

j, 
(À t) l{ 

k 

for t ?_ 0 a'1d u ?.. 0 • Since fk+l (t) is bounded ln the interval [0,1] , 

it fellows that 

(76) 

f or 

(77) 

! 
i 
1 

t > 0 = where 

. pk+l(t) 
À =lim· -· 
k+l t -+ 0 t 

rrhe constant Àk+l is nonnegative, and since P1(t)+ ••• + Pk+l(t) .::. l-P0(t) , 

it follows that À1+ ••• + Àk+l <À • 

Since (69) is true for k = 0 , it follows by mathematical induction 

that (69) is true for every k = 0,1,2, ••• a.'1d 

(78) 

for k = l, 2, . • • • If we di vide the equation 

00 

(79) l P (t) ~ 1-P (t) 
k=l k 0 

by t and let t -+ 0 , then we obta.lll that 
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(80) 
00 

.., 
k=l 

>- < À • K= 

Since (79) holds for all t :_ O , therefore in (80) we have equality. 11.hls 

completes the proof of the theorem. 

We note that if Àl = À , then necessarily Àk = 0 for k > 1 , and 

in this case Theorem 10 reduces to Theorem 1 • 

We sa,y that a farnily of real random var·iables { v ( t) , 0 -~ t < °''} f'orrr.s 

a banogeneous compour1d Poisson point proc:ess if P { v ( 0) :-= 0} = 1 , for 
1 (V' 

i 

any ? < t 0 < t 1 < ••• ~ tn (n = 2,3, ••. ) the random variables v(t1 )-v(t0 ), 
1 

v(t2 )~v(t1 ), ... ,v(tn)-v(tn_1) are mutuaJ.ly independent and P{ v(u+t )-v(u) = ,..__ 

k} = Pk(t)~8g:i.ven by (67) for u ~ 0 , t > 0 and k = 0, 1, 2, • • • where 

À1, f..
2
,". are nonnegative constants, and À= À1+ À2+ ••• is a finite 

positive constant. 

In the case of Poisson processes we assumed that in arw fin:ite interval 

events occur singly with probability one. In the case of compourid Pcisson 
-es 

process we allow the occurrence of multiple events too. 
" 

-es 
For the definition of COiilpound Poisson point processAwe refer to 

M. ;B\tjiwara [ 121 ] , J. M. Whittaker [ 183 ] , and L. Jánossy, A. Rényi 

and J. Aczél [ 126 J. 

We note that if 

(81) 
cc 

v(t) = l rv (t) 
r=l r 
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for t .;:_O where {v (t) • 0 :::__ t < "-'} r· • - (r::: 1,2, ... ) are mutually independent 

Poisson processes with densities \. (r = J.,2, ..• ) where ,\ (r = 1,2, ••. ) 
r 

are nonnegative constants with sum ,\1+ ,\2+ •.• = À where À is a fin.tte 

posi ti ve· humber, then { v ( t) , 0 ~ t < 00 } is a homogeneous compound Poisson 

point process for which (67) holds. 

The converse of the above statement is also true. This is the content 

of the next theorem. 

Theorem lL If {v(t) , 0 ~ t < 00 } is a homogeneous caupound PoiSS;.?12 

point process for "Which (67) holds with a finite positive_ À and v (t) 
- r 

denotes the nurnber of jurnps of magnitude r occurring in the interval 

(O,t] in the proc~ { v ( t ) , O ~ t < 00 } , then { v ( t ) , O ~ t < 00 } 

-- r -

(r = 1,2, ••• ) §l!'e mutually independent Poisson processes with densl.ties_ 

,\r (r = 1, 2 , ••• ) • 

Proef. -- If 0 = t 0 < t 1 < ••• < tn where n = 2,3, ..• , then for 

j = 1,2, .•. , n the n sets of random variables {v .(t.)-v (t. 
1

) for 
r J r J-

r = 1, 2, ••• } are clea.r 1y mutually independent. Furthennore, within each 

set all the randan va.riables are mutually independent because for u > O , 

t > O, ~ = 0,1,2, ••• (r = 1,2, .•. ) and m = 1,2, ••• we have 
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p{,J (u+t)-v (u) == k fm· r = 1,2.., ••• ,m} = 
.""'r r r 

(82)' 
. n! t k1 t k2 

= lJJn k 'k ' k '(n-k ·- -k~ [Pl(n-)] [P2(n-)] 
n + co 1 · 2 · · • · m · ' 1 · · · m1 : · 

k 
(À t) m 

m 

k ! 
m 

From the above facts it foll.ows easily that the processes { v r ( t) , 0 < t < 00 } 

(r = 1, 2, ••• ) · are mutually independent Poisson processes wi th densi ties 

À (r = 1,2, ••• ) • r_ 
1 

1 

îe note that Theorem 6 holds unchangeably f or hanogeneous ccmpound 
1 

Poisson point processes. 

Sim1larly to the Poisson processes we can define more general compound 

Poisson point processes than the hom.ogeneous canpound Poisson pojnt pt'OceGs 

discussed previously. Thus we can define nonhanogeneous and abstract 

canpound Poisson point processes. 

The notion of a compound Poisson point process leads in a natural way 

to the defini..tion of a general compound Poisson process. 

_j;Qefinition 2. Let {v(t) , 0 ~ t < co} be a Poisson process of density À • 

Let x1, x2, ••• , \, .•• be mutually independent and identically cii.stributed 

real randm variables which are independent of the process { v ( t) , 0 < t. < 00 } _. 

Let us define 
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(83) x(t) = 

· for t > 0 • We sa,y tba_!.; { x ( t) , 0 .::_ t < 00 } is a homogeneous compound 

Poj.sson · process. 

If, in particular, !hi = l} = 1 , then the above definition reduces 

to the defini tion of a homogeneous Poisson process, and if P { x. = r} = \/À 
/v.. l .L 

(r = 1,2, ••. ) . where À1+ À2+ ••• = >-. is a finite positive number, then the 

above definition reduces to the definition of a homogeneous compound Poisson 

point\:process. 

1 

A hanogeneous compound Poisson process {x ( t) , 0 _:_ t < 00 } sa.tlsfies 

the following properties: 

(i) Homogenity. The probability P{x(u+t)-x(u) ~ x} where u ~~ O 1 
r./'. 

t ~- 0 does not depend on u • 

(ii) Independent increrrents. For any 0 ~ t
0 

< t
1 

< ••• < tn where 

n = 2,3, .•. , the random variables 

mutually independent. 

x(t.)-x(t. 
1

) 
J J-

for j = 1,2, ••• ,n are 

(iii) Finite jurnp density. With probability one the limits x(u+o) 

* and x(u-0) exist for all u > O • If v ( t) denotes the munber of points 

u in the in.terval (0, t] for which x(u+O)-x(u-0) -;. O , then with 

* probability one v (t) is a fjnite random variable for every t > 0 and 

(84) * E{v (t)} = Àt[l-P{x. = O}] < oo • 
"'-- 1 
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(iv) We have P{x(O) == O} = 1 • 
""' 

Conversely, if we suppose that {x(t) :; 0 < t < co} is a separable 

real stochastic process which satisfies conditions (i), (ii) ·and (iv), then 

with probability one the lirnits x(u+o) and x(u-0) exist for all u > O • 

* * ' Let us define v (t) for t > O as above. If in addition v (tJ is a 

* finite random variable for which E{v (t)} < co , then {x(t) , 0 < t < co} 
Nv 

is a hanogenequs compound Po:i.sson process. 

We note that if {x(t) , O .::_ t < 00 } is a separable compound Poisson 

* process and v (t, A) denotes the number of points u in the interval 

(0, t] for which x ( u+o )-x ( u-0) E A where A is a linear· Borel set, then 
~ 

{v (t, A) , 0 < t < ro} is a Poisson process. If x(t) is defined by (83) 3 

then }{v(t, A)} = À~{xi E A} • If A1 , A2 ~ ••• , Ar are disjoint linear 

* Bo:eel sets, then {v (t, Ai) , 0,;, t < co} (i = 1,2, •.• ,r) are mutually 

independent Poisson processes. These results can be deduced as particuJ.ax· 

cases of more general results of I. I. Gikhman and A. V. Skorokhod [ 44 

pp. 255-282]. 

Let 

(85) P{x. ~ X} = H(x) 
IV" l -

and denote by Hn(x) (n = l.s2, .•. ) the n-th iterated convolution of H(x) 

with itself. Let HaCx) = 1 for x ~ 0 and H
0

(x) = 0 for x < 0 . 

From (8~ it follows that 
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(86) "'.: -Àt (Àt)n F{x(t) < x} = \' e --- H (x) · = l n' n · 
""" n=O • • 

f or t > O and all x . = 

Let 

"" 
(87) 11(s) - J e-sxàH(x) 

for Re(s) = 0 • 'lhen 

(88) E{e-sx(t)} = e-Àt[l-4(s)] 
,.,,,_ 

i 
for t ~ O and Re(s) = O • 1-

Canpound Poisson processes were encountered as ear1.;y as in 1903 by 

F. Lundberg [ 134 ] " i.11 1929 by B. De Finetti [ 413 ] and i.."l 1933 by 

·· A. Ya. khintchine [ 128 ]. 

Nonhcmogeneous and abstract compound Poisson processes can also be 

introduced in a natural way. 

this 
We shall close"section by mentioning two useful theorems for hanogeneous 

canpound Poisson processes. 

Theorem 12. 

defined ~ ( 83) • 

Let { x ( t ) , 0 ~ t < 00
} be a cgrnpound Poisson process 

If E{x.} = a ex.ists and if Var{x.} = a2 is a. :L'inite 
- {Vv l rv..- l 

positive number 2 then 

(89) lim P{ 
t -+ .;,--
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whère \P(x) is the normal distribution function. 

·Pröof. Let 

(90) * x (t) = x(t) - Àat 

/À(a2+ c/)t 

f or t > 0 • If we take into consideration that 2 ? 2 i(s) = 1-sa+s ca-+0 )/2+o(s) 

as s + 0 , then bJr (88) we get that 

(91) 

f or 
1 

:ij.e(s) == O • 
1 

*et) = es
2;2 lim E{e-sx 

t+oo""" } 

Hence (89) follows by Theorem 41.9 . 

We can also use Theorem 45.2 in proving (89). 

If' H(x) belongs to the danain of attraction of a nonclegenerate stable 

distribution function, then by suitable normalization x(t) also has a. 

nondegenerate limiting distribution which ean be found either by Theorem L15. 2 

or by using the same rnethod which we used in proving 'Iheorem 45.2 • 

'Ihe next theorem is concerned with a homogeneous compound Po:Lsson 

proeess which has only nonnegative jumps with probélbility one. 

We need the f ollowing auxiliary theorem. 

Lerrma 1. let x 
1

, x2, ••• , xn be mutually independent nonnegati ve 

real randan variables • let Tl'· T 2 ~ ••• , -r n be the coordinates arranged 

~ increasing order of magnitude of n points distributed unifonnly and. 

ind~pendentlv of each other in the interval 

are also independent, then 

(0, t] . If { x. } and {T. } 
- l - l 
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1- t for Od;Y;;_t > 

0 for y > t , 

whc:_re tI1e conditional probabj_lity is defïned up to an equivalence. 

Pro "-' OJ.. We prove (92) by rnathematical induction. If n = l , then (92) 

is obviously true. Let us suppose that (92) is true for n-1 where 

n = 2,3, ••.•. We shall prove that it is true for n too. T.hus it follows 

that (92) is· true for evers n = 1,2, ..• 

If y > t , then (92) is trivially true. Let O < y < t . If -r = u 
n 

~ere 0 < u < t , then under thi.s condition the randan va-riables 'l' T 2 , ••. , 

Tn~. ca."'1. be considered as the coord.inates arrariged in increasing order of 

n-1 points dtstributed unifonnly and independently of each other in the 

iriterval (O, u] • Now by assumption 

(93) 

Since 

( 94) 

P{ x
1

+ ••• +x. 5-.. T. 
/"""'- l - l 

f 1 - ~ for 0 ~ z < u 

= l O o~erwise • 

- . 
therefore by (93) we obtai..11 that 

and y<u<t, 

= (n-l)y . , 
n 

T = tl} 
n 
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(95) 
[ 

1 - ~!'.!-l)y 
nu 

= otherwise • 

for 0 < y ~ u < t , 

Since 

( 96) 
n 

P{T < u} = (u) for 0 ~ u ~- t , 
"~ n = t 

bY' (95) we get .final.ly that 

(97) 
t ( ) n-1 

= n J 0- n-1 l )( ~) du = 1- Y 
0 

· nu t t t 

for 0 ~ y ~. t • Hence we can conclude that (92) is valid for all n = 1,2, .•• 

We note that IEmma 1 remains valid unchangeably if assume only that 

Xp x2 , o •• , xn are interchangeable nonnegative real random variables whü:h 

are independent of {Ti} • For the proof see reference [ 83 ] . 

'Iheorem 13. Let_ {x(t) ' 0 ~ t < 00 } be .a separable homogeneous 

C9IDPOund Poisson process which has only nonnegative jurnps with probability one. 

Then we have 

{ 

1- f for 0 ~ y ~ t , 

(98) P{x(u) ::. u for 0 ~ u ~ t lx(t) = y} = · 
rv~ 0 otherwise ' 

where the conditional probab:i:lity is defined up to an equivalence. 



VII-6!1 

Prciof. -.-- Denote by v ( t) the number of j unps occurring in the interval 

(0, t] jn the process { x ( t) , 0 2_ t < 00 } • Tnen { v ( t) , 0 2 t < 00 } is a 

Poisson process. Denote by T1, T 2, •.• , T
11

, ••• the times when an event 

occu~Äin the Poisson process. If n = 1,2, ... , then by Th.eoren1 2 and by 

Ienrna 1 we can write that 

(99) 

P{x(u) ~ u for 0,:;. u < t lx(t) = y , v(t) = n} = 
IV" -

= !{x1+ ••. +xi ~Tl for i = l, •.. ,n lx(t) = y, \l(t) = n} = 

= 
1 

1 

1 

r ";l 
1 1- - for 0 ~ y < t , l 0 :therwise • 

1 

If n ::;:: 0 , then (99) is obvious. Since (99) does not depend on n , (98) 

follows imnediately. 

From (98) i t follows that 

(100) P { x ( u) ~- u for O ~ u < t } = E { [ 1- X (tt ) ] +} 
tv- ,....,.__ 

f or t > O . 

49. RECURRENT AND CCTJIPOUND RECURREi\JT PROCESSES. I 
--·--··· 

(;:~::;8~;rnade it possible to give a constructive definition of a 

hanogeneous Poisson process. Thls definition is given after the proof of 

Theorem Ii8. 3, and it suggests the following g8neralization. 

Definition l. Let us suppose th§!_ e1 , e2 , ••• , ek' ... _is a seguence 

of mutually inde~dent and identically-distributed posltive randc:m variab~es 

with dtstribution funct1on ,I'{8k ~ x} = F(x) • Define To = O and T = - k 

e1+ e2+ ..• + ek for k = 1,2, •..• For every t > O let v(t) be a random 

var:i.able which takes on only nonnegati ve integers and satisfies the relation 
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(1) {v(t) >k} = {Tk-~t.} 

for all t ~- 0 and k = 0,1,2, ••• We say __ that {v(t) , 0 ~ t < 00 } is 

ro oo) 
\ ' 

eventsoccur at random, if v(t) denotes the number of events occurring in 

the time interval (0, t] , and if the time differences between_successive 

events are mutually independent and identically d1stributed positive rando;n 

variables~ then we say that {v(t) , 0 ~ t < 00 ) is a recurrent process. 

If, in particular, 

(2) ~ 
-ÀX 1-e 

F(x) = O 

f or x > 0 , 

f or x < O , 

where À is a positive constant, in the previous definition, then {v(t) , 

0 < t < 00 } reduces to a homogeneous Poisson process with density ~ 

Let us introduce the f ollowing notati.on 

(3) 

for Re(s) > O , 

(4) 

and if a < 00 , then let 

(5) 

()() 

~(s) = J e-sxdF(x) 
0 

00 

a =-" J xdF (x) 
0 

00 

c/ = J (x-a)
2

d.F(x) 
0 

Denote by Fn (x) the n-th iterated coff1olution of F(x) with itself 

and let F0(x) = l for x ~ O and F0(x) = O for x < o . 
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Tt.1e d.i.stribution of v ( t) can be obtained hy the followi_ng formula 

(6) !{v(t) < n} = 1 - Fn+l (t) 

for t .::._ O and n = 0,1,2, •.•• For we have 

for t ~- O and n = 0,1,2, •••. 

llie Lapla..ce transfom of P{v(t) ~n} is given by ,..,,.,. 

(8) 
~ n+l 

J e-st P{v(t) < n}dt = 1 - [~~s)] 
0 ~ ~ 

for Re(s) > 0 • Knowing cp (s) we can obtain P{v(t) < n} by inversion 

fran C8L 

Let 

(9) 

be the r-th binanial moment of v(t) for r = 0,1,2, •.•• 

The r-th binomial moment b (t) 
r is a nondecreasing 

function of t and is firrl.te for every t . We have b0 ( t) = 1 ênd 

(10) 

for r = 1,2, .••• For if r = l_,2, •.• , then 
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ro 

I cn~~)P{\i(t) _>_ n} 
r-..:..N-(11) b (t) r = I 

n=r 
= n} = 

n=r 

and (10) follows by (6). 

If we take into consideration tha.t for evecy t > 0 there is an s 

(s = 1,2, ••• ) such that F
5

(t) < 1 and fu:ether that Fs+n(t) < Fs(t)Fn(t) 

for all n = 0,1,2, ••. , then we obtain easily frorn (10) that b (t) < ça 

r 

for all t > 0 -. Furthennore, we can easily see that for evecy t _:_ O the2e 

exists a. finite C (t) such that 

for r = 0,1,2, •.•• 

Since 

(13) 
n z = 

z r (--) 1-z' 

for 1 z [ < l , therefore by (10) we obtair1 that 

(14) 
"" r J e- stdb (t) = [ ~(s) ] 

0 r 1-~(s) 

for Re(s) > O and r = 1,2, .•. If r = 0 , then (14) is trivially true. 

By (14) we can write also that 

(15) 
00 

J e-st db (t) = 
0 r 

oo r 
[j e-st dhl(t)] 
0 -

for r = 0,1,2, ••.. 
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From (15) we can draw an interesting conclusion. If b1 (t) = ~{v(t)} 

is known for all t > 0 , then by (15) br(t) is un.i..quely detennined for 

all t _:._ 0 and r = 1,2,... • If c (t) < l in (12), then we can write 

down· that 

(16) 
00 

P{v(t) = k} = L (-l)r-k(~)br(t) 
r=k 

for k = 0,1,2, •••• If C (t) < 00 , then P{v(t) = k} can be obtained by ,........ 

a simi.lar formula gi ven in reference [ 8LJ. ] • That is, in the case of a 

r~current process, the function b1(t) =~{v(t)} ccrnpleteJ...y detennlnes 

the distribution of v(t) for all t ~ O • 'Ihis can also be seen by (8) 

and (14). 

(17) 

If r = 1 in (14), then we obtain that 
00 

f e-st db (t) 
0 l 

<P (s) = -------
oo 

1 + J e-stdb
1 
(t) 

0 

for Re(s) > 0 , and knowir.g t.ji(s) the distribution of 'J(t) can be 

obtained by ( 8). 'L.1lere are many examples for recurrent processes where it is 

easier to detennine E{ v ( t) } than F( x) , and in this case the above 

observations are ver:,r useful. 

let 

(18) 

for r = 0, 1, 2, ••• .:1 that is, rn/ t) is the r-th mcment of v ( t) . We have 
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(19) 
r . 

m (t) = ) 0J j! b.(t) 
r j;O r J 

for r "_, 0,1,2, .•• wher>e the m.unbers È:>~ (j = 0,1, ..• ,r) are 3tirl:ix1g 

numbers of the second kind. We have Gg = 1 ,G~ = O for r == 1,2, •.. , and 

(20) 

for 1 ,?., j ~ r • (See Ch~ Jordan [ 49 pp. 168-173].) Formula (19) follows 

:î.rnmediately fran the identity 

(21) 

wh:tch holds for r = 0,1,2, ••• and for all x • 

let us introduce the notation 

(22) m(t) = E{v(t)} , 

that is m(t) = m
1 
(t) = b1 (t) and 

(23) d(t) = Var{v(t)} , 
'VVV-

In wtia.t follows we are interested in studying the asymptotic distributj_on 

of v(t) as t -+ 00 and the l:imiting behavior of m(t) and d(t) as t + "" • 

If · F(x) · belongs to the danain of attraction of a nondegenerate stable 

distribution fu'îction, then by suitable nomiaJ.ization T n ha.s a nondegenerate 
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liiniting d1stribution as n -+ 00 
• In thia case by (1) we can conclu.de that 

by sui.table normalization v ( t) also has a nondegenerate l:imiting distribtttion 

In fjnding the asymptotic distribution of v(t) as t -+ "" it will be 

convenient to extend the definition of Tn (n = 0,1,2, .•. ) toa continuous 

parameter :in the f ollowing way 

(24) •u = 'n for n•l < u ~ n. (n = 0,1,2, ... ) . 

T~en by Theorem 44.6 and Theorem 4l~.8 we can conclude that if F'(x) 

belang~ to the domain of attraction of a stable distribution f'unct:i.on R(x) 
! 

of type S(a.,l,c,O) where 0 < a. j 2 and c > 0 , then there exist two 

functions ~ and Bu > 0 where lim Bu = oo 
U ->- ro 

such that 

(25) lim P{ ,..,.__ 

1 - A u u 
B < x} = R(x) • 

u + 00 u 

By Problem 46. 12 we have 

where lim .e_(wu) = 1 for ever"/ w > 0 • 
U + oop(UJ 

If a < 00 and 0 < a
2 

< m , then by Theorem L~4.6 F(x) belongs to the 

dcmain of attraction of the nonna1 distribution funct:t.on <P(x) , ancl (25) 

holds with R(x) = <P(x) (a.::o2, c=l/2) , Au = au , and Bu = a/ü . 

~! 
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If 

(27) 

then by Theorem 44. 6 F(x) belongs to the doma:ir1 of attraction of the norr.ial 

distribution function ~(x) , and (25) ho~ld::.:: with R(x) = ~(x) (a.=2, c=l/2), 

~ = au , and if 
2 er = oo , then B > O can be chosen jn such a way that u 

(28) 

for sane 

If 

(29) 

e: > 0 • 

lim 1 - F(x)= wa. 

x -+ oo 1-F'(wx) 

for ever'J w > 0 where 0 < a < 2 , then F(x) belor~'?f) to the àomain of 

attra.ction of a stable distribution function R(x) of type S(a,l.s.c,O) 

where c > O , and in (25) we can ehoose Bu > O i.11 such a way that 

(J)) lim u[l-F(B x)] -
u u + 00 

2cr(a) . an f ~ 1 sJn 2 or a r . , 
'TIXa 

2c 
'ITX 

f or a = 1 

f or· x > 0 , &.nd Au = 0 fo:c 0 < a < 1 • A - au for 
~ u 1 < a- < 2 , and 

(31) ~ = u J xdF(x) 
'xl<-rB 
1 u 

2cB 
u c· - --- ..LOU T-1T t::> 

(l·-C)] 
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for a. = l where -r is é'J1 arbitra:r";-positive number and C = o. 577215 ••• 

is Euler's constant. We note that by Problern 46.12 we have 

A - wA 
(32 ) 1 . wu u 2c 1 , 1ffi B = -:;-- og w 

U -+ co lûU 

if a = 1 f or ar.y w > 0 . 

By using the above results we can find the asymptotic distribution of 

v ( t) as t -+ 00 in each case. 

(33) 

B~ (1) we have 
i 
1 
i 

{v(t) ~ u} - {T < t} u= 

for all t ~ O and u > 0 • 

(34) 

(35) 

Theorem 1. If 0 < 0
2 th l < co , en we -ia ve 

v(t)- !_ 
l:im!_{Jl;_ a < x} = 

t-+ 00 2 
(J t 

a3 

~(x) • 

Proof. In this case by the central limit theorem we have 

l:im P{ 
~ 

u -+ co 

-r - au u 
--- < x} = <P(x) 

ov'u 

for every x • If we write 

(36) t = au+ xoru, 

then by (33) and (35) it follows that 
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(37) lim P{v(t) > u} = 4>t.x) 
t -~ (;;" 

be 
where u ca'1,,.. detenn:tned by ( 36) • For if u -+ 00 , then t -? 00 for any x . 

By (36) we can easily prove that 

(38) 

Thus by (37) and (38) 

(39) 

! 
f or any x . Since 

t u- -
1 . a 

J1Il -- :::: -x • 
t -+ (XJ ?_ ;:; 

a a 

we obtain that 

t-
v(t)- ~ 

11m P{ a. 
,?_ -·X} 

,-.ry._ 

?_ ~-t -+ 00 

a a 

= 

<Ii(-x) = 1-<Ii(x) therefore 
' 

<Ii(x) 

(39) 1mplies 

Theorem 2. Jf (29) holds wit1!_ 0 < a < 1 , then 

(40) 

1 

( r2Cf(a) . aTI]a) 11m P{v(t)[l-F(t)] ~ x} = 1-R L---- sin--;:;- . 
t -+ :,,v- TIX c.. 

(34). 

for x > 0 where R(x) is a stable distribution f'unction of ty12e S(a,1,c.,O) • 

Proof. In this case we have 

(41) 
TU 

l:irn J~_{ B < x} = R(x) 
u + 00 u 

where R(x) = 0 for x < 0 and Bu > 0 satl.sf.ies (30) for any x > 0 , If 

x > 0 and j_f we w-.c:i.te 

( l~2) t =-~ B x l.i. , 

then by (33) and (lil) it follows that 
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(43) lim P{v(t) .?:. u} = R(x) 
t -~ ;:- -

for x > 0 where u can be detennined by ( 1+2) • Now frcm ( 30) i t follows 

tr.tB.t 

(44) llm u[l-F( t)] 
t -> C'O 

Thus by (ll3) and (44) we obtain that 

( 115) liin P{v(t)[l-F(t)] .?:. 2cr(a)_ sin -2~:rn} = R(x) 
,.,... - a 

t -+ 00 îTX 

for x > 0 • Hence (40) follows inmediately. In (40) the dependence on c 

is only apparent. 

Note. If 

(46) lim xa[l-F(x)] ~ q 
x -+ o:> 

where 0 < a < 1 and q > 0 , then 'I'heorem 2 is applicable and by (40) we 

have 

(47) 

f or x > 0 • 

(48) 

'l1"r1eorem 3. If ( 29) holds with 1 < <:\ < 2 , then 

v(t) t 
a 

11rn P{ ----(a+l)/à. 2._ x} = 1--R(-x) 
t -t ;;--- Bta 



for everv x where R(x) is a stable distr·1butio.Q_ func~ion of t~ 

S(a,l,c,O) and Bt > 0 can te obtaj11ed by 

(49) l:im t[l-F(B+J] 
t + 00 v 

2cr(a) . a.n = sm -2 • 
71" 

Proof. In this case we have 

(50) 

f or every x where 

(51) 

T - au 
l.:im P{ ,._.,.. 

u + co 

_u_B ___ -:_ x} = R(x) 
u 

B > O satisfies (30) for ar1y x > O • 
u 

t = au + x Bu, 

then by ( 33) and (50) it follows tha.t 

(52) l:im P{v(t) .::. u} = R(x) ,.,.__ --
t -t- CX' 

If we write 

where u can be detennined by (51). For if u + 00 , then t + oo for arw x . 

If we make use of the fa.et that Bu has the fonn (25), then we can prove 

that 

(53) 
t u--

1
. a 
lffi ( 1)/ = -x • 

t B ~- et+. a. 
, + 00 tet. 

Thus by (52) and (53) we obtain that 

v(t) - !. 
l:im P r -~-1- > -x} =· R(x) ,,_ t -Ca.+ 1)1 a = t-> 00 Ba 

t 

for any x • Hence (48) follows. Again the dependence on c is onJy apparent 

in (48). 
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Note. If 

(55) l:i.m xa[l-F(x)] = q 
x -+ 00 

where l < a. < 2 and q > O , then Theorem 3 is applicable and by (48) we 

have 

(56) 

where 

( 57) 

i 

t 
v(t) a 

lim P{ -___,..,,.----..~ < x} = 1-R(-x) 
~ -(l+a.)/a = 

t -+ "" Bta 

1 

B = [ q7Tt Ja. 
t 2 ( ) . a7T er a. sm 2 

This follows fran (30) and (55). 

(58) 

2 
If (28) ho1ds and a = co , then in a similar way as ( 48) we obtain tJ:iat 

lim P{ 
t .... .;-

v(t) - !. a 
-3/2 < x} = ~(x) 

Bt a 

where Bt > 0 can be obtained by (28). 

The case where a. = 1 is somewhat more cornplicated, but in a s:L'Ililar 

way as above we can also obtain the asymptotic distribution of v(t) as 

t -+ 00 • For t:bls case we mention only an exarnple. Let 

(59) 

( 1 - 1:_ J.~Or X > 1 , 

F(x) = } x = 

l 0 f or x < 1 • 

Then by Theorem 44.8 we can prove that 
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(60) 
T - U log U u ltm P{ ---- < x1 "" R(x) 

IW'-' u =--
u-+ "" 

where R(x) is a stablP. distribution function of type S(l,l, ·i, 1-C) 

where C = 0.577215 ••• is Euler's consta11t. (See Pr-oblern 46.19 . ) 

If we write 

(61) t == u log u + xu , 

then 

( 62) 

t u----
1

. log; t _ 
lill t -- -x ' 

t-+ 00 ---

(log t) 2 

i 

and sÏ11ce by (33) and (60) we have 

(63) lirn P{v(t) ,;
0 
u} = H(x) , 

t-+ ~ 

therefore it follows that 

\) ( t) t - logt , (64) lim P{ t ~ -x.r 
t -+ ,;;-

2 (log t) 

or 

\) ( t) t - log; ·c (65) l:i.m P{ < x} 
t -+ .;- t 

2 (log t) 

for ever'Y x • 

= R(x) 

= 1-R(-x) 

The lirnit distributions (34), (LlO), and (48) were found fora 1attice 

distribution function P(x) ln igiio by W. Feller [ 206 J. For the general 

ca.se see the author [ 26 3 ] , [264- ] • 
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•es 
The theory of recurrent processt\has attracted. much attention in eonneetion 

with industrial replacement problems. See for example H. Hadwiger [214- ] 

and p.. Lotka [ 225 ] • In indastrial replacement problems we assume tbat a 

machine worlr..s continuously in the time jnterval ( 0, 00 ) and if a part of 

the machin.e breaks down, then we replace it irrmediately by a sÏlTLi.lar part. 

Denote by e
1

, 9~, ••• > ek, ... the lifetimes of the successive parts used in 

the machine in the time interval (0, 00 ) , and denote by v(t) the number 

of replacements. in the time interval (O, t] • If we suppose that {ek} is 

a sequence of mutually independent and identically distributed positive 

randan variables with distribution function ,!{ek < x} == F'(x) , then {v(t) , 

O < t 00 } is a recurrent process as defined prevlously. It is important 

to know the stochastic behavior of {v(t) , 0 < t < ro} , for exmiple, if 

we want to decide how large the stock of the spare pa:t:'ts shoi.llc1 be jn order 

to satisfy the demand in a given time interval with high probability. 

The first results were concerned wit:h the asyrri.ptotic behavior of the 

ex.pectation 

00 

(66) m(t) = E{v(t)} ,_,,._ 

We can easily see that m(t) satisfies the following integral equation 

(67) 

f or t > O . =· 

If 

(68) 

t 
m(t) = F(t) + f m(t-x)dF(x) 

() 

00 

l P{ek = jd} = l 
j=O""' 
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for sane à > 0 , then we say that F(x) is a lattice distributlon function 

and d > 0 is cailed the step of F(x) if d is the la.rgest po~itive 

numbe:c wiüch satisfies (68). If d > 0 is the step of a lattice distribution 

functJ.on Ji'(x) , then the g.c,d. {j : P{~ = jd} > 0} = 1 . If F(x) is 
""" K 

a lattice distribution function wi th step d , then by L'1troduci11g a new time 

scale we can achieve that d becomes l . 

If F(x) is a lattice distribution ~.lr1ction with step 1, then let us 

write 

(69) 

for j = 0,1,2, ••• and 

(70) 

for n = 1,2, .•. and '-1a = 1. 

('71) 

fj = F(j) - F(j-0) 

u = m(n) - m(n-1) n 

In this case 

for n ~ t < n+l and (67) can be expressed in the following equivalent form 

(72) 

for n = 1,2, ••.• If we define 

(73) 

n 
u = l f u 
n j=l j n-j 

rn = l f. 
j==n+l J 

for n = 0,1,2, .•• , then by ("(2) we can pr-ove that 
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(74) 

for n ~ 0,1,2, •.•• 

n 
I r. u . - i 

j=.O J n-J 

In the theo:r"J of recurrent processes :i.t bas been first conjectured that 

(75) 

where a is defined by ( LJ) • 

lim !!l(t) = l 
t a t _,.. 00 

In 1940 ~Richter [ 234 ] demonstrated that if ei < 00 and F(x) is 

an abscplutely continuous distribution function or a lattice rüstribution 
1 

1 

functi6n, then (75) is true. Richter proved also that if d(t) = Vad\J(t)} , 

then under some restrictions on B,(x) we llave 

(\ 1,. 

(76) 

In 191U W. Feller [ 205 ] proved that (75) is generally true without rnaklng 

any restriction on F(x) • Feller used a Tauberian theorem. (See 'I'heorem 

in the Appendix.) However, we C!an prove this result in an 

elernenta.ry ways which we shall dernonstrate soon. Peller also proved that i.f 

(77) 

is finite for sorne r > 2 = and if sane other conditions are satisfied too, then 

t ->- "" 

lim tr-2 [m.t't) - !1 = O . 
' <rJ (78) 
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In 1942 ~SchwaFz. [ 236 J tco prove1..'!.. that Cf5) is true if a < 00 and 

j_f F'(x) is elther a lattice distributicn fu.netion or an absolutely continuous 

distribution function. He used a 1.'auberian theore:m. (See '11heorern 9 .13 

in the Append.L"'\:.) Schwartz also proved that 1IB1 d(t)/t = 0 
t -+ co 

In 1944 S. Täcklind [ 271] proved in an elementary way that 

m(t) t - - -a 

( o(t) 

) o(t2-r) 

l 0(1) 

if a < 00 , 

if a < 0 > 
r for sane r E: (1,2), 

and in J.9li5 S. '11acklind [ 272 ] proved that if ar < 00 for sorne r > 2 , 

and if F(x) is not a lattice distribution function, then 

(80) 
t- 2 l 

l.im [m(t) - ~] = a 2 - 2 . 
t -+ 00 2a 

Furthermore, if ar < 00 for sane r > 2 , and if F(x) ls a lattice 

distribution function with step 1 , then 

(81) lirn [m(t) 
t -+ 00 

[t] + ~ 2 1 
a J=~·-2· 

2a 

In (80) and (81) the condition a < oo r f or sane r > 2 can be replaced 

by the condition a
2 

< 00 • This was proved in 1949 by W. Feller [206 ] for 

(81) and in 1951~ by W. L. Smith [ 553] for (80). These authors àemonstrated 

also that (76) is valid if we a.ssume only that 2 
(J < CIC.> 

In the case when F'(x) is an absolutely continuous distributim1 functi.on, 

then m' ( t) exists almost everywhere and it is interesting to find 
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conditions und.er v.'hich 

(82) l:irn m' ( t) 
t -+ 00 

1 
::::: --

a 

exists. Sueh conditions were given in 1941 by W. Pel1e:r [ 205 ], in 1945 

by S. Täcklind [ 2'71. ], in 1953 by D. R. Cox and W. L. Smit!?: [ 196] and 

in 1954 by W. L. &nith [ 553 ] , [ 554]. 

Now we shall prove that (75) is generally true. First we 2hall consider 

the latti.ce cas-e, and then the general case. The following proofs m·e 

entirely elementary. 

(83) 

·then 

! 

TE:eor~ 4. If F(x) is a lattice distribution fun(;tion. and if 
i 

a = J xdF(x) , 
0 

llffi. m(t) = ! 
· t a • t -~ 00 

If a = 00 
, then l/a = 0 • 

Proof. We rnay assume without loss of generality that P(x) has step l . 

In this case we shall prove t hat 

(85) 

where u is defined ( 70) . '1hls implies ( 81.J) • 
n 

Now by (74) we have the inequali.ty 
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(86) 

Hence 

(87) 

n n 
n+l = l u,rk~.( l u;1( I rk) 

j+k<n ..i - j=O '"' lz=O 

1 ---< 
n 
t' 

l rk 
1-:=0 

00 

n 
l u. 

j=O J 

n+l 

If a < 00 , then I rk = a and if 
k=O 

a == 00 , then 

n -+ oo in (87), ther. we obtah1 that 

(88) 1 i-1,..,, -- < .J..llL a= n -+ oo 

n 
I U-1 

"'=O "' inf _d_~ 
n+l 

On the other hand, lf 0 .2. s ~, n , then by ( 7 L~) we have 

(89) 
n-s 

n+l = l u . r k > ( I 
j+k~î J j=O 

s 
u.) < I r,J • 

,J k=O K 

Hence it follows that 

(90) 

n 

·~ uj 
l:im sup .J-

1
-- < -

1--
n -+ co n+ s 

I rk 
k---0 

for s = 0,1,2, •••• If s-+ 00 in (90), then we get 

(91) 

n 
I u. 

·=0 J 
l:im sup J . 

n+l n -+ oo 

1 
< -=a 

00 

I r = oo • 

k=O k 
If 

By (88) and (91) we obtain (85) where l/a = C j_f a = c.o • ~:'lüs proves 

the theorem. 
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(92) 

then 

( 93) 

a = J xdF(x) ) 
0 

,~ m(t) =l " __ .._m t a 
t -+ 00 

Where l/a = O for a = oo • 

Proof. First, let a = ro • In this case let us associa.te a new recw...,...cent 

process {\.( t) , O ;;;, t < ""} with tbe process { v ( t) , O ~- t < 00 } by assurn.::lng 

that the recurrence times are ek = [ek] + l (k = 1,2, .•• ) where [x] 

denotes the integral part of x • Let m(t) = E{v(t)} • Obviously we havr-; ,..,.... 

m(t) -~ m(t) • If a == 00 , then E{ek} = 00 and by Theorern 4 it follows that ,.,_ ,_ 

ljm m(t)/t = 0 • 'I'his ::i.rnpl::les (93) for a = 00 • 

t -+ ()() 

Second} let a < 00 • Then we have the inequality 

(94) ;!;_ _ 1 < m(t)_ < m(h)+l + rn(h) 
a t= t = h t 

for• t > 0 and h > 0 • Since the event {v(t)+l = n} and the random 

variables en+l' en+2, ..• are independent for n = 1,2, ••• , it follows by 

Theorem 6 .1 of the Appendix that 

(95) 

The last jnequality follows from the fact th'.it -rv(t)+l > t • By (95) we 

obtain the first .inequality in (94). To prove the second inequality in 

(94), let tLs ob::;erve that 
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(96) rn(u+h) - m(u) ~m(h)+l 

holds for all u .~ 0 and h ~ 0 • Let nh < t < (n+l)h • If we add (96) 

for u = t-h, t-2h, ••. ,t-nh and if we take :Lnto consideratlon that m(t-nh) < 

m(h) , then we get the inequality 

(97) m(t) ~- (n+l)m(h) + n < ~ [m(h)+l] + m(h) 

which proves the second half of (94). 

Frai1 (94) it follows that 

(98) 

f or all h > O • 

(99) 

1 
1

. . ..,pm(t) 
1

. . m(t) m(h)+l 
- < lil1 llil. --- < JJn sup -- < ---a = t = t = h t -+ 00 t-+ 00 

Now we shall prove that 

1
. m(h)+l 
lill sup h 

h -)- 00 

1 
< =a.-e: 

where c is any positive mrrnber. By (98) and (99) we get (93). 

'110 prove ( 99) for every e:: > 0 let us associate a new recurrent process 

{;(t) ' 0 ~ t < oo} with the process {v(t) ' 0 ,;;, t < 00 } by assurrdng that 

the recurrence times are ek = e:[e~e:] (k = 1,2, ... ) . Let m(t) == E{~(t)} • 
""'" 

Since a.-e: _-:_ a = j2{8k) _-:_ a , it follows from Theorem lt that 

(100) 
. m(t) 1 1 

11.m--·=-<-• 
t - =a--e::: 

t-+ 00 a 

F:lnally, the :Lnequality m(t) 2_ rrÏ(t) and (100) :lmpl,v (99). This completes 

the proof of theorem. 
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The next two theorems gi ve more informa.tj_on about the as_ymptotic beh<Hior 

of m(t) as t -+ 00 These theor~rr13 rave many important applications in 

the theories of Markov chains and stoehastic processes. 

'Ihe following theoren can be deduced from a more general theore..m of 
1 . [2021 

A. N. Ko1mogorov [ 221 J. In 1949 P. Erctds ~ W. Feller and _H_._Po_l_lard provided 
I'. 

an elementar-1 proof of this theorem. 

then 

(101) 

wl1ere 

1'heorern 6. If P(x) is a lattice distribution functlon with sten d 
~------~~--__;;~ _ __;;_.;;;..=.;..~~.;;.....;_~. ____.._ ' 

d 
lim [m(nd+d) - m(nd)] -· a 

11 -+ 00 

a is defined by (83). If a = co , then l/a = 0 . 

·Proef. We shall use the same netation as in the proef of 'füeoran 4. 

We may assume without loss of generality that F(x) has step 1 )t that is, 

d = 1 • We shall prove that 

(102) lim u = 1 
n a n -~· °" 

which implies ( 10].) • 

We shall use the relations (72) 8Ild (74) and that g.c.d{j:fj > O} = 1 • 

Since O :5.. un ~ 1 , therefore there exists a mrrnber À = 1L'11 sup l~ 
n -+ "" 

and tl1ere exists a sequence n1 , n2, ••• such ti1at 11m u11 = À • 
~ v -+ ~ v 
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Now we shall p:t'ove th.:it if f. > O , then 
J 

(103) 

By (72) we can write that 

(104) 

À = lim u n v-+co \) 

< = 

limu .=>... 
n -J 

v+oo \) 

n 
\) 

= lim inf{f .u . + l 
v -+ oo J nv-J i=l 

ir!j 

m 
+ À l f. + 

00 

l 

f. u . } < 
i n -i = 

\) 

f j lim inf u . n -J 
\)-+ 00 \) i=l 

l i:m+l 
f i 

i~j 

for any .m = 1,2, •••• If m-+ 00 in (104), then we get 
1 

(105) 

1 
1 

À < f. lim inf u . + À (1-f.) • 
= J v -+ oo nv -,J J 

~- By (105) we have lim inf u . > >.. • By definition, we have 
v -+ oo nv -J = 

lim sup u . '-' À • Thus ( 10 3) follows . n -J = \) -+ 00 \) 

Accordingly, we have proved that if lim un = >.. and fj > 0 , then 
\) -+ 00 \) 

limu j=À. 
n -\) -+ 00 \) 

Since g.c.d{.j : fj > 0} = 1 , we can find a finite number of positive 

integers j 1 , j 2, ••• , j
8 

such that rj
1 

> O, rj
2 

> O, ••. , fj
8 

> O a~d 

g.c.d{j
1

, j 2, ••• , j
8

} = 1 • By the repeated appllcationSof the previous result 

we can conclude tb.at if l.irn un = >.. , then l.irn un -k = >.. where 
\) -+ 00 \) \) -+ 00 v 

(106) 

and r
1

, r
2

, ••• , r
8 

are nonnegative integers. Every integer k ~ j
1

j
2 
.•. j

8 

can be represented in the form (106). Therefore l.irn un -k = >.. whenever 
\) ·+ co \) 
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k ~ q = J"1j" ••• j . 
- -- c:. s 

If we put n = n -q in ( 7 4) , then we obta..tn tha.t 
\) 

m 
(107) \ r.u .2.,l 

L i n -q-J 
j=O " \) 

for 0 < m < nv-q • If v-+ 00 in (107), then for any m = 0,1,2, •.• we get 

(108) 

This 

(109) 

(110) 

If a = 00 :i 

i 
1 

proves that 

1 

If a < oo , 

m 
À l r. < 1 . 

j=O J 

00 

then l r. = 00 , and it follows f:l•om (108) that 
• i=O J 

(102) holds with l/a = O . 

00 

then l r. = a , and by (108) it follows that 
j=O J 

. l 
À = llill sup u < -· • n=a n -+ oo 

À = 0 • 

fünally, we shall prove that if a < 00 , then 

1 . ·nr 1 Y =_JJTll u >-n=a n -+ oo 

Fran (109) and (110) it follows that ~. = y = l/a which proves (10,;). 

We can prove (110) in a similar way as (109). If y = lim inf u , then 
n n -+ oo 

there is a sequence n1 , n2, • . . such that lirn un = y • By using ( 72) we 
v-+oo \) 

can prove that if f. > O , then lim u . = y also holds. In exactly the 
J n -J 

\)-l-00 \) 

same way as before this implies tl:Bt lim u k = y for k > q • If a. < 00 , n -
v+oo \l 

then fór any e > O and for sufficiently large m we have rm+l+ rm+2+ .. . <é. 

Thus by (64) we have 
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rn 
(111) l r. U . ?._ 1-E 

j=O J n,J-Q-J 

for nv-q ~ m if rn is large enough. lf v -+ 00 jn (111), then we get 

(112) 
rn 

y l r._:-_ l - E. 

j=O J 

If m ->- 00 in (112), then we get ya > 1 - E • Since E > 0 is arbitrary _, 

therefore ya .::_ 1 • This proves (110),and (109) and (110) imply (102) for 

J.n 1945 S. Täcklind [271] found the result (80) which implies that 

(113) 

for any h > O if F(x) 

l:i.rn [m(t+h) - m(t)] 
t -+ OQ 

h 
- -a 

is not a lattice dtstribution function and a < 00 

r 

for scme r > 2 where ar is defined by (77). In 1948 J. L. Doob [ 199 J 

proved that (113) holds if Fk(x) is not a sjngular distribution function 

for sane k • In 1948 D. Blackwell [187 ] proved that (113) is va.lid if 

F(x) is not a lattice distribution function. New proofs for this result of 

D. Blackwell were found in 1961 by W. Feller and S. Orey [ 208 ], and 

W. Feller [ 207 ] . In what follows we shall present the proof of W. Feller 

[ 2(f/ ] . This proof is based on the following auxiliary theorem found in 1960 

by G. Choquet and J. Deny [ 194 ] . 

. Lenma 1. Let F(x) be _a nonlattice distribution function of a postivie 

random variable. IL u(x) is a continuous bounded solution of 

u(x) = J u(x-y)dF(y) 
0 
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then u(x) - constant. 

Proof. First 5 we sna11 prove tha.t if u(x) is a unif orrnly conti.nuous 

bounded solution of (114), then u(x) = consr;ant. 

Denote~Ys the set of po:L"1ts of increase of F(x) , that is, 

(115) S - {x F(x+e:) - F(x-e:) > 0 for all e: > 0} 

Denote by S* the smallest set which contai.ns S and which has the follo:'1.ing 

property: If x e: S* and y e: S* , then x+y e: S* and x-y e: S* • Since 

F(O) < 1 , it follows by rrheorem 43.5 that S* = (-oo, oo) 

In what follows we shall prove that if a e: S , then u(x) = u(x-a) 

every x • Then by the previous remark we c211 conclude that u(x) = u(x--a) 

holds f or ever'Y x and e very a , that is , u ( x) = cons t::nt • 

Let a e: s· and define v(x) == u(x) - u(x-a) . 

For every a the function is unifonnly continuous and bounded and 

satisfies 

(116) 
00 

v(x) = J v(x-y)dF(y) 
0 

Let sup v(x) = q • Then there is a sequence 
-""<X«"' 

such that l:i.n1 v(x11) = q • Define wn(x) = v(x+xn) 
n ·+ oo 

for n = 1,2, .•.• 

Since u(x) is w1ifornüy continuous, the sequence {wn(x)} is equicontinuous 
. . ... , .. 

and by a theorem of C. Arz~Ja. (cf. A. N. KoJmogorov and S. V. Fomin[56 p. 54] ) 

it contai.ns a subt;equence {w (x)} which converges uniformly in every 
nk 



VII-90 

finite interval. Let lim w (x) = w(x) • Ttle function w(x) is uniforrnly 
k + oo nk 

continuous 5 bounded, w(x) .::._ q , and satisfies 

(117) 
co 

w(x) = J w(x-y)dF(y) • 
0 

By definition w(O) = q • If w(x) = q for sane x , then w(x-a) = q 

also .holds because w(x) is the weighted average of w(x-y) for 0 .::._ y < 00 

and a i.s a point of increase of F(y) • Thus i t follows that w(-,j a) = q 

for j = 0,1,2; .••• 

if z = x where 
nk 

(118) 

Since w(x) = lim v(x+x ) for every x , therefore 
k + 00 ~ 

k is sufficiently large we have the inequ.ality 

v(z-ja) = u(z-ja) - u(z-ja-a) > 9.. 
2 

for j = 0,1, ••• , .r where r is any integer. If we add (118) fop j == C,l, ... , 

r-1 , then we obtain that 

(119) u(z) - u(z-ra) > !5.. 2 • 

Si.nee u(x) is bounded and r is arbitrary, we can conclude that 

q = sup v(x) < 0 • But the same argunent applies to the function ·-v(x) , 
-co<x<CIC> 

ai1d therefore sup [-v(x)] ~ 0 also holds. Consequently v(x) = 0 . This 
-oo<x<co 

proves that u(x) = u(x-a) for every x and therefore u(x) = constant. 

Now suppose that u(x) is a continuou::> bounded solution of (114). 

Let us define 

co 

(120) u (x) = 
E 

t; J u(x-y) 22 dy 
-ex; E + y 

for E > O • Then u (x) is a uniformly continuous bounded function of x 
E. 

and satisfies 
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(121)' u 'x) = J00

u (x-v)d.t"fy) • e:\ f.: ~ \ 
0 

By the previous result we can conclude that u (x) =- constant for ever'J 
e: 

e: > 0 • If t. -+ 0 , then by (120) ue: (x) _" u(x) , and therefore u(x) = 

constant. This canpletes the proof of the lanma. 

(122) 

· ·then 

( 123) 

Now we are going to prove the following theorem of p. Blackwell [ 187 ] . 

Theorem 7. If F(x) is not a lattice distribution functi.on and 

<JO 

a. = j xdF(x) , 
0 

u lim [m(t+u) - m(t)] = -· 
t + 00 

a 

for ariy u > O • If a = oo, then l/a = O . 

Proof. Let 

(124) Ht(u) = m(t+u) - m(t) 

for t 2:. O and - 00 < u < 00 • For every t the function Ht(u) is non­

decreasLvig and bounded in every finite interval. For Ht(u) .:::.. m(u)+l < oo 

for all t 2:. 0 and u. By Theorem 41.7 it follows that the family of 

functions {Ht ( u) , 0 _:::_ t < 00 } is weakly compact in any fini te i.nte1'val 

[-U, U] • 'Ihus there exist a nondecreasing function H(u) and a sequenee 

(125) 

t ->- oo as n + oo and 
n 

lim Ht (u) = H(u) 
n + 00 n 
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in every contirnüty point of H(u) ir. any f_i_nite interval [--U, U] F'urther-· 

more, by the No te after 'l'h2oraTJ. !ü. 8, i t follows that if g( u.) is a continuous 

fünction of u and if g(u) = 0 for lul ~ U , then 

00 00 

(126) lim J g(x-u)à
11 

Ht (u) -· J g(x-u)d H(u) 

(127) 

and 

( 128) 

(129) 

(130) 

Let 

n+oo-oo n -to 

u(x) = J g(x-u)d.H(u) , 

h(t) = g(t) + J g(t-u)drn(u) 
0 

By (128) we obtain that 
00 

h(t) ::: g(t) + f h(t-y)dF(y) , 
0 

If we put t = t + x in (128), then we get n 

00 

h(t + x) = g(t + x) + J g(x-u)d Ht (u) + g(x-t )m(t ) • 
n n t u n- n - n n 

If ·we let n -+ ,x, in ( 130) thèn obtain that 

(131) 

defined by (127). 

lim h(tn+ x) = u(x) 
n + "° 

If we put t = t + x in (129) ar1d let n + "" , then by n 

(131) we obtain that 

(132) u(x) ~ J u(x-y)dF(y) 
0 

for all x • Since u(x) is continuous and bounded, by Lemma l 1 t fo1lows 

that u(x) = constant, that is, 
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00 

(133) f g(x-u)dH(u) - constant 
_oo 

for every continuous function g(u) such that g(u) == 0 for lul ;.>_ U where 

U is a finite positive number. We öbserve that H(O) = O if u = O is a 

continuity poj11t of H(u) • For Ht(O) = 0 for t > O • Thus by (133) it 

f ollows that 

(134) H(u) = Cu 

where C is a constant. By Theorem 5 it follows :immediateJy that C = l/a 

if a ~ oo and C = 0 if a == 00 • Howevcr, we ean prove this directly-by 

using ~67). By (67) it follows that 
1 

(135) 
t 

J [1-F(t-u)]dn(u) = F(t) 
0 

f or t > O • If we use (134), that is, that 

(136) l:irn [m(t + u) - m(t )] = Cu 
t -~co n n 
n 

f or every u , and if we put t = t in (135)-and let t ~ oo , then we n n 

obtain that 

00 

(137) C J [1-F(u)]du = 1 • 
0 

Thus, we have Ca = 1 • 

Si.nee in (136) the limit does not depend on the particular sequence 

it follows that 

(138) lim [m(t+u) - m.(t)] 
t -\.- 00 

== ~ 
a 

rt } 
l n , 

also holds. In (138) l/a = 0 if a == 00 • This cornpletes the proof of tnc 

theorem. 
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Theorem 7 has many useful appl ica.tions ln the theory of regenerati ve 

stochastic processes. A stochastic process is said to be regenerative if 

i t ha.s the prope::>ty that every time sane gi ven pat tem appears the fut ure 

stochastie behavior of the process is the same independently of the past. 

Theoran 7 can be used in finding the l:imiting clistribution of such processes. 

In several cases we ca'1 use Theorern 7 in the following fonn. (See W. L. 

&nith [ 553 ] , [ 240 ] and the author [ 261 ] , [ 262], [ 269] • 

Theorem 8. Let us assume that Q(x) is of bounded variation in the 

· ·interval [ O, oo) and 

(139) 
00 

Q = J Q(x)dx 
0 

exists. Furtherrnor~ let_ F(x) be a nonlattice distribution funct:lon of a 

oositive random variable for whi.ch 

(140) 

Then we have 

(141) 

wher2 l/a = O if a = 00 

00 

a = J xdF(x) • 
0 

t 
lim J Q(t-u)dm(u) = Q 

t-+ooQ a 

Proof. Every i'unction of bounded variation can be expressed as the 

difference of two nonincreasing functions. 'I'hus in proving the theorem we 

can restrict ourself to the case where Q(x) is a nonnegative and norkL,creasing 

function of x for O < x < 00 If Q(x) ::: O , then (141) is obvio11sly tr:1e. 

'I'hus we may assume that Q ( 0) > O . 
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Let 

t/2 
(142) Qi(t) = f Q(t-u)dm(u) 

0 
and 

t 
Q2(t) = f Q(t-u)drn(u) 

t/2 
( 143) 

We have evidently 

(144) 

Since 

(145) 1im ~ Q(~-) = 0 
t -+· 002 2 

and since by 'Iheorem 5 

(146) 

we obta:in that 

. t t 1 
llffi m(-;:;-)/- = - , 

t ~- 2 a 
-+ 00 

lim Q1 (t) = 0. 
t + co 

Now we shall prove tb.at 

(148) lim Q2(t) = ~ . 
t -+ 00 

For any c > 0 let us choose an h such that 0. < h < e:/Q(O) . Then we have 

O') 

(149) 0 < Q - h l Q(nh) < hQ(O) < e: . 
n=l 

If we choose t so large that 

(150) h l Q(nh) < e: 
n=[t/2h] 
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and 

( 151) 

f or u ~- t/2 , then we have 

00 00 

<152) <~ -e)[h I QCnh)-eJ < Q2Ct) < c; +e)h I QCnh) • 
n=l n=l 

Hence it follows that 

(153) 

if t ! is large enough. 
1 

Si.nee e > 0 is arbitrary, (153) proves (148). 

By (ll~t) and (148) we obtain (141). This canpletes the proof of the theorem. 
1 

It is interesting to study the asymptotic bella.vior of rn(t) as t + 00 

in the case when a = 00 • By Theorem 5 it follows that 

(154) 1-· m(t) _ 0 im-- -
t t -+ 00 

if a. = 00 If we know the asymptotic behavior of 1-F(x) as x + oo , then 

we can obtain:• more precise results for the as~ymptotic behavior of m(t) as 

t -+ 00 , We shall prove the following result. 

Theorem 9. 

(155) 

If 

1-F(x) ru h(x) 
xa. 

as x -+ 00 where O < a. < 1 and h(x) -~?- slowly variyng function or' · x at 

(156) 1-· h(u1X) = l 
:un h(x) 

X+oo , , 
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f or an;[_ w > 0 , then 

(157) 

as t+co. 

Proef. L'î fonnu1as (155) and (157) the syrnbol "' means that the two 

sides are asymptotically equal, that is, their ratio tends to 1 as x + 00 

or t + co. • 

Let 

(158) 

for Be ~- 0 • 

(159) 

<lQ 

~(s) = f e-sxdF(x) 
0 

Then we have 

J"" -st ( ) p ~ ) 1 e dm t = :-'i" = "1-;r;:::T -1 
Ü 1-qi,SJ .L-<P\.::>) 

for Re(s) > 0 • If s -+ +o , then by an Abelian theorem ('rneorem 9.12 

in the Appendix) we obtain that 

(160) 

He nee 

(161) 

00 

l-9(s) = s J e-sx[l-F(x)}dx"' r(l-a)s'll(!) • 
0 

00 

f e-st dm(t) "'--1-· ----
0 r(l-a)scii(;) 

as s + +c and by a Tauberian theorern ('l'heorem 9. 14 in the Appendix) 

we obtain (157). 

In the case where F(x) is a lattice distribution :function the result 
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( 157) was found :in 191{9 by W. Feller [ 206 ] • Actually > Peller considered. the 

pa.i.""'ticular case when h(x) = constant. For the case where h(x) satisfie~:; 

(156) see A. Garsia and. J. Lamperti [209 ]. In the general case, the 

result (157) was proved in 1955 by E. B. ~Jnkin [200 ]. See also W. L. 

· ·Sriûth [ 238 ] . Dynkin also proved that (157) implies (155). 

In 1961 W. L. Smith [ 243] proved that if (155) holds with a = 0 , 

then 

( 162) 
1 

m(t) "' 1-F(t) 

as t 00 , and if (155) holds with a = l , then 

(163) m(t) t "' --:-----t 
J [1-F(u)]du 
0 

as t -+· «> , and the converse statanents are also true. 

In a sirnilar way as '11J.1eorern 9 we can prove that if' 

(164) d(t) = Var{v(t)} 
rvv--

and if F(x) satisfies (155) with 0 < a < 1 , then 

(165) ( ) 1/2 l-2a . 2 2a. 
d(t) "' [r a.+l 11 2 -l] sii;_a.îf _L__~ . 

r(a+ 1 ) . a 2
1f

2 (h(t)) 2 
2 

as t+oo. For the proof of (165) we refer to ·w. Feller [ 206 J and 

J. L. Teugels [ 273 ] . 
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I.f F(x) satisfies (155) with l < a < 2 } then the expectation of 

F'(:x:) is a, f';ini.te poqi ti ve r.'JITlber a and we have 

(166) 

and 

( 167) 

m(t) t - - '\' a 
t 2-a h(t) 

2 (a-1)(2-a)a 

· 2t3-a h(t) 
d(t) "' " -----'­

(2-a) (3--a)a3 

See W. Feller [ 206 ] and J. L. Teugels [ 273 ] , [274 ] . 

For the recurTent process {v(t) ' 0 < t < oo} denote by xt the 

first event occurTing 
i 

distance between t and the occurrence time of the 
1 

after time t . 

(168) 

The distribution function of xt ls given by 

t+x 
,!_{xt _s_ x} = f [1-B'(t+x-u) ]dm(u) 

t 

for x ~ 0 • For the event {tt < x} occurs if and only if at_ least one 

event occurs in the interval (t, t+x] in the recurrent process. This 

event can occur in several mutually exclusi ve ways: the last event occltr-ring 

in the interval ( t, t+x] is the n-th event (n = 1, 2 :1 ••• ) in the recui'Tent 

process. Thus by the theorem of total probability we obtain tha.t 

(169) 
"" t+x 

= l: I 
n=l t 

[1-F(t+x-u)]dP{T < u} • ,.,_ n= . 

Since 

( 170) m(u) ~ ~ P{T < u} 
l ~ n = 

n=l ' 

we get (168) frorn (169). 
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Theorem 9_. If F(x) is not a Jattice distribution f'unction and if 

a < 00 , !hen the limiting dü:tribution 

(171) lirn~{xt ~ x} =: F*(x) 
t -+ 00 

exists and we h~ve 

(172) 

. x 

l 
~ f [1-·F(y) ]dy for 

F*(x) = O 

O f or 

x 2.. 0 , 

x < 0 • 

Proof. This theorem follows :immediately frorn Theorem 8 if we apply 

it to ~he function 

(173) t-F(u) 
Q(u) = 

0 

for u :::. x , 

f or u > x . 

If F(x) is a lattice distribution funetion, then the lim.i.ting beha.vior 

of ,!{xt < x} can easily be obtained by Theorem 6 • 

We note that if we suppose that F(x) is not a lattice dist;ribution function 

and if F(x) has a f:inite variance of a2 , then we have 

()0 

(174) lim ~{ xt} = f xdF* ( x) 
t-+co Ü 

2+ 2 a a -· ----2a 

For \i(t)+l = t+xt and therefore by (95) we have 

(17~5) ~{xt} == [m(t) + l]a - t . 

I.f t-+"" in (175), then by (80) we obtain that the li.'Tlit of the right-hand 

side is 
2 2 (o + a )/2a. 'I'his proves (174). 
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If F(x) satlsfies ( 155) wi th 0 < a <. 1 , then 

(176) 
x t -l:im P { - <.. x} = H ( x) ,..,.._ t = ll. 

t -+ co 

where 

(lT() H (x) = 
a 

for 0 < x <OO, 

0 .f or x < 0 • 

This resuJ.t was found in 195:> by E. B. Dynkin [ 200 ]. See al.so ~_J__.amperti 

[ 222 J. 

It is interesting to observe that the limiting distribution (176) deper1ds 

on F(x) only through the para'lleter a • 

Let us define nt as the distance between t and the occurrence t:line 

of the last event occurring before t:ime t , and nt = t if no events occur· 

in the interval (0, t] • For nt we have the obvious relations 

(178) 

and 

( 179) 

for· ··x ~o and 

-~ttt > x , ~lt > y} = P{x > x+y} "_ ,,... t-y 

QL L. =y = t. 

If we know the asymptotic distribution of xt as t -+ oo , then by (118) 

and (179) we can determine the asyrnptotic d.istributlons of rit a'1d 
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as t + 00 
• Also we can dete:mU11e the a..'-3ymptotic d5.stribution of &~ == 

nt+ xt for t -+ 00 
• * 1"'he random variable ~t is the time difference between 

the occurrence Ume of the first event occurring after t and the occurrer:ce 

time of the last event occurring before t . 

f unction 
If F(x) is not a lattice distribution and if a < co , then by (171) 

and (178) we obtain tha.t 

(180) lim _1'{ nt < x} = F*(x) 
t -+ 00 

* where F (x) is given by (172). F'urthermore, by (1'79) we obta.in tha.t 

(181) 

f or x > O • 2 
If, i.11 addition, o < 00 , then we have 

(182) 

If F(x) satisfies (155) with 0 < a. < l , then by (179) we obtain that 

(183) Xt IY\t x+y 
lim!{ t > x , t > y} = 1-Ha.(J._.i:...) 

t-+oo Y' 

for 0 <y < 1 and x > 0 where H (x) is given by (177). J:t"'r'Cffi (183) it 
a. 

follows that 

* 
(184) 1 . P{ 

6
t } _ r,jnmr fx~l d 

Jffi""'" t<X ---- U 
t -+ 00 7T O uc<+ . 

f or x ~ 0 where 
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rl-·(l-u)
0 for 0 ;;,, u < 1 

' 
(185) q(u) = 

l 1 f or u ~" 
1 
-'- . 

Note 1. If we suppose in Definition l that e-1 is a positive random 

va.riable wlth distribution function ,!'{e1 < x} = F(x) whereas P{& < x} = 
"""' n = 

F(x) for n = 2,3, ..• , and i.f every other asswnpticn remaiilS unchanged, 

then we arrive at the notion of a general recurrent process. For a general 

recurrent proc~ss we have 

A 

(186) P{v(t) < n} 
N'-

= 1-F(t) * Fn(t) 

for n = 0,1,2, ••• where * means convolution. By (186) we have 

CX> 

(187) E{v(t)} = I ~(t) * F (t) . 
,..,..,.. n=O n 

If we ase the definition (3) and if 

(188) 
CX> 

$(s) = J e-sx aF(x) 
0 

for Re(s) > 0 , then by (187) we obtain that 

(189) 

f or Re(s) > 0 • 

(X) A 

J e-stdE{v(t)} = _<t>(s) 
0 

._ 1-<ti(s) 

Most of the lirrät theorems which we proved for ord:.tnar:J recu.rTent 

processes rema.:in va.lid for general recurrent processes toe. 



Let us suppose that F(x) has a flnite expectation a and let F(x) = 

* F (x) defined by (172). In e-üs case we Bay that the recurrent process is 

hanogeneous. For a hanogeneous recurrent process we have 

(190) E{v(t)} t - -
AM-· a 

f or every t .'.: 0 and 

(J.91) * !{X-t < x} = F (x) 

f or ever'Y t > 0 = 

Note 2. Recurrent p:::>ocesses have useful applications in the Lnvestigations 

of the fluctuations of sums of mutually independent and identically distributed 

rêU1dom V?,.,.riables. 

Let E;;l' t,; 2,"., t,;n' ••• be a. sequence of mutually 

ly distributed rancÎ~ie~1esç = s1+ E;;2+ ••• + Ç, for 

independent and l.dentic;a1-

c n n n = 1,2, •.• and 

Let 'o = 0 • Denote by , 1 the smallest n = 1,2, .•• for which 

Denote by T2 the smallest n = 1,2>··· for which ç > n 

a.nd so on for k = 2,3, ••• denote by Tk the smallest n = 1,2, ... for 

r = 0 • "'O 

which çn > ç 
1k-1 • For every t ~ 0 let v(t) be a rand.an variable which 

takes on nonnegative integers onlyan_d satisfies the relation 

(192) {v(t) ~- k} ~ {•k ~ t} 

for all t ~ O arid k = O, 1, 2, • • • • 
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In this Cö.Se the fam:i.J.y of n:-mdom variables {v(t) , 0 ~ t < 00 } fonns 

a recUITent process and the re':!UTI>ence times ek = 'k- Tk-l (k = 1,2, ... ) 

are rrrutually independent a11d identically distributed discrete randcm variabJ.es 

taking on positive integers only. The random variables 

are the ladder indices of the sequence z;;0 , z;;1 , ... , z;;n,··· as we defined in 

Section 19. By Theorem 19.3 we have 

(193) 

for 1 $1 < 1 . 
1 

00 

. l !{ek = n}zn = 
n=l 

"" n 
l ~ P{r, > O} 

n=l n ""' n 
1 - e 

If we define xk = z;;, - z;;, for k = 1,2 3 ••• , then x1, x2, ... , xk' .•• 
k k-1 

is a sequence of mutually independent and identically distrlbuted positi.ve 

randcm variables. If we consider the randan variables 

as recurrence times, then by Definition 1 they too deterrnine a recurrent 

process. By Theorem 19.4 we have 

-sxk 
E{e } = 1 - e 

oo -sz;; 
l 1 E{e 11 o(z;; > O)} 

n=l n ~ n 

"" 

for Re(s) ~ 0 where o(z;;
11 

> 0) is the indicator variable of the event 

i;; > 0 • n 

Finally, we note that Theorem 6 and Theorem 7 can be extended for an 

in.finite sequence of mutually independent and identically distributed real 

<Fd.ndcm variables ç;1 , i:2, ••• , i:n' ••. which are not necessarily positi.ve. 

Let P{ç; < x} = F(x) and de.fine ç == ç-,1+ ç;..,+ ••• + s .for n = 1,2, .... 
fvv- ·n= n ,_ n 
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Denote by M(x, h) the expected nurnber of integers n = 1,2, ... for which 

x < r;n ~ x+h , that i.s 

oc 

(195) M(x, h) = ".> P{x < r; < x+h} • 
.... IV"'- n = 

n=l 

Let 

00 

(196) a = J xdF(x) 

where a = +<» or a = -"" is allowed. 

If F(x) is a lattice distri.bution f·.mction wi th step d and . tf 

a > 0 ' then 
~ 

i 
1 

(197) lim M(x, d) 
x -+ 00 

d = -a 

where l/a = O for a = +co , and 

(198) l:i.m M(x,d) = 0 • 
x+- oo 

rllie case a < 0 can be obtained by symmetry. 'lhl.s result general.izes 

Theorem 6. 

If F(x) is not a lattice distribution :f"..mct.lon and if a > C , then 

(199) l:im M(x, h) h - -a x -+ 00 

for any h > O where 1/ a = O for a = + 00 , and 

(200) l:irn M(x, h) = 0 
X-+ - oo 

for any h > 0 • The case a < 0 can be obtained by syrmnetry. · 'l'his' result 
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generalizes Theo:rern 7. 

The above extensions of Theorem 6 arid Theorem 7 were given in 1952 and 

in 1953 by K. L. Chung and H. Pollard [ 192 J, K. L. Chw-ig and J. Wolfowitz 

[ 193 ] and D. Blackwell [ 188 ] • 

In conclusion of this section we shall define the notion of a compound 

recurr~nt process. 

De fint tinri 2. Let { v ( t) , O ~ t < 00 } be a recurrent process as we 

defined in Defini.tion 1. Let xl' x2, ••• , xi,." be a sequence of mutually 

indepepdént a.~d identically distributed real randan variables which are 
! 

üidepehderit öf · the process { v ( t) , 0 < t < 00 } • Let us de fine 

(201) 

f or t > 0 
= 

x(t) = l X· 
l<i<v(t) 1. 
== 

We say that {x ( t) , 0 -~ t < 00 r is a compound recurrent process. 

Denote by e
1

, e
2

, ••• , en' ••• the succec.sive recurrence times in the 

process. Let P{e < X} = F(x) 
"''- n = 

and P{x. ~ x} = H(x) . 
!'>~· 1. -

If we know F(x) and H(x) , then the distribution fu.nction of x(t) 

can be obtained by the following formula 

00 

(202) P{x(t) ~ x} = I . [F (t) - F +l(t)]H (x) 
~ - n=-=O n n n 

where F ·(x) and H (x) denote the n-th iterated convolutions of F(x) and n n 
H(x) respectively, and F0(x) = H0(x) = 1 for x > o and F0(x) = H0(x) = O 

f or x < O . 
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If bath F(x) and H(x) belang to the domain of attraction of a stable 

distribution function, then by suitable normalization x (t) has a l:imiting 

dîstribution as t -+ 00 • 

Let us suppose that 

(203) 
e1+ ..• + e - A1 (n) 

lim P { n ~ x} == P{ & ~ x} 
n + oo A

2 
(n) - ""' -

and 

(204) 

where l:i.m A
2

(n) = 00 and lim B
2

(n) == 00 , and 6 ani x are independent 
n+oo n+m 

randcm var.iables. If F(x) and H(x) belong to the domain of attractior; 

of a stable distribution function, then the limiting distributJ.ions (2c0) 

and (204) can be obtained by Theorem 44.6 and by Theorern 44.8 . If (203) 

is satisfied, then we can find normalizing functions c1(t) and c
2
(t) such 

that c2(t) + 00 as t + oo and 

(205) lim P{ 
t -+ ;:'"" 

v(t) - c
1
(t) 

c2(t) 
")) 

< x} = P{v < x} = ,,,.,,.. = 

where tne rru1dom variable"'depends on e The l:imiting distribution (205) 

can be obtained by Theorems 1, 2 and 3 in this secti.on. Finally, by Theorern 

L15. 2 or by using the same method which we used in proving r.rheorern 45. 2 we 

can conclude that there are normalizing functions D
1
(t) and D2(t) such 

thaY D2(t) .+ 00 as t + 00 and a distribution function Q(x) such that · 
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(2C6) 
x(t.) - D

1 
(t) 

lim P{ -- < x} = Q(x) • 
t -+ ;;- D

2
(t) = 

Let us assume that in (203) A1(n) = A1n and 

A2 > O , and a > O f or A1 = O and O < a < 1 for A1> O • Further-

b more, in (2~) let B1(n) = B1n ani B2(n) = B2n where B2 > 0, and b > 0 

for B1 = 0 and 0 < b < 1 for B1 > 0 • In this case, in (20 5l we have 

c
1 
(t) = c1 t and c

2
(t) = c2tc where the constants c

1
, c

2 
ar1d c and the 

random va.riabl~ v are gi ven i...'1. Table I. 

TABIB I 

--
Al cl c 

2 
c \} 

--
0 0 :VAl/a 

2 l/a e-1/a 

> 0 l/A, A/AÎ+a a -8 
..!.. 

-

Now by Theorem 45.2 we can conclude that in (206) D1(t) = D1t and 

d D2(t) = D2t where the constants Dl" D2, d and the distribution flmction 

Q(x) are given in Table II. 
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Bl c 1 
(b,c) Dl 

-
0 0 - 0 

> 0 0 - 0 
-

0 >O - 0 
..... _._ 

> 0 >O .b<C BlCl 
>------

> 0 >O b=c BlCl 
' ---

> 0 1> 0 b>c BlCl 
1 -1 

TABIE II 

D2 d 

~=-i= 
b 

B2C2 

BlC2 c • 
-·---

B2Cl 
b 

b 
-

BlC2 c 

1 1 b 

t Bflb l b 
1 

-
Q(x) 

P{xv 
b 

< x] 
""" 

P{v 5- x} ,.,._.., _____ , 
P{x ~ x} 

""'" - ·---· -1 
1 

P{\>~X} 
/""'" 

--·-·---"---------1 

~E{B1 c2 v+B2c1 b x ;:,_ x } 

--- -·---· ------ --
P{x ~ x} 

""" - __ t 

In the partic.ular case when E{e } = a , E{x } = b ,..,.. n r- n _, and Var{ e } ,..,..,,..,_ . r. 

and ~{xn} = a~ are finite positive nurribers we have 

(207) 

and 

( 208) 

:: a 
" , '-

a. 

where <t>(x) is the nonnal distribution function. Now by the 5-·th statement 

of Table II we can conclude that 

(209J 
x(t) - bt 

a 
lim P{ ----- < x} 

t-+-;- rt = 

acrbx - boae 
== P{ 1 ,;;.... 3/2 ~- X_r 

a 
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w'here x and e are independent random vari.ables vrlth distribution functions 

P{x _:_ x} ;, P{e :i: x} = if'(x) . Hence it follows that 

(210) 

As another example, let us suppose that {en} and {\i} are positive 

random variables f or which 

(211) 
Ctl 

l:im P{e > x}x = a. 
~ n .L x + 00 . 

wneT>e O < a.
1 

< l and a1 > O , and 

(212) 

vt11ere O < a
2 

< 1 and a
2 

> 0 • Then 

(213) 

where R, (x) 
..l. 

a 11 

is a stable distribution function of type S(et1,1,f(l-a.1 )cos ~ ,O) 

and 

(214) 

where R
2

(x) 

l:im P{ 
""" 11 + 00 

Xl + ... +\i 
· < x} = R (x) 

l/a.2 = 2 
(na ) 

2 
Cl27î 

is a stable distribution function of type S(a.2,l,I'(l:-«2)cos 2,0). 

Tnen b~r the fjrst statement of T'able II we obtain that 

(215) 

where 



VII -llla 

(216) 
-a,_ /a.,..., 

1 ·' Q(x) = P{x e ~ ~ < xl ,.,.,. 

and e and x are independent random va.riables for which !{e -~ x} = H
1 

(x) 

-sf\ 
It is instructive to deduce (215) directly. Let E{e n} "" <P(s) and 

-sx 
E{e n} = tjJ(s) for Re(s) ~ O • Then by (202) we have 

(217) 

for ~e(q) > 0 and He(s) > 0 . Now let us define a random variable v 
1 

i 
in such a way that v and { x ( t) } are independent and 

1 

for x ~ 0 , 

(218) 
for x < 0 , 

Then by ( 217) we have 

(219) 

for q > 0 and Re(s) > 0 . Since 

(220) 

ari.d 

(221) 
. Ct2 a. .... 

1 - lji(s) = a,r(.L~-a.")s + o (s .:::) 
c.. é. 

as s ~+o , it fol1ows from (219) that 
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(222) 

for Re(s) > 0 . From (217) we can deduce that (215) exists, and if we write 

(223) 
00 

n(s) = f e-sxdQ(x) 
0 

for Re(s) .?:_ 0 , then we have 

(224) 
oo a /a. 

J 1 2 -x n(sx )e dx = 
0 

r(l-a
1

) 
------

a2 
f(l-a

1
) + f(l-a)s 

ror Re(s) > 0 . From (224) by inversion we obtain that 

(225) n(s) = E (­
al 

for Re(s) ~ 0 where E (z) is the Mittag-·Leffler function defi'hed by 
a. 

00 k 
(226) Ea(z) = ~ r(k~+l) 

f or 0 < a < 1 . 

If e and x are independent random variables f or which 

arid P{x ~ x} 
~ -

(227) 

= R2(x) , then by (42.171) we have 
a2 

-s r(l-a.2) 
E{e-sx} = e 

for Re(s) -~ 0 , and by (42.181) 

-a 
e l 

E{e-s } = E ,r_ s ) 
r (1-rv ) """' al · "'l 

(228) 

for Re(s) ~- 0 . Thus (225) can also be expresseà as 

P{ 6 < x} --
1w-- = 
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(229) 

-al/o.? 
n(s) = E{e-sxe ~} 

,..,,_ 

for Re(s) ?_ O . This is in agreement with (216). 

Note 3. If in Definitior: 2 we do not requ::ire that the sequenees {en} 

and · {x.n} be independent, then we arrive at the notion of a generalized 

canpound recurrent process {x(t) , 0 < t < ~} 

are independent and identically distributed vector variabl.es and if 

P{e > O} = l and 
""" n 

i 
1 

(230): 
~ 

1 

-qe -sx 
E{e · n n} = *(q, s) 

for Re(q) ~ 0 and Re(s) = 0 , then we have 

(231) 
co 

q J e -qt E{ e -s x ( t ) } dt = 1 - iH.9.J_9) 
0 ,.,,._. 1 - *(q, s) 

for Re(q) > o and Re(s) = o . If !{xn > O} = l , then (230) am (231) 

hold for Re(s) ~O too. 

LY} several cases we can easily determ:ine the asyrrrptotic d1stribution 

of x (t) as t + "° by using (231). As an exarnple let us suppose t:r..at 

P{x > 0} = 1 and 
~ n 

(232) 

where a > 1 and b > 1 . Let 

co co 

(233) ~(q, s) = J J e-qx-sy d d F(x, y) 
0 0 x y 
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f or Re(q) ~ 0 and Re(s) ~ 0 • By (232) we have 

(234) ljm [ t/J (~ ' s b)] 
n 

= ~(q, s) 
n -+ oo n n 

and 

(235) lim nr ip(L §._) -1] 
- L a J b = log q.(q, s) 

n -+ CIO n n 

f or Re(q) ~ 0 and Re(s) ~ 0 • 

If v is a. random variable which bas the d:i.stribution (218) and 

which is independent of { x ( t ) , O < t < ""} , then by ( 231.) we have 

(236) 

for q > O and Re(s) ?_ 0 • Hence 

b/a ( / , [ ( O)] -1/a c· ) (23'1) lim ~{ e-sq x \) q;} ::.: lim l-iji q? q = 1.?E qi, 1' ~, 
q + o q-+ 0 [l-1/l(q,sqb/a.)]q-l/a log <t\l, s 1 

f or Re(s) ~- 0 . From ( 231) we can deduce that 

(238) lim P{ x(t) < x} = Q(x) 
t -+ ,;;- tb/a = 

exists, ai."rl if 

.., 
(239) ( ) J -sx . ( \ Q S = e dQ X1 

0 

f or Re(s) ~ 0 , then 

(240) 
00 

r ~r b/a) -x dx = log ~(l, o) 
J H ,sx e 1 fl ) 
0 

.og <P ,_ , s 
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for Re(s) :::._ 0 . From (240) 0.(s) can be obtained by inversion. 

If we supposc that t;, n1, n2 a-re mutually independent random variables 

-x for which .!{ç; < x} = Q(x) and !{n1 < x} = !{n2 ~ x} = 1 - e for x ~ 0 , 

then by (240) we obtain that 

(241) b/a -1 =log <1>(1, 0) 
I\~{ ç;nl 11 2 < x} log <I> (1, l/x) 

for x > 0 • By (241) we have 

(242) 

or 

CXI • 

E{t;s} -· 1 f xsd log <I>ih_.Ql__ 
r(l-s)r(l + bs) 0 log <I>(l, l/x) 

a 

(243) 

for sufficiently small jRe(s) 1 and hence P{ i; ~ x} = Q(x) can be obta:ined 

by Mellin's inversion formula. 

We note that i.f !{8 ~ x , x < y} = F(x, y) , !{111 ~ x} "'!{n2 < x} :-: 

-x ) 1 - e for x ~- O , and (e, x , n1, n2 are rrutual.ly independent, then 

by (233) we have 

for x > 0 and y > O. If we introducethe notation 

(245'1 U:s) = log <I>(lJ ~ 
log <I>(l, O; 

for Re(s) > 0 and if we take into consideration 
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that 

(246) b/a 
log ~ ( z, sz ) = U ( s ) 

log <ti(z, 0) 

for Re(s) > O and Re(z) > O , log ~(s, O) = -Asl/a and log <P(O, s) = 
l/b -Bs for Re (s) > 0 where A > 0 and B > 0 , then we can prove tha.t 

(247) 

f or x > 0 • 

= 1 _bU~l/x) 
XU(l/x) 

f r d , ~,l 1) 
J u 0 v tü, -v -

-b/a 
U V5_f-

·-b/a By (241) and (247) we can conclude that Q(x) = P{~ ~x} = P{xe ~x} 

if and only if 

(248) U(x) - bxU'(x) = 1 

f 0 d -ll111"· u (x )x-b/a = B./A IT1J,., nd. t. t i r· l if or x > an . .1.uese co i ions are sa; s iec . 
x -+ 00 

and only if 

(249) U(x) = 1 + B xl/b 
A ' 

or 

(250) ~(q, 
A l/a B 1/L 

) - ·- q - s s - e • 
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50. Brownian. Motion and. Gaussi3.n ?rocesses. .J 

of the nom.al dj_stribution. We say that a random va.riable i; has a norrnal , 

distribution of type N(a, o2) where cr is a positive munber, if 

(1) P{t: < x} ,...,._.. 

where 

1 x - 2 /? 
<P(x) ~ --=- J e u -du 

12-; -'"' 

The parameters a and o2 have simple probability interpretatioru:. We have 

E{t;,} = a and Var{t;,} 2 = o 

The nonna.l distributlon has its origin in the investigations of 

A. reMoivre [ 325], P, S. L~lace_[ 351] andG. F. Gauss_[336]. See 

the discussion at the beginnir-,e; of Section 39. 

Definition 1. We say_ that a farnily of real random variables {t;(u) , 

O < u < 00 } forms a Brownian motion process if the following conditions 

are satisfied: 

(i) For k = 2,3, ... and for any O ,;;, t 0< t 1 < ••• <tl<: the ra!îdom 

variables i;Ct1 ) - t;,(t0 ) , t;,(t2) - t;,(t1 ), ••. , t;,(tk) - i;(tk_1) are mut1~?Jly 

independent. 

(ii) P{t;,(O) = 0} = 1 • 
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(iii) For O < u < u + t we have 
= 

(3) P{t;(u+t) - s(u) < x} 
"""" 

·_wh_e_re_. qi(x) J:s given by (2). 

By Theorem 47.1 we can conclude that the above defined process {t;(u) , 

0 < u < 00 } indeed exists. '111e conditions (i), (ii), (iii) uniquely determine 

the finite dimensional distribution functions of the process and these 

distribution functions are consistent. 

BS Theorem 47.2 we may assume without loss of generality that the process 
! 

{ç;(t) r 0 < t < 00 } is separable. 

The stochastic process {t;(u) , 0 ~ u < 00
} was introduced in 1900 by 

L. ·Bachélier [ 321 ] in studying the fluctuations of prices in a sto~k 

exchange. The process {s(u) , 0 ~ u < 00 ) al.so appears in the theory of 

rand0ll1 walks and in studying the phenan8non cf Brownian motion. (See Sec:tion 

37.) The first rigorous mathernatical description of the Brownian motion was 

given in 1923 by N. Wiener [ 370]. See also P. L~vy [352 ], K. Ito and 

H. P. McKean [ 342 ] , and D. Freedman [ 334]. 

let us define 

(4) ~(u) = au + crs(u) 

for 0 ~ u < «> where {E.;(u) , 0 < u < 00 } satisfies the conditions (i), (ii), 

(iii) anq . a is a real number and a iB a positive real number. Then f du) , 

0 _::. u < 00 } too satisfies conditions (i) ai.~d (ii) and we have 



VII-114 

(5) P{z;;(u+t) - du) ~ x} = <I>(x-at) 
,,,,,__ - crlt 

f or O ~. u < u + t The process { z;; (u) , 0 -~ u < 00 } is called a general 

Brownian rr..otion process. 

The follow:Lrig theorem was essentially found in 1923 by N. Wiener [ 370 ] . 

See also J ~ L. Doob [ 30 p. 393]. 

Theorem 1. Almost all sample functions of a separable Brownian motion 

process are continuous. 

1 

Prioof. 
i 

Let (~,B,~) be a probability space and ~(u) = ~(u, ~) 

(0 _s_ u f < oo, we:~) a family of random variables wt1ich satisfies conditions 

(i) ;j (ii)' (iii). If we SL<.ppose that U;;(u) , 0 .::_ u < 00 } is a separable 

process, then sup Ç, ( u) is a ra.ndan variable for every t > 0 , a.t1d we t1ave 
O<u<t == 

the inequality 

(5) P {sup ~(u) > x} ~ 2P{~(t) > x} 
N"- O<u~ t ,.,,.,._ 

for every x. We shall prove that for any k = 2,3, ••. and for any 

(7) P{ max. ~(t.) > x} ~ 2P{~(t) > x} • 
Nv O~.::_n J ""' 

Since the process {~(u) , 0 < u < oo} is separable, therefore (7) . , . imp..1.ies 

(6). 

The jnequality ( 7) follows from the followLrig two inequalities. .J?1 jrst; ~ 
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evidently we have 

(8) P{ rnax s(t.) > x, s(t) > x} = P{s(t) > x} 
A;V' 0< 4 <r1 J ~ 

dl= 

for ever'J x • Second, if we define v as the srnallest j = 0,1, •.• ,n (if 

any) for which s(tj) > x ' then we can write that 

(9) 

p {max s(t.) > x ' 
,,._ Oài~ J 

n-1 
s(t) < x} = l P{v = j , ~(t) < x} _:. 

j=O ,.,,,._ 

n-1 n-1 
< l P{v = j , s(t) - ~(tJ.) < 0} = l P{u = j}P{s(t) ~rt ' < 0} = "_ ,.,,..._ "'' J'' j=0·-- j=O 

n-1 
= I P{v = j}P{s(t) 

j=O ""-

n-1 

n-1 
s(t ) > 0} = l P{v = j , ~(t) - ~(tJ.) > 0} 

j j=O ,.,..,_ 

< 
= l P{v = j , s(t) > x} ~ P{~(t) > x} 

j=O /Wv ""-· 

for every x: • If we add (8) and (9), then we obtain (7). 

l:i'r'Qn (6) it follows that 

P{ sup lsCu)I > x} ~ 4P{s(t) > x} = 4 [l - ~(x)J = 
,,.,,.._ Ü<U<t - """ 

== 
(10) 

f or x > 0 • 

Let 
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(11) A = {w : supj ç:(u,w)-ç:(~, w) 1 > Î;ri for ju- ~I ~ ~ and j-=1,2, ••• ,n
2

} 
n n 

for n = 1,2, ••• and denote by A* the event that infinitely many events 

occur in the sequence A1' A2, •.• , An,··· • 

Now by ( 6) we can wri te that 

lu- jl < !} < 
n = n 

(12) 

2 1 8n714 -/D/2 
< 2n P { supjÇ(u) I > --:;-;;;-} ~ -- e 

"'" 1 n11'-+ - ~ 
O<u< -==n 

Since 

00 

( 13) 

therefore by Theorem 41.1 it follow::> that P{A*} = O • ,,,.,._ 

Accordingly,if w i A* , then 

(14) jç:(u,w)-ç:(~, w)I ~ Î;4 for lu- *' < ~ a~d j = 1,2, ••• , n
2 

n 

for every n = 1,2, ••• except a flnite number of n's • 

Thus if w i A* , then for a~y E > O and t > 0 there exists a 

ö = 5 (E,t,w) such that !ç:Cu,w)-ç:(v,w)I < E whenever !u-vl < 5 and 

u E [O, t] , v E: [O, t] . Por each w i f,* Jet us choose an n =· n(w) such 

that n .., (2/E) 4 and n > t a"!.d (14) ls satlsfied a"1d let c; ""' l/n . 1.: 

l 
. ? 1 j. u-vl < 8 , then there is a j = 1,2, ••• , n·- such that u- n-1 < ó and 

lv- ~I < ê , and thus by (14) we have jç:(u,w)-ç:(v,w)j ~ 2/n1/ 4 
< E: • 'Ih:Ls 
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completes the proof of the theorem. 

Theorem 1 makes it possible to define a Browrüan motion process in the 

following way. Let n , the sample space, be the set of all those continuous 

functions w(u) defined on the interval [O,co) for which 1.1i(O) ::;: 0 • Let 

B be the smallest a-algebra which contains the sets A(t,x) = {w(u):w(t) ~ x} 

f or all t ~ O and x • Let P be the p1~obability measure which satisfies 
A.,~ 

(15) !_{A(t1,x1L .. A(tk,xk)} = fJ ... f 
Y1+ ••• +y~xr 

k y. 1 
II ~c i ) ct d ct 

'f' t t ·--- Y1 Y2· 0 0 Y. 
i=l i- i-1..o/ (t.-·t. 1) k 

(16) <j>(x) 

(r=l,2, .•• ,k) 

2 l -x /2 = --e 
12-ii" 0 

-y l ].-

The probability measure P is uniquely detennined for B by (15). ,,..,,.., __ 

If \\re define ç;(u,w) = w(u) for 0 < u < co and w c:: n whenever 

w = {w(u) , 0 < u < co} , then {ç;(u,w) , 0 ~ u < co , w e: n }is a Brownian 

motion process for which the sample functions are continuous for ever-J 

In what follows if we speak about a Browniari motion process then we 

may assurne without loss of generality that all the sample fu.rictions are 

continuous functions of u • 

Lri 1956 G. A. Hunt [ 339 ] demonstrated that a separable Browni311 

motion process has an :important property, the so-called strong Maricov 

property. This property is based on the notion of stopping time. Let 
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{ ç; ( u) , 0 .:::. u < 00 } be a Brownia11 motion process. A nonnegati ve ra11dom 

variable , is called a stopping time if f or every u ~ 0 we have 

(17) {T ~ u} E B 
u 

where Bu is the cr-algebra generated by the random variables {ç;(s) , 

0 < s ~ u} • 

Let us denote by A the cr-algebra which consists of all these events 

A E B for whic.h A (\ {T ~ u} E Bu for every u • 

T.heorem 2. Let -r be a stopping tJme of a separable Bro\Ami.an motion_ 

process {~(u) ' 0 ~ u < 00 } • Let 

(18) 

for u ;--= O • Then { ç;* ( u) , 0 < u < 00 } is also a separable Brownia!1 motion 

pr:~cess and . {t;(u) , Ü < U 2. T} and {ç;*(u) , Ü < U < 00 } are independent 

processes, that is, if A E A and B E B* where B* is the cr-algebra 

generated by the random variables {ç;*(u) , 0 < u < 00 } , then A and B 

are independent. 

Proof. Let 

(19) B = {t;*(u
1

) 2. x
1 

for i = 1,2, ••• ,r} 

and 

( 20) B(s) -- {ç:(s+u
1

)-t,;(s) -~ x
1 

for i = 1,2, ••• ,r} 
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For each n = 1,2, ••• let us define 

(21) T -· ~ if k-l < T < k n n n = n and k = 0,1,2, •••• 

We can easily see tha.t -r is a stopping time for each n = 1,2, •••• n 

If in (18) we replace 1' by -rn , then let B the event which n 

corresponds to B given by (19) • 

(22) 

If A e: A and Bn is given by (19) with -r = -rn , then we have 

co 

,~{ABn} = l P{AB and 
"~ • k=O "'" n 

co 

co 

<n = k} = l P{AB(~) 
n k--0""" n 

and T. = k} -
n n 

= I P{A and L = ~}P{B(k)} = P{A}P{B(O)} 
k=O~ n n,,.. n ,.,..,, ·""-

because P{B(s)} = P{B(O)} for all s ?_ 0 • Since the sample f:lnctions 
,,,... 

are continuous with probability 1 it follows that lirn P{AB } = P{AB} 
~ n ,.._ 

n-+ co 

and thus P{AB} = P{À}P{B(O)} for every A e: A and B defined by (19). 

Consequently P{B} = P{B(O)} , and A and B are independent. This 
""- À-

canpletes the proof of the theorem. 

We note that if {l;(u) , 0 < u < co} is a Brownian motion process and 

s is any pos i ti ve number, then { I; (US)/ /S , 0 < u < 00 } is also a Brownian 

motion process. Furthermore, {ui;(l/u) , 0 -~ u < co} is also a Brownian 

motion process. 

I.f i;0 , i;1 , •.• , l;k'.. . are rrn.ttually independent and identically di.stributed 

randc:m variables with distribution :function !{l;k ~ x} = ~(x) defined by (2), 

then 
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(23) ;(t) = tç;o + /2 l sink1rt ç; 
k=l k1f k 

is a Brownian motion process on the interval [O, l] • Furthermore, 

(24) ç;(t) 

is also a Brownian motion process on the interval [O, l] • 

Both in (23) and (24) the surns converge with probability 1 for every 

t e: [O, l] and thus ç;(t) is a randan variable for every t E: [O, t] . 

The representations (23) and (24) can be obtained frar1 some results of 
1 

i 
N. Wieiher [ 370 ] and R. E. A. C. Paley and N. Wiener [ 69 ] on the 

hannonic analysis of randan functions. 

Fran a more general result of J. L. Doob [ 27 ] we can conclude that 

the law of large numbers is valid for a Brownian motion process. 

Theorem 3. If {t;(u) , 0 < u < 00 } is a separable Brownian motion 

process, then 

(25) 

Proof. 

P{ lim ç;(t) = O} = 1 • 
"/'- t t -+ 00 

Since ç;(n) - ç;(n-1) ( - 1 r ) ,n - ,2, .•• are mutually independent 

and identically distributed random variables with E{t;(n) - ç;(n-1)} = 0 , it 
"''-

follows fran Theorem 43.3 that 

(26) 

wî th probabili ty. On the other hand 
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(27) sup !s(u) - ç;(n)I 
n<u<n+l 

(n=1,2, •.• ) 

ar-e also mutually independent and identica11y distributed randcm variables 

with expectation 

00 2 
(28) E { sup jç;(u)-ç;(n)j} ~ 2E{!ç;(l)I} = - 4- J x e-x 12 dx = ~ • 

IV'- n<U<n+l ""' & 0 &. 
= 

The last inequality follows from (6). Thus by Theorem 43.3 we obtain that 

(29) 
n 

lim i I 
n -+con j=l 

sup ls(u) - s(j) 1 = E{sup 1 f (u)l} 
j<l.l<j+l """"' O~u"'-1 

with probability 1 , and therefore 

(30) 1 . 1 
1ffi -n n -+ co 

sup ls(u) - ç;(n)I = 0 
n<u<n+l 

with probability 1 . If n < t < n+l , then 

(31) ç;(t) s(n) -t----n 1 1 
~ n sup ls<t) - ç;(n)I + :2Jç;Cn)\ 

n_::.t<n+l n 

and by (26) and (30) we obtain that 

(32) lim ç;(t)_ = lim ç;(n) = O 
t+co t n+co n 

with probability l • Th..ls proves (25). 

For a Brownia.n motion process {t;(u) , 0 _::_ u < co} the law of jt<?..c'ateä. 

loga.rithm is also valid and we ha.ve 
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(33) P{ 1 JJT1" UD s(t) = 1 11 = ..L1St--~ -,.,,._. t ~ co ./_2_t_l_o_g_l_o_g_t 1 . 

See A. Ya. Khintchine [ 128 ] . 

Next we shall define a more general class of stochastic processes 

which class contains the Brownian motion processes as a particular case. 

This more general class is the class of Gaussian processes. The defi.riition 

of a Gaussian process is based on the notion of the multidimensional nonnal 

distribution. Multidimensional normal distributions were studied as early 

as in 1846 by A. Bravaü.; [ 11 ] • 
1 

1 

W~ sey that the real random variables s,, s2, •.• , s have an 
.J.. n 

n-dimensional normal distribution of type 

( 311) 

where al, a2, ••. , 

(35) 

( 
~l 1 (J 11 ... IJ ln 1 

N ' a. cr • • • • a • n nl nn 

are 
a real munbers, (J •• 

n " 

n n 
I I a .. x. x. 

i=l j=l lJ l J 

lJ 
= (J •• 

Jl 
and 

is a positive definite quadratic form, if sl' s2, ••• , sn have the joint 

density fUnction 

(36) 1 =--·e 

/ 2'ITd1 

1 
n n 

- -2 L l c .. (x.-a_.)(x.-a.) 
i=l j=l lJ 1. ]_ J .l 

where 
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1°11 · · · ~lnj 
( 37) D = . cr •••CT nl nn 

and 
-1 

cll cln 0
11 ... (Jln 

(38) . . = . 
cnl c (Jnl . . . (J 

nn nn 

The parameters. a1, ••• , an and 0 11, ••• , crnn have simple probability 

interpretation. We have 

(39) 

for i = 1,2, ••• , n and 

(40) 

E{ç;.}=a 
,v.._ l i 

E{(ç;.- a.)(ç;.- a.)} = cr
1
.J. 

,..,_ l l J J 

f or 1 < i ~ n and 1 < j < n • 

Let T be a finite or inf:L."1ite interval, say, T = (0, 1) or T = (O, co) • 

Definition 2. A real stochastic process {ç;(u) , u E T } is call~d 

Gaussian, if for any finite subset (u1 , u2, •.. , un) of the parameter set 

T the randan variables ç;(u1), ç;(u2), ••• , ç;(u
11

) have a joint no:rmal 

distribution. 

If {ç;(u), u ET} is a Gaussian stochastic process and if we know the 

expectation 

(41) E{i;;(u)} = a(u) 
/'-.. 

f or u E T and the covariance 
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(42) · Cov{t;(u), ç:(v)} =' E{[ç:(u) - a(u)][ç:(v) - a(v)]} = r(u, v) 
,._,,.__.... rvv 

for u E rr and v E: T , then the finite dimensional distribution functions 

of the process are uniquely determined by (41) ar1d (42). 

Conversely, if a(u) is any real function defined for u c T and 

r(u, v) is a real function defined for u c T and v c T which satisfies 

the conditions: (i) r(u, v) = r(v, u) for all u c T and v c T and 

(ii) 

(43) 

for any finite subset 

n n 

u ) 
n 

I l r(ui, u.)x.x. 
i=l j=l J l J 

of T the quadratic form 

is positive def'inite, then there exists a Gaussian process {ç:(u), u s T} 

for which (41) and (42) hold. Tnis follows from Theorern 47 .1 • 

If { t; ( u) , 0 ..;::_ u < 00 } is a Brownian motion process, then { ç: ( u) , 

0 < u < 00 } is a Gaussi211 process for which E{ç:(u)} = 0 and 

(44) E{ç:(u)ç:(v)} = rnin(u, v) • 

We can obta.in Gaussian processes from a Brownian motion process by 

suitable transfonnations. For example if {t;(u) , 0 :~" u < oo} is a Brownian 

motion process and 

(45) n(u) = (1-u)t;(_E.._) 
1-u 

for 0 < u < 1 , then {n(u) , 0 < u < l} is a Gaussian process for which 

(46) E{n(u)} = O 
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and 

( 47) E { n ( u) n ( v) } = min ( u, v) - uv • 
N._ 

See J. L. Doob [328 ]. 

If we suppose that { i; ( u) , 0 < u < 00 } is a separable Brown:i.an motion 

process and if n(u) is defined by (45) for 0 < u < 1 , and P{n(O) = O} = l 
·""-

and P{n(l) = 0} = 1 , then the process {n(u) , 0 -~ u < l} has continuous 
.v-. 

sample function.s wi th probabili ty 1. The process { n ( u) , O < u < l} can 

also bè represented in the following form 

(48) 
00 

n(u) = /2 l 
k=l 

sin krru 
krr nk 

where nl' n
2

, ••• , nk' ••• is a sequence of mutua.lly independent and identically 

distributed randan variables with distribution function h~{nk ~ x} = ~(x) 

defined by (2). In (48) the surn converges with probability 1 and thus n(u) 

is a random variable for every u • 

We note that if {n(u) , O < u < l} is the process defined above and 

if n
0 

is a randan variable which is independent of {n(u) , 0 .:_ u < l} and 

which has the distirbution function ~{n0 < x} = ~(x) , then 

(49) ç:(u) = ui;
0 

+ n(u) 

defined f or 0 < u < 1 is a Brownian motion process. 
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51. Stochastie Processes with Independent Incrernents. 

Definition. We say that a family of arbitrary: random variables 

'{F,(u) ' 0 < u < 00
} fonns a stochastic process with independent ir).crements 

if for any k = 2,3, ••• and O .::_ t 0 < t 1 < ••• < tk the ra.cvidom v~iables 

F,(t.) - F,(t. 1) (i = 1,2, ••• , k) are mutually independent. 
1. 1.-

We say that a stochastic process { F, ( u) , O < u < oo} is homogeneous_ 

if for 0 < u < u+t the distribution of r,(u+t) - r,(u) does not depend 

on u • 

1 11 what follows we shall consider only real hanogeneous stochastic 

proces~es with independent increments, or in other words, real stochastic 

processes with stationary independent increments. 

The Poisson process and the Brownian motion process ,discu.ssed :in the 

previous two sections, are examples for real homogeneous stochastic processes 

with independent increments. In fact these processes are the building bloclrn 

of a general real stochastic process with independent incr·ements. 

'I'heorem 1. Let {F,(u) , 0 .::_ u < 00 } be a hcmogeneous real stochastic 

process with independent increments. If P{r,(O) = O} = 1 , then 
- N--· --

(1) . E{e-sr,(u)} = eu'f(s) 

exists for Re(s) = 0 a11d the most general fo:rrn of 'li(s) is given by 
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(2) 

where a 

( ) i 2 2 -ar c -sx sx ) .. c ) 'l' s = -as + 2 o s + . e -1 + --.)-- àM x + 
...00 l+xL 

00 

+ f (e-sx_l + ~)di~(x) 
+O l+x2 

2 is a real consta.~t, o (--00 < x < 0) 

and N(x) (0 < x < 00 ) are nondecreasing f'unctions of x satisfying the 

conditions lim M(x) = O , lim N(x) = O and 
X-+'"".oo x -+ 00 

(3) 
-02 t:" 
J x d~(x) + J x~dN(x) < oo 

-e +O ! 
1 

1 
1 

f or sane e > 0 • 

Proof. For every n = 1,2, .•• we can write that 

( 4) 

ei) ci-1 where i;; - - i;; -) n n (i = 1,2, ••• , n) are mutually L~dependent and identical-

ly distributed randan variables. Thus by Definition 41.1 the distribution 

function P{i;;(l) < x} is infinitely divisible and by Theore1n 41.2 we can 

conclude that 

(5) 

for Re(s) = 0 where 'l'(s) is given by (2). Since 

(6) 
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f or u > O and v ;;;,.. O and !E{e-s~(u)}! ..:_ 1 for Re(s) = 0 and u > 0, 
;v..,.. 

it follows that (1) holds for all u ~ 0 • 

The representation (2) was found in 1931-1 by .P. Lé'vy [435 ], ~ 436 ] . 

In some particular cases the representation (2) was earlier found by 

B~ De .fi'inetti [412 J, [ 413 J, [ 4ll.J. J, [ 1n5 J, [416 J, 

A. N. Kolmogorov [ 432], [ l.J.33 ] • 

(7) 

Fran the representation (1) it follcws that 

-0 
1 E{~(u)} = -u'!'' (0) ""u[a + J 
!~ ~ 

1 
1 

x3 co v3 
-·- dM(x) + J ~2 dN(x)] 
l+x2 +O l+x 

provided that the integrals on the right-hand side are convergent. Further-

more, we have 

(8) 
2 -O 2 00 2 

Var{~(u)} = u'!'"(O) = u[cr + J x dM(x) + J x dN(x)] 
.y_,."_ -"" +o 

provided that the integrals on the right-hand side are convergent. Both in 

(7) and (8) we form the derivatives of '!'(s) along the line Re(s) = O . 

Now we shall prove a few auxilia.r-y theorems which will be useful in 

studying hanogeneous stochastic processes with independent increments. 

Lemma 1. Let ~ and n be real random variables having finite 

If E{~} = O , then - """ 

(9) E{jn;J ~E{j~ + nll • . ..._, 
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Proof. Since x = E{F;, + x} , we have 
,.,,.._ 

( 10) 1 x 1 = 1 E { E; + x} 1 5- E { 1 F;, + x 1 } • 
;\..".,,.. ,..._._ 

If we integrate (10) with respect to P{n ~ x} , then we obtain (9). 
·'\,1,.. -

Lemma 2. Let ç;
1

, t=;, 2 , ••. , t.:n be mutually independent random variables 

for which ~{lç;kj} < 00 (k = 1,2, ... , n). Set r;;K: = ç;1+ ç;2+ ••• + ç;k for 

k = 1,2, .•• , n • If the random variables ç;1 , t=;, 2,"., ç;n have a. syrrrnetric 

distribution, then 

(11) 

·próöf. Define v = k (k = 1,2, .•• , n) if r,k is the first partial 

strrn for "frlhich çk > x • Let x > 0 • Then we can write that 

n-1 
P{ max ç, > x and çn < x} = I P{ v = k and çr

1 
~ x} < 

""" l<k<n K lc=l ""' 
== 

(12) 
< 
~l ~l 

l P { v = l{ and 1;;n- l;;k < 0} = l P { v = k and z;n- r;;k > 0} < 
k=l~ k=l~ 

n-1 
< l P{v = k and r;; > x} < P{ç > x} 
= k=l,.,.,... n ='""~ n 

and evidently 

(13) P{ max. çk > x and ç > x} = P{ç > x} • 
- l<k<n n A- n 

=== 

If' we add (12) and (13) then we get 
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(14) . ~ { max r;;k > x} ~ 2P { r;; > x} = P { 1 r;; 1 > x} • 
"_ 1 k - ,.,.,... n '""" n <si 

Hence it follows that 

(15) 

< 2P { 1 r;; 1 > x} • 
·"~ n 

I f we integrate (15) with respect to x frcm 0 to 00 , then we obta:in 

(11) which was to be proved. 
i 
i 
i 
1 

·r..érnma 3. Let i:;1, i:;2, ••• , t;n be mutually i.Ddependent random variables 

fcr·which ~{l1;kl} < 00 (k = 1,2, ••• , n). Set r;;k = i:;1+ i:;2+ •.• + t;k for. 

k = 1,2, ••• , n • If ~{t;k} = 0 for k = 1,2, ••• , n, the:!J. 

(16) E{ max lr;;kl}< 5E{lr, !} · 
,.,._. l<k<n """" n 

== 

Proof. * * * Let i:;1, i:;2, ••• , t;n be mutua.lly independent randan variables 

which are independent of the variables i:;1, i:; 2, ••• , t;n and for which 

* * * * (k = 1,2, ••• , n) • Define l';;k = i:;1 + i:; 2 +. · .+ t;k 

* for k = 1,2, ••• , n • Since the variables t;k - t;k (k = 1,2, ••• , n) are 

syrnmetrically distributed, by Lerrma 2 we have 

(17) 

If we take into consideration that 
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(18) 

if we integrate the rigl1t-hand side of (18) with respect to the joint 

* * * distribution function of (~l' ~ 2 , •.• , ~n) , if we use the inequality 

(19) 

which follows from Lemma 1, if we form the maximum of the le~-hand side 

of (18) with respect to k (k: = 1,2, ••• , n) , and if we integra.te both 

sides ~th respect to the joint distribution function of' ( ~l' t,;2"" i;n) , 
1 

1 

then we obtain that 
! 

(20) 

By (17) and (20) we obta:in (16) which was to be proved. 

In what follows we always suppose that { ~ ( u) , 0 ..::_ u. < 00 } is a 

hanogeneous real stochastic process with stationary independent increments 

for which P{t,;(O) = O} = 1 • 

By using Lemma 3 we can prove that the strong law of large nurnbers is 

valid for hanogeneous processes with independent increments. The following 

result is due to J. L. Doob [ 27 ]. 

Theorem 2. Let { t,; ( u) , 0 ~ u < 00 } be a separcibl~ real, homog_eneous 

stochastic process with independent increments for which P{ç:(O) = 0} = 1 • 
~ 

If E{~(u)} exists, then 
"""' 
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(21) l:im § ( ~ ) = E { E; ( 1) } 
t -+ 00 ,.....,.. 

w-lth probability one. 

Pr>öof. We may assurne wi.thout loss of generality that E{ f. (1)} = O • 
(V..,.. 

If E{.;(1)} "/; 0 , then let us consider the process E;(u) - E{E;(u)} 

(0 < u < 00 ) instead of . {Ç(u) ' 0 2. u < 00}. 

If ""~{E;(u)} = O for u ~ O , then for any t 0 = O < t 1 < ••• < tn = t 

we have 

(22) 

Since the process {E;(u) , 0 ~ u < 00 } is separable, it follows fran (22) 

that 

( 23) E { sup 1E;(u)1} ~ 5E{ l .;Ct) j} 
,,..,,_ Ü<U$t ,,,.,_ 

= -

holds f or every· t > 0 • 

Now we can repeat word for word the proof of '111.eorem 50. 3 • The orüy 

difference is that (50.28) should be replaced by 

(24) E { sup jE;(u) - ~(n)i} ~ 5E{ls(l)j} < 00 • 

,..,._. ~u<n+l - ,,_ 

Theorem 3. If {ç;(u) , 0 ~ u < 00 } is a real, hanogeneous stochastic 

proeess.with i..r1dependent increments and if E{[s(u)]2} exists, and ,.,,.... 

Var{~ (u)} > O , the12 
r.,-v--
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(25) lirn P{ ç:(t) -,filç:(t)} .;, x} -· cf?(x) 
t + :;:-- I Var{dt)f 

· 'irihere ~(x) is the no:rmal clistribution function. 

Proof. We can easily show that the Laplace-Stieltjes transform of 

s2/2 [~(t) - E{t;(t)}]// Var{t;(t) tends to e as t + 00 and Re(s) == 0 • 
,.,,... ~-

Thus (25) follows by Theorem 41.10 • 

We note that by Theorem 47.3 we can conclude that any countable and 

everywhere densc subset S of [O,"") is a s.~parability sét of a separable 

process {ç:(u) , 0 < u < oo} • Since obviously 

(26) 

for any E > 0 and since ~(iy) is a continuous function of y , it follows 

that 

( 27) l:im P{lç:(t)I > E} = 0 
t + O""" 

for arry E > 0 • Thus Theorern 47.3 is applicable. 

" By the investigations of P. Levy [437 ], J. L. Doob [ 30 ], A.V. 

Skorokhod [ 446] and I. I. Giktman and A. V. Skorokhod [ 44 ] we ca."l 

canpletely describe the behavior of the sample ftlrlctions of a stochastic 

process with independent increments. 

We shall mP.ntion only brie fly the Illc'lin resultr; with:x1t gi ving complete 

proofs. 



VII-134 

Theorem 4. If { t; ( u) , 0 < u < 00 } is a separab le, hanogeneous, real 

stochastic process with independent ir1crements, then with probahilit;y:_ l 

the l:i.m.its c;(u+o) exist for all u s 0 and the limits t;(u-0) exis't 

f or all u > O . 

The proof of this theorem is based on the follcwing observation. If 

for any e: > 0 a function x(u) defined on the interval [O, t] has only 

a finite rrumber of oscillations greater than e: > 0 , then x(u+o) exists for 

u e: [O , t) and x(u-0) exists for u ~ (O, t] . We say that a function 

x(u) in 
: 

[O, t] has at least n oscillations greater than s if there 
1 

are nf l points to, tl, ••• ' tn in [O, t] such that o < t
0 < t, < ••• < t < t .... n= 

and lxC~) .- x(tk.,.l) 1 > e: holds for all k = 1,2, •.• , n. 

We can prove that for a.'1Y e > O the sample functions t; ( u) in ar:y 

fini.te interval [O, t] have only a finite number. of oscillations greater 

than e: with probability 1 . This :iniplies the theorem. 

Si.nee the process {t;;(u) , 0 ~ u < 00 } is separable, it follows that 

if u1 , u
2

, ••• , u
11

, ••• are elements of the separability set of the process 

and if u + u 
n 

as n + 00 , then P{ l:im t;(u) = t;(u)} = 1 . ,..,.... n 
n + oo 

Consequently, 

the process {;(u) ' 0 < u < 00
} has the property that for every u > 0 ~ 

either t;(u) = ~(u+o) or t;(u) = ;(u-0) with probability 1 . 

Theorem 5. Let { t; ( u) , 0 ~ u < 00 } be a hanogeneou:::, ~:=q.l stochast.ic 

Er:ocess with independent incrernents defined on a probab_ili~spa~. ($~ ,B,f_) • 

Then there exists a separable hornogeneous a real stochast ic Fl'.:'2~~ with 

* independent increments {E; (u) , 0 < u < 00 } defined on the sarne probabiliS[_ 

space such that 
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(28) * P{ç; (u) = s(u)} = 1 

* · i"ör all u ::_ 0 and wit!l._probability l the sample functions of {s (u) , 

* 0 ~ u < oo} have a right limit s (u+o) for every u ::_ 0, and a"left 

* * l:inrl.t s (u-0) for every u > O and s (u+o) = s(u) for u ~ O • 

It fellows fram Theorem 47.1 that there exists a separable process 
* . .. 

{~ (u) , O < u < oo} for which (28) holds for all u ?_ 0 and by Tneorem 4 

we can proye the remain.i.ng statements. 

Since the finite dimensional distributions of the two processes (ç;(u) , 

* 0 ~u < oo} and {~ (u) '0 < u < 00 } are identical, therefore we can always 

choose such version of the process {s(u) , O < u < 00 } which has the same 

* properties as the process {; (u) ' 0 ~ u < 00 } • 

Théórem 6. Let {ç;(u) , O < u < oo} be a separable, homogeneous, real 

stochastic process with independent increments f8r which P{s(O) = 0} = 1 • 
~ 

Let Ik=[~, bk] (k = 1,2, ••• , m) be disjoint intervals not containing 

the point x = 0 • Denote by v(t, Ik) the miinber of points u in [O, t] 

for which sCu+o) - s(u-0) e: Ik, then {v(t, Ik) , 0 < t < 00 } (k = 1,2, ••• , m) 

are mutually independent Poisson processes and 

where M(x) (-00 < x < o) and N(x) co < x < 00 ) a.Y>t~ nondecr>easin_g_f~ctions 

of x satisfying the conditions lim M(x) = 0 , and lim N(x) = 0 • 
X-+-oo x -~ 00 
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Since the vector process {v(t, Ik) , (k = 1,2, ••• , m) , 0 < t < 00 } 

1.s hanogeneous and has independent increments, it is sufficient te prove 

that for each t > 0 the random variables v(t, Ik) (k = 1,2, •.. , m) are 

independent and v(t, Ik) has a Poisson distribution. 

Theorem 7. Let {ç;(u) '0 < u < 00 } be a separable, homogeneous, real 

stochastic process with independent increments for which P{ç;(O) = 0} = 1 • 
~ 

Let Ik = [8k_, ~k] (k = 1,2, ••• , m) be disjoint intervals not eontaining_ 

the point x = 0 • Denote by .;(t, Ik) the surn of ;iurr!J?S .;(u+O) - .;(u-0) 

belong:ing to the interval Ik and occurring iri the interval [O, t] • Then 
1 
1 

{ç;(t, tk) , 0 < t < oo} (k = 1,2, .•. , m) a.""'e mutually independent ccmpound 

l?oisson processes and 

(30) 

f or 

(31) 

-sç;(t,Ik) 
E{e } =: exp{-t f (e-sx -l)dM(x)} ,.,.... 

8Jc ~ bk < O and 

-sç;(t,Ik) 
E{e } 

IK 

{ J 
-sx -= exp -t (e -l)dN(x)} 

Ik 

for O < 8Jc < bk • We have 

(32) 
-0 e: 
f x 2aM(x) + f x2dl{ (x) < oo 

-e: +o 

f or any e: > 0 • 

The proof of tb.is theorem is similar to the proof of the previoLIB 

theorem. Since the vector process U;(t, Ik) , (k = 1,2, ••• , rn) , O ~ t < oo} 

is hanogeneous and has independent increments, i t j_s sufficient to prove 
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that for each t > 0 the randan variables ç;(t, Ik) (k = 1,2, ••• , m) 

are independent and ç;(t, Ik) has a compound Poisson distribution. 

We note that both Theorem 6 and Theorem 7 remain valid if we'assume 

that each Ik is one of the interval.s [~, bk], (8K, bk), (ak, bk], 

[~, bk) • Only (29) needs obvious changes. 

Let El= l > E2> •• >i;;n>O where En-+ O as n-+ 00 • For each n = 1,2, ••• 

denote by ç;n(t) the sum of jumps ç;(u+o) - ç;(u-0) having absolute value 

greater than or equal to 
1 

can prÇ>ve that 
1 
1 
1 

(33) 

E and occurr:ing in the interval (0, t] • We n . 

~{[ç;(t) - ç;l(t)]} < 00 • 

This irnplies that (32) holds for any E > O • 

Let us choose El= 1, € 2, .•• , En,··· in such a way that 

(34) 

for n = 1,2, •••• 

Let us define 

-E n+l 2 J x dM(x) + 
-E n 

E n . 
f 2 -x dN(x) 1 

< -
n2 

for t ~ O • By ( 34) we can prove that on the right-ha.vid side of ( 35) the 

limit exists with probability 1 and the convergence is uniform in t in arr;J 

fiill.te interval. Thus {x(t), 0 ~ t < 00 } is a stochastic process. 
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Let r;;(t) = ~(t) - x(t) for t > 0 • The process {s(t) ' 0 2. t < 00} 

is independent of the process {x(t) , 0 -~ t < 00}. 

We can prove that there are only two possibilities: either {~(t) , 

0 ~ t < co} is a stochastic process for which P{r;;(t) = at}= l for t > 0 

where a is a rieal constant or { r;; ( t) , 0 ~ t < 00 } is a gene ral Brownian 

motion process for which 

(36) P{ r;;(~) - at~ x} = ~(x) 
'Vv-- ()" lf -

-if t > 0 where a is a real constant ar1d a is a. positive real constant. 
1 
1 

1 

A~cordingly, { ~ ( u) , O < u < 00 } can be represented as the sum of two 
1 

independent processes, {r;;(u) ' 0 < u < oo} and {x(u) ' 0 < u < oo} ' where 

. {r;;(u) , 0 5- u < co} is a genera.l Brownian motion process (or a degenerate 

process) and · {x ( u) , O < u < "°} is the limit of centered compou."ld Poisson 

processes. 

By (30), (31), (35) and (36) we can conclude that 

(37) E{e-s~(u)} = eu~(s) 
,.,,.,._ 

for u > 0 and Re(s) = 0 where = 

-2 2 

(38) 

~(s) =-as+ cr ~ + J (e-sx_l)dM(x)+ J (e-sx_l+sx)dI~(x) + 
(-oo,l] (-1,0) 

+ J (e-sx_l+sx)dN(x)+ J (e-sx_l)cL.~(x) 
(0,1) [l,oo) 

and a is a real constant and cr 2 is a nonnegative constant. 



VII-139 

A canparison with (2) shows that necessarily M(x) = M(x) if x < O 

and x is a continuity point of M(x) , N(x) = N(x) if x > 0 a~d x is 

-a continuity point of N(x) , and -;2 = cr
2 

• The constant a can easily 

be expressed with the aid of a , M(x) and N(x) • 

In what follows we assume that { Ç, ( u) , 0 5- u < 00 } is a homogeneous, 

real stochastic process with independent increments for which P{~(O) = O} = 1 . ,.,....,,, 

r.I.1hen (1) holds with 'l'(s) defined by (2). '11he finite dimensional distributions 

of the process { Ç, ( u) , 0 < u < 00 } are canpletely detemdned by the para­

meters a and cr
2 and by the functions M(x) (-co < x < 0) and N(x) 

(0 < x < (IC)) • We can classify the processes { Ç, ( u) , O .~ u < 00 } according 

to the properties of a, cr
2 , M(x) and N(x) • 

2 If a is a real number, cr is a positive real number, M(x) -· O for 

x < 0 , and N(x) = 0 for x > 0 , then 

2 2 
C ) ( ) cr s 39 'l' s = -as + - 2-

for all s , and {;(u) , 0 5_ u < 00 } is a general Brownian motion process 

for which 

(4o) P{ ~(u) - au < x} = ~(x) 
"""" alü = 

for u > 0 . If the process {;(u) , 0 ~ u < oo} is separable, then the 

sample functions are continuous wi th probabill.ty 1 . 

2 
If a is a real nunber., cr = 0 , M(x) = 0 for x < 0 and N(x) = 0 

f or x > 0 , then 

(41) 'l'(s) = -as 
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for all s , and P{ç;(u) = au} = 1 for all u .::_ 0 . If the process is 
"~ 

separable, then the sample functions are continuous with probability 1. 

Conversely, if the sample functions of the process {ç;(u) , 0 < u < oo} 

are continuous with probability 1 , then M(x) = O for x < 0 and N(x) = O 

for x > 0 , that is, {ç;(u) , 0 < u < 00 } is either a general Brownian motion 

process or a degenerate process. 

If a = 0 ·, cr2 = 0 , and À = M(-0) + N(+o) is a finite po.ütive constant, 

then there exists a di.stribution function H(x) such that if x is a 

continuity point of H(x) , then 

(42) 

f'or x < 0 and 

(43) 

for x > 0 • If 

(44) 

for Re(s) = O , then 

(45) 

M(x) = ÀH(x) 

N(x) = À[H(x)-1] 

00 

iJi(s) = J e-sxdH(x) 
-oo 

'i'(s) = À[l-tji(s)] 

for Re(s) = 0 , and {ç;(u) , O < u < 00 } is a cc:mpound Poisson process. If 

the process {ç;(u) ' 0 < u < 00 } is separable, then with probability 1 the 

sample :t'unctions a.-ne step functions having only a finite number of ,jumps in 

every finite interval [O, t] . 

Conversely, if the sample functions of the process { ç; ( u) , 0 .::S.. u < 00 } 

are step functions hav:irig only a finite mmlber of jumps i..r1 every finite interval 
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[O, t] with probability 1 , then {~(u) , 0 ~ u < co} is either a compound 

Poisson process or a degBnerate process for which P{~(u) = O} = 1 for all ,..,._ 

u > 0 • = 

2 ' . 
Let us suppose that a > 0 , cr = 0 , M(x) = 0 for x < 0 , N(+o) < 0 , <><.:J /-

and 

( 46) 

f or some e: > 0 • 

(47) 

1 

E: 

f xdN(x) < co 
+o 

In this case 

00 

~(s) = -as + f (e-sx_l)dN(x) 
+o 

for Re(s) > 0 , and if the process { ~ ( u) , O < u < co} is sepa.r-able, then 
= 

with probability 1 the sample functions are nondecreasing f'unetions oi' u . 

Conversely, if with probability 1 the sample functions of the process 

{ ~ ( u) , 0 < u < 00 } are nondecreasi.~ functions of u , then Il' ( s) has the 

form (47) where a > O and N(x) satisfies (46). Furthermore, apart from 

a set of probability zero, each sample function can be expressed as the sum 

of the linear function au (O < u < co) and a step function. If N(+O) = ...aJ , 

then the step function has infi.'1.tely many jumps in every interval [O;; t] 

of positive length. 

If in the above case 

( 48) 
ro 

p = J xdN(x) 
+o 

* is a finite positive number, then there exists a distribution function H (x) 

of a positive randan variable such that 
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(49) 

for x > 0 • If 

(50) 

x 
f N(y)dy 

_o ____ = H* (x) 
00 

f N(y)d,y 
0 

* Joo -SX * 'i' (s) = e dH (x) 
0 

for Re(s) ~ 0 , then (47) becomes 

(51) * 1f(s) = ps'i' (s) .;.;. as • 

If in addi tion À = -N ( +o) < 00 , then the re exists a dis tribution fu.YJ.ction 
! 

H(x) c;>r a positive random variable such that 

1 

(52) N( +o) - N(x) _ H( ·) 
N(+o) - x, 

for every continuity point of H(x) in the :L11terval [O, co) • If 

(53) 

for Re(s) ~ O , then 

(54) 

00 

'i'(s) = f e-sxdH(x) 
0 

,,,*(s) = À[l - p(s) 
"' ps 

for Re(s) > 0 and s ~ O :L~ (51). 

Let 

(55) 

2 a be a real nurnber, cr > 0 , M(x) = 0 for x < 0 and 

e: 
J x2dN(x) < 00 

+o 

forsane e: > 0. In this case 
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2 2 00 

(56) ( a s f ( -sx sx ) ( ) 'l' s) = -as + -~ + ,e -1 + -_ - 2 dN x 
~ +o ~+x 

for Re(s) ~ 0 and if the process {~(u) ~ 0 ~ u < 00 } is separable, then 

with probability 1 the sample functions have no negatlve jumps. Conversely, 

if with probability 1 the sample functions of the process have no negative 

junps, then 'l'(s) is given by (56) for Re(s) > 0 • 

We note that if in (56) 

(57) 
e: 

f xdN(x) < 00 

+o 

for sane c: > 0 , then (56) can be reduced to the following fonn 

(58) 

for Re(s) 

(59) 

2 2 00 

- as f 'l'(s) = -as + -
2
- + ( -sx e -l)dN(x) 

+O 

> O where ä is a real number. = 
00 

J xdN(x) < "" 
e: 

If in (56) we have 

for sane e: > 0 , then (56) can be reduced to the followir..g form 

2 2 00 

( 6 ) ( ) - (j s f ( -sx ) ( ) O 'l' s = -as + - 2- + e -1 + sx dN x 
+o 

for Re ( s) > 0 where ä is a real m.mber. The eonstant a is in general 

not the same as in (58). 

We say that {~(u) , 0 < u < 00 } is a stable process of type S(a,S,c,m) 

if ~(l) has a stable distribution of type S(a,8,c,m) • In this case 

(61) 'l'(s) = -m.s - cis!~ [l + S l:I d(s~ a)] 



VII-144 

for Re(s) = 0 where m is a real constant, c > 0 , 0 < a .;;, 2 , 

-1 < e < 1 and 

(62) l 
tan~ 

2 
d(s,a) = 

- ~log is! 

f or a ;i 1 , 

f or a = 1 . 

In (61) s/lsl = 0 if s = 0 . See Theorem 42.4 • 

Finally, we shall prove a general result for separable, hornogenecus, 

real stochastic processes {Ç;(u) ' 0 2. u < 00 } with independent increments 

in the case when the sample f'unctions e.re nondecreasing step functlons 
i 

with/probability one. 

have 

( 63) 

for Re(s) > O where 

(64) 'i'(S) 

If PU,; (0) = 0} = 1 , then for such processes we ,.,.,.. 

00 

= f -sx (e -l)dN(x) 
+o 

and N(x) (0 < x < oo) is a nondecreasing function which satisfies the 

conditions lim N(x) = O and 
x -+ + 00 

(65) 
e: 

J xdN(x) < oo 
+o 

for some e: > 0 • We note that if -N(+o) < 00 then with probability 1, 

the sample functions have only a finite number of jurnps in any finite 

interval [O, t] , whereas if -N(+o) = 00 , then with probability 1, the 

sample functions have infinitelymany jumps in any finite interval [O, t] • 
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'Ihe general result mentioned above is based on the follow:ing 

auxiliary theorem. (See reference [ 86 ] . ) 

Larrna 4. Let x(u) be a nondecreasing function of u in,the interva1 

[O, t] for which x'(u) = O aJmost everywhere and x(O) = 0 . Let us 

extend the definition of x(u) for u ?_ 0 by assuming that x(u+t) = 

x(u) + x(t) for u > 0 • Define 

(66) 

Then 1 

(67) 

Proof. 

ó(u) 

t 
J ó (u)du 
0 

r 1 if u-x(u) < v-x(v) 

= ( 0 otherwise. 

= f t-x(t) if x(t) < t , 

l 0 if x(t) > t . 

If x(t) > t , then ó(u) = O for all 

theorem is obviously true. Let x(t) < t and defj.ne 
= 

(68) y(u) = inf{v-x(v) for v > u} 

f or u < v , 

u > 0 and thus the = 

for u > O • Since x(u+t) = x(u) + x(t) for u > 0 , we have y(u+t) = 

y(u) + t - x(t) 

for 0 < u < v • == == 

f or u > O • = 

'Ihus y(u) 

Fu.rthermore,we have 0 < y(v) - y(u) < v-u 

(0 ~ u < ro) is a nondecreasing and 

absolutely continuous function of u • Consequently, y'(u) exists for 

almost all u, 0 < y'(u) < 1, and 

(69) 
t 

J y'(u)du = y(t) - y(O) = t-x(t) • 
0 

Now we shall prove that y' (u) = ó (u) - for alrnost all u , which 

implies (67). We note that ê(u) = 1 if and only if y(u) = u-x(u) • 
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The inequality y(u) < u-x(u) alwaY:s holds. F'urthermore, we have 

x(u+o) = x(u) and x'(u) = O for aJmost all u > O . 

First,we prove that 

(70) y'(u) < ê(u) for a1most all u > O . = 

If y' (u) exists, and if y'(u) = O, then (70) is obviously true. Now 

we shall prove that if y' (u) exists, if y' (u) > 0 and x(u+o) = x(u) , 

then ö(u) = 1 • If y'(u) > O , then y(v) > y(u) for v > u and 

thererfore y(u) = inf{s-x(s) for. u < s < v} holds for all v > u . 
i 

Thus / u-x(v) < y(u) ~ u-x(u) for all v > u , and consequently u-·x(u+o) < 

y(u) < u-x(u) • If x(u+o) = x(u) , then y(u) = u-x(u) which irnplies 

that ó(u) = 1 • Since y'(u) < 1 always holds, therefore (70) follows. 

Second, we prove that 

(71) o(u) < y'(u) for a1most all u > 0 • 

If ê(u) = 0 and y' (u) exists, then (71) is evi.dently true. Now we 

shall prove that if o(u) = 1 , if y'(u) exists, if x'(u) = O and u 

is an accLUTiulation point of the set D = {u : ê(u) = 1 , 0 < u < m} , then 

y' (u) = 1 • Suppose that u E D and u = lirn u where u E. D and n n n -+ m 

l\i ~ u • Then y(u) = u-x(u) and y(u ) = u - x(u ) • Accordingly, if n n n 

y' (u) exists and if x'(u) = O , we have 

(72) 
y(u)-y(u ) x(u)-x(un) 

y' (u) = lirn n = 1 - lirn = 1 ·- x' (u) = 1 . u-u u-u n -+ m n n -+ m n 
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Since the isolated points of D fonn a countable (possibly errrpty) set, 

therefore (71) follows. 

By (70) and (71) we obtain that y'(u) = ó(u) holds for a1most all 

u >O. Thus by (69) we get (67) for x(t) < t. This completes the 

proof of the lemma. 

By using Lerrma 4 we can prove the following result. 

Theorem 8. Let {!;(u) ' 0.::. u < 00 } be a sèparablea homogeneous, 

real! stochastic process with independent incrernents. If P{s(O) = 0} = 1 , - "~ 
1 

anä f f the sample fu.nctions of the process are nondecreasing st~ f'unctions 

With probability 1, then 

l
''ct-y)/t f'or O ~ y ~ t , 

(73) ~{i;(u) < u for 0 < u < tji;(t) = y} = 

0 otherwise, 

where the conditional probability is defined up to an equivalence_. 

Proof. Define i;*(u) for 0 < u < "" by assuming that t;*(u) = i;(u) 

for 0 < u < t and i;*(u+t) = i;*(u) + i;*(t) for u > O . Let == == == 

(74) ö(u) = e if i;*(v) - i;*(u) < v-u = f or 

otherwise. 

Then ó(u) is a randan variable which has the sarne distribution for all 

u > O • Evidently ó(O) = is the indicator var1able of the event {t;(u) < u = 

for 0 < u < t} • Thus we have 
= = 
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P{ç:(u) ,..,..,.. < u = for o < u ~ tl~Ct)} = E{o(O)!ç:(t)} = 
;v.. 

(75) 
t 1 ~ 

= ~ b A~{o(u)!ç:(t)}du = ~{ t 6 o(u)du!ç:(t)} = 

l 
_fLU 

t 

0 

f or O _:_ ç: ( t) < t , 

otherwise, 

with probabiiity 1 because by Lemma 4 

(76) 
t r-ç:(t) if 0 < ç:(t) < t , 

f o(u)du = 
0 O otherwise , 

holds for almost all sample functions of the process. 'rhis car..pletes the 

proof of the theorern. 

We note that 'Iheorern 8 rema:ir>..s also valid if we replace the left-hand 

side of (73) by P{ç:(u) < u for O < u ~ t!ç:(t) = y} 
"""" -

Fran ( 73) it fellows that 

(77) 

+ for t > 0 where [x] denotes the positive part of x • 

If the process {ç:(u) , 0 ~ u < 00 } satisfies the conditions of 

Theore.rn 8, then (63) holds with ~(s) defined by (64). If in addition 

(78) p = J xdN(x) 
+o 

is a fini te nom1egative nurnber, then Theorern 2 is applicable, and we have 
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(79) ! { lim E; ( ~) = p} = 1 . 
t -+ 00 

In this case by (77) it fellows that 

(80) 
f 1 - p 

_!l<(u) < u for 0 ~ u < 00
) = ~ 0 

if p < 1 ' 

if p>l. 

For by the contir1uity theorern for probabilities and by (77) we have 

P{t;(u) < u = for 0 < u < 00 } == l:im P{ç:(u) :_ u 
t -+ 00--

0 < u < t} ·-
== = 

(81) 

that 
In the last equality we used" E;(t)/t~ p as t-+ 00 and tl-lat 0 < 

= 

[l - E;(t)]+ < 1 for all t > 0 t = . 

Examples. We shall mention a few examples for the applications of 

Theorem 8. 

~ound Poisson Processes. let us suppose that 

(82) N(x) = -À[l-H(x)] 

for x > O where À is a positive constant and H(x) is the distribution 

function of a nonnegati ve randan variable. In this case { E; ( u) , O :;, u < 00 } 

is a compound Poisson process and Theorem 8 is applicc=ible. In this particular 

case we already proved Theorem 8. (See Theorem 48.13)-. In this ca:;e 
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(83) 

and 

(84) 

f or 

(85) 

00 

p = À J xèH(x) 
0 

(80) also holds if p < 00 

Stable Processes. Let US suppose that 

N(x) 1 - -
r (1-a.)xa. 

x > 0 where 0 < Cl. < 1 . In this case 

00 

f , Cl. J ( -·SX ) dx <l 
'i',si "" r(l-a.l o e -1 xa.+l = -s 

for Re(s) > 0 and {~(u) , 0 ~ u < 00 } is a stable process of type 

S(a,1,1,0) • Now Theorern 8 is applicable. However, in this case p = 00 • 

Ganma Processes. 

(86) 

Let us suppose that 

00 -µy 
N(x) = - J _e - dy 

x y 

for x > O where µ is a positive constant. Then 

00 

(87) 'i'(s) = J (e-sx_l)e-µx dx = -log(l+ 8 ) 
0 x J.l 

for Re(s) ~ 0 • In this case we say that {~(u) , 0 < u < 00 } is a 

gamna process. Now Theorem 8 holds and (8o) also holds with p = l/µ • 
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52. Weak Convergence of Stochastic Proc~~§.!:f?_· 

Let { t; ( u) , 0 ~ u ~ t} n -- - (n = 1,2, ••• ) and {t;(u) , O -~ u ~ t} be 

real stochastic processes. We say that the fin.i.te dimensional distribution 

functions of the process { E;n ( u) , 0 < u < t} converge to the fini te 

dimensional distribution functions of the process { t; ( u) , 0 < u < t} if' 

for any k = 1,2, ••• and O ~ t 1 < t 2 < ••• < tk < t we have 

in every continuity point (x1, x2, ••• , ~) of the right-hand side of (1). 

Let Q be some real functional defineä for ,,.,t;n = { ~n ( u) , 0 ~ u ~ t} 

and s = {~(u) , 0 < u ..;;;, t} • 1I'he problem arises what conditions shoulà we 

1.mpose on Q in order that 

(2) lirn P{Q(E ) ~ X} = P{Q(t;) ~ x} 
I"'(';>- ~n - ,...'\.,;\.. l'M -n -+ <» 

be satisfied in everJ continuity point of P{Q(t;) ..;;;, x} ? 
,.,.., r.~ 

The importance of the solution of the above problem is twofold. First, 

it makes possible to determine the probability P{Q(t;) ~ x} for a proce3s 
,.......... ~ ............ -

~ = {ç(u) , O ~ u ~ t} - - if we can dete:rmine the probabilities P{Q(~ ) ~ x} 
"" --n 

for a sequence of suitable chosen processes ~ = {t; (u) , O < u ~ t} -n n - -

(n = 1,2, ••• ) • Second, it makes possible to determine the limiting 

distributions of some functionals defjned on a class of stochastic processes, 

In what f ollows we assume that the sample functions of the prccesses 
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U,;n(u) , 0 < u < t} and {t;(n) , 0,;;. u .::_ t.,} belong to some metric space 

(2 with probability 1 • For x E: n, y E Q d.enote by p(x, y) the distance 

between x and y • Denote by Bjthe 8mallest o-algebra which contains all 

the open sets , (closed sets ) ir1 n • If n is 2. separable IIEtric 

space, then B coincides with the snallest o-algebra which contains all the 

open spheres (closed spheres) in Q. :tin what follows we shall consider 

only such spaces Q ::r{ x(u) ,o ~ u ~ t} for which Á, the minimal t5-

algebra containing the sets {x(u)~ a} for uelSJ,t]and aE.(-00,00), 
contains all spheres in .Q • 

For any A s B let us d2fine 

C32 

that is, µn (A) is the probabiJity that Jn = { .;n ( u) , O ..:_ u ~ t} belongs 

to A , and 

(4) µ(A) = PU,; s A} , 
tv- M• 

that is, µ(A). is, the probability that .; = {t,;(u) , O < u ..:_ t} belongs to 

A, provided tb.at the probabilities (3) a.vid (4) are uniquely determined 

by the finite dimensional distribution functions of the procesces{.; (u) , n 

0 < u < t} (n = 1,2, ••• ) and {t;(u) , 0 ~ u < t} • 

We say that 

if and only if 

(5) 

µ converges wea.kly to u , that is, 
n 

l1ln fh(x)dµn "' f h(x)dµ 
n -+ "" n Q 

µ ~ µ 
n 

as n-+ 00 , 

for every cont5nuous and bound~d real functicnal h(x) on r. • 'The fönctionaJ. 

h(x) is continuous on Q if for ever=y x s n and f::ir every e > 0 there 

is a o > O such that !h(x) - h(y)I < e whenever y s rt and p(x, y) < o • 

l the class of Borel subsets of Q , that is, 13 is 
:\ 
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,If we suppose that the space n is a separable metric space and Q is 

a cont:inuous functional on n , then Q(ç; ) ,-..n (n = 1,2, ••• ) and Q(ç) will 

be random variables and 

(6) lim P{Q(ç; ) < x} = P{Q(~) ~ x} ,._ ,....n = r-. -

n -+ oo 

holds in evecy continuity point of !{Q(f) < x} if and only if µn converges 

weakly to 11 • For (6) holds if and only if 

(7) · lim J eituQ(x) dµ = J eiwQ(x) dµ 
n-+ooQ n n 

for evèry real w Since cos[wQ(x)] and sin[wQ(x)J are conti.nuous and 
1 

1 

bounde~ functionals on n , the statement is obvious. 

Accordingly, if we restrj_ct ourself to sepa.rable metric spaces ~ and 

continuous· functionals Q , then (2) holds if arid only if µ =;> 11 as n 

n ->- oo • Thus· the problem is reduced to find sufficient conditions for 

lln=> µ The following definition will be useful in solv:ing this p1•oblem. 

We sey- that the sequence { µn} is weakly canpact if every subsequence 

of {µn} contains a subsequence which is weakly convergent. 

Yu. V. Prokhorov [ 523] proved that if n is a metric space and if for 

every e: !> O there exists a ccmpact set K in n such that e: 

(8) sup 11 (n-K ) < e: , 
11 E l<n<00 

= 

then {µn} is weakly compact. (See Theorem 3.2 . th ' , . ) in· e l1ppenmx. 



If we suppose that n is a sepa.rable metric space, if · {µ } is weakly 
n 

compact and if (1) is satisfied, then we can prove that µn=} ii as n + co • 

The proof is exactly the sa11e as the proof of the fourth state.11ent in 

Theorem 46. 7 • (Formulas ( 46.143) to ( 46.157). The only differ·ertce is 

that in (46.151) f e: n .) 

TJirus we can conclude that if n is a sepa.rable metric space and if 

for every e: > O there existsa compact set K in n such that (8) is 
e: 

satisfied, theri (2) holds for every contiru.;.ous functional Q on n • 

Actually, (2) also holds if we assurne only that Q is measurable with 
1 

respect to B and almost everywhere continous with respect to µ • The 
1 
1 

proof dif thi.s last statement is exactly the same as the proof of the last 

statement in Theorem 46. 7 • (Formulas (46.160) to (46.165).) 

We can surmoarize the above results in the follow'_i_ng theorem. 

. Thèórent 1 . Let ~ = {~ (u) , 0 < u < t} - .,,_n n = = (n = 1,2, ••• ) and 

~ =· {~(u) , 0 .s. u .s. t} be real stochastic processes whose sa-nple functions 
separable -

belong to some 1netric space n with probability 1 • Denote by B the class 
A . 

of Borel subsets of n and let us define µ
11

(A) for A e: B !?1_ (3) and 

µ (A) for A e: B !?1_ ( 4) • If (1) is satisfied and if for every e: > O 

there exists a compact set K in n for which (8) is satisfied, arid if 
e: -

Q is a functional on ~1 which is measurable with respect to B and almcst 

everywhere continuous with respect to µ , then 

(9) lim P{Q(s ) < x} = P{Q(ç) < x} - , ........ n ~ ""'" ,..,.._ = 
n + "" 

in every continuity point of ,!{Q(t;) ~ x} • ,.,... 



VII-155 

Theorem 1 has rnany useful applications in the theory of stochastic 

processes-. 

First, let us consider the case when the sample functiori..s of' the 

processes {çn(u) , O _.:. u < t} (n = 1,2, ••• ) and {ç(u) , 0 < u _::. t} are 

continuous with probability 1 • Then n can be chosen as the space C[O, t] 

of cont:inuous functions defined on the ir.terval [O, t] . If we introduce 

the metric p(x, y) = sup jx(u) - y (u) 1 whenever x = {x(u) , 0 ~ u < t} 
O~t 

e; c,[O, t] and y = { y(u) , 0 < u < t} E c [O, t] , then C:[O, tJ becomes 

a complete separable metric space. 
1 

1 

1 

The following theorem is due to Yu. V. Prok"iorov [ 522 ] , [ 523 ] • See 

also I. I. Gikhman and A. V. Skorokhod [ 44 ] • 

· Theorem 2. Let us suppose th§l the S§Iîi"lle functions of the proc~;?ses 

(n = 1,2, ••• ) and ç = {ç(u) , 0 ~. u .:_ t} ~ 
;'\ ..... ,-

continuous with probability 1, and the finite dimensional distribution 

functions of the process { çn ( u) , 0 ~- u < t} ~nverge to the fini t:;e 

dimensional distribution functions of the process {Ç(u) , 0 < u < t} as 

n -+ co • If f or any E > O 

(10) lim lim sup P{ sup jç (u) - ç (v)I > e:} ~ 0 
h -+ 0 n -+ co "'-- 1 u-v l-91 n n 

and if Q is a real continuous functional on © [ 0, t] , th~ 

(11) lim P{Q(ç ) ~ x} = P{Q(ç) ~ x} "" ·-n - .~.., ,.... -n -+ co 

in eve;:y continuity point of P{Q(ç) < x} 
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jroof. By Theorem 1 it is sufficient to prove that for every e: > O there 

exists a compact set Ke: in C [O, t] such that µn(Ke:) > 1-e: fo1"' n = 1,2, •••• 

We can cor..struct a compact set Ke: in the same way as ln the proof of the 

second statement of Theorem 46.7 • (Forrnulas (46.133) to (46.142).) Only 

the set Fo should be chosen differently. Since !{t,;n(O) < x}~!_{t.:(0) < x} 

as n -+ "" , therefore for any e > 0 we can find an ~ such that !,{ 1 i;n ( 0) 1 < 

IJUl > 1-e: for n = 1,2,... • If we choose F0 = {f: 1f(O)1 < m0 } , then 

µn(F
0

) > 1- e: and the remaining part of the proof remaJns unchanged. 

Now let us consider a few exarnples for the application of thls theorem. 
1 

1 

1 

LJtus suppose that {ç:(u) , 0 ~ u < t} is a separable Brown:i.an motion 

process· de.fined on the interval [O, t] • Then with probability 1 the sanple 

functions of the process are continuous functi.ons. (See ~:'heorern 50.1.) 

Let i;1 , i;2, ••. , i;n,··· be mutually independent and identically distributed 

real randcm variab.les for which :EH; } = O and E'i;2 l = 1 • Define ,... -,..,... n ~ n "'n -

for n > 1 = and z;0 = o . Let 

(12). 

for O < u < t • Then the finite dimensional distribution functions of the = = 

stoçhastic. process ,.§
11 

= { i;
11 

( u) , 0 ~ u ~ t} converge to the finite 

dimensional distribution functions of the Brownian motion process i; = {t;(u) , ,.._,... 

0 < u ~ t} • This follows from the central limit theorern arid fro!Il the fa.et 

that the process {ç:n(u) ,·o < u < t} has independent increments. 

Now we cannot apply Theorem 2 directly because the sample functions of 
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the processes {ç;n(u) , O < u < t} are not continuous functions. However, 

we can easily overcome this difficulty. Let us define 

(13) * ç;n(u) 
= ç[nu] + (nu - [nu])ç;[nu+l] 

rn 
* * for u > O • Then the stochastic process Jn = { ç;n ( u) , 0 < u -~ t} has 

continuous sample functions and the finite dimensional distribution functions 

* of the process {ç;n(u) , 0 ~ u ~ t} converge to the finite dimensional 

distributlon functions of the Brow:nian motion process i = { s ( u) , 0 ,:;;, u ,;;. t} • 

Since 1 ç;[nu+l]/m~0 as n -+ 00 
, this fellows irrmediately frc.!11. the results 

1 -
1 

rnentio~ed above. 
1 

* For the process {ç;n(u) , 0 < u < t} we can apply Theorem 2 and we 

can conclude that 1f Q is any real continuous functiona.l on C[O, t] , 

then 

(14) * lirn P{Q(ç; ) < x} = P{Q(ç;) < x} ,..._, ....... n = '""'· = n -+ oo 

:in every continuity point of P{Q(ç;) ~ x} • 
/\..- r-' 

For :in this case (10) is satisfied which follows from the inequality 

(46.126). See formulas (46.126) to (46.132). This result is in agrea11ent 

with Theorem 46.7 • 

If \>Te suppose, for example, that P{ç; : l} = P{t; = -1} = 1/2 fo:r · . . _,,_ n ,.,_. n 

n ~ 1,2, ••• , then the randan variables r,;0 , r,;1, ••• , çn,··· describe a 

§~etric randcm walk, and for several functionals Q the limit (11~) ca:.1 

be determined directly. 
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On the one hand this result makes it possible to find the probability 

P{Q(ç;) ~ x} fora Brownian motion process ç; = {ç;(u) , 0 .::_ u .s_ t} and on 
, ...... _ - ,--.,;"· 

the other hand it shows that the limiting distribution (14) does not depend 

on the particula.r• sequence of random variables ç;1 , ç; 2, ... , ç;n, ••• , it 

depends only on the limiting distributionolçr//i1 as n + ~ • 

As a next exani.ple let us suppose that {.;(u) , 0 < u ~ t} is a general 

Browr.lan motion process for w:hich E{ç;(u)} = au and Var{ç;(u)} = cr2u where ,._. ,..,.._ 

C1' :ts- a positive constant. Then with probability 1 the sample fu.nctj_ons of 
1 

the Pr<?Cess ar>e continuous functions. (See Theorem 50.1.) 
: 

/ 

For every n = 1,2, ••• let .;nl, .;n2, ••• , .;nk, ••• be mutually independent 

and identically- distributed random va.riables for which 

(15) 1 <l _l a. P{ç; :.: l} = -2 + -- and P{ç; = -1} 
,_ nk 

20
rn ,.... nk - 2 -~ 

whenever n > o.
2/o2 • Let n > 1 and = k > l 

= 

and ç
110 

= O for n .::_ 1 • Define 

(16) 

f or O < u < t and 
= == 

(17) 
* __ cr[çn,[nu] + (n - [ru])ç;n,[nu+l]] 

.; ( u) - -
n 

for O < u ~ t • 
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The finite dimensional distribution functions of both processes 

* * r5n = { r;n (u) , 0 2_ u 2_ t} and -~n = { r;n ( u) , 0 < u :5.. t} converge to the 

finite dimensional distribution i'u..îctions of the process ç = {r;(u) , ,.._.. ' 

0 < u < t} • While the sample functions of the process { çn ( u) , 0 2_ u < t} 

* are step functions, the sample functions of the process {r;n(u) , O < u < t} 

are continuous functions. Furthermore, we can easily prove that (10) is 

* :satis·fied for the process { r;n ( u) , O 2. ü 2_ t} • Thus Theorem 2 is applicable, 

and we can conclude that if Q is any real contirn1.ous function.al on C [O, t] , 

then 

* lim P{Q(r; ) ~ x} = P{Q(r;) < x} 
r.- f'*/'9n - ,._ ""'"" n + OQ 

;in evecy continuity point of P{Q(t;) ~ x} • 
,.,_ """'· -

* For several functionals the probability ?{Q(r; ) ~ x} c:an be calculated .... t'-n -

explicitly and by forming its li."'Ilit as n + CX\. we can cbtain P{Q(ç:) < x} . ~ ~ = 

for a general Brownian motion process r; = {r;(u) , 0 ~ u 2- t} • 
. ,...,_ - -

A second important case for the application of Theorem 1 is the following. 

Let us suppose that the sample functions of the processes {r;n(u) , O :__ u:;. l} 

(n 1=11,2, ••• ) and· {r;(u), O < u < l} belong to the space D[O, l] wj_th 

probability 1 • Here D[O, l] denotes the space of real functions f(u) 

defined on the interval [O, l] for which f(u+o) and f(u-0) exist at 

every point and f(u+o) = f(u) , f(O) = f(+o) and f(l) = f(l-0) • 

Let us introduce a metric in the space D[O, l] in the fol1owi.ng way: 
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If ,f, i:: D[O, l] and g e: D[O, l] , then let us define the distance between 

f and g by ,....... 

(18) d(f,g) = inf {sup if(u) - g(À(u))I + sup lu - À(u)j} 
, '-- . Àe:A 0_2P~- O<u<l 

where A is the set of continuous, increasing, real functions À ( u) defined 

on the interval [O, l] such that À(O) = 0 and À(l) = l • We can easily 

check that d(f, g) defines a rretric on D[O, l] , and the space D[O, l] 
,-v-. 

with the metric (18) is a separable metric space. For each f e: D[O, l] 
,....... ' 

let us· define 

t:.aC!J = sup {min(lf(t) - f(u)j , jf(v) - f(u)!)} + 
O..-s:u-a.5..t.:5Jl..<S..V<v+a,5). 

(19) 

+ sup I f(u) - f(O) 1 + sup I f(u) - f(l) 1 • 

O<u<a 1-a<u<l == = == 

The following theorem is due to A. V. Skorokhod_ [ 537 J. 

Theorern 3. Let us suppose that the sample functions of the processes 

ç; = {ç; (u) , 0 ~ '.l ~ l} (n = 1,2, ••• ) and ç; = (ç;(u) , O < u :5.. l} belong ,,_n n - - ...,._ 

to the space D[O, l] with probability 1 , and the finite dirr~nsional 

distribution functions of the process {ç;n(u) , 0 ~ u < l} converge to the 

finite dimensional distribution functions of the process {ç;(u) , 0 ~ u < l} 

as n-+ 00 • If f or every e: > 0 

(20) l:im lirn sup P{t:. (ç; ) > e:} = 0 , 
0 

rv.. a~n 
a-+ n-+ 00 

and if .Q is a real continuous functional on D[O, l] with the m~::.:tc (18), 
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(21) lim P{Q(~ ) 2- x} = P{Q(~) 2.. x} ......... ~-n - ~ ,'\.- - . 
n -+ °" 

in every continuity point of ,!'{Q(.§] < x} • 

Por the proof of this theorem we refer to I~h_Qikhma.n and A. V. Skorokhod 

[ 44 pp. 469-478] • Here we shall sketch only briefly the proof of Theorem 

3. First, (20) :hrrplies that 

(22) lim sup P{6 (~ ) > e} = 0 • 
0 """ a ...... n a-+ n 

i 
Since for any e > O and c we have 

1 

(23) P{ sup l~n(u) 1 > c} 2.. P { max I~ (~) 1 > c - d + P{AJlm(~ )} , 
""' O<u<l --,.,,. O<k<m n m ""'" ,,...n 

=== === 

and since 

(24) lim)' {max 1 ~n(mk) I < x} = P{ max 1~(k)1 < x} 
n -+ ~-- O<k<m "-· O<k<m m = 

== == 

in every continuity point of the right-hand side, therefore by (20) we 

obtain that 

(25) lim sup P{ sup I~ (u)j > c} = 0. 
c -+ 00 n ""' O~u<l n 

Denote by K(c,w) the set of functions {f(u)} in D[O, l] · wr.iich 

satisfy the inequalities 1f(u)1 < ·c for O ~ u < 1 and 6a (,f_) :_:._ w(a) 
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for a > 0 where w(a) is a nond.n:reasing cont:inuous function of a for 

0 < a and l:im w(a) = 0 • Then K(c,w) is a compact set. If for ever<J 
a+O 

e > 0 we choose Ke:_ = K(c,w) w:Lth a sufficiently large c , thery by (25) 

the :inequality (8) is satisfied, and by Theorem 1 we obtain that (21) holds. 

Ih the following we shall give a few exarnples for the application of 

Theorem 3. 

First, let us suppose that ~l' ~2 , ... , ~n'··· is a sequence of mltually 

independent and identically distributed real random variables. W:rite c:;
11 

= 
1 

~1+ S2j•••+ ~n for n = 1,2, ••• and ÇQ = 0 • Let US asswne that 

ç 
- . p { n } R( ) J.llil'""""' B ~ x = x (26) 

n + 00 n 

where R(x) is a nondegenerate stable distribution function of type S(a,$,c,O) 

(the case of a = 1 , S ~ 0 is excluded) , Bn > 0 for n = 1,2, ••• and 

l.:ûn B = oo. n 
n + "" 

De fine 

(27) ~ (u) = ç[nu] 
n B 

n 

for O .i_ u ~ 1 and n = 1,2, ••• and ~ (1) = ç 1/B for n = 1,2, •••• n n- n 

Let {~(u) , O < u < l} be a stable stochastic process of type S(a,S,c,O) 

. where 6 = 0 if a = 1 • (See fonnulas (51.61) and (51.62).) Then 

(28) P{~(u) ,,;;;. u11ax} = R(x) 
"""' 



VII-163 

f or O < u < 1 • 

Since both {i;n(u) , O < u < l} a11d {i;(u) , O < u < l} have independent 

mcrements, it follows from (25) that the finite d:imens-ional distribution 

functions- of the process i; = {i; (u) , 0 ~ u ~ l} converge to the finite ,_n n - -

d:imenstonal distribution functions of the process ç; =- {!;(u) , 0 ~ u ~ l} as ,__ 

For the process {i;n(u) , 0 .::_ u .::_ l} the condition (20) is satisfied. 

This can be proved by using (26) and the inequality 

(29) 

?or details of this proof see I. I. Gil<hrnan and A. V. Skorold1od [44 pp.~B0-483]. 

Thus we can conclude that if Q is a real and continuous functional on 

D[O, l] with the metric (19), then (21) holds. 

If, in particular, 

(30) Q(f) = sup 
'"' O<u<l == = 

1 f(u) + a(u) 1 

b(uY---

where a(u) and b(u) > O are contiruous functi.ons of u , then Q is 

continuous in the metric (19), and by Theorerr1 3 we have 
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k k z;k k k 
lim P{a(-) - xb(-) ~ S- _::. a(:n) + xb(n) for k = 1,2, ••• ,n} = 

('.-. n n n n + CX> 

(31) 

P{a(u) - xb(u) ~ ~(u) < a(u) + xb(u) for O < u < l} 
= = , ... ,.. 

f or x > 0 • 

If 

1 
(32) Q(f) = J h (f(u))du 

'~ 0 

where h(x) is a continuous function defined on the interval (-ex>, 0 >) 'then 
1 

Q(f) is, a continuous functior1al in the rnetric (18), and by Theorem 3 we 
t 

1 

ohta.:inithat 

(33) 
1 n z;k 1 

lim]>{- l h(B) < x} = P{ J h(t;(u))du 2_x} 
n + CX> n k-=l n "'' 0 

in evecy continuity point of the l:imiting distribution function. 

As a second exarnple, let us suppose that {~n(u) , 0 ~ u .:::_ l} is a 

ccmpound Poisson process for evecy n = 1,2, ••• and that 

(34) 
-s~ (u) = eu~n(s) 

E{e n } 

for Re(s) = 0 • Ji1urthermore, let · {~(u) , 0 < u < l} be a homogeneous 

stochastic process with independent increments for which 

(35) E{e-s~(u)} = eu~(s) 
,._ 

for Re(s) = 0 • 

Let U'3 suppose that the finite d.imensional distribu.tion functior.s of 



VII-165 

the process {E;n(u) , 0 2. u < l} converge to the finite dimensional 

distrib.ution functions of the process: · {Hu) , O < u < l} • 

We can easily see that the finite dimensional distribution functions of 

the proce::;;s { E;n ( u) , O 2. u < l} converge to the fini te cihnensional 

distrlb.ution functions. of the process { E; ( u) , O 2. u ~ l} if and only if 

(36) lim 'i'n(s) = 'i'(s) 
n-+ oo 

for Re(s) = 0 • 

We note that if { E; ( u) , 0 < u ~ l} is a:r1y homogeneous stochac;tic 
1 

1 

proces~ with independent increments, then we can find a sequence of compoi.<nd 
i 

Poisson processes {E;n(u) , 0 < u < l} such that the finite climensional 

clistribution functions of the process {E;n(u) , 0 2 u < l} converge to the 
functions 

finite d:imensional distribution of the process {E;(u) , 0 < u < l} • 
.... 
~· 

Let us· suppose that the processes {E;n(u) , G .::_ u 2_ l} and {E;(u) , 

0 ~ u < 1} are separable. By Theorem 5 we can always choose such versions 
- = 

of these processes f'or which the sample functions belong to D[O, l] with 

probability 1 • 

Now in a s1rrdlar way as in the previous example we can prove that (29) 

holds and that (36) j.mpl;i.es (20). Thus Theorem 3 is applicable and (21) 

holds for any real and continuous functional on D[O, l] with the metric 

(18). 

As a third example, let us suppose that for each n we distribute 11 

points at randan on the interval (0, 1) in such a way that each point has 

a uniform distribution over (0, 1) • For each n = 1,2, ••• denote by 

vn ( u) the num1::ler of random points in the interval ( O, u] where 0 < u ~ l • 
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De fine 

(37) 

for 0 < u ~ l • Then n = {n (u) , O ~ u ~ l} "'-n n ·- - is a stochastic process 

whose sample functiolli\ belang to D[O, l] • 

Let n = {n(u) , 0 ~ u ~ l} be a Gaussian stochastic process for which 
"-- - -

E{n(u)} = O if O ~ u ~ 1 and E{n(u)n(v)} = rnin(u,v) - uv if 
""""'" • - - l\/'W'-

and 0 < v < 1 • (See Section 50.) 

' 1 

0 < u < l 
= = 

1 

w~ can easily prove that the finite d:iJ:nensional distribution functions 
1 

of the 1process {nn(u) , O < u < l} converge to the finite dimensional 

di.~;trib.utiçn f'unctions of the process { 11 ( u) , O < u :_ l} as n -+ 00 • 

For the process {n(u) , O < u < l} we h~ve P{n(O) = O} = P{ri(l) = 
-""'" ,..._,. 

0} = 1 and we can repres.ent n ( u) for O < u < 1 in the following way: 

(38) n(u) = (1-u)t;(_E_) 
1-u 

where {t;(u) ' 0 < u < 00 } is a Brownian motion process. 

If we suppose that {n(u) , O < u < l} is a separable process, then 

by Theorem 50.1 we cai1 conclude that the sample functions of the process 

{n(u) , 0 < u -~ l} are continuous with probability 1 • For, in this case, 

t;(u) = (l+u)n (u/(l+u)) (0 < u < 00 ) ·' :J.s a separable Brownian motion process, 

and thus Theorem 50.l is applicable. AccoI\.iingly, if {n(u) , 0 ~. u ~ l} 

is a separable process, then the sample fun~tions with probability 1 belong 

to the space C[O, l] and consequently to the space D[O, l] toe. 
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Now we can prove that 

(39) lim lim sup P{~ (n ) > s} = O 
0 

.,, a --n 
a-+ n-+ 00 . 

for ever;r s > O . Tbis follows from the inequality 

(40) ~~{~a\!Jn) > d < P { sup 111 (u) - n (v) 1 > d 
," '"~ lu-~a n n 

and the ljJnit relation 

(41) lim lirn sup P { sup 1 n ( u) nn ( v) i > d = 0 • 
a -+ O n -+ 00 ·' lu-vi::_a n 

i 
1 
1 

By Theorem 3 we obtain that if the process {n(u) , 0 < u 5- l} is 
1 
1 

separable and if Q is a real and continuous functional on D[O, l] with 

the metric (19), then 

(42) lim P{Q(n ) ::_ x} = P{Q(n) .:;.. x} ,..... ........ n - ,..,.... I'- -· n -+ oo 

tri every· continuity point of P{Q(n) .s_ x} • 
,..,....,. ~-

In Section 39 we have already mentioned some particular cases of (42). 

In particular, we considered the functionals Q(f) = max f(u) , Q(f) = 

max !r(u)I , and 
O~u.0 

(43) 
1 

Q(f) = J ,..._ 0 

2 
[f(u)] du 

which are continuo·u.s in the metric (18) • 

O<u<l == = 

Finally, let us consider the following example. Let us suppose that 
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for each n = 1,2, ••• we have a box which contains· 2n cards of which n 

are marked + 1 and n are marked -1 . We àraw each of the 2n cards 

fran the box without replacement. Let us suppose that evecy outcome of 

this random trial has the smne probability. Denote by crn(k) thé st.nn of 

thP fi~st k numbers dra:wn (k = 1,2, ••• , 2n) 

(44) 

and let a (0) = 0 • n De fine 

for O ~ u < 1 and let nn(2n) = crn(2n-l)/12ÏÏ • Then JJn = {nn(u) , O ~ u 2 l} 

is a stochastic proces whose sample functions belang to D[O, l] • 

Let 'fl::{ 1'J (u) , O < u < l} be a Gaussian stochastic process for which 

E{nJu)'l ~- 0 if 0 ..5.. u ..5.. 1 and E{ri(u)n(v)} = min(u,v) - uv if O < a < l 
r-- - - t'\.r. = = 

and o < v < 1 • = = 

We can easily see that the firûte climensional dJ.stribution functions of 

the process { nn (u) , 0 < u < l} converge to the fini te di.'Tiensional 

distribution f'unctions of the process {n(u) , 0 2 u .:::. l} as n -+ 00 • 

As we mentioned earlier, if we suppose that the process {n(u) , O ~ u < l} 

is separable then the sample f'unctions are continuous with probability 1 • 

By using the inequality (40) we can prove that (39) is satisfied in 

t~s case too~ Thus by Theorern 3 we can conclude that if the process {ri(u) , 

0 .:::. u < l} is separable a.11d if Q is a rea.1 ar.d continuous functional on 

D[O, 1] with the metric (18), then 

(45) lim P{Q(n ) < x} = P{Q(ri) < xj "'- r-n = ,,..,,... 
n -+ "" 
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For exarnple, if' Q(f) :::. rnax f(u) , then Q is continuous jn the 
,_ O~µ<l 

rnetric (18) and by (45) we can-conclude that 

(46) lim j>{ max crn(k) < l2n x} = P { sup 11 (u) < x} 
n -+ oo O<k<n ,..,.. C<u<l 

We already saw that 

(47) P {max cr (k) < c} -
.~ O<k<n n = 

== 

for 9 = 0,1, ••• , n • (See formulas (39.'71) and (39.1'(2).) If we p·Llt 
! 

c = [ ~ x] in ( 47) where x > 0 and let n -+ oo , then we obtain that 
1 

(48) -2x2 
P {sup n(u) ~ x} = 1 - e 

Ü<U<l == == 

for x > 0 whenever {ri(u) , 0 < u < 1} is a separable Gaussian process 

for which E{n(u)} = 0 and E{n(u)n(v)}= min(u, v) - uv (0 < u ~- l , 
;v... ""'"' 

0 < v < 1) . == == 

We note tbat if in the last example we define 

(49) 

* for 0 ~ u < 1 , then { nn ( u) , 0 2_ u < l} has contirru.ous sample f'un~t:i.ons, 

* and the finite dimensional distribution fu:ictions of the process {nn(u) ·' 

O·< u < l} converge to the finite dimensiona.l distributioh fu.nctions of 

the process {n(u) , O < u ..:_ l} • 
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We can prove that ( L~l) is satisfied for the process * * n = { nr
1
(u) , 

"'~n . 

Q<u~ll. Thus by Theorem 2 we can conclude that if n = {n(u) , 

0 < u < l} 
= = is a separable Gaussian process for which E{ n (u)} = q and 

,v.. 

E{n(u)n(v)} = min(u, v) - uv (O ~ u < 1 , O < v ~ 1) and if Q is a real 

continuous functional on C [O, l] with the metric p , then 

(50) * lim P{Q(n ) 5:.. x} = P{Q(n) ~- x} ...... r--n "' ""-n + oo 

in every continuity poj_nt of P{Q(n) < x} 
""" ,.._... = 

If, in particular, Q(f) = max f(u) , then Q is contiruous on C [O, l] ,",..,,,.... o· 1 
<U~ 

and (50) reduces to (46). 

We shall close this section by givï_ng a brief account of the historical 

development of the subject of wee.k convergence of stochastic processes. 

The problem of weak convergence of stochastic processes goes back to 

1900 when L. Bachelier [ 481 ] approximated a Brown.i.an motion process 

{i;(u) , 0 < u < 00 } by a sequence of random walk processes and found the 

probability P{ sup i;(u) ~ x} • 
"""'" O<u<t -== 

The general problem of finding conditions for the validity of (2) has 

received considerable attention. 

In the case where the process t; = { t; ( u) , 0 ::.. u 5:.. t} is defined as ,..._n n -- -

suitably normalized sums of mutually i.ndependent random variables and ç = 

{!;(u) , 0 < u < t} is a Brownian motion pro~ess, the ljrrdt theorem (2) 
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was proved for various functionals Q jn 1931 by A. N. KoJmogorov [ 511], 

[512] and in 1946 by P. Erd6s and M. Kac [ 502],[ 503] . 'l'heir results 

w:ere extended in 1951 by M. D. Donsker [ 494 ] • Several results are 

mentioned m Section 45 for the applications of Donsker's theorem: Theore.':l 2 

was- found in 1953 by Yu. V. Prochorov [522 ], [523] . See also A.N. 

Kolmogorov and Yu. V. Prochorov [51L~ 1 . 
In 1949 J. L. Doob [ 328 ] considered the case where E;, is defined ,._n 

by (37) and E;, is defined by (38) and Q = sup lf(u)I • Doob's heuristic results 
r- O<u<l 

were justified -in 1952 by M. D. Do~ker [495=]=. 

In 1955 A. V. Skorokhod [ 535] proved Theorem 3 for stochastic processes 

w,i.th. independent increments aniÎnl956 A. V. Skorokl1od [ 537 ] proved Theorem 3 

in the general case. 

Further extensions of the results given in this section can be found in 

the references at the end of this chapter. 
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53. Probl.2ms 

53 .1. Let { v ( t) , O .::_ t < 00
} be a recurrent process with mean 

recUITence time a w:r.ere a is a f:ilüte positi ve number. Prove ~~hat 

P{ 1 . \) (t) - l} 
JID-----= 

""' t -+ oo t a 
1 . 

( See J. L. Doob [ 199 ] . ) 

53.2. Let ç;1 and ç; 2 be independent random variables for wr.tich 

k , -a a P{.;1+ ç;~ = k1 = e ~ (k = 0,1, ••. ) . 
tv,, c:. .K. 

Prove that there exists a constaf'lt c such that ç;1 + c and .;
2
- c both 

have a Poissor.. distribution. (See D. A. Raikov [ 157 ] . ) 

53.3. Let {v(i..;.) , O ~ u < '"'} be a Poisson process of density À 

Prove that 

P{v(i) = i for k values i = 1,2, ... ,nlv(n) = n} = ~-· -..,,,--1 ,.,..,. (n-k) ! nK-.-

for k = 1,2, ..• , n . 

53 . 4. Let { v ( t ) , O ~- t < 00
} be a recUITent process where the recurTence 

times ek (k = 1,2, ... ) have the distribution function 

F(x} = l l : x(l~ x)2 

f or x > e , 

f or x < e . 

Determ.ine the asymptotic distribution of v(t) as t -+ oo • 
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53.5. Let ..;1 , ~ 2 , ... , ~n'... be mutually independent and identicaJ.ly 

distributed random variables having the sarne stable distribution function of 

type S(a,8,c,O) where a 11 , c > 0 . Let ç = ç1+ ~~+ ... + ~ for n = n cc. n 

1,2, ••. and z;0 = 0. Denote "by 'l' -r 2,"., -rk, ••• the successive ladder 

indices in the sequence ÇQ' ~ 1 , ... , Çn'"""' that is, Tl is the small~St 

n = 1,2, ••• for which i;;n > i;;0 , -r
2 

is the smallest n = 2,3, .•. for which 

çn > ç-r
1 

and so en. Then -r1 , • 2- 1 1 , -r
3
- -r 2, ••• is a sequence of 1m~tually 

independent and identically distrîbuted rand.an variables taking on positive 

integers only. Define v ( t) for t ~ () as a discrete randOL"'Tl variable taJd.rig 

on nor.irrgative :integers only a.YJ.d satisfyin5 the relation {v(t) > k} = {Lk ~ t} 
! 

~or all t > O and k = 0, 1, 2, . . . . Then { v ( t ) , O < t < ""} is a recUITent 

process. Determ:ine the asymptotic distribution of v(t) as t -+ m 

53.5. 

53.6. Find the asymptctic distribution of çT as n + "" :in Problem 
n 
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