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CHAPTER VIT

STOCHASTIC PROCESSES

47, Basic Theorems. We start this section with the definition of a

stochastic process. Let (QngE) be a probability space where & is the
sample space with sample points w e @ ; B iIs a o-algebra of subsetsof

£ , and *E' is a probability meésure defined on B . We may assume with-
oﬁt loss of generality that the probability space (Q’Bag) i3 complete.

A probability space (Q,B;E) is said to be complete if A e B_?~§{A} =0
and B:c A fmply that B e B . Every probsbility space can always be
compldted. et T be an infinite parameter (index) set. For each t ¢ T
let () = £(t, o] be a random variable defined on ¢ , that is, for each
teT, e, v 1is a measurable function of « with respect to B . We
say that the family of random variables &(t) , t ¢ T, forms a stochastis
prbcéss, That is; a stochastic process is any infinite famiiy of random

varisbles {£(t) , t ¢ T} .

In this section we shall consider only resl stochastic processes, but
Y p s
more generally we can consider also complex, vector or abstract stochastie

processes.

In most applications t can be considered as time and then T 1is the
time range involved, If T 1s an Infinite sequence, e.g., T = {0,1,2,...}
or T={.ee,~1,0,1,...7 , then {g(t), t ¢ T} is called a discrete ﬁarér

meter stochastic process., TIf T is a finite or infinite intemval, e.g.,

7]
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T = [0,1], T=[0,») or T= (-=, ») , then {&(t) , t ¢ T} is called a

continuous parameter stochastic process.

For any fixed m e @ the function ¢(t) = g(t, w) defined for t e T

Is calléd a sample function of the process.
For any finite subset (_tl, Cosenes tn) of the parameter set T , the
Jjoint dfstribution function of the random variables g(tl), g (t2),. ces é:(‘cn)

Is called a finite dimensional distribution function of the process. The

finlte dimensional distribution functions of the process,

1) Ftl’tZ"“’tn(xl’ Xpseees¥y) = PLE(E)) <Xy, £(8p) < X550y E(B) 39}

défi:néd for all finite sets (tl, t?,..,, tn)c: T and for all real

X1s Eyaeees Xy 5 AP the basic distributions and we shall classify stochastic

n

~ procesges according to the properties of their finite dimensional distribution

- functions.

It is ohvious that the distrihution functions F (Xq5 XopseesX )
Bpabosenesty 17 2 n

defined by (1) must be consistent in the sense that if (:’Ll, Toseees in) is

a permutation of (1,2,...,nh) , then

@ F,

il’“i (Xi ? Xi gecegy Xi ) = Ft t t (Xl, X2,...,Xn)

seeesty 7 Tl n Fpefoeeeesty

and if 1Sm<n, then

F i Xr\ ” % e X = - i F. ‘ A col ‘ '
(;J-—mFl,...,n)
for all ¢t t .

m+l,.-o, n
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A. N. Kolmogorov [ §5 ] proved that the consistency conditions (2) and

(3) are the only conditions which the finite dimensional distributions of
a stochastic process should satisfy. Kolmogorov's result can be formulated

in the following way.

Theorem 1. If the distribution functions

\

£t tn(x s¥pseessX)

4) F .
. 1s80se s

are defined for any finite subset (tl,‘ t2,..., tn) of a parameter set T ,

and If they satisfy the conditions (2) and (3), then there exists a probability

space | (Q’_?B/?EK) and a famlly of random variables &g(t) = g(t, u}\) (t e T,' nT
w € Q)t such that AT
n A
! Al = . PR
v GI E{thll ; Xl’ g(tz) =<=X2’.ct’ E(tn) é}irl} Ftl’tz’..r,trl(xl)A 29-0'54{,1}

for évery fini‘?té subset (tl, 't2,..., tn) of

+3

Proof. In what follows we shall introduce some convenient terminology

~and e:ormulate the theorem in the new terminology.

The set R = (-», =) of all finite real numbers o 1s called a real
line. Aset A in R 1is called an elementary set if it can be represented
as the union of a finite nunber of intervals in R . Denote by B the
minimal o-algebra which contains ail the intervals in R . The elements of

B are called Borel sets in R .

Iet T be a parameter set and for each t ¢ T let By be a real line

with points w We d=f.ie the product space

t .
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(®) Rp= X Ry
as the spacé with points wp = (“’t , t eT) where w € R . A set
(7) , Ap = X A,

teT

with poInts wn = (w,, t € T) where w € A, 1s called a product set in

et Tn =‘ Ctl; té,ﬂ‘...., tn) be a finite subset of the parameter set
T ..‘ A;.'-sfet' ATn .in the product space RTn is called an elementary set if it =
can beié represented as the union of a finite number of such n-dimensional
inter\}als in RT whose sides are parallel to the coordinate axes. Denote
by BT the nﬂn?mal o-algebra which contains all these n-dimensional inter-
vals 1;2 R-Tn l‘ The elements of BTn are called Borel sets in RTn .

Lec AT be a set in the product space R, .  The set

i
. n n

(8) o ATn X Ry )

is called a cylinder set in RT with base AT . If AT is a Borel set
n n
In Ry , then (8) is called a Borel cylinder. If Ap 1s a product set
n n

In Ry , then (8) is called a product cylinder.
n

- The minimal o-algebra which contains all the Borel cylinders in. RT

is called the product o-algsbra of Bt for t ¢ T and 1s denoted by

9) Bn= X B .
T ger ©
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Ir AE’T is a probability measure defined on B, , that is, if

(HT, B ’N?T) is a probability space, and if Tn = (tl, t2,..., tn) is

any finite subset of T , then we can define a probability measure NFT

on by assigning
BTn
ic) Pn {An } = Pl LR, }
Ap By 2= Lplbp XBpp

to ever'y Borel set A'I‘ in RT . The probability measure P is called

Tl’l

the marginal probabili ty or tbe projection of‘ P,-1 on RT

Ifl what Pollows we shall prove that there 1Is a unique probability

‘measure P, defined on B, for which

a1y 4 JPplAp} = Fy 6.t 2,...,tn<'xl’ Koseeey X))
whenever A = A, X with -

A Arn fpr |
a2) AT (w5 0 seeey ) tw <x for i=1,2,...,n}

1 2 n i

and T = (ty5 tpseees b)) 1s any finite subset of T . This implies that
1f we consider the probability space (QT, BT, »?T) and if we define the

random variables &(t) for t e« T by
¢k)) gt) = eC, wpl = o
where “’T = (mt, t € T) , then we have

a4y P{i(‘c ) 2 X E(tz‘ S Kpseens g(’c ) X3 =F . (xl,x2, xn)
Jrbmaveesty
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for all finite subsets ('tl, Eoseens tn) of T . By proving the above
f‘ormﬁlatéd statement we shall have proved Theorem 1.

We note that for every finite subset Tn = (¢ t2""’ t) of T

1’ n

the distribution function F (X7, Xpse0e5 X_) uniquely determines

_ ! 6y sbpseensty 17 2 n

a probability measure AFT on BT in such a way that N]:)T {AT } =
F (Xys Xoseees X.) whenever = {(w, 5 W peees @ ) oo <
tl’tE’”"#n 12 " ATn tl 2 tn ti

x; for 1s<izg nt . (See Theorem 2.2 in the Appendix.) Thus the
distribution function F (X;5 Xq5.00.5, X_) induces a probability

. B sbnsenesty 17 72 n |
‘ spacei (R,I,n , BTn "~E:Tn) . If we define g(ti) = g(ti, an) = wg\ for Y,

| !
v =, , W yeee, wo ) and 1 =1,2,...,n , then the random variables
w,_,h R R n

E;'Ctl), g(tz),.u, E&’n) have the joint distribution function th st
R n

Cxl, Epyaens xni .

By the assurptions (2) and (3) the probabilities Pn, ave consistent
n

In the following sense., If Tn = (tl, t2,..., tn) and Tm = (tl, ‘c2,..., t

m)’

- where 1 <m<n , are finite subset of T , then the projection of ~?T on
' n
RT coincides with ET
m m

Theorem 1 states that consistent probabilities MPT on all finite
n
product g-algebras BT determine uniquely a probabillity ~wPT oni the o-algebra
n
3 3 s .
BT in such a way that every an is a projection of E‘I‘ on RTn .

Now we are going to prove this last staterment.

Denotg by CT the spoxe of all those product cylinders ATnX RT——Tn for

T
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which 'I‘n = (t., Boseens tn) is any finite subset of T and A;, 1s the

. S . n n
union of a finite nurber of product sets of the form X A where each A

i=1 ¥1

is an interval in

t

15 an elementary set In R.  or equlvalentiy each A,
I i
’R R
ty "

To every set AT X R‘I‘-T in CT let us assign the probability
n n

Q57 : EplAp X Rp_qp 1= Pr {Ap 3
n n n n
wiich Is wuniquely determined by Ftlz Epseens tn(xl s Xpseees X)) .

It is éasy to see that CT is an algebra of subsetSof F*I‘ and Nle is
negati%re and finitely additive set function on CT . Obviously Pp(Rp} =1

Next we shall prove that P, 1Is o-additive on C, . Since P is

f‘initely additive on C, , it is sufficient to prove that P 1s continuocus

A~
at the empty set, and this :’unplies o-additivity. Having proved that Nle is
q%-add:?;t:ivé on CT by Car‘atzhe’odory'js extension theorem (see Theorem l.2

in the Appendix) we can extend the definition of ,E)T to BT , the minimal
cx»a_lgébr"a which contains Cp , in such a way that P remains a nonnegative

and g=additive set function and the extension 1s unique.

Now let us prove that A?T when defined on CT is continuous at the
empty set, that is, if An € CT for n=1,2,..., Al) A2;>... DAnD“'

and 1limA = 0 A =0, then 1limP.{A } =0 .
n—>°°n n=1n n+w‘1n

Since every cylinder set depends only cn a finite number of parameters,
the set of all paramsters involved in defining the = nce {A } 1s |

countable. By interchanging, if necessary, the parameters and by including

i

a non=-
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or removing some cylinder sets we may assume without loss of generality that

theré Is a séqﬁéncé of parameters tl, tg,. .oy tn" .. such that in the

séquencé {An} each set An Is a cylinder set in RT with base B where

Bh s thé' union of a finite number of intervals in Rt X Rf X...X Rt
1 2 n

We shall prove thé continuity of Et at © by contradiction. We shall

show that if lim A?T{%} =e>0,then 1imA = 1 A is not emty.
n-> n > e« n=1

Accérdingly«,‘ let us assume that

6) | BplA} =MPTn{Bn}; e >0

>+

l
] L
l —— —
for r‘1- 1,250 where T = (tl, Cosenns tn) . We shall prove that nzl Al

Is not empty.

To simplify notation let us write P = P, and fn =Pp for n=1,2,....
n

- The set function N?n is a probability on BT . Thus Ngn is g=additive

' n
and therefore it is continuous on BT . Consequently Bri contalins a bounded
* n
and cicsed Borel set Bn such that

® 3
a7 NE:n{Bn - Bn} < AL

For Bn is the union of a finite number of intervals in HT and each
n
- constituent interval in Bn contains a bounded and closed interval whose
»?n - measure is arbitrarily near to the P - measure of the original interval.

~1a

¥ % ,
if- An dencotes the cylinder set in RT with base Bn . then by (17) we have

¥ ¥ I
. I - _ ¥ £
&) P a An} MTI{BH Bn,r < T
*Aw A* Si Cr“A*c:P i AC A B AN+ n
= ce / - B < = i - -+ : “va "
et Cn Al s ane _ ince €, a \ and ncn AT RAAS

% it Y ¥ ;.
A nAnCAlA?i + A2A§ + ... F AI’IA‘?L s 1t follows that
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n
‘ ; L - ¥} < &
(19) PA}-PCY=PA -Cts ]| Py -A} <5 .
k=1
By (16) we have P{A} » e and therefore (19] irplies that
€
(20} E{Cn} > 5

for n ='1;2;.;. ; Thus Cn ﬁs not empty and we can select in it a point
a(n) = (ét(hj;-t e T} . Since CnEZ Cm if n>m, therefore a(n) C
¥ nxm .’ Hence

@1 (a, (), a,_(@),..., 8, () ¢ B

1 2 m

for n ;=n1;. The set B; is bounded for every m = 1,2,... . Thus the sequence
'{a(ﬁj} contains a subsequence {a(né}>)} for which at‘(nﬁ})) >a as k>,
Furthermore, the sequence {a(né}))} contains a subseéuence {a(nﬁ%))}

for which at nﬁz))+-at2 as k » =, Continuing in this way for each

1 =1,2,... we can define a sequence {a{néi))} such that {a(néi))} is a
subsequence of {a(n(i l))} and a, (ny ) >~a_  as k> =. Then the

diagonal sequence ‘{a(nkx))} has the property that

(22) lim a, (nfk))
’ k »> = 1 < 1
exists for 1 =1,2,... . et a=(a_, t ¢ T) where a, 1s defined by

(22) for t = s Cosenes Byseen and a, =0, say, for t 7 ty (i = 1,2?,*.).
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*
"Since nkk)) a, (n k)),..., a, (11({!{))) e B for k=1,2,...,
and since ‘rthe set B is c]o<‘<==c1 by (22) :t follows that

. *
3 =
(23) (atl, a I atm) eB <B

and consequently a e Am = BmX RT—Tm for m=1,2,... . This proves that

;IG Am is not empty which was to be proved.
m=1
Accordingly, we have proved that the probability measure leT defined
by (15) on C | is o-additive. By Carathéodor'y's extension theorem the
definltlon of PT can uniquely extended over BT in such a way that MPT
remains nonnégative and o-additive. Thus there exists a probability space

(PT’ Bips fT) and every an is a projection of P on RTn .

If we define the random variables &(t) for t e T by &(t) = &(t, wT) =
w?/ where w’I‘ = G"t ,teT), then (5) holds for every finite subset

(tl, t2,..., t ) of T . This completes the proof of Theorem 1.

Theorem 1 was proved in 1933 by A. N. Kolmogorov I:: 55 ]. Ir some

particular cases, Theorem 1 can be deduced from some results found in 1917

by P. J. Daniell [21 ]1,[22 ] for integrals in a space of an infinite nurber

of dimensions. For the theay of abstract integrals we refer to M. Fréchet [ 43

ANKolmog;omv L 5h ] and B. Jessen [ 47 1.

In the above discussion we considered real stochastic processes. In
general we can consider vector stochastic processes or stochastic processes
taking values in a metric space and we can demonstrate that the appropriate
version of Theorem 1 is valid for such procssses too. That is if we assume

that each Rt (t e T) is a finite dimensional Fuclidean space or a metric
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space, if B’c denotes the class of Borel subsets of R, , that is, if Bt

is the minimal g-algebra which contains all the open sets in Rt , and if

PT <Tnc T) are consistent probabilities defined on all finite product
atad n -
o-algebras BT = X B then there is a unique probability reasure P

3
n teTrl t T
defined on the o-algebra B, = X Bt in such a way that every P, 1s a
T teT n

projection of ~PT on R‘I‘ . The proof of Theorem 1 can easily be extended
té stochastic processes tgking values in a finite dimensional Euclidean space
or in a metric space. However, in general, the appropriate version of
Theorem 1 is not valid anymore for abstract étochas‘cic processes. That is,
if weiassume that each Rt (t & T) is an abstract set, if Bt is a

o-algebra of subsets of R » and if MPT ('I‘n < T) are consistent probahilities

n
defined on all finite product o-algebras BT = X Bt , then, in general, we
n teT
cannot define a probability measure P, on the o-algebra. BT = X Bt in
teT
-such a way that every B, 1is a projection of '»ET on R’I‘ . In 1938
n n

J. L. I2ob [ g ] and in 1944 E. S. Andersen [ 2 ] believed that they have

proved the abstract version of Theorem 1, but in 1946 E. S. Anderssn and

"B, Jeczen [ 3 ] pointed out that these proofs were incorrect. In 1948

" E. S. Andersen and B. Jessen [ 4 ] constructed an example which shows that

in fact the abstract version of Theorem 1 is not valid in general.

It should be noted that in the particular case where the finite dimensional.
probabilify measures are consistent product measures the abstract version

of Theorem 1 is valid. This result was formulated for the first time in

1934 by Z. ®omnicki and S. Ulam [ 59 ], but their proof contains an error

which was pointed ou’ in 1246 by E. S. Andersen and B, Jessen [ 3 ], #Fop
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the proof of the extension theorem for product measures in abstract product

sets we refer to J. v. Neumann [ 65 pp. 122-148], B, Jessen [ 48 1,

S. And_:_e_rs_én and E_{E?E?E [ 3 1 and S. Kakutani [ 50 1.

In_thé proof’ of Theorem 1 we actually constructed a probability space
(Q?Bagj and a family of real random variables &(t) , t € T , such that the
fihite dimensional distribution functions of the process {&(t) , t e T} are
the prescribed distribution functions (U). However, this is not the only
poSSiblé construction. We can construct infinitely many probability spaces
(9,8%37 and on each probability space we can define infinitely many families
of random variables {&(t) , t € T} having the given finite dimensional
distribusion functions (4). In fact if (2,B,P) 1is a probability space and

He(t) ; t € T} -and '{g*(t) , t € T} are two families of random variables

for which
(24)_ o E{«E(tl =g ) =1

forall teT, thenboth {£(t), t ¢ T} and (£ (t) , t ¢ T} have the same
finite dimensional distributions. In chis case we say that {g(t) , t ¢ T} and
{E*(t) » t € T} are equivalent stochastic processes. Accordingly, we can
replace every stochastic process {£(t) , £ € T} by an equivalent stochastic
process {E*(t) , t € T} without changing its finite dimensional distribution

funetions.

If we want to construct a stochastic process {g(t) , t € T} with given
finite dimensional distrioution functions, then we cén chooss among infinitely
many possible versions. Some versions may have dHesi »ohl 2 properties and in this
case it is reasonable to choose such a version. Tc see the differences among

the possible versicns of a stochastic process let us consider the following
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simple example. let Q be the interval [0,1] , B , the class of Lebesgue-
measurable subsets of [0,1] , and P, the lLebesgue measure. Then (2,B,P)
is a complété prcbability space. Letv {g(t)} be a family of random variables

deftned for t e T = [0,1] for which

(5] | P{e(t) =0} =1

for a11 t ¢ T . The finite dimensional distribution functions of {g(t) ,
02t < 1} are uniquely determined by (25) and they are consistent. Thus
by Theorem 1 it follows that indeed there exists a process {g(t) , 0=t <1

for which (25) holds.

B
By (25] it follows that
(26) Af{f:(ti =0 for t :S}=1

for any finite or countably infinite subset S of [0,1] . For many purposes it

would be desirable to conclude from (26) that
@7 E{E(t) =0 forallt e [0,1]} =1.

However, (27) does not follow from (26) in general, uniess we choose some suitsble
version of the process {&(t) , O <t <1} . For example if M 1is a subset of
[0,1] and if we define ¢(t) = g(t ,w) for t e [0,1] and w e [0,1] in the
following way

O if t eM, we [0,1],

E(tyo) =40 if t M, w#t ,

m

- (283
, : 1 if t M, w=t ,

then (25) and (26) are sacisfied, and {w : g(t,w) =0 for 0 <t <1} =

{w: weM . Newif Me B, then {g(t) =0 for O <t x1}eB and
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Ple(t) =0 for O <t <1} = M) where p(M) is the Lebesgue measure of
M’; whéreas; if M£B, then {&(t) =0 for O <t <1} #B and we cannot
Spéak about the probability of {E(t) =0 for O <t <1}, that is, the
fiﬁité‘aiménsional distributions of the process do not determine the probability
éf {g®) =0 for O0<t <1} . If we choose M= [0,1] or M is any Borel
sﬁbsét of [0;1] with Lebesgue measure 1, then (27) holds. This is of course
thé désirable case but we carmmot exclude the other cases without imposing some
réstriction on the stochastic process to be chosen. The simplest and the most
usefﬁl criterion In choosing the stochastic process {&(t) , t ¢ T} 1is the
' critéri?n of séparability‘which was introduced in 1937 by J. L. Doob [ 25 1.
Seé 'alsp’ﬁ J ﬁ. Doob [28 1,[ 291, W. Ambrose [ 1 1, J. L. Doob and W.
mribrose [ 3% 1, J. L. Doob [ 30 1,0 311,[%2 1, P. A, Meyer [ 61.1, [ 62

pp. 55-647, and I. I. Gikhman and A. V. Skorokhod [ 44 pp. 150-156].

Definition 1. Let {&(t) , t ¢ T} be a real stochastic process with

arbitrary linear parameter set T . Let the random variables &(t) , t ¢ T,

be defir=d on a probability space (9,B,P) and let &(t) have value &(t,w)

at w e & . The process {&(t) , t € T} 1is said to be separable if there is

" a countable subset S of T and a set A e B with P{A} = O such that if A

- is__any closed set of the real line and if I 1s any open . interval of the

real line, then

(29) {w: g(t,w) e A for t e IS} - {w:g(t,u) e A for t e ITICA .

The set S 1is called a separability set of the process, and A, an
exceptional set. Since ~v~ry open set can be represented as a countable

union of open intervals, 1t is obvious that the above definition remains valid
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unchangeably if we assume that 1 1s any open set.

~ The advantags of a separable process of is evident., Let us consider the
proces& {et) , T} 1in the above definition. If A 1is a closed set anc

I is an open interval, then in general the set {w : £(t,w) e A for t ¢ IT}
does not belong to B . However, if the probability space (Q,B%E) is
comple ce and if the pvocess is separable, then {w : &(t,w) ¢ A for t ¢ IT}

belongs\to B and
(30) P{e(t) e A for t e IT} =P{e(t) e A for t ¢ IS} .

For eiample, if there is a separable stochastic process {&(t) ,
0 <t <1} defined on a complete probability space and if (25) holds for
t e [0,1] , then (27) is true. As we have already seen (27) is not true with-

out scme hypothesis for the process {g(t) , 0 ;=t 1) .

I (&), t e T} 1is a separable stochastlc process deflned on a
probability space (Q,B,P) which is complete then we can define the prcbabilities
of such\events as that the ample functions are bounded, are continuous, are

integrable and so on.

We rote that if {g(t,w) , t € T} 1is a separable stochastic process defined
on a conmplete probability space)if S~ 1s a separability set and if w £ A where
A 1Is an exceptional set, then

(31}  iInf g(t,w) = inf g(t,w) and sup £(t,w) = sup E(t,w)
telT telS teIT telS

for every open interval I . Converqely, if there is a q@t A € B with
P{a} = 0 such that if w £ A it follows that (31) is true for every open

interval 7T , then the process {&(t,w) , t € T} 1is obviously separable.
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If the process {&(t) , t € T} is separable and if I is any open

interval, then inf &(t) , sup &(t) ,  1im inf &(t) and 1im sup &£(t)
telT telT t >u vt »u

are all (finite or infinite valued) random variables.

Wé havé démonstrated that a separable process has many desirable properties.
Thé'problem arisés what restrictions should we impose on a process in order to
be separable. We shall prove thab every stochastic process {£(t) , t e T}
haé a séparablé version 4{£*Ct) , £ € T} which has the same finite dimensional
distrib?tion fﬁnctions as the original process. This 1s the best possible
résﬁlt &hiCh‘Wé can éxpéct; The proof of this result is based on the following
two aux.*tllary\ theorens.

lemma 1. let {t(t,w) , t € T} be a real stochastic process with an

arbitrary parameter set T . To each linear Borel set A there corresponds

a_countable sequence {t, } such that

32) g{g(}:k,w) e A for k>1 and g(t,w) £ A} =0

for all tT.

Proof. Iet t, beany point of T . If ¢, ¢t tn have already

l 1, 2,.0.,

been chosen, then let us define

(33) a, = supfg{a(tk,w) eA for k <n and £(t,w) £ A} .
’ teT
‘Then 1za)28,2... 28 2...20. If an=o,then(tl, Eoseves £

satisfies (32}, .Ir a, > O , then let us choose tn+1 as any- value for which
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. , a

(34) Ple(t,0) e A for k<n and E(t . ,u) £ A} > -253

If a, > 0 for all n=1,2,..., then we have

(35) E(E(tk,w) eA for k21 and &(t,w) ¢ A} < lima,
Inn - o©

forall t+ T.

Since thé séts\ Hw s g(tk,m) e A for k <n and g('tm_l,m) £ A} for

n=1,2,... are disjoint, we have

(36) 7 Nij{g(tk,w)/ A for k<n and g(t, . ,0) A} <1,

|
- n=l

. o , )
whence |Lim P{(t,,u) A for k <n and §(t,,10) £A} =0 . By (34) we

IL & e

obtain that lim a = O . Finally (35) implies (32) which completes the proof.

nn »

The following auxillary theorem follows easily from.the previous-one.

Lemma 2. ILet {z(t) , t ¢ T} he a real stochastic process with an

arbitrary parameter set T . Let. AO be a countable class of linear Borel

sets, and let A be the class of sets which are the intersections of sets

belonging to AO . Then there exists a countable set of points tl’ tz,...,

tk,... such that to each t €T there corresponds an w-set At with

E{At} =0 and
(37) {(t,,0) e A for k21 and &(t,w) £ Al A

for each A e A .

Proof., For each A e AO there is a countable parameter set such that

(32) holds. Obviously (32) holds for each A ¢ AO if {tk} is chosen as



VII-18

the union of all these parameter sets. Let

38) A= U fw:glt,w) eh for k21 and £(t,0) £ A} .
Aeg

with the above definition of {t, 1} .

k

If AeA and ACAOsAo,then

(39)  {&(ty,w) e A for k21 and &(t,w) £ A

c:{g(‘tk,w) e Ay for k21 and &£(t,w) £ Ay} C A

and hence (37) follows because each A ¢ A is the intersection of a sequence

of sets iIn AO . This completes the proof of the lemma.

Theorem 2. Let {&(t) , t € T} be a real stochastic process with linear

‘parameter set T defined on a probability space (Q,B,FP) . There exists a

‘separable stochastic process {£ (t) , t € T} defined on the same probability

" 'space such that

(40) PLE(8) = g6} =1

*
for all t € T . The random variables £ (t) (t € T) may take on the values

+= and -« .

- Proof. We note that (40) implies that the finite dimensional distribution
functions of the process { E* (t) , t € T} are the sane as the corresponding
finite dimensional distribution functlons of the process {&(t) , t ¢ T} , that
is, 1f we replace a stochastic process by its separable version, then all the

finite dimensional distribution functions remasin unchanged.
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: %
We note also that for each t € T the set {w: & (t,w) # &(t,w)} has
. %
probability O , but this set may vary with t . If the union Uf{w : £ (t,0) #
teT
g(t,w)} has probability O , then the process {&(t) , t ¢ T} itself is

séparablé.

To prove the theorem let AO be the class of linear sets which are finite
unions of open or ciosed intervals with rational or infinite endpoints, and
let A be thé class of sets which are intersections of sequences of sets in

AO . Thén A includes the closed sets.

Foﬁ any open interval I with rational or infinite endpoints let us
L
conside%’the"stochastic process {&(t) , t € IT} and apply lemma 2 with AO
and A as just defined. By Lemma 2 there is a countable set S(I) C:IT and

an wfset At(I) such that Ng{At(I)} =0 for t e IT and
(1) {e(s,w) e A for s e S(I) and &(t,w) £ Al A (T)
for Ae A and t ¢ IT . Define
2) s=Us@ and 2 =Ua (@

I I

where the union is taken for all open intervals I with rational or infinite

endpoints.

For fixed w let A(I,w) be the closure of the set of values &£(s,w)
as s varies in IS . The set A(I,w) may include the values +~ and —o.

It is closed, nonempty, and

(43) E(b,w) € A(T,w) 4if t e IT and o £ A -
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If we define
(L) At,w) = 1N ACL,w)
Iat
where the intersection is taken for all those specified intervals which contain

t , then A(t,e) is closed, nonempty, and
(45) gE(t,w) e A(t,w) if £ eT and o # At .
%
Now let us define ¢ (t,w) for t e T and we @ as follows:

(46) £ (t,w) = £(t,w) if teS or t £S and w ¥ A s
|

*
and ¢ ¢t,m) is any value in A(t,w) if t ¢S and w e At .

|

! . .
The process {& (t,w) , t € T} obviously satisfies the condition (40,

%
It remains to prove that {& (£) , t € T} 1s separabdle.

Iet A be a closed set and let I be an open interval with rational or

infinite endpoints. Suppose that w has the property that
*
(A7) £ (s,0) e A if s e IS.

¥
Then A(I,w) <A necessarily holds. It follows from the definition of £ (t,w)

that if t ¢ IT , then

*
- (48) £ (t,0) = €(t,w) € AT,w) for teS and for t£S, u# A
and
#*
( 46) £ (t,w) e Alt,w) A(T,u) <A for ©£S,wce Ay

Thus
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. * ¥ \
(50) {¢ (s,0) e A for s ¢ IS} = {g (t,w) e A for t e IT}

if A is a closed set and if I 1s an open interval with rational or infinite
endpoints. Since any open interval can be expressed as the union of a countable
nurber of open intervals with rational or infinite endpoints, it follows from
(50) that (50) is true for any open interval I . This completes the proof of

the theorem.

*
We observe that we cannot exclude infinite values for ¢ (t,w) , since

the set A(t,w) above may contain no finite values.
Theorem 2 and the above proof are due to J. L. Doob [ 30 pp. 57-60].

In many cases 1t is necessary to specify the separability set S of a
stochastic process. The following theorem shows that for a large class of

stochastic processes we can esasily find separability sets.

Theorem 3. Let {&(t) , t ¢ T} Dbe a separable, real stochastic process

“'with linear parameter set T . If for every ¢ > 0O we have

(51 Prle(t) ~ g(u)] > e} »0 as |t-ul ~ 0,

then any countable and everywhere dense subset S of T 1is a separabillity

gset of the process.

Proof. Let {g(t) , t € T} be defined on a probability space (2,B,P) .
Let S be a separability set of the process and let A be an exceptional set.

Then (29) holds for any closed set A and A e B and P{A} =0,

% ' ' v
let S be any countable and everywhere dense subset of T . We shall

% % %,
prove that there is a set A such that A ¢ B, P{A} =0 and
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¥ ¥
(52) {w: elt,w) e A for t €IS} -{ow: g(tw) e A for t e Itz AUA

%
for any closed set A . This implies that S 1s a separability set of the

process.

For any open interval I wlth rational or infinite endpoints and for
fixed w denote by B(I,w) the set of values of &(s,w) as s wvarles in

IS* . Then we have
(53) ~ Ple(t,e) £ B(Iw)} =0

for all} t e IT . To prove (53) for each t ¢ IT let us choose a sequence
|

%
{t,} s&ch that ¢, e IS and t +t as k-« . Then we have

P{e(t,0) £ B(T,0)} <lim P(lim inflg(t, ) - €(6)] > %'}
(54) m> ek

< lim Lm inf P{le(s) - £(6)] > 2} =0 .
m,:»)»ook—) o

This implies (53).
Let

* v
(55) p=U U fuie(t,e) £ B(Tw)})
I telIS
where the union is taken for all open intervals with rational or infinite

% *
endpoints. We have A ¢ B and by (SB)AE{A }=0.

* #
o Now if w £ AUA and £(t,w) e A for-all t e IS where A is a

. closed set, then for every t e IS we have

(56) £(t,0) € B(I,w) <A .



VII-23

Finally by (29) we can conclude that (56) implies that
(57) g(t,w) <A

¥
for 2al1 t € IT whenever w £ A U A . This proves (52).

Note. The notion of separability and Theorem 2 and Theorem 3 can also
be extended to abstract valued processes. We shall mention here some results
for the case when {&(t) , t ¢ T} is a stochastic process with state space X
and parameter sejt T where X and T are metric spaces. 'That is let
m’B’E)} be a probability space and for each t ¢ T let &(t) = £(t,w) be

a measurable function of w e @ taking values in X .

" Definition 2. The process {&(t) , t € T} is sald to be separable if

~‘there is a countable subset S of T and a set A e B with P{A} =0 such

.

that if A 1s any closed set in X and I is any open set in T , then

(58) {w: g(t,w) e A for £ e IS} - {w: g(tw) e A for t e IT}IC A .

In <xactly the same way as we proved Theorem 2 and Theorem 3 we can prove

the following more general theorems. (See I. I. Gikhman and A. V. Skorokhod

[ 44 pp. 150-156].)

Theorem 4. If X 1is a compact metric space and T 1s a separable

metric space, then there exists a separable stochastic process (g (t) ,

t € T} defined on the same probsbility space as {&(t) , t € T} and having

the same state space X as ({£(t) , t € T} such that
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, *
(59) P{g (t) = g{t)}= 1
forall teT.

s pocaape s,

CTheorem 5. If X 1is a separable and locally compact metric space and T

'is o separable metric space, then there exists a separable stochastic process

N
{¢ (t) , t ¢ T} defined on the same probability space as {&(t) , t e T} and

* %
having state space X X where X is sane compact extension of X such

that
; . “ * LY -
(60) Ple (8) = ()i =1
forall teT.

Theorem 6. Let {&(t) , t € T} be a separable stochastic process with

state space X and parameter set T where X 1s a metric space with metric

o{x,y) and T is a separable metric space with metric r(t,u) . If for every

e > 0 we have

(61) | Plo(E(t) , &)} >0 as r(t,w) +0,

then any countable and everywhere dense subset S of T 1s a separability

set of the process.

48. Poisson and Compound Polsson Processes. Before introducing the

notion of Poisson and compound Polsson processes it is necessary to deal with
the Poisson distribution. We say that a random variable & has a Polsson

distribution with parameter a where a is a positive rumber if
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1 Pir =k} =e 2
for k=0,1,2,... .

The Poisson distribution appears for the first time in connection with

the matching problem. In 1713 N. Bernoulli and P. R. Montmort (see [143 pp. 301~

302 7]) found that

n—z-k L:]ij_
j=0

is the probability that exactly k matcnes occur if we draw all the n cards

(2) , P (m) = &7

from a box which contains n cards numbered 1,2,...,n and if all the n!

possiblej results are equally probable. Both L. Euler [ 112 ] and A. De Moivre
109 ]!ébserved that the sum in (2) tends to 1l/e as ns+ e« and k =0,1,2,... .
Thus in the middle of the eighteenth century L. Euler and A. De Molvre encountered
an instance of the Poisson distribution prece_ding S. D. Poisson by nearly a

century.

In 1837 S. D. Polsson [ 149 1,[ 150pp. 171-172] demonstrated that if we

- conslder n Bernoulll trials with probability p for success and if we suppose
that n+~ and p >0 1n such a way that np ~a where a 1is a positive
number, then the limiting distribution of the number of successes 1s a Poisson

distribution with parameter a , that is,

k
- nyk,, \n-k _ =aa
(3) nli'.mm(k)p (I-p)" " =e " 7

np +> a

for k=0,1,2,...
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In 1898 L. v. Bortkiewicz [102 7 provided a thorough study of the Poisscn

distribution and he observed that in several cases when iInstantaneous random
events occur in time, then with good approximation the number of events
occurring in amione interval has a Polsson distribution. L. v. Bortkiewicz A \l/\
considered examples such as the occurrence of accidental deaths by horse kick
in the Prussian Anmy over a 20 yvears period, and he found that the observations

were in agreement with the Poisson distribution.

At the beginning of the twentieth century several researchers considered

randan pheromena which obey the Polsson law.

In 1903 F. Lundberg [ 134 ] assumed in his research that insurance claims

happan accordirg to the Poisson law. In 1909 A. K. Erlang [ 111 1 applied the

Poisson law for the incoming calls in a telephone exchange. In investigating

ot

he nature of radicactive disintegration in 1510 E. Ruthi%{‘ord and H. Gelger [lg:ﬁ s
L1 67 ] cbserved the number of a-particles reaching a counter in consecutive
intervals and their data showed good agreement with the Poisson law. In 1918

W. Schottky [ 172 ] assumed in his investigations that electren emission from

metals occurs according to the Poisson law.

The first explanations of the appearance of the Poisson distribution in
the random phenamena mentionéd above were based on the PQisson approximation
of the Bernoulli distribution. In 1910 H. Bateman [ 97 J,L 98 ] demonstrated
that if a random phenomenon satisfies same plausible conditions, then the
number of events occurring in any interval necessarily has a Poisson distritution.

This was the first result in which the Poisson distribution appeared as an
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exact distribution and not an approximating distribution. In 1921 M. Fujiwara
121 ] considered more general assumptions than H. Bateman and deduced the
Poisson law as a particular case of a more general law. In 1953 K. Florek,

" E. Marczewski and C. Ryll-Nardzewski [ 117 ] weakened further the assumptions

which lead to the Poisson law.

Now we are going to deduce the Poisson law under general assumptions. If
we observe instantaneous random events occurring in the time interval (O, =),
then it is conve-rrient to introduce the randam variable v(t) denoting the
number of events occurring in the time interval (0, t] . The family of

!
randam variables {v(t) , O <t < «} is sald to form a point process. We

!
say that the random phenomenon obeys the Poisson law if for every u >0 and
t >0, the random variable v(uwtt) - v(u) , that is, the number of events -
occurring in the time interval (u, utt], has a Polsson distribution. Our-

aim is to find conditions under which the point process {v(t) , 0 <t < =}

obeys the Poisson law.

- ~let us suppose that in the time interval (0, =) instantaneous events
occur at random and denote by v(t) the number of events occurring in the
time interval (0, t] . We shall study point processes which satisfy some or

all the following conditions:

(a) Independence. For any O < to < tl Cees < tn and for nonnegative

integers Ml’%,k2""’ k, , where n =2,3,..., the events {v(tj) - v(t, ;) =

J-1

kj} for j =1,2,..., n are mutually independent.
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(b) Homogerity. The probabllity of the event {v(utt) ~ v(u) = k} where

0, k=0,1,2,... does not depend on u .

~.
P

(¢) Orderliness. In any interval (0, t] events occur singly with

- ‘probability one.

The following result is the main result for polnt processes defined above

an it leads to the definition of the basic Poisson process.

* Theorem 1. 'gg v(t) denotes the number of events occurring in the time

interval (0, t] in a random point process and if {v(t) , 0 <t < «} ‘'satisfies

i
the conditions (a), (b) and (c) , then there exists a nonnegative constant *
1

|
such that

(%) Plu(utt) - v(w) = k) = e LAB)

k!

for u>0,t>0 and k =0,1,2,... .

- Proof. If we want to describe mathematically a desired random point
process defined in the time interval [0, =) , then we should construct a
probability space (Q,B!E) and we should define a family of random varisbles
v(t) = v(t,e) (0 <t <=, we Q) such that conditions (a), (b), (c) are

satisfied.

It is natural to assume that & contains all those real functions w(t)
rdefinedffor'<t > 0 which take on only nonnegative integers, are nondecreasing)‘

continuous on the right, and satisfy w(Q) = O . ‘Let us assume that B is



VII-29

the sméliest o-algebra which coritains the events {w : w(t) = k} for all
t>0 and k= 0;1,.2;-... . For every t > 0O define the random variable
v(t) = v&’t;w) = u(t) if w = «(t) . We shall show that there exists a
probability measure VE’ such that (a), (b) and (c¢) are satisfied and E
dépends only on & nonnegative real parameter i .

4

Let
(5) ‘ le{v(t) =k} = P, (t)

fér t 20 and k =0,1,... . We shall prove that necessarily
|
Ol P (1) = ¢ (AL

for £ >0 and k = 0,1,2,... where A >0 .

By using same simple properties of the Poisson distribution we can prove
that by (5) and {6) the probability P{A} is uniquely determined for A e A
where A_ is the smallest algebra which contains the events {w : w(t) = k}
for 211 t >0 and k =0,1,2,... . By Carathéodor'y's extension theorem
(Theorem 1.21in the Appendix) the definition of P{A} can uniquely be extended
to B . That is, there exists indeed a probability space _(Q,B,lii) and a
family of random variables {v(t) , O <t < =} for which the conditions (a),
(b), and (c) are satisfied. It remains to prove that (6) holds with same

A

v

O . - -

‘Since the event {v(t+u) = k} occurs if and only if {v(t) = k-j} and.
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A{v(ttn) - v(t) = j} for at Jeast one J = 0,1,...,k , by the conditions (a)
and (b) we obtain that
k

(7)) ' 'Pk(t+u) = Z

L Py (£)B5 ()

for £t>20,u>0 and k =0,1,2,... .
If k=0, then (7) reduces to
=P.(
(8) . Po(t-i“u) PO‘t)PO(u)

~for £ 20 and u2 0. Ve shall prove that (8) implies that
|

_ t
@ | P.(6) = [P(1)]

for all t >0.

From (9) it follows that either Py(t) =1 forall t 20, or P,(t) =0

for all £ >0, or
(10) By(t) = e

for t >0 where A 1s a finite positive number. For there are three
possibilities Py(1) =1 or By(1) =0 or 0 <PFy(1) <1 . If Py(l) =1,
‘then by (9) PBy(t) =1 forall t 0. If Py(1) =0, then by (9) P_d(t) =0
for all t>0. If O« PO(].) < 1 , then there exists a finite positive A

A

such that PO(l) = e © and then (10) follows from (9).

" Since 0 <Py(t) <1 forall t20, 1t follows from (8) that Py(t+u) g

Po(u) for t >0 and u>0. If r and s are positive integers, then by
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the repeated applicaticn of (8) we obtain thaf (= ) = [P (—)] and if

r=s,then Py(1) = [Py()T . Thus it follows that

W1

(11) Po(3) = [By(1)]

for any positive rational number r/s . If t > O, then for every sufficiently
large s there is an r » 2 such that 1 <ts <r . Then Po(g) < Po(t) <
Z = s/ = =
e t
( Ly . By (11) lim Po(3) = im Py(==) = [By(1)]" and this proves (9)

] s » ® S +>
for t > 0 . S8ince necessarily PO(O) = 1 , therefore (9) is true for all

Ir P(t) 1 forall t >0, then P(t)-O for all k = 1,2,..., and
t >0 . This corresponds to the degenerate case when with probability one no

everts occur in any interval (0, t] . This proves (6) for x =20 .

If Py(t) =0 for all t > 0, then by (7) it follows that P (t) =0
for all k = 1,2,... and t > 0 . This case is meaningless and should be

excluded. This case can be considered as (6) with A = « ,

Now we shall prove that if Po(t) = ror g 20 where X is a

finite positive number then (6) holds for all £+ > 0 and k = 0,1,2,... .

e—At

Ir Po(t) = for all t >0 where A 1is a finite positive number,

then by (7) we obtain that

ey ~\u =t
(12) Pl(u'hl) = Pl(t)t, + Pl(u)e

for t >0 and uzC . Iet I(t) = é.}‘t'.Pl(t) for t >0 . Then by (12)

we have
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(13) ft+u) = £(t) + £(a)

for £t >0 and u>0. Obviously O < f(t) ce’ for O<t <1 . The

only solution of (13) which is bounded in the interval [0, 1] is

(1) () = A b

where ), 1is a real constant. For if we define g(t) = £(t) - t£(1) for
t > 0, then by (13)

(15) g(ttu) = g(t) + gu)

for allg t 20 and u>0. On the othir hand by definition g(1) =0 , and
this imglies that g(t+l) = g(t) for all t >0 . Since g(t) 1is boundec
 in the interval [0, 1] , therefore g(t) 1s bounded in the interval [0, =) .
If gt) #0 forsome t >0, then g(nt) = ng(t) is arbitrarily large for

- sufficiently large n values. This, however, contradicts to the boundedness of

g(t) in [0, «) . Therefore g(t) =0 for all t > O, that is, £(t) = t{(1)
for all t >0 . Obviously f(0) =0 . This proves (14). By definition

A{ 2 0 . Thus we proved that

_ =it
(16) Pl(t) = e At
for t > O where Ay > 0 . Since
' _ =t
(17) | Pot) + Py(8) = e "7(A+t) 21
for: all,bt > 0, it follows that necessarily Al <A

Now we shall prove that condition (c) implies that A=A According.
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discontinuities of the
to condition (c) in any finite interval (0, ] the,{sample functiong of the
process _ 8¥€ - jumps of magnitude 1 with probability 1 . This condition

can be stated in the following way: If

(18) iy = ) - w%—iﬁ) <1 for 12§ <™

for m=1,2,..., then

(19) T A= Linpa) -
m=1 m>®

or :

(20) } 1n (2,6 + b (P =1

| m > i 1m
. L -AE+ALtE
for all t >0 . By (10) and (16) it follows from (2C) that e =1

for all t > O, that is, A=A This proves (6) for k=1 .

Havmg prdvéd that (6) is true for k=0 and k=1 s by mathematical

induction we can prove thet (6) is true for all k > 0 .

If k>2, then

(21) z Pg (0B, () < 22 P,(w) £1 - By(w) - Py(w

for a1l t 20 and u20. Since 1-Fy(u) - Py(u) = o(u) where limo(w/u=20,
u >0
it follows from (7) that

(t+tu) - P, (t) 1-P (u) Po(w
- + P (t> L + O\U.)
u k u k-1 u u

k\

(22)

for £ 20 ,u>0 and k>1. If u->0 in (22) , then we liave
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. dr e \
(23) —50 = M) + AR, (8)
for £t 20 and k21 . Ifwe multiply (23) by et , then we get
" B ) \

for £t 20 and k21 . Since PO(O) =1 , therefore Pl,(o) =0 for k>1

and by integrating (24) we obtain that

.t ,
At f eXU

(25) Pk(t) = Ae !

: Pk_l(u)du

for k21 and t 20 . Starting from Py(t) = e~

for £t >0 we can
obtain Pk(t) for every k =1,2,... and t >0 by (25). By mathematical
induction it follows immediately that (6) is true if A is a finite positive

nuber, This completes the proof of the theorem.
Now we can define the notion of a homogeneous Poisson process.

Definition 1. We say that a family of real random variables {v(t) ,

0 <t <} forms a homogeneous Poisson process with parameter 2 where A 1is

a finite positive number, if for any O < t

___S.:t <... ét

0 1=
random variables v(tl) - v(to) N v(’cz) - v(tl),..., v(tn) - v(tn__l) are

(n=2,3,...) the

n

mutually independent, P{v(0) = 0} =1 , and

-t (At)k

(26) i{v(u%*t) - v(u) =k} =e e

for all t >0 ,u>0 and k =0,1,2,... .

By Theorem 1 we can conclude that such a process exists, and if we exclude
the trivial case when P{v(t) =0} =1 for all t > O, then the conditions

(a), (b}, and (c) determine the distribution (26) up to the parameter i .
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The parameter X has a sinple probability interpretation. 'To see this

let us calculate the expectation of v(t) . We have

| ) )
(27) E{v(t)} = § ke Llfc-?-d At .
~ k=0 !

Accordingly .NE.:{v(t+l) - v(t)} = A, that is, the expected number of events
occurring in any interval (t, t+l] of length 1 1is just A . For this

reason we shall call A the density of the process. The knowledge of this
single parameter’ campletely determines the finite dimensional distributions

.
of a homog;eneous Poisson process. JIn what follows we shail add various remarks

the notion of a hamogeneous Poisson process.

F:urt, we observe that condition (¢) can be replaced by the following

equivalent condition

LPivt) > 1}
(28) lim "——-,E—— .

t->0
For (20) holds if and only if
1—Po(t) - Pl(t)

(29) 1im T =0,
t >0

TO -

Ooviously, condition (c¢) could be replaced by any other condition which guarantees

that in (16) >‘1 = A . For example, if we exclude the trivial case when

P{v(t) =0} =1 for all t > O , then condition (c) can be replaced by

P \t)
(30) 1im =— =1,
£ > Ol POZtS

If {v(t) , 0 <t <=} 1s a homogeneous Polisson process of -density X ,

then
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(31)  P{v(t) = O}=l-At+o(t) » Plv(t) = 1} = xtto(t) and Mli{v(t) > 1} = oft)

where 1im oft)/t = O . Conversely, if instead of condition {c) we assume
t-»>0 v
that P{v(t) = 1} =\t+to(t) where i is a positive constant, and Mij{v(t) > 1} =

o(t) , then these conditions together with (a) and (b) imply that {v(t) ,

0 <t <=} 1is a homogeneous Poisson process of density a

We can easily determine the moments of the distribution

k
-t (At)

(32) | Pio(t) =k} = e m

|
where k = 0,1,2,... and t >0 . The r-th binomial moment of v(t) is equal
|

to
- k .r
(33) B - k;f(f,)e‘“ (ae) GO
for r =0,1,2,... and the r-th moment of v(t) 1is equal to
(34) Ev()T = jl@f, ()]

for r =1,2,... where G‘]]? (J =1,2,...,r) are Stirling numbersof the second

kind defined by

il—-‘

(35) @1 - }{O (137 ("

[

1

i
We note that the process {v(t) , O =t < «} which we constructed in the

proof of Theorem 1 1s obviously a separable process. Conversely, if we suppose

that {v{t) , 0 £t < »} 1is a separable, hancgeneous Poisson process, then
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with probability 1 its sample functions are ncndecreasing step functions which

increase only by jumps of magnitude 1 and which vanish at the origin.

Iet fv(t) , 0 <t <~} be a separable Poisson process of density A .
Denote by p(S) the sum of all positive jumps v(t4+0) - v(t-0) for t e S,
that is, p(S) is ths rumber of events occurring in the set S . In 1953

E. Marczewski[ 136 ] proved that if S is a Borel subset of [0, =) , then

0(S) 1is & random variable for which

k

(36) Plo(S) = k} = ¢~ (S) Lu8))

if k =0,1,2,... and u(S) 1is the Lebesgue measure of S . Furthermore, if

815 Saseens S (n=2,3,...) are disjoint Borel subsets of [0, «) , then

p(ﬁSl) s p(’Sg) seens D(Sn) are mutually independent random variables.

Let {v(t) , 0 £t <=} Dbe apoint process for which P{v(0) = 0} =1

and

k
-xt (At)

(37) P{v(utt) - v(u) =k} = e "

for u>0,t>0 and k =0,1,2,..., and A 1s a positive constant. By

our definition, {v(t) , O <t < »} 1is a Poisson process if and only if

condition (a) is satisfied for every n = 2,3,... . Actually when we deduced

(37) we used condition (a) only'in the particular case when n = 2 ., We needed

* condition (a) for every n = 2,3,.-. only in pfoving that (37)>'uniqu‘e1y detémdnes
the probability measure P{A} for all A e B. | |
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The following problem arises naturally: Does there exist a polnt process
{v(t) , 0 £t <=} for which (37) holds and condition (a) is not satisfied.

The answer is affirmative. L. Shepp (see J. R. Goldman [ 124 pp. 778-7791)

and P. A. P. Moran [ 145 ] constructed point processes {v(t) , O <t < =} for

which (37) holds but condition (a) is not satisfied.

Let us suppose more generally that {v(t) , O <t < «} 1is a point process
and if p(8S) 1is defined as above, then (36) holds for a class F of Borel
subsets of [0, =) . How large should F be in order that (36) imply condition
(a) . If F is»the class of intervals in [0, «) , then as we already mentioned
condition (a) is not satisfied necessarily. A. Rényi [ 164] proved that if F is
vthye clas%s of the unions of2finite number of disjoint finite intervals in [G, «) ,

then (35) implies condition (a) . See also P. M. Iee [ 130].

Next we shall prove a few basic theorems for homogeneous Poisson processes.
These theorems have many useful applications in the theory of stochastic

processes.,

Same results of S. O. Rice [396 pp. 299-301] make it plausible the validity
of the following theorem. See also J. L. Doob [ 30 pp. 400-401], C. Ryll-

Nardzewski [ 169 ] and the author [ 178 1.

Theorem 2. Let {v(t) , O <t < =} be a homogeneous Poisson process of

density -2 . Under the condition that in the interval (O, t] exactly n-

(n=1,2,...) events occur, the joint distribution of the occurrence times :of

these n events agrees with the joint distribution of the coordinates arranged

—.in increasing order of magnitude of n random.points distributed independeritly

and uniformly in the interval (0, t] ..
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Efoof. The proof of this theorem is based on the following simple

remarks.

Sﬁppose that n random points are distributed in the interval (0, t] .
Denote by Tys Toseses Ty their coordinates arranged in increasing order of
magnitﬁde. Divide the interval (0, t] into r subintervals by partition
points O = g < tl See. <t =t and let (nl, Nysenns nr) be a partition
of n 1Into nonnegative integers, that is, nl+ n2+...+ n,=n. Deriote by

-, P . T
Ny, fyeen (tl, toseees tr)' the probability that the interval (tinl’ ts]
contain§ exactly: ny points for 1 = 1,2,...,r .

Ifjwe know the joint distribution function of the random variables

Tys Tpsesss Tr then the probabilities Pnl’ n2,‘..,nr(tl’ toseees tr) are
uniquely determined, and conversely if we know the probabilities P (t,,
nl,ng,..«,nr 1

t2,..., t., ) for all partitions of (0, t] and n. , then the joint distribution

. function of T1s Toseees Ty is uniquely determined by these probabilities.

If we choose n points independently of each other in the interval (0, t]

and if the random points have a uniform distribution over (0, t] , then

Il I. n
(38) P (6 yEmyeneyt.) = ettt Aoyt ety % (B ey T
Nysl5aees,tl, 12722 n leaw t tt t

NO < tl <eus < tr and nl+ n2+...+'r1r'= n.

Conversely, 1f (38) holds for all partltlons of (O t] and n , then the
301nt dlstrlbutlon function of BE 12, vy ?n agrees w1th the JOlnt distrmbutlon

functlon of the coordlnates arranged in increabing order of n random points



VII-LO

distributed independently and uniformly in the interval (O, t] .

Now to prove the theorem 1let O = tO < tl <o < tr =t and n1+ n2+... _

+ n,=n where r=1,2,... . Then we have
’E{v(ti) - v(ty_ 1) = n, for is= 1,2,...,r|v(t) =n} =
n.
r r =A(t.-t, ) [A(t,t, )17
(39)  DP(E) - (b, ) =n} me T+ T L
_ i=1 - _i=1 1t -
= —— =
P{v(t) =n] ot (g)?
€ n!
n, . n n
) n! (tl- to) 1 (1'2_ tl) 2 (tr- tr-—l r
n,n.!l...n! t t :
1772 r

Accordingly, (38) holds for the distribution of the n points in the

-Poisscn process in (0, t] and therefore the theorem is true.
]

Theorem 3. Let {v(t) , 0 <t <~} Dbe a hanogeneous Poisson process of

density X . Denote b Tys Toseses Tpsees the occurrence times of the

successive events occurring in the time interval [0, =) . Let ek =T~ Ty g

for k=1,2,... where g = O . The random variables el, 62,..., 6 5. ATE

mutually independent and identically distributed with distribution function

1-e"% if x>0,
(ko) : Ple, < X} = ~ '
~ 0 if x< 0.
" Proof. We shall prove that
o ) , - ARyt r)
{41) PO, > %, 8, > Xopeen, B > X)) S e

for k =1,2,... and Xy > o, Xy > Opevns X, > 0.
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Ih what follcws we shall make use of the inequalities

o M 2
n

2 n A
n<j£e e _h-.<1

which are valid for n = 1,2,...; and which follow from

(42) 1l -

(43) J e P Acafe ax<J e ™2,
_ j=1 0 3=0 n-

Sl

If n is sufficiently large then we have the inequalities

21 (k=-1)

—;\(x1+.. .+xk) =

-x(x1+...+xk)

(44) e (= BT < Ploy > xpes8y > B < e

To prove the first inequality let us place consecutive intervals of lengths =z, -
A

31/ /Mm%y, 3o/, 1/, % 1, jk_i/n, 1/n, xk on the interval [0, =)

L ,jk_l

starting at the origin., If for scme jl = 0,1,2,.‘..,;]2 = 0,1,2,.
one event occurs in each of the k-1 intervals of length 1/n and no event

=0,1,2,...

occurs in the remaining intervals, then this event implies that {e > X

, , 17 %0 9
8, > xk} . If we calculate the appropriate probabilities and use (42), then

we cbtain that the first inequality in (44) is valid for n > x .

- To preve the second inequality in (84) let us place consecutive intervals

of lengths X jl/n, 1/n, x2—2/n, ,j2/n, Im,..., xk_l—Z/n, jk_l/n_, 1/n, xk—2/n,

where . n > 2/Xi for i=1,2,...,n , on the interval [0, =) starting at the
origin. - If - {8, > 2/, 6, %5500, 8, > X}, then this event implies that-
= 0,1,2,... no event .occurs in

for-some = 0,1,250005 J5 = 05,152,000,

-any of the intervals of lengths X1 s x2-2/n,..,., xk-2/n . By calculating the

probability of this event, we obtain that the second inequality in (44) is

2,00

]
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valid for n z 2/%; (1 =1,2,...,n) .

If we let n > « in (44), then we obtain (41). From (41) it follows
that él; 82;..., ek are mutually independent random variables for k = 2,3,...
and éach variable has the distribution function (40). If every X, > 0
i-= 1,2;;..; k) in (41) except X5 s and X, = x> 0 , then we obtain that

> x} = e—)\x

(45) 4 Ble,

for J =1,2,0.., k and x >0 . Thus by (41) and (45) we obtain that
|
1

(46)

~ 1

{el > Xy 05 > Xgyeea,bp > xk} =mP{el > xllg{ez > X2}"ﬁf{ek > Xk}

for k=1,2,.,.. and X; >0, X5 > O0yeuny x>0 . By (45) and (46) we can

conclude that the theorem is true.

Théorém.3 makes it possible to define a homogeneous Poisson process in
a constrﬁctive way. Let us suppose that el, 02,..., ek"" is a sequence of
mitually independent and identically distributed random variables with
distribution function

1- e"A* for x>0,

(u7) | F(x) =
0 for x <0 5 Z/

where A is a positive constant.

DPefine TG 0 and T = el+ 85t A ek-'for k=1,2,... . For every
t >0 let w(t) be a random variable which takes on only nommegative integsrs

and satisfies the relation
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(48) vit) 2k} = {1, <t}
for all t >0 and k= 0,1,2,... .

By this definition the family of random variables {v(t) , 0 <t < =}
forms a Poisson process of density A . This fact can easily be proved by
using thé following characteristic property of the exponéntial distribution
function. .If 8 1s & random variable for which P{e < x} = F(x) is given
by (47), then for any u>0 and x >0 we have

| |
L ] \ - P{u <6 <utx} _ Flutx) - F(u)
(o) | Resumle -l = FopmSay -t T R

= F(x) ,
that is, thé conditional probability (49) does riot depend on u .

The possibility of the above constructive definition of the Poisson

process was essentially observed in 1911 by H. Bateman [ 97 J.

The next two theorems deal with the superposition and decomposition of

Poisson processes.

" Theorem 4, - Let {vi('t) ,0<t <w®} (1=1,2,...,r) be mutually

independent Poisson processes with densities A (1=1,2,...,r) . let
V() = v () + vy (8) + o0+ v (8) for £ 20. Then {u(t) ,0<t <=}

is a Poisson process of density A = A+ A t...+ >‘r .

1 2

' Proof. Obviously the point process {v(t) , O <t < =} satisfies

‘conditions (a) and (b). Since
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P{v(t) =k} = ) Plv,(6) = k IP{u, () = ky}oo P{v (£) = k }
172 T
(50) K k k-
(Lt) F0t) C...08) T K
=t 1" 2 cer Vi _ =2k (at)
=€ E Tk ... k1 =€ k!

L
k1+k2+ aee +kr=k 172 r

for k =0,1,2,... and t > O , therefore we can conclude that {v(t) ,

0 £t <=} is a Poisson process of density X .

Theorem 5. Let {v(t) , O £t <=} be a Poisson process of density a .

Independently of each other let us mark each event in the process by one of

the mmbers 1,2,...,r . lLet p; (i =1,2,...,r) be the probability that

an event 1s marked by 1 where 1] >0 and pl+ p2+...+ p. =1 . Denote

r ettt s smre

]

by yi{fg;) (i=1,2,...,r) the number of events marked by 1 and occurring -

in the interval (0, t] . Then {Vi(t) , 0 <t <=} 1is a Poisson process

A

of density AL = Dy and the processes {vi(t) , 0t <o} (1=1,2,...,r)

are rmitually independent.

" 'Proof. Obviously each point process {vi(t) > 0 <t <=} satisfies

conditions (a) and (b) and by Theorem 2 we obtain that

Nlj{vi(t) =k} = ] P{v(t) =n} (;1,)p]'.jf(l—pj_‘)n”k =

( ) n=k
51
k . n-k k
1 -,
kT o (n-k)? k!

for 'k =0,1,2,... and t 20 . Consequently .{v;(t) , 0 <t <=} isa

Poisson process of density }‘i for each i =1,2,...,r.



VII-45

Iir 0= to < tl< eee < tn where n = 2,3,..., then for j = 1,2,...,n
the n sets of random variables {vi(tj) V3 (fJ 1) for 1= 1,2,...,r}
are clearly mutually independent. Furthermore, within each sef all the r
random variables are mutually independent because for u >0 , t >0 and
k; =0,1,2,... (i =1,2,...,r) we have

E{vi(u+t) - v; () =k; for 1=1.2,...,r}=

(52) , ' (kptegta .tk )t Ky Kk, k,
=f{v(u+t) - v(u) = k1+k2+...+kr} T TR TPy Py P =
K. 1" 72 T
']r -\t (Ait) + r
= gle ———k—;—— = izlg{vi(u+t) - vi(u) =k} .

From the above facts it follows easily that the processes {vi(t) s

0O<t<w (1=1,2,...,r) are mutually independent.

- The following simple combinatorial result for Poisson processes has many

important applications.

Theorem 6. let {v(t) , 0 <t < =} be a separable Poisson process of

~density A, Then we have

(53) Plv(w) cu for O cust]v(t) =kt =[1- %. T

for k=0,1,2,... and t >0 where [x]' =max (0, x) .

Proof‘ ].et s define v, = v(i) - v(i-1) for i=1,2,... . Then {v,)

are Irmtua.lly mdependent and identically distributed random variables taking on
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nonnegative integers only.
If k>t , then (53) is cbviously O . If k <t , then we have
(54) P{v(u) <u for O <u < t|v(t) = k} = P{y to.ty <r for r=1,2,..
lv(t) =k} .

By Léma,20.2 we have

‘_- , . 3+
(55) Ng{vl+...+ v ST for r = l,2,...,k|vl+..e+ v = jy =[1- iJ_
for J =0,1,2,... . Hence if k <t , then

| K :

Plv(w) gu for O guzxtfu(t) =kl = ] (I~ PP{uK) = jlv(t) =k

A =0 A

. J
(56) :

—

= CJy Ky Ky kKik-j _ e
=l a-p @ a-HT %

This proves (53) for 0 <k <t and t >0.

We note that

(57} P{v(u) gu for O gu <t)=Pu(t) <t} - aP{vit) < t-1}
for t >0 . For by (53)

| t1
(58) Plu(u) su for Ocus<tl= ) (I- HPu) = ki .

If we take into consideration that
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. - A
(59) P(u(t) = k} = 22 Plo(t) = kel)
for k= 1,2,..., then (58 reduces to (57.
We can define more general Polsson processes than the homogeneous Poisscn
process discussed previously. In what follows we shall mention briefly non-

homogeneous and abstract Poisson processes.

- r’ -
First,let us consider nonhomogeneous Poisson processes. (see A. Renyi

[161 ] and C. Ryll-Nardzewski [ 168 ].) We can prove that if {v(t) ,
0 <t <=} 1s the most general point process which satisfies the conditions

‘1 .
(a) aij (e) and furthermore
(60) E{v(t) - v(t-0) =0} =1
for all t » O , then there exists a continuous, nondecreasing function A(t)
(0 <t <w®) with A(0) =0 such that

Kk
(61) Ng{v(t) - v@) =k} = e-LAE)=A(W)] [A(t)i?(u)j

for O<u<t and k =0,1,2,... . Then E{v(t)} = A(t) for ¢t >0 .

If {v(t) , 0 £t <=} 1s a point process which satisfies the condition
(a) and (61) with a function A(t) (0 <t < =) specified above, then we say
that {v(t) , 0 <t < «} 1is a Polsson process for which E{v(t)} = A(t)
for ﬁ__>_,0 . If A(t) (0 gt <) ig absolutely continuous, that is, if

it can be represented in the form
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9

(62) AE) = [ A(wdu

{
J
0
for t >0, where A(u) 1is a nonnegative and integrable function of u ,
then we say that {v(t) , 0 <t < »} is a Poisson process with density

A(t) for t >0,

If A(t) = at for ¢t > 0 where A 1is a positive constant, then
{v(t) , 0 2t <=} reduces to a hamogenecous Poisson process of density » .
If A{t) 1is not a linear function of t , then we say that {v(t) ,

0 <t <»} 1s a nonhomogeneous Polsson process.

Most of the results proved for homogeneous Poisson processes can easily
be extended to the general case which includes both homogeneous and non-—

hamogeneous Polsson processes.

Theorem 7. Let {v(t) , 0 <t < «} be a general Poisson process for

which E{v(t)} = A(t) for t >0 . Under the conditions that A(t) > 0 and

v(t) =n (n=1,2,...) the joint distribution of the coordinates of the n

random pcoints in (O, t] is the same as the joint distribution of the co-

ordinates arranged in increasing order of n random points distributed

independently of each other in the interval (0, t] in such a way that for

each point A(x)/A(t) is the probability that it lies in the interval (C, x]

where O<zxzst.

- Proof. If we replace the uniform distribution funét_ion by A(x)/A(t}
in the interval x e (0, t] in the proof of Theorem 2, then we obtain

Theorem 7. See also the avthor [ 178 ] .
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Theorem 3 has an essentially different form for nonhomogeneous Poisson

processes. See J. Mycielski [ 147 J.

Theorem 8. Let {vi(t) , 0<t <o} {1=1,2,...,r) Dbe independent

general Poisson processes for which E{vi(t)} = Ai(t) for £t >0 . Let
= ) i =
v(t) vl(t, + va(t) +o..F vr(t) for t >0 and A(t) Al(t) + A2(t) +o..

+A(t) for t£20. Then {v(t) ,0 <t <=} is a general Polsson process

for which RE{v{t)} = A(t) for t >0 .

' ProI of. The proof of Theorem U4 can easily be extended to cover this

more g;eneral case.
|

Theodrem 9. Let {v(t) , O <t < »} bz a general Poisson process for

- which E{v(t)} = A(t) if t >0 . Independently of each other let us mark

each event in the process by one of the numbers 1,2,...,r . Denote by

pi(t) (i =1,2,...,r) the probability that an event is marked by 1 if

it occurs at time t . We suppose that pi(t) >0 and pl(t) + p2(t) +...

+ pr(t) =1 for t >0 ., Denote by vi(t) ‘the number of events marked hy

1 and occurring in the interval (0, t] . Then {v,(t) , 05t <=}

(1=1,2,..., ) are independent Poisson processes for which

t
(63) E{"i““ = Ay () = é p; (W)da(w)

for. t > O provided that the integral (B3) exists.
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Proof. If instead of Theorem 2 we use Theorem 7 then the proof of this
theorem follows on the same lines as the proof of Theorem 5., The only
difference in the proofs is that by in (51) and (52) should be replaced
by Ai(t)/A(t) . In particular, now we have

o Ao A () K A(E) nk

for 0 <k<n and n>1 . Thus it follows that

) . k
-hs (8) [A ()]

(65) Plo(8) =k} =e -

for k=0,1,2,...and t >0 .

Both hamogerieous and nonhamnogenedcus Poisson pr”océsses can be defined
for more general spaces than the real line. Instead of the real line we
can consider Fuclidean spaces, metric spaces or general abstract spaces.

See A, Blanc~Lapierre and R. Fortet [100 1, and the author [ 179 1.

Iet us consider a random point distribution in a metric space X .
Denote by F the class of Borel subsets of X . For each S e F denote
by p(S) the number of random points in the set S . Then {p(S) , S ¢ FJ

determines a point process on X .

If u(S) 1s a measure, that is, a nonnegative and o-additive set
function, defined on F , then there exists a point process {p(S) , S e F}
such that 1if S e F and u(S) <« , then p(S) is a random variable with

distribution
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k
[a - S "~ fS
(66) Plp(3) =kl = e u(s) QL\{!)] .
where k = 0,1,2.,,, and for any n (n = 2,3,...) disjoint sets 3, SpueeesS,

having finite measures and belonging to F‘)the random variables p(Sl), 0(32),...,
p(Sn) are independent. We say that {p(S) , S e F} 1is a Polsson point
peocess on X . This process is campletely characterized by the set function

E{p(3)} = ﬁ(S) defined for S e F .

Theorems 2, 4, 5 or Theorems 7, 8, 9 have natural analogues also for

the stochastic process {p(S), S e F}.
i

!
Our next subject is the definition of compound Polsson processes. Before

defining the notion of a general campound Poisson process we shall consider
a simple but important particular case which can be obtained from.the . . .
definition of a Poisson process by removing condition (¢). The definition -

of this particular campound Poisson process 1s based on the following result. -

- Theorem 10. If v(t) denotes the number of events occurring in the:

time interval (0, t] in a random point process and if [v(t), 0 <t < =}

satisfies (a) and (b), then there exist nonnegative constants A Agseees

and X such that Al+ A2+ vee = A and

| J J 3
1 2 I

(67)  Plv(utt)=v(u) = k} - T —
IR Jyt2d e i =k 91T Jat e die

for u>0,t >0 and k =0,1,2,... where the summation is extended to- ‘!,
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all those ki = 0,1,2,... for which Jl+ 2J2+ L.+ kjk =k .

Proof. This theorem is a direct generalization of Thecorem 1 and in the proof
we _shall use the same notation as in the proof ofiTheorem 1. We can easily sez
that indeed there exists a probability space (2,3,P) andifamily of randam

variables {v(t) , O <t < =} for which conditions (a) and (b) and (67) are
satisfied.

Now we shall prove that 1if

(68) P{v(t) = k} = B (t) ,
then
(t) T(AAt)Y T ool. (W)
(69) Pk(t) = A L T S s £
: Jrd te . ki, =k 1092t e dpt

for £t 20 and k =0,1,2,... where Al, Az,,,,,ﬁand A are nonnegative

constants and Al+ Asteee =X

2

As we have seen in the proof of Thecrem 1 the prcbabilities {Pk(t)}

satisfy the following equation

(70) | Pk(t+u) = Pkm.(t)Pj(u)

)
3= J

for £t 20, ux20 and k=0,1,... .

From (70) it follows that either Pyt) =1 forall t 20, or Py(t) =0

for all ¢t >0 , or

(71) Pyt) = &7

li
®
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is a finite positive number.

for t > C where A
Ir Po(t) =1 forall t >0, then by (70) Pk(t) =0 for all

This corresponds to (67) with A =0 .

t >0 and k=1,2,... .

f

Ir Po(t)-= O for all t >0, then by (70) Pk(t) =0 for all
t 20 and k =1,2,... . This case is meaningless and should be excluded.

This éorresponds to (67) with A =« ,

| .

|

| .
It remains to prove (67) in the case where Po(t) is given by (71)

with a finite positive A
Now we shall prove by mathematical induction that the probabiliity
k

Pk(t) is given by (69) for k = 0,1,2,... where i,, Apseess N BTE NON-

negative constants for which AME Attt A <4
Then

0,1,...,k where k >1.

Iet us suppose that (69) is true for

we have
luPO(t)
(72) 1im T = A
t >0
and
P, (t)
(73 lim 5 = )\i
t-+0
Define

for 1 =1,2,...,k .
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J j 1,
) 1 2 K
(74) £ (6) = e (6) - T (A8) 708 = .o O 8)
l{'{'l L{+1‘ < + * s j ! J' ! L J, !

for k =0,1,... . Then by (70) we obtain that
(75) flaq (Br0) = £,(8) + £, (u)

for £+ >0 and uvu >0 . Since fk+1(t) is bounded in the interval [0,1] ,

it follows that

(76) | £a1(t) = Ay b

|
for £;o where

P, .. (t)
. k+1
(77 A = lim - - .
ktl gt
The constant )\k+1 is nomnegative, and since Pl(t)+‘°'+ Pk+l(t) = J_—Po(t) .
A A < A
it follows that l+...+ K+l =

Since (69) is true for k

i

0 , it follows by mathematical induction

that (69) is true for every k = 0,1,2,... and

P (t)
L = A

(78) un 2 =

t >0

for k=1,2,... . If we divide the equation

(79) L P (t) = 1-P.(t)
o] K 0

by t and let t >0 , then we obtain that
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(80)

e
>
A
>

k

Since (79) holds for all t >0 , therefore in (80) we have equality. This

canpletes the proof of the theorem.

We note that if Al = ) , then necessarily AN

in this case Theorem 10 reduces to Theorem 1 .

=0 for k>1, and

We say that a family of real random variables {v(t) , O <t < «} forms
a homogeneous compound Polsson point process if P{v(0) = 0} =1 , for

any flj)_i_tO;tl;... <t

n (n=2,3,...) the random variables v(tl)—v(to),

v(tz)-g-v(tl),.. .,v(tn)-—v(tn_l) are mutually independent and g{v(u+t)—v(u‘) =

is
k} = Pk(t)h glven by (67) for u>0,t >0 and k= 0,1,2,... where

>

Als A2,... are nonnegative constants, and A = At At is a finite

positive constant.

In the case of Poisson processes we assumed that in any finite interval
events occur singly with probability one. In the case of campound Poisscon

-e8
process we allow the occurrence of multiple events too.

-85
For the definition of campound Poisson point process, we refer to

M. Fujiwara [ 121 1, J. M. Wnittaker [ 183 ], and L. Janossy, A. Rényi

and J. Aczel [ 12617,
We note that if

(81) v(t) =

mr(t)

i
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for t > 0 where {vr(t) , 02t <} (r=1,2,...) are mutually independent
Poisson processes with densities - (r=1,2,...) where A (r=1,2,...)
are nonnegative constants with sum Al+ A2+... = A where A is a finite

positive number, then {v(t) , 0 <t < «} 1s a homogeneous compound Poisson

point process for which (67) holds.

The converse of the above statement is also true. This is the content

of the next theorem.

Theorem 11. If {v({t) , 0 2t <=} is a homogeneous campound Poisson

point process for which (67) holds with a finite positive A and vr(’c)

denotes the number of jumps of magnitude r occurring in the interval

(0,t] in the process {v(t) , C <t < «} , then {vr(t) » 0t <=}

(r =1,2,...) are mutually independent Poisson processes with densities

AL (r=1,2,...) .

Proof, If 0=ty <t <...<t where n=2,3,..., then for
J=12,..., n the n sets of random variables {Vr'(tj )_Vr-(tj—l) for

r=1,2,...} are clearly mutually independerit. Furthermore, within each
set all the randamn variables are mutually independent because for u > 0 ,

t;O,kI_=O,1,2,... (r =1,2,...) and m=1,2,... we have
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P{vr(u+t)—vr(u) =k for r=1,2,...,m}=

1°

o lUn e e, (917 e, )32
R N R R e L I'n 2'n
k n-'k "Gno"k
rp Ly m Ly _ _ t 1 m _
B @I e @ - - O
kl kﬁ
- ; ) :
. (Al+"'+)m)t'(klt' ces (%ﬁt)
! !
kll . s e kmO

From the above facts it follows easily that the processes '{vr(t) s, 0t < =}
(r = 1,2,...) are mutually independent Poisson processes with densities
Ao (f = 1,25000)

|

|
Wé note that Theorem 6 holds unchangeably for homogeneous compound
|

Poisson point processes.

Similarly tc the Poisson processes we can define more general compound
Poisson point processes than the homogeneous campound Poisson point process
discussed previously. Thus we can define nonhomogeneous and abstract

compound Poisson point processes.

The notion of a compound Polsson point process leads in a natural way

to the definition of a geheral compound Poisson process.

!Definition 2. Let {v(t) , 0 <t <=} be a Polsson process of density i .

Let X7s Xoseees %i,..‘ be mutually independent and identically distributed

real randan variables which are independent of the process {v(t) , O <t < =} ,

Iet us define
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(83) x(t) = ) X

1<i<v(t) *

for t 20 . Wesay that {x(t) , O £t < «} is a homogeneous compound

Poisson process.

If, in particular, ,E{Xi = 1} =1 , then the above definition reduces
to the definition of a homogeneous Poisson process, and if le{xi = r} = A}_/A
(r = 1,2,...)  where at aptees =2 is a finite positive number, then the
above definition reduces to the definition of a homogeneous compound Poisson

point { nrocess.

A hamogeneous compound Poisson process {x(t) , O <t < =} satisfies

the following propertiles:

(1) Homogenity. The probability Af{x(u+t)-x(u) < x} where u>0,

t 20 does not depend on u .

(ii) Independent increments. For any O <t. < t,<... < t, where

0 1

n=2,3,..., the random variables x(tj)—x(tj_ for J =1,2,...,n are

1)
mutually independent.
(iii) Finite jump density. With probability one the limits x(ut+0)
. .
and x(u-0) exist for all u>0. If v (t) denotes the nurber of points
u in the interval (0, t] for which x(utO)-x(u-0) # O , then with

probability one v (£) is a finite random variable for every t > O and

(84) E(v' (£)} = A6[1-P{x, = O}] < = .
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(iv) We have P{y(0) =0} =1 .

Conversely, if we suppose that {x(t) , O <t < »} 1is a separable
real stochastic process which satisfies conditions (i), (ii) and (iv), then
with probability one the limits x(ut0) and x(u-0) exist for all u > O .
ILet us define v*(t) for t >0 as above. If in addition v*(t) is a
finite random variable for which E{v*(t)} <o o then {x(t) , 0 <t < =}

is a homogeneous compound Polsson process.

We note that if {x{t) , 0 £t < «} 1s a separable compound Poisson
process and v*(t, A) denotes the number of points u in the interval
(O,v t] for which x(utO)-x(u-0) ¢ A where A is a linear Borel set, then
' {v*(‘c, A) , 0 £t <~} 1is a Polisson process. If x(t) 1s defined by (83),
then .j']{v(t, A)} = A;P:{xi e A}y . If Al’ A2,..., Ar
Borel sets, then {v*(t, Ai) , 0t < oo} (1=1,2,...,r) are mutually

are disjoint linear

independent Polsson processes.' These results can be deduced as particular
cases of more general results of I. I. Gikhman and A. V. Skorokhod [ 44

pp. 255-28217.

let
(85) Plxg = x} = H(x)

and denote by Hn(x) (n =1,2,...) the n~th iterated convolution of H(x)

with itself. let Hy(x) =1 for x>0 and H(x) =0 for x<O0 .

From (82 it follows that
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w n
- -\t (}\t)
) e S5 Hn(x)

(86) P{x(t) < x} =
e n=0

for £t >0 and all x.

Let

A

(87) §(s) = [ e %aH(x)
far Ré (é) =0, Then
(83) E(eSX(F)) o ML-H()]

i
for £ >0 and Re(s) =0 .

Canpound Poisscn processes were encountered as early as in 1903 by

F. Lundberg [ 134 ], in 1929 by B. De Finetti [ 213 ] and in 1933 by

" A. Ya. Knintchine [ 128 1.

Nonhomogeneous and. abstract compound Poisson processes can also be
28 P

introduced in a natural way.

this
We shall close.section by mentioning two useful theorems for homogerieous

campound Poisson processes.

" Theorem 12. Iet {x(t) , 0 2t <=} be a compound Poisson process

2

L X S . E 3 - et ~ 4 & .m T e , } - Ay .
defined by (83). If E{x,J =a exists ang if Varix, } = o is o finite

positive number, then

(89) lim P{ —-’i—(ﬁ—l@-@- < x} = o(x)

T ]})"(a2+ 02)t
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" where ¢(x) is the rniormal distribution function.

Proof. Let

(90) X (6) = K&l at

v )\(ag-}' 02 )1:

for t >0 . If we take into consideration that Y(g) = 1—sa+52(a2+02)/2+o(s)
as s >0, then by (88) we get that
2

*
(91) mng{e—Sx (t)} = S5/

t >
for Re(s) = O . Hence (89) follows by Theorem 41.9 .

We can also use Theorem 45,2 in proving (89).

Iir H(X} belongs to the domain of attraction of a nondegenerate stable
distribution function, then by suitable normalization x(t) also has a
nondegenerate limiting distribution which can be found either by Theorem U45.2

or by using the same method which we used in proving Theorem 45.2 .

The next theorem is concerned with a homogeneous compound Polsson

process which has only nonnegative jumps with probability one.
We need the following auxiliary theorem.

(hl!wLemmg 1. Let X5 Xosrees Xp be mutually independent nornegative

real'randcm‘variables. let Tys Toseees Ty be the .coordinates arranged

in increasing order of magnitude of n points distributed uniformly and

independently of each other in the interval (0, t] . If {x;} and {;]

are also independent, then
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1~% for Osy<t ,

(92) Plyptestyy <74

; <1y for 1= l,2,...,n{x1+.‘.+xn =y} =

0 for y>t,

where the conditional probability is defined up to an equivalence.

 Proof. We prove (92) by mathematical induction. If n =1, then (92)
is obviously trué. Let us suppose that (92) is true for n-1 where
n= .'2',3“,-.».}. ~We shall prove that it is true for n too. Thus it follows
that (92) 1s true for every n = 1,2,... .

If y >t , then (92) is trivially true. Let O <y <t . If T, u

where O < u £t , then under this condition the randam variables Tys Tosenes
fn 3 can be considered as the coordinates arranged in increasing order of
n-1 points distributed uniformly and independently of each other in the

iriterval '(VO, u] . Now by assumption

| = = ..t = T =U
le{xl+...+xi 2 Ti for 1=1,...,n |X1+"'+Xn-l Z, xl+., Xn Y, n }

(93)

l-—zﬁ for 0f£z2u and yLusilt,

0 otherwise .
Since

r N - = (n"'l) )

( 9h) Elxpreot x o bt g = 93 Al

‘therefore by (93) we obtain that
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. - 1 i = ot = = =
Plxpteetyy 21y for 1=1,...n fxl s Xy Y s Ty = ud

n-1)y o
i for O;y;__uf__t,
(95) = ,
otherwise ,
Since
. n
(96) _ P{rnf_:u}=(€) for O<uc<t,

by (95) we get finally that

ﬁ{xl+'...+xi sty for i=1,...n |)<1+...+><n =y} =
(97) &
- -1
| _ oy T du Ly
né (2 nu )(t) t Tt

~for O <y <t . Hence we can conclude that (92) is valid for all n = 1,2,... .

We note that Lemma 1 remains valid unchangeably if assume only that
X7 Xoseees X, 8T interchangeable nonnegative real random variables which

are independent of {ri} . For the proof see reference [ 8% 1] .

Theorem 13. Let {x(t) , O <t < «} be a separable homogeneous

compound Poisson process which has only nonnegative jumps with probability one.

Then we have

1-% for 0Ozyst,

(98) P{x(u) cu for O<uzt [x(t) =y} = _
A O otherwise,

where the conditional probability is defined up to an equivalence.
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fg)_o_f_‘. Denote by wv(t) the number of jumps occurring in the interval
(o‘,' t] in the process {x(t) , 0 <t <} . Then {v(t) , 0 <t <«} is a
Poisson process. Denote by T1s Tpseees Tpsans the times when an event
occufain the Polsson process. If n=1,2,..., then by Theorem 2 and by

lemma 1 we can write that

P{xy(u) 2u for O<uz<t |x(t) =y, vit) =n} =

Plxgteeetxg 21y for i=1,...n |x(t) = y, v(t) = n} =

(99) S
: {1-L rfor Ozyzt,

1

C otherwise .

!
|
If n ='= O , then (99) is cbvious. Since (99) does not depend on n , (98)

follows immediately.
From (98) it follows that
(100) P{x(u) 2u for O <ux<t}=E{[l- -Vx%l]*'}

for £ >0 .

|

49, RECURRENT AND COMPOUND RE'-CQRRENT PROCESSES
@orem 48.3 made it possible to gilve a constructive definition of a

hanogeneous Poisson process. This definition is given after the proof of

Theorem 48.3, and it suggests the following generalization.

Definition 1. Let us suppose that 91’ 82,.. . ek,.,. .. 1s a sequence

of mutually independent and identically distributed positive randam variablies

with distribution function Ple, = x} = F(x) . Define Ty = 0 and T =

8+ Ot t 6 for k=1,2,... . Forevery t >0 let v(t) be a random

vard.able which takes on only nonnegative integers and satisfies the relation
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(1 {v(£) 2k} = {r, <%}

for all t 20 and k =0,1,2,... . We say that {v(t) , 0 <t <=} is

 a recurrent stochastic process. Eha’c is if in the time interval (O, «)
t

eventgoccur at random, if v(t) denotes the number of events occurring in
the time interval (O, tl , and if the time differences between successive
events are mutually independent and identically distributed positive random

variables, then we say that {v(t) , O <t < =} is a recurrent process.

If, in particular,

-AX

i-e for x>0,

|
| F(x) =

(2)
. 0 for x <0,

where X 1s a posifiive constant, iIn the previous definition, then {v(t) ,

0 <t < «} reduces to a homogeneous Poisson process with density A

Let us introduce the following notation

[~ ]

(3) o(s) = é e ar(x)

for Re(s) >0,

(-]

(4) a = [ xdF(x)
0
and if a <« , then let
(5) % = | (x-a)%aF(x) |

0
Denote by Frl(x) the n-th iterated convolution of  F(x) with itself

and let Fo(x) =1 for x>0 and Fy(x) =0 for x<0.
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The distribution of v(t) can be obtalned by the following formula

&) P(®) gny =1 -F o (8)

for £t >0 and n =0,1,2,... . For we have

v

) Plu(e) £n} = Pl > t) = Plet...t g

for ¢t >0 and n=0,1,2,... .

The Leplace transform of P{v(t) <n} is given by

o : n+1
(8) [ & pru(e) < niat = 2olel)]
0 i "

n+l

for Re(s) > 0 . Knowing ¢(s) we can obtain P{v(t) < n} by inversion

A

fram (8),
Iet

_ v(t)
(9) | b (t) =B,

be the r—th binamial moment of v(t) for r = 0,1,2,... .

The r-th binamial moment br(t> (r = 0,1,2,...) 1is a nondecreasing

function of t and is finlite for every t . We have

: N L S -1,
(100 b, (t) = nzr CPIFE, ()

for r=1,2,... « Forif r=1,2,..,, then

t) =1 end



VII-67

oo

]

(11) b (t) = ) (;f}vf\’{v(f:) = n‘} =

.o =1’

(i:})P{v(t) > n}
B

i ~—3

r

and (10) follows by (6).

If we take into consideration that for every t > O there is an s
(s = 1,2,...) such that Fs(t) <1 and further that Fs+n(t) ;Fs(t)Fn(t)
for all n = 0,1,2,..., then we obtain easily from (10) that br(t) < w
for all t >0 . Furthermore, we can easily see that for every t > O there

exists a finite C(t) such that
|

(12) b,(8) < 61T

i

for r»=0,1,2,... .

Since

(2]

: n-1, n_ , z %
(13) nzr' (I’—l) z = ('l'_—z‘)

for |z| <1 , therefore by (10) we obtain that

® - st = r0(s) r
(an) (j;e db (”)"[1_757]

for Re(s) >0 and r=1,2,... . If r =0, then (14) is trivially true.
By (14) we can write also that
® -8t ® st RS
(15) [ e da () =[[ e a,(£)]
: 0 r 0 1

for r=0,1,2,ec. «
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From (15) we can drew an interesting conclusion. If b,(t) = E{v(t) }
is known for all t 2 O , then by (15) br(t) is unlquely determined for
all © 20 and r=1,2,... . If ¢(t) <1 in (12), then we can write

down that

(16) P{u(t) =k} = ] (-1)r'k(£)br(t)
- =K

for k = 0,1,2, . If C(t) <=, then P{v(t) =k} can be obtained by
a similar formula given in reference [ 84 ] . That is, in the case of a
recurrent process, the function bl(t) =N§{V(t)} canpletely determines
the distribution of v(t) for all t >0 . This can also be seen by (8)
and (14)., If r =1 in (14), then we obtain that

[ & @, (t)

(a7 $(s) = e
1+ f e_Stdbl(t)
O .

for Re(s) > 0, and knowing ¢(s) the distribution of (&) can be
obtained by (8). There are many examples for recurrent processes where it is
easier to determine E{v(t)} than F(x) , and in this case the above

observations are very useful.
let
(18) m (t) = E{[v(t)]"}

for r=0,1,2,..., that is, mr(t;) 18 the r~th moment of v(t) . We have
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K r .
(19) m(t) = ] @3y 5t by(t)
j=0 *

for r = 0,1,2,... where the numbers é‘; (J = 0,1,...,r) are 3tirling

mmber*s of the second kind. We have @8 =1 ,@f= O for r=1,2,..., and

(20) R 3 it
i=0

for 1< <r. (SeeCh.Jordan [49 pp. 168-173].) Formula (19) follows

irmediately from the identity

! r_ ovoad L x
(21) X -jéc@}rg!(j)

which holds for r = 0,1,2,... and for all x .
let us introduce the notation

(22) m(t) = E{v(t)} ,

that is m(t) ml(t) = bl(t) and

(23) a(t) = Variv(t)} ,

that 1s, a(6) = my(t) - [m ()17 = 2o,(6) + by (8) - [b ()17 .

- In what follows we are interested in studying the asymptotic distribution

of v(t) as t -+« and the limiting behavicr of m(t) and d(t) as t + = ,

" If - F(x) -belongs to the danain of attraction of a nondegenerate stable .

distribution functior, then by suitable normalization- L has a nondegenerate .
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limiting distribution as n » « . In this case by (1) we can conclude that
by suitable normalization v(t) also has a nondegenerate limiting distribution

as € -« ,

In finding the asymptotic distribution of vw(t) as t » «» it will be
convenient to extend the definition of L (n=0,1,2,...) tec a continuous

parameter in the following way

(24) ’ L forn<l<u sn.  (n=0,1,2,...) .

Then by Theorem 44,6 and Theorem U4.8 we can conclude that if F(x)
belong:% to the domain of attracticn of a stable distribution function R{x)
of type S(a,1,c,0) where O < a % 2 and c¢ > 0 , then there exist two

functions % and Bu > 0 where lim Bu = o  guch that

u-> e
T - Au
(25) Lim P{ —g— < x} = R(x) .
u > @ u
By Problem 46.12 we have
(26) B, = u% W)
where ul_i)mﬁﬁ{%% =1 forevery w >0,

If a<e-and O < 02 < = o then by Theorem 44,6 F(x) belongs to the
donain-of attraction of‘ the normal distribution function ¢(x) , and (25)

holds with R(x) = '@(x) (a=2, c=1/2) , A

y =au,and B = ovu .

1N
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*° { dr(u)

L1
27) 1im —L8 = =0,
x+ o [ udf(u)

lul<x

then by Theorem 44.6 F(x) belongs to the domain of attraction of the normal
distribution function &(x) , and (25) holds with R(x) = ¢(x) (o=2, c=1/2),
1\1 = gu , and if 02 = « , then Bu > 0 can be chosen in such a way that

(28) um L [ @G =1

1
u »oBY (x|<«eb
y (Xl <eBy

o

for same e > O .

(29) 1im _];...____F‘_g..)_(.): wa

X > o 1-F(wx)

for every w >0 where O < a <2 , then F(x) belongs to the domain of
attraction of a stable distribution function R(x) of type S(a,1l,c,0)

where ¢ > 0, and in (25) we can choose Bu > 0 1in such a way that

2¢cr (o) sin &7

—a n 5 for a#1,
{30) 1lim u[l—-F(Bux)] =
U= 22 for o =1
X
for x >0, end Au =0 for C<a<1l, Au = au for l<o <2, and
'( .201:3u ]
(31) A, =u [ xdF(x) = —= [log t- (1-0)]

|x|<B
u
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for a =1 where 1 1s an arbitrary posifive number and C = 0,577215...

is Euler's consbant. We note that by Problem 46.12 W& have
Aan T 9By e
(32) 1jn;—ﬁi—7§———— == log w
u > Wl

if a=1 forany w >0 .

By using the above results we can find the asymptotic distribution of

v(t) as t + « 1in each case.

Bf;l (1) we have
|
|

(33) {v(t) > u}

1
o
~

fin
ct
[—

forall t>20 and uzo0.

Theorem 1. If O < o < w » then we have

v(t)- 13;:
(34) 1im P{—=—— < x} = ¢(x) .
t > 2
gt
a3

Proof. In this case by the central limit theorem we have

T, — au

(35) 1im P{

< x} = ¢(x)
u > o o/u

for every x . If we write
(36) t = au + xovl ,

then by (33) and (35) it follows that
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(37) lim P{v(t) > ul = é(x)
£ > o
be o
where u can,determined by (36). For if u -+« , then t > « for any x .

By (36) we can easily prove that

u_. ———

(38) lim —2& — = .x .
t -> G 9'. t
a a

{(39) | lim P{ ——== 2 -x} = &{x)

wlja
o

§
for any x . Since &(-x) = 1-2(x) , therefore (39) implies (34).

Theorem 2. If (29) holds with O < a < 1, then

]
(40)  lim P{v(t)[1-F(t)] < x} = 1-R([59%(9~‘-’— sin 2117)

Lro

for x > O where R(x) is a stable distribution function of type S(¢,1,c,0) .

Proof. In this case we have

~

(41) lim P{ =% < x} = R(x)

u >

e

where R(x) =0 for x <0 and Bu > 0 satisfies (30) for any x > C . If

x >0 and if we write
(42) t = Bux R

then by (33) ard (41) it follows that



(43) lim P{u(t) > u} = R(x)
t > &

for x > 0 where u can be determined by (42). Now fram (30) it follows

that

(L) lim u[1-F(t)] = 20@) an
t > x®

Thus by ({&3) and (44) we obtain that

(h5) lim POv(£)[1-F(8)] 2 2_011(_32 sin %5} = R(x)

t -+ X
for x > 0 . Hence (40) follows immediately. In (40} the dependence on ¢

is only apparent.
Note. If

(L46) lim x*[1-F(x)] = q

X > o
where O <o <1 and g > O, then Theorem 2 is applicable and by (40) we

have

1

, . qgv(t) _ 2cr(a) am4o
(47) tlfné"g{__t“ < x} = I-R([=57 sin 571%)

for x>0,

Theorem 3. If (29) holds with 1 < a < 2 , then

. t
\)(L) - 'é-
(48) lim P{ —'—“_m-/z__f__ x} = 1-R{~x)

T Bta
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for everv x where R(x) 1s a stable distribution function of type

3(e,1,¢,0) and B_ >0 can te obtained by

t

——-———2015,(0;) sin - .

(49) lim £[1-F(B,)] = =% :

t—>oo

Proof. In this case we have

Tu— au
(50) ‘ lim P{ —5

u > u

< x} = R(x)

for every x where Bu > 0 satisfies (30) for any x > O . If we write

‘r
(51) t =au+ x By,
then by (33) and (50) it follows that
(52) limNE{v(t) > u} = R(x)
Lt >

where u can be determined by (51). Fer if u >« , then t +« for any x .
If we make use of the fact that Bu has the form (25), then we can prove
that

.t

u - a‘
(53) lim ———r—m = —x .

Thus by (52) and (53) we obtain that

v(t) - £
P a
o S I ey 2 0 T R
. 2

for any x .. Hence (48) follows. Again the dependence on ¢ 1is only apparent

in (48).
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Note . If

(55) lim x*[1-F(x)] = g

X > w

where 1< g <2 and q > O , then Theorem 3 is applicable and by (48) we

have
p v(t) '"g'
G P R £ T R
t

where
iy

(57 B, = [—3 ¢
| 20I‘(a)sin2—

This follows fram (30) and (55).

2 ,
If (28) holds and ¢ = » , then in a similar way as (48) we cbtain that
v(t) - %
(58) lim P{ Y x} = o(x)
t + Bt a

where Bt > O can be obtained by (28).

The case where o = 1 1s somewhat more complicated, hut in a similar
way as above we can also cbtain the asymptotic distribution of v(t) as

.t > =, For this case we mention only an example. Let

(59) F(x) = }
0 for x< 1.

Then by Theorem 44.8 we can prove that

.
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(60) lim P{ —+—o

w -+ Fntad in
where R{x) 1is a steble distribution function of type S(1,1, *g-, 1-0)
where C = 0.577215 ... 1s Luler's constant. (See Problem 46.19 . )

If we write

(61) ‘ t=ulogu+xu,
then
- t
. Y~ Tog t©
( 62) lim — 2 =,
t > 00 ————
, 2
| (log t)

and siﬁme_by (33) and (60) we have

(63) lim P{v(t) > u} = R(x) ,

t > w

therefore it follows that

W(t) = e
(64) lim P{ T oz b > -x} = R(x)
e (log £)°
or
t
(65) Lim P{ e ; 192 L ¢ %) = 1-R(~x)
e (log £)2

for every x .

The limit distributions (34), (40), and (U48) were found for a lattice
distribution function F(x) in 1840 by W. Feller [ 206 . For the general

case see the author [ 263 1, [264 ] .
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, -es

The theory of recurrent proces;mhas attracted much attention in connection
with industrial replacement problems. See for example H. Hadwiger [214 ]
and A. Totka [225 1. In industrial replacement problems we assume that a
machine works continuously in the time interval (0, «) and if a part of
the machine breaks down, then we replace it immediately by a similar part.
Denote by 61,92,,.., ek,.,. the lifetimes of the successive parts used in
the machine in the time interval (0, =) , and denote by v(t) the number
of replacements in the time interval (0, t] . If we suppose that {o } is

k
a sequence of mutually independent and identically distributed positive
randanlvariables with distribution function hgjek < x} = F(x) , then {v(t) ,
0t L =} is a recurrent process as defined previously. It is Important
to know the stochastic behavior of {vw(t) , 0 £t < «} , for example, if

we want to decide how large the stock of the spare parts should be in order

to satisfy the demand 1n a given time interval with high probability.

The first results were concerned with the asymptotic behavior of the

expectation

(66) m(t) = E{v(t)} = 21 F (t) .
n=.

We can easily seze that m(f) satisfies the following integral equatiocn

(67) m(t) = F(t) + (f)t m(t-x)dF(x)
for t >0 .

If
(68) Of Ple, = jdl =1
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for sane 4 > O , then we say that F(x) 1s a lattice distribution function
and d > O 1s called the step of F(x) if d is the largest positive
number wiich satisfies (68). If d > O is the step of a lattice distribution
function F(x) , then the g.c.d. {j : Pfe, =Jd} > 0} =1 . If F(x) 1s

a lattice distribution function with step d , then by introducing a new time

scale we can achieve that d becomes 1 .

If F(x) 1is a lattice distribution function with step 1, then let us

wurite
! . ‘. \
(69) £; = F(J) - F(3-0)
s
i
for j =0,1,2,... and
(70) u, = m(n) - m(n-1)
for n=1,2,... and Uy = 1 . In this case
(71) m(t) = u+ uste.tu

for n<t < ntl and (67) can be expressed in the following equivalent form

n
2 =. f, .
(72) w, jél U5
for n=1,2,... . If we define
«xQ
(73) r, = ¥ _ fj
J=ntl

for n=0,1,2,...; then by (72) we can prove that
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(74) r.u ., =1
for n=0,1,2,... .

In the theory of recurrent processes it has been first conjectured that

(75) 1im -
where a is defined by (4).

In 1940 H. Richter [ 234 ] demonstrated that if o> < » and F(x) 1is

an absélutely continuous distribution function or a lattice distribution
1
|
function, then (75) is true. Richter proved also that if d(t) = Var{v(t)! ,

then under some restrictions on F(x) we have

L) _ o2 ey
(76) lim —~% = — ,
£ > w m(t) a2

In 1941 W. Feller [ 205 ] proved that (75) is generally true without making
any restriction on F(x) . Feller used a Tauberian theorem. (See Theorem
9.13 in the Appendixe. ) However, we can prove this result in an

elementary way, which we shall demonstrate soon. Feller alsd proved that if
77 a, = [ x"aF(x)
T 5

oY)

is finite for some r > 2 and if some other conditions are satisfisd too, then

(78) 1im t77° [m(t) - =1=0.
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In 1942 H. Schwarz [ 236 ] tco proved that (75) is true if a < = and
if ¥(x) 1s either a lattice distribution function or an absolutely contiruous
distribution function. He used a Tauberian theorem. (See Theorem 9.13

in the Appendix.) Sehwartz alsc proved that Lim d(t)/t = O .

t+oe

In 1944 S. Tacklind [ 271] proved in an elementary way that

o(t) if a<w,
(19 m(t) - <= (t*T) if a_ <= = (1,2)
79) . -3 0 if a, or sane r e(1,2),
L o(1) if a, <=,
and in 1945 S. Tacklind [ 272 ] proved that if a, < for some v > 2,
and if F(x) is not a lattice distribufion functicn, then
. i 0'2 1l
(80) lim [m(t) - §] = = - 5 .
L > 2a
Furthermore, if p <= for sane r > 2 , and if F(x) is a lattice
distribution function with step 1 , then
(] + J-2— 02 1
(81) lim [m(t) - 3 ] = 5= 5 .
tre 2a

In (80) and (81) the condition a, < for some r > 2 can be replaced
by the condition 02 < o , This was proved in 1949 by W. Feller [206 ] for
(81) and in 1954 by W. L. Smith [553%] for (80). These authors demonstrated

also that (76) is valid if we assume only that 02 <,

In the case when F(x) 1is an absolutely continuous distribution function,

then mt'(t) exists almost everywhere and it is interesting to find
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conditions under which

(82) lim m'(t) = é

f‘—)oo

v

exists. Such conditions were given in 1941 by W. Feller ! 205 1, in 1945

by S. Tacklind [271 ], in 1953 by D. R. Cox and W. L. Smith [ 166] ard

in 1954 by W, L. Smith [553 ],[ 554].

Now we shall prove that (75) is generally true. First we ghall consider
the lattice case, and then the general case. The following proofs are

entirely elementary.

g’_géorqn L, Ir F(x) is a lattice distribution function, and if

20

(83) a = [ xdf(x) ,
om(t) _ 1
( 814) tl_J;mm £ = 'é- .

If a=«, then 1/a=0,

Proof. We may assume without loss of generality that F(x) has step 1 .

In this case we shall prove thet

Urt Ut oue + 1
o % Y

(85) 1lim

1
n > « a

n+i
where u, is defined (70). ‘his implies (84).

Now by (74) we have the inequality



(86) n+l = our < (] ud ] r).
Jtksn Y7 j=0 ¢ k=0
Hence
n
Z U.J.
(87) n = n+l
LTy
=0 X
If a<=, then | r,=a ad if a ==, then
: k=0
n >« 1in (87), then we obtain that
z 1l
| L
i 1 v . = Y
(88) : a5 < lim inf L——n-n-l .

N>«

On the other hand, if 0 < s < n , then by (74) we have

nvl = )

S
r) .

k=0

nES
(89) u,r, > u, ) (
k 520 J

Henece it follows that

(30) lim sup

hae Dnal

for s =0,1,2,... . If s - 1in (90), then we get

)
J=0
n+l

(91)

1im sup
n > x

<

ORI

By (88) and (91) we obtain (85) where 1/a = C

the theorem.

] v o=,
k=0 X

If

if a =« .. This proves
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Theorem 5. If

(92) a = [ xdf(x) ,
0
then
{93) 1im WE) L
t a
£t >

vhere l/a=0 for a= o.

jr_go_q_t:. First , let a ==, In this case let us associate a new recurrent
procéss' (v(t) , 0 <t <=} with the process {v(t) , O <t < =} Dby assuning
that the recurrence times are 'e'k =[] +1 (k=1,2,...) where [x]
~denotes the integral part of x . Let m(t) =E{U(f;)} . Obviously we have
m(t) cm(t) . If a=x, then g{'.e?k} = » gnd by Theorem 4 it follows that
1im m(t)/t = 0 . This implies {(93) for a = = ,

t>w

Second, let a <« ., Then we have the inequality

m(t) < m(h)+1 + m(h)
t

1 1
3\ — et}
(9% a ¢ = = h t

for t>0 and h>0 . Since the event {v(t)+l = n} and the random

variables B 41> Fpppoc-e € independent for n = 1,2,..., it follows by

r+
Thecrem 6.1 of the Appendix that

(95) ,E‘{T\;(t)-!-l} = [m(t)+lla 2 ¢

The last inequality follows from the Tact that To(E)41 = t . By (95) we
Obtain the first inequality in (94). To prove the second inequality in

(94), let us observe that
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(96) n(uth) - m(u) < m(a)+l

hoids for a1l u >0 andh >0 . Let nh <t < (ntl)h . If we add (96)

for u = t-h, t~2h,...,t-nh and if we take into consideration that m(t-nh) <

m(h) , then we get the inequality
(97) m(t) < (lm(h) +n < £ (m(h)+1] + m(h)
which proves the second half of (94).

Fran (94) it follows that

(98) < < lim ufri‘é-‘i)— < lir sup

) t> «

m(t) < m(h)+1
t = h

for all h > O . Now we shall prove that

m(h)+1 P
h =a-c

(99) lim sup
' h > e

where ¢ is any positive number. By (98) and (99) we get (93).

Yo prove (99) for every ¢ > O let us associate a new recurrent process
{v(t) , 0 <t <=} with the process {v(t) , O <t < =} by assuming that
the recurrence times are 5k = e[e}/s] (k =1,2,...) . Let m(t) =E{§)—(t)} :
Since a-e <& =E{8 ) <a , it follows from Theorem ! that

(100) 1im WEL oL
a.

Finally, the inequality m(t) <m(t) and (100) imply (99). This completes

the proof of theoranm,
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The next two theorems give more information about the asymptotic behavior
of m(t) as t > . Thess theorems have many impcrtant applications in

the theories of Markov chains and stochastic processes.

The following theorem can be deduced from a more general theorem of

’

o i 2
"~ A. N. Kolmogorov [ 221 ]. In 1949 P. Erdos, W. Feller and H. Pollard E}Povi ded
/s

an elementary proof of this theorem.

Theorem 6. If F(x) 1is a lattice distribution function with step 4 ,

then

I

mC

(101) 1im [m{nd+d) - m{nd)] =

Il > o

where a 1is defined by (83). If a= o, then l/a=0.

‘Proof. We shall use the same notation as in the proof of Theorem 4.
We may assume without loss of generality that F(x) has step 1 , that is,
d=1. We shall prove that

(102) limu ==
Nswh &

which implies (101).
We shall use the relations (72) and (74) and that g.c.d{j:f:j >0} =1.

- Since O U, L 1 , therefore there exists a number A = lim sup U,
= = B

and there exists a sequenceé n,, Nyye.. such tixat limu_ = A,
L
. X . AV - AV .
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Now we shall prove that if fj > 0 5 then

(203) . | lmu, _.=2.

v o+ oy
By (72) we can write that
A= 1limu = 1im inf{f.u
in

(104) i#j

. } <
i —
\Y)

n

\Y
.+ ) f.u
J *'1:1 i n

m -]
f,liminfu .+ ) f.+ } f
N N A= T R P-TE
i#j

fia

forany m=1,2,... . If m~>e 1in (104), then we get

l

; (1-£.)

| A< f, lminfu .+ A(1-f) .
I e  n-d J

<— By (105) we have lim inf u, -3 > A . By definition, we have
Vo> v
lim sup u, —3 £ 2. Thus (103) follows.
AV]

v >

Accordingly, we have proved that if lim u, = A and fJ. > 0 , then
vV > ooy
lim u - = A,
AV Y

Since g.c.d{j : fJ. >0} =1, we can find a finite number of positive
integers Ji» 32,..., JS such that fjl >0, sz > Oh00ey f‘js >0 and
g.c.d{jl, J PYIRRY J S} = 1 . By the repeated applicationsof the previous result
we can conclude that if 1im u, = A, then 1im Wk = X where
V > ® Y AV ) I\;—

(106) k = rid it T, St e ¥ rs‘js

and s

can be represented in the form (106)., Therefore 1lim W, _, = A whenever

vV ooy

Thseesy Ty are normegative integers. Every integer k > J ]j Q.a.jq



VII-87

k2a=Jidedy

If we put n n —q in (74), then we obtain that

m
(107} ) r.u L <1
j=O J nv"q_'«.]
for 0 <m in-q. If v >« in (107), then for any m = 0,1,2,... we get
m
(108) » A) r.<l. .
j=0 Y

If a=«, then ) r'J. = ® , and it follows from (108) that A =0 .
; tj:O :

. 1
This proves that (102) holds with 1/a =0 .

|

| (o]
If a<we,then ] r =a,andby (108) it follows that
J=0 *
(109; XA = 1lim sup u_ < L
/ n=a "

n =+ o

Finally, we shall prove that if a < « , then

s s 1

(110) y—llmlnfun;-aj,

n- e

Fran (109) and (110) it follows that » =y = 1/a which proves (102).

We can prove (110) in a similar way as (109). If y = lim inf u, , then
there is a sequence n,, N,,... such that 1lim o= B; ;sojing (72) we
can prove that if fj > 0 , then \)l_jfnmun\)_; : Y :’;.lso holds. In exactly the
same way as before this implies that 1im U o~y for k>2q. If a<e,

Yy > oy

then for any ¢ » 0 and for su.fficien‘ply large m we havé r

m+l+ rm2+. ..<E.

Thus by (64) we have
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n

(111)- ] r.u

N —ge] = l-e
j=0 J T,4 J

for n~g 2m if m dis large enough. If v > « in (111), then we get

m .
(112) y) r,xl-c¢.
J=0

If m~>o in (112), then we get ya > 1 -¢ . Since € > 0 1is arbitrary,

therefore vya > 1 . This proves (110))and (109) and (110) imply (102) for

a < o« .
In 1945 S. Tacklind [271] found the result (80) which implies that

(113) Lim [m(t+0) - m(t)] = 2

£t > »

for any h > 0 if F(x) 1is not a lattice distribution function and a, <
for same r > 2 where a, 1is defined by (77). In 1948 J. L. Doob [ 199]
provad that (113) holds if Fy(x) is not a singular distribution function

for sane k . In 1948 D. Blackwell [187 ] proved that (113) is valid if

F(x) is not a lattice distribution function. New proofs for this result of

D. Blackwell were found in 1961 by W. Feller and S. Orey [ 208 ], and

W. Feller [207 ]. In what follows we shall present the proof of W. Feller
[207 ]. This proof is based on the following auxiliary theorem found in 1960

by G. Choquet and J. Deny [194 ].

 Lenma 1, Let F(x) be a nonlattice distribution function of a postivie

random variable. If u(x) 1s a continuous bounded solution of

<o

awy u(x) = | ulx=y)dr(y)
0
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then u(x) = constant.

Proof. First, we shall prove that if u(x) 1is a uniformly continuous

bounded solution of (114), then wu(x) = consuant.
Denotepsé the set of points of increase of F(x) , that is,
(115) S = {x : F(xte) - F(x~e) > 0 for all e > 0} .

Denote by S* the smallest set which contains S and which has the following

property: If x e S¥ and y e S¥ , then xt+y ¢ S¥ and x-y ¢ 3% ., Sincs

F(C) < 1 , it follows by Theorem U43.5 that 3¥

("°°, °°) .

In what follows we shall prove that if a e S, then u(x) = u(x-a) for
every X . Then by the previous remark we can conclude that u(x) = u(x-a)

holds for every x and every a , that is, u(x) = constant.
Iet ae S and define v(x) = u(x) - u(x-a)

For every a the function is uniformly continuous and bounded and

satisfies

(116) v(x) = (f) v(z=y)dF(y)

et sup v(x) =q . Then there is a sequence X5 Kopeees Koseos
-0 K00

such that 1im v(xn) =q . Define w (x) = v(x+x ) for n=1,2,... .
n > « .

Since u(x) is unifornﬂy continuous, the sequence {w /x)}- is equloontlnaous

and by a thporem of C Arzela (cf A N. Kolmogorov and S. V Fom1n[56 p. 547

it contains a subsequence {wn (x) } which converges uniformly in every
I
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finité interval. Let limw (x) = w(x) . The function w(x) is uniformly
continucus, bounded, w?x; ;=qk, and satisfies
(117) w(x) = [ w(x=y)dF(y) .

0
By definition w(0) =q . If w(x) =q for same x , then w(x-a) = q
also holds because w(x) 1s the weighted average of w(x-y) for O <y < =
and a 1is a point of increase of F(y) . Thus it follows that w(-~ja) = g

for j =0,1,2,... . Since w(x) = lim v(x+x_ ) for every x , therefore

if =z f xnk where k 1s sufficien%lg-;arge we have the Inequality

(118) E v(z-ja) = u(z-ja) - u(z-ja-a) > %

for j!= 0,1,..., r where r is any integer. If we add (118) for j = C,1,...
-1 , then we obtain that

(119) u(z) - u(z-ra) > =% .

Since u(x) 1is bounded and r 1s arbitrary, we can conclude that

qa= sup v(x) <0 . But the same argument applies to the function ~v(x) ,
00 <X K0
and therefore sup [-v(x)] < O also holds. Consequently v(x) = O . This
=0 < X <00

proves that u(x) = u(x-a) for every x and therefore u(x) = constant.

Now suppose that u(x) is a continuous bounded solution of (114),

Iet us define

=

N >
_(120) - u_(x) = [ ux-y) 5~ dy

—C €+y(—

for € >0 . Then ue(x) is a uniformly continuous bounded function of = x

and satisfies

]
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[o

(121) u(x) = ['u_(x=y)dF(y) .
0

€

By the previous result we can conclude that ue(x) = constant for every
e >0 . If €~ 0, then by (120) ue(x) » u(x) , and therefore u(x) =

constant. This canpletes the proof of the lemma,

Now we are going to prove the following theorem of D. Blackwell [187 1.

Theorem 7. If F(x) is not a lattice distribution function and

o

(122) a = | xdF(x) ,
0
then
J
( 123) lim [m(t+u) - m(t)] = =
£+« a

forany u>0. If a= o, then 1/a =0 .

‘Proof. Let
(124) Ht(u) = m(t+u) - m(t)

for ¢ >0 and -» <u <. Forevery t the function Ht(u) is non-
decreasing and bounded in every fﬁﬁte interval. TFor Ht(u) <m(ul+l < =
for all t >0 and u . By Theorem 41.7 it follows that the family of
functions {Ht(u) s 0 2t <=} is weakly compact in any finite interval
(U, U] . 'Thus there exist a nondecreasing function H(u) and a seguence.

t,

12 t?.""’tn"" such that tn—>°° as n-« and

(125) 1lim Ht (u) = H{w)
n-on
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in every continuity point of H(u) in any finite interval [-U, U] . Further-
more, by the Note after Theorem U41.8, it follows that if g(u) is a continuous

function of u and if g(u) =0 for |u|l > U , then

(126) lim fg(x—u)du H, () = fe(x=u)d H(u) .
Il > 0 o n =00
let
(1) u(x) = [ glx-u)aH(u) ,
and
(128) | h(t) = g(t) + [ g(t-w)dm(u) .
| 0
By (128) we obtain that
(129) h(t) = g(t) + [ h(t-y)ar(y) .
0
Ifwe put t = tn-i- X in (128), then we get
(130) h(e+ %) = glt + x) + [ glewd, B @) + gle=t )n(t) .

-t
n n

If we let n » < 1in (130) then obtain that

(131) m h(t + x) = u(x)

Il » o
defined by (127). If we put t = tn+ x 1in (129) ard let 10 » » , then by

~ (131) we obtain that

<<}

(132) u(x) = é u(x~y)dr(y)

for all x . Since u(x) is continuous and bounded, by Lemma 1 it follows

that u(x) = constant, that is,
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<4

(133) [e(x-u)dH(u) = constant

-

for every continuous function g(u) such that g(u) =0 for |u| > U where

U 1is a finite positive number. We observe that H(O) = 0 if u=0 is a
continuity point of H(u) . For Ht(O) =0 for t >0 . Thus by (133) it

follows that
(134) : H(u) = Cu

where C 1s a constant. By Theorem 5 it follows immediately that C = 1/a
if a4« and C=0 1if a = «, However, we can prove this directly by

using (67). By (67) it follows that

t
(135) [ [1-F(t-u)Idm(u) = F(v)
0

for t >0 . If we use (134), that is, that

(136) lim [m(t + u) ~m(t )] = Cu
£ »>ew N n
n

for every u , and if we put ¢

t, in (135).and let tn + o , then we

obtain that

o0

(137) c é [1-F(u)]du

]
=

Thus, we have Ca = 1 .

Since in (136) the limit does not deperd on the particular sequence {t

it follows that

(138) lim [m(t+w) - m(e)]

f + o

1l
I

also holds. In (138) 1/a =0 if a = » . This completes the proof of the

theoream.

I

1
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Thecrem 7 has many useful applications In the theory of regenerative
stochastic processes. A stochastic process is said to be regenerative if
it has the property that every time some given pattern appears the future
stechastic behavior of the process 1s the same independently of the past.

Theorem 7 can be used in finding the limiting distribution of such processes.

In several cases we can use Theoren 7 in the following form. (See W. L.

Smith [ 55% 1, [ 240 ] and the author [261 1, [ 2621, [ 269] .

Theorem 8. Let us assume that Q(x) is of bounded variation in the

interval [0, =) and
(139) | Q= [ Qx)dx
O

ists. Purthermore, let F(x) be a nonlattice distribution function of & -

positive random variable for which

oo

(140) a = [ xdF(x) .
O

Then we have

£
(141) lim [ Q(t-wdn(u) = 2
t =0

Proof. Every function of bounded variation can be expressed as the
difference of two nonincreasing functions. Thus in proving the theorem we.
can restrict ocurself to the case where Q(x) 1is a nonnegative and norincreasing
function of x for O <x <». If Q(x) = O, then (141) is obviously true.

Thus we may assume that Q(0) > O .
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Let
(142)
ard
(143)
We have evidently
(144)

Sﬂmei

|
(145) |
and since by Theorem 5

(146)

we obtain that

(157)

t/2

Q(t) = é Q(t-u)dm(u)
T

Q(8) = [ Qlt-u)am(u) .

t/2

02 () £aPn@ .

I S
lmEQ(_?__) =0

t > @

s np/i- 1,

t > «

lim Ql(t) =0.

Lr=

Now we shall prove that

(148)

For any e > O let us choose an h such that 0.< h < ¢/Q(0) .

(149) 0<Q-h } Q) <) <e .

n=1

If we choose  t so large that

(150) h

[+

) Qnh) < e

n=[t/2h]

Then we have



VII-96

and

m(uth) - m{u) _
h

O FE
2
™

(151)
for u > t/2 , then we have

(152) (G -e)n ] ah-el <ay(6) < Greon T agm) .
n=1i n=1

Hence it follows that

(153) (3 ~e)(G-26) < Gy(6) < (5 +e)(@re)

if ¢t !’is large enough. Since ¢ > 0 1is arbitrary, (153) proves (14

[+
G).

By ( lff"() ard (148) we obtain (141). This completes the proof of the theorem.

mt) as t + =

It is interesting to study the asynptotic behavior of

in the case when &a = « ., By Theorem 5 it follows that

1m B8 -

(154)
t » o
as x + « , then

if a = «., If we know the asymptotic behavior of 1-F(x)
as

we can obtain” more precise results for the asymptotic behavior of m{t)

We shall prove the following result.

t+oo,

Theorem 9. If

1-F(x) ~ gx)

o

e

(155}
as x »w~where O <a <1 and h(x) is a slowly variyng function of x at .

X » o, that is,
. . h{wx) _
(156) lim TN 1
X>w®




for any w > O , then

O(
(157) m(t) o SHLOT ~f€7

Procf. In formulas (155) and (157) the symbol ~ means that the two

sides are asynptotically equal, that is, their ratio tends to 1l as x » =

or € v e,

Let
(158) 4(s) = [ e™FaF ()
0 ,
for Re » G . Then we have
(159) é am(t) = 13757 = TGy

for Re(s) >0 . If s - +0 , then by an Abelian theorem (Theorem 9.12
in the Appendix) we obtain that

[

(150) 1-0(s) = s [ €S [1F0lax & 1(1-)s’n(D) .
0]
Hence
(161) fwe—st am(t) ~ 1 »
0 I‘(l—a)so'h(-i%)

as g8+ 4+ and by a Taubeflan theorem (Theonan 9.14 in the Appendix)

we obtain (157).

In the case where F(x) is a lattice distribution function the result
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(157) was found in 1949 by W. Feller {206 ]. Actually, Feller considered the
particular case when h(x) = constant. For the case where h(x) satisfies

(156) see A. Garsia and. J. Lamperti [209 ]. In the general case, the

result (157) was proved in 1955 by E. B. Dynkin [200 ]. See also W. L.

' E"_n}_@l [ 238 1. Dynkin also proved that (157) implies (155).

In 1961 W. L. Smith [ 2432] proved that if (155) holds with o = O ,

then

( 162) m(t) F%Tti
|

as t p = , and if (155) holds with a = 1 , then

(163) m(t) t

t
[ [1~F(u)]du
0

as t » =, and the converse statements are also true.
In a similar way as Theorem 9 we can prove that if
(164) a(t) = Var{v(t)}

and if I(x) satisfies (155) with O < a < 1, then

1/2 21—2&_1] sinZer  £2%

2 2
o

T(atl)m

(165) ae) v [ T
F((X'l" §)

(h(£))°

as t-+® . For the proof of (165) we refer to W. Feller [ 2pg 1 and
J. L. Teugels [ 273 1.




VII-99

If F(x) satisfies (155) with 1 < a < 2 , then the expectatiocn of

F(x) is a finite positive rumber a and we have

2-a
(166) m(t) - 1;.«. B 10
(a=1) (2~a)a“
and
263 p(t)
(167) afg) ~

(2-a) (3~a)ad

as t >« ., SeeW. Feller [ 206 ] and J. L. Teugels [ 273 1, [274 1.

For the recurrent process {v(t) , O <t < =} .denote by X, Fhe
i
distan¢e betweenn t and the occurrence time of the first event occurring

S
after time t . The distribution function of X¢ is given by

168) Nli{xt <x} = t;:iX[l—F(t+x—1,1)]dm(u)

for x > 0 . For the event {Xt < X} occurs if and only if at least one
event occurs in the interval (t, t+x] in the recurrent process. This

event can occur in several mutually exclusive ways: the last event occurring.
in the interval (t, t+x] is the n-th event (n = 1,2,...) in the recuwrrsnt

process. Thus by the theorem of total probability we obtain that

[+

Mli{xt <X} = nzlf{t <t 2 t+x < Tn+l} =
(169)
w  Tx
=7 [1-F(t+x-v)JdP{r_ < u} .
=1 t -
Since
(170) m(u) = ngli?{rn sul

we get (168) from (169).
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Theorem 9. If F(x) 1is not a lattice distribution function and if

a < » , then the limiting distribution

(171) lijQ{xt < x} = F¥(x)

t » >

exists and we have

: X
2 [-F(lay for x20,
(172) ORI

(@]

for x<0.

Proof. This theorem follows immediately from Theorem 8 if we apply
it to the function
|
: 1-F(u} for u<x ,
(173) Qu) =

0 for u>x.

If PF(x) 1s a lattice distribution function, then the limiting behavior

of P{Xt < x} can easily be obtained by Theorem 6 .

We note that if we suppose that F(x) is not a lattice distribution function

and if F(x) has a finite variance of o , then we have

* 2, 42
(17H) lm Bix,} = [ xdf¥*(x) = ° .
© 0

t > o 28
For To( £) +1° t:+xt and therefore by (95) we have
(175) Elx ) = m(t) + 1Ja - ¢t .

If t + « in (175), then by (80) we obtain that the limit of the right-hand

o) )
side is (oc“+ a“)/2a . This proves (174).
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If PF(x) satisfies (155) with O < a < 1, then

e

(176) lim P{ -t—t- < x} =H (x)
t > @ (83
where
sinomw X du

arn _ Ha(x) = - 2 for 0 < x <00,

0 u (1+u)

0 for x< 0.

This result was found in 1955-by E. B. Dynkin [200 ], See also J. Lamperti
[ 2221].

It is interesting to observe that the limiting distribution (176) deperds

on F(x) only through the parameter o .

Iet us define n ¢ as the distance between t and the occurrence time
of the last event occurring before time t , and Ny = £t 1if no events occur

in the interval (0, t] . For n g we have the obvious relations

(178) le{nt >Y} =E{Xt-—y>y}

and

(179) | | le‘{xt > X s My 7 v} =£{X,t-y> x+y}
for ¢ 20 and O£y € ¢.

If we know the asymptotic distribution of x, as t » = , then by (178)

and (179) we can determine the asymptotic distributions of and (nt s X
L

”t
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as t >« . Alsoc we can determine the asymptotic distribution of ez‘: =

%
n t+ X"c for t » » . The random varisble et is the time difference between

the occurrence time of the first event occurring after t and the occurrence

time of the last event occurring before t .

f unction i
If F(x) 1s not a lattice distribution and if a < = , then by (171)

]

and (178) we obtain that

(180) ‘ lim P{n,_ < x} = F¥(x)

t > o
*
where F (x) 1s given by (172). Furthermore, by (179) we obtain that

|
1
oy | * *
(181) lim Ple, < x} = [ yaF(y)
0

t—>oo

® [

-,

for x>0 . If, in addition, o° < o » then we have

2
. ¥ o
(182) lﬂﬂg{et} =g + 5 -

£t > ®

If F(x) satisfies (155) with O < a < 1, then by (179) we obtain that

o xt "‘t _ }iz
(183) tlim;;g{ T xsp > v = ED

for O <y <1 and x > O where Ha(x) is given by (177). From (183) it

follows that

(184) _llej{ E—; x} = 3. ___f u au

for x > O where
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-

‘ 1-(1-u)® for Ozuxl,
(185) q(u) = -
l 1 for u

" Note 1. If we suppose in Definition 1 that el is a positive random

variable with distribution function P{el <X} = ﬁ‘(x) whereas P{en < X} =

A
’._l

F(x) for n=2,3,..., and if every other assumpticn remains unchanged,
then we arrive at the notion of a general recurrent process. For a general
recurrent process we have

(1.86) P{v(t) < n} = 1-F(L) ¥ Fn(‘c)

for n=0,1,2,... where ¥ means convolution. By (186) we have

(187) E{v(t)} = ] F(t) ¥ F_(t) .
~ n=0 !

If we use the definition (3) and if

o

(188) o(s) = [ &% aP(x)
0

for Re(s) > C , then by (187) we obtain that

?

\ ? -st _4(s)
(189) é e dE{\)(t)} = 1)

v

for Re(s) > Q.

Most of the limit theorems which we proved for ordinary recurrent

processes remain valid for general recurrent processes toc,
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Let us suppose that F(x) has a finite expectation a and let F(x) =
%
F (x) defined by (172). In this case we say that the recurrent process is

hanogeneous. For a hanogenecus recurrent process we have

(190) Blu(t)} = &
for every t >0 and

*
{191) ) ~§{Xt £x}=F (x)

for every t 20 .

Note 2. Recurrent processes have useful agpplications in the investigations
of the fluctuations of sums of mutually independent and identically distributed

random variables.

et gl, £2,..., En"" be a sequence cof mutually independent and identical-

; arisg S :
ly distributed rané%mﬁt Eg%e 2, = gl+ g2+ cost gq for n=1,2,...and ¢, =0,

Let = 0 . Denote by the smallest n =1,2,... for which

0 i)

> =0 . Denote by 1., the smallest n =1,2,... for which z_ > 7
2 n

“n” %o
and so on for k = 2,3,... denote by Ty the smallest n = 1,2,... for

T.
1

which tn ” Elk—l . Forevery t >0 let v(t) be a randam variable which

takes on nonnegative integers onlyan d satisfies the relation

(192) {v(t) > k} = {Tk < t}

for all t 20 and k = 0,1,2,... .
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In this case the family of random variables {v(t) , O <t < =} forms
a recurrent process and the recurrence times ek = T Tl
are mutually independent and identically distributed discrete random variables

(k = 1,2,...)

taking on positive integers only. The random variables T1s Toseees Tpseen
are the ladder indices of the sequence s Cy2eees Tpsees @S WE defined in

Section 19. By Theorem 19.3 we have

8

n

. LB, > 0)
(193) -] Pl  =nlz =1l-e
n=1
for |z <1.
|
If we define X = ng- ;Tk-l for k=1,2,..., then X1s Xoseees Xpreoo

is a sequence of mutually independent and identically distributed positive
randan variables. If we consider the randam variables X190 Xoseees Xpseos
as recurrence times, then by Definition 1 they too determine a recurrent
process. By Theorem 19.4 we have

[+ -] l ]
—sx, - 1 pite Tz, >0
(194) Efe "}=1-e

for Re(s) > O where d(cn > 0) 1is the indicator variable of the event

Zh } c.

Finally, we note that Theorem 6 and Theorem 7 can be extended for an
infinite sequence of mutually independent and identically distributed real
‘random- variables El’ 52,..., En,... which are not neoessarilyvpositive,

Let ;E{gn < x} = F(x) and define Ly = &9 Eta.t £ for n=1,2,... .



VII-106

Denote by M(x, h) the expected nurber of integers n = 1,2,... for which

X <g < xth, that is

(195) M(x, h) =
let

(196) a = [ xdf(x)

where a = +x oOr a = - 1is allcowed.

If PF(x) is a lattice distribution function with step 4@ and if

|
a >0, then
|

(197) lin M(x, d) = S
X ¥ x

where 1/a =0 for a = +e , and

(198) 1im M(x,d) = 0 .

b )

The case a < O can be obtained by symmetry. This result generalizes

Theorem 6.,
If F(x) 1is not a lattice distribution function and if a > C , then

(199) lim M(x, h) =

X > «©

S ley

for any h >0 where 1/a =0 for a =+, and

(200) | 1im M(x, h) = 0O

X e @

for any h > 0 . The case a <0 can be obtained by symmetry.x This' result
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generalizes Theorem 7.

The above extensions of Theorem 6 and Theorem 7 were given in 1952 and

in 1953 by K. L. Chung and H. Pollard [ 192 ], K. L. Chung and J. Wolfowitz

[19% ] and D. Blackwell [188 1.

In conclusion of this section we shall define the notion of a compound

recurrent process.

" Definition 2. Let {v(t) , O <t < =} be a recurrent process as we

defined in Definition 1. Let X159 Xoseees Xgoeoo be a sequence of mutually

independent and ldentically distributed real randam variables which are
|

independent of the process {v(t) , 0 <t < »} . Let us define

(201) (t) = .
X 1;i£v(t)xl

for t >0 . Wesay that {x(t) , 0 <t <=} is a compound recurrent process.

Denote by el, 62,..., en,... the successive recurrence times in the

process. Let ;E{en < x} = F(x) and (E{Xi < x} = H(x) .

If we know F(x) and H(x) , then the distribution function of x(t)
can be obtained by the followlng formula
(202) Pix(t) £ x} = nzo [F (t) - F_;(£)]H (%)

where Fﬁ(x) and Hn(x) denote the n-th iterated convolutions of =F(x) and

- H(x) . respectively, and Fo(x)'= Ho(x) =1 for x>0 and Fb(X) = HO(X) =0

for x < 0.
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If bothh F(x) and H(x) belong to the domain of attraction of a stable
distribution function, then by suitable normalization x(t) has a limiting

distribution as €t » « ,

Iet us suppose that

(203) lijg{ L 1 < x}= P{e < x}
, n-> A2(n) ~
and
) _ X-%...+t x.- B.(n)
S {204 - 1im P 1 n 1 < x} = Py < x} Coe
n -+ o B2(n) e

where 1im A (n) = » and lim B2(n) =wo ,and ® and x are independent
1 > o < n-- o ;

random variables. If F(x) and H(x) belong to the domain of attraction
of a stable distribution function, then the limiting distribations (203)
and (20%) can be obtained by Theorem 44.6 and by Theorem 44.8 . If (203)
is satisfied, then we can find normalizing functions Cl(t) and C2(t) sucn
that Cz(t) >® as t > o and

v(£) - € (8)

(205) lim P{ < x} = P{v < x}
t > C,(t) -

%
where the random variablei\depends on & . The limiting distribution (20%)

can be obtained by Theorems 1, 2 and 3 in this section. Finally, by Theorem
45,2 or by using the same method which we used in proving Theorem 45.2 we
can conclude that there are normalizing functions D,(t) and D,(t) such

that” Dzét) >® as t >~ and a distribution function Q(x) such that
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(206)

Let us assume that in (203) Aj(n) = An and Ay(n) = A

lim P{

t > «

=\
Dg(t)

< x} = Q(x) .

O

2

2

el

>0 ,and b >0

where

Purther-

In this case, in (205 we have

and ¢ and the

A2>O,and a >0 feor A1=O and O<a=<1l for Al>
more, in (204) let Bl(n) = Bln ard B2(n) = anb where B
for Bl=0 and O <b <1 for Bl>O.
N = N = c <
Cl(t) ult and C2(t) C2t where the constants Cl’ 02
random variable v are given in Table I,
| TABLE T
|
Al Cl C2 d v
0 0 Vo 1/a e/
>0 - || va A /atte a 5
L 21

~ Now by Theorem 45.2 we can conclude that in (206) Dl(t) = Dt and
Ao

Dy(t) = Dy
Q(x)

td

where the constants Dl’ D2 s d and the distribution functiocn

are given in Table II.
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TABIE I1
(b.c h) i
Bl Cl (b,e) D1 P2 d Q(x)
o | o - 0 | B0, [ be Pixo” < X
>0 0 - 0 B,C, c FPlv < x}
0o >0 - 0 B.C,P o P{y 2 x}
>0 |>0 b<c B,Cy B,C, c Plv £ x}
>0 > 0 b=c B1C1 1 b }{B102v+8 C1 ¥ < x}
1 5 i -
>0 1”0 b>c B.C B.C b P{x < x}
| 1°1 |2 ARSI

]

In the particular case when E{ep}

~

=a, Elx) =b , and Vat’{er}

and Var{ Xn} = og‘ are finite positive numbers we have

el+. . .+6\n-? na.
(207) lim P{ <
n->e o v/n
a
and
Xyt ~ b
( 208) lim P( = = <
n-® ob/ﬁ'

where ¢(x) is the normal distribution
of Table II we can conclude that
x(t) - 2

(209 lim P{ ————>- < x}
‘ t > vt

x} = o(x)
x} = o(x)
function.

A~

Now by the 5-th s%

&
=g
3

Cement
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where x and € are independent random variables with distribution functions

P{x < x} = P{8 < x} = ¢(x) . Hence it follows that

(210) Lim P { x{t) ~ (bt/a)

£ > & L‘(a%g

. <x} = o(x) .
+ b2o§)’t;/a3'_'|'1/2

As another example, let us suppose that {en} and {xn} are positive

random variables for which

o

> l =
(211) - lime{en > x}x T o= a;
X &> @
were 0 <o, <1 and a) > 0 -y and
%2
(212) lﬂn}i{xn >xIx T = a,
X >
wnere (O < Gy < 1 and a, > 0. Then
O F. . +0
(213) lim P{ 7 £ X} = Ry (x)
n -+ 0y
(ml) o, T
where Rl(x) is a stable distribution function of type S(al,l,r(l—al)cos -—P-—,O)
and
Xqteoot
(214) 1im P{ —1;———1-/-—Xﬂ;x} = R.(x)
n-+ e 7% 2
(na,)
2 [o 1)
where Rz(x) is a stable distribution function of type S(ap,l,I'(l-o(g)cos »2—,0).

Then by the first statement of Table IT we obtain that

(215) X = e
t>e (ast l/al‘) c

where
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~a. /o,
(216) Q(x) =:{{){ 8 ~ < <x}

and 6 and x are independent random variables for which P{8 < x} = R'L (%)

and P{x £x} = Ry(x) .

-0
Tt is instructive to deduce (215) directly. Let Ef{e T} = ¢(s) ard
Efe ™ = ¢(s) for Re(s) >0 . Then by (202) we have
® gt e ~8x(t) e _ _ 1-0(q)
e dt = - S
(21 -a e B 9 = TR

for Re(q) » 0 and FEe(s) 20 . Now let us define a randam variabie v
1
in such & way that v and {x(t)} are independent and

1-e% for x >0,
P{v « x} =
(218) - 0 for x <0,
Then by (217) we have
, -sx(v/q), _ ___1=¢(a)
(219) JEle U FYEYTEY

for @ >0 and Re(s) 20 . Since

Q. o

(220) 1 - 6(s) = 2,T(1-ay)s * +0(s 1)
and

g - a2 PN
(221) 1~ yY(s) = azr(l«-ag)s +o(s °)

as s -»+0 , it follows from (219) that
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ul/a
(222)  1im Ef{e™d

2x(v/q)} _ 8y I(1-ay)

o)

-, - A - o '2
alr‘(l o) + azl“(l a2)s

for Rels) > O . From (217) we can deduce that (215) exists, and if we write

[}

(223) o(s) = [ e ¥ aqx)
' 0

for Re(s) > O , then we have

. o al/
(224) | Q(sx
0

F(l—ul)

o]
2\ =X _
Je T dx = S

, ) 2
o | I(l-a;) + T(l~ay)s
tor Re(s) >0 . From (224) by inversion we obtain that

a
F(l—ag)s 2
(225) Q(s) =E (- w/——v—)
al + (— al)
for Rels) > O where Ea(z) is the Mittag-Leffler function defined by

w k

_ Z
(226) Bo(®) = L TlwrD)

for O<a<x1.

If 6 and x are independent random varilables for which ~li{ 6 <x} =

R, (x) and P{x < x} = R,(x) , then by (42.171) we have
1 AN - 2

)
-5 -3 F(l-a2)
(227) E{le "X} = e
for Re(s) >0 , arnd by (42.181)
7 -Q
(228) E{e™S? 1} =E (= =)
- - - al‘ T(l—a15

for Re(s) > 0 . Thus (225) can also be expressed as
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(229) (s) = Efe 5x8 }

for Re(s) > 0 . This is in agreement with (215).

v

Note 3. If in Definiftion 2 we do not require that the sequences {en}

and {xn} be independent, then we arrive at the notion of a generallzed
canpound recurrent process {x(t) , 0 <t <o} . If (en, Xp) n=1,2,...)
are indeperdent and identically distributed vector vardables and if

N1:{6n >0} =1 and

1 s )
(230): E{e

Y 2 y(q, s)

for Re(qg) >0 and Re(s) = 0, then we have

® gt romSx(t)y o o L - wig, O)
a ch e Ele = T, s)

for Re(q) >0 and Re(s) =0 . If P{X'n >0} =1, then (23C) and (231)

hold for Re(s) 2 O too.

In several cases we can easlily determine the asymptotic distribution
of x(t) as t - « by using (231). As an example let us suppose that

P{x. >0} =1 and
e~ 1

6,+. . .40 XqFe oot
(232) 1im P{ 8 < x, —l——g—xﬂ;y} = F(x, ¥)

n > n n

where a >1 and b > 1. Let‘

oo oo

(233) 2(q, s) = [ [ e F dd Fix, y)
00 y
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for Re(q) » 0 and Re(s) » 0 . By (Z32) we have

) n
(234) 1im vk a s "_6‘)] = ¢(q, s)
n-—-o n
and
(235) Lim nfy(- , %) -1] = log ¢(q, s)

n-+® n n

for Re(q) O and Re(s) 2 C.

If v is a random variable which has the distribution (218) and

which is independent of {x(t), O < t < «} , then by (231) we have

(236) eV, - =0 (

\/[v

for q >0 and Re(s) >0 . Hence

; b/a e -1/a ,
(237)  1m pre™Sd X0y o gy L= ‘”(Q’O)J% VT 2 1T
q+0 q - 0 [1-¥(q,54”2)1q" >

for Re(s) > O . From (231) we can deduce that

x{t)

(238) iim P{ b/a < x} = Q(x)

ft > o

exists, and if
(239) a(s) = [ e dax)
0

for Re(s) > O , then

b/a) X ix = log ¢(1, Q)

r
(2L0) Q(sx Tog @(1, 5)

O
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for Re(s) > 0 . From (240) Q(s) can be obtained by inversion.

If we suppose that &, Nys Ny are mutually independent random variables
for which P{¢ <x} = Q(x) and P{nj 2x} =P{n, <x} =1- e for x20,
fAaal Adon, P

then by (240) we obtain that

/a -1 _log (1, O)
N2 % x} = log o(1, 1/x)

(241) HaP

for x>0, <By (241) we have

l Q0

| bs/a log ¢(1, O)
(2uz)g E(£7IE(n)” MIE(S") =l " Toe s (T
or
i s, _ 1 ¥ s, log o(1, 0)
(243) E{E } = xd log ¢(1, 1/%)

r(1-s)r(1 + p§> 0
for sufficiently small |Re(s)| and hence P{E < < x} = Q{x) can be obtained

by Mellin's inversion foprnula.

We note that if nf{e <X, X ;;y} =F(x, y) , P{n, £ x} =A§{n2 <x} =
1-e* for x >0, and (8, X) , Nys M, are mitually independent, then

by (233) we have

0

' -1 . -1 ) (LH"V ) - 1 1
(un) Flong 2% xng” 29} é éP{e XU, ¥ L yvie dudv @( )

for x>0 and y > 0 . If we introduce the notation

@(1 s)

for Re(s) > O and if we take into consideration
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that

(2u6) log ¢(z, szb/a

) ¢
log ¢(z, O) =U(s)

1/a

for Re(s) >0 and Re(z) > 0, log ¢(s, O) = -As and log 2(0, s) =

‘lefb for Re(s) >0 where A >0 ard B > 0, then we can prove that
-b/a b/a -1 - ¢ S
Pixe Ny Ny <X} = —b}a‘j d o o 3) =
(2147) u VX
% = ] _EU_'_'_(]‘/X)
f xU(1/x)

for x>0.

By (241) and (247) we can conclude that Q(x) = P{g <x} = P{xa'—b/a < x}

Mo A

if and only if

(248) Ux) -bxU(x) =1

for x >0 and limU(X)x_b/ a - B/A ., These conditions are satisfied if
X =

and only if

(249) | Ux) =1+2x77,

or

(250) o(q, s) = e AT -~ Bs

L
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50. Brownian Motion and Causzian Processes. J

r['he notlon of rhe Brownian motion process is based on the definition
of the normal distribution. We say thal a randam variable ¢ has a normal

distribution of type N(a, 02) where o 1s a positive number, if

(1) P{¢ < x} = @(3‘:‘1
where
X
(2) ¢(x) = —-—-l“:_—_-_ [ e /2du .
Vor -

2

The parameters a and o have simple probability Inferpretationz. We have

E{¢} = a and Var{z} = o° .

The normal distributlon has its origin in the investigations cof

" A. De Moivre [ 3251, B, S. Laplace [ 351] and C. F, Gauss [ 336 ] . See

the discussion at the beginning of Section 39.

Definition 1. We say that a family of real random variables {g(u) ,

O cu < «} forms a Brownian moticn process if the following conditions

are sgtisfied:

(1) For k = 2,3,... and for any O < to< ty<...<t, the random

varlables &(ty) - £(ty) , &(t ) = &(ty)s..., E(L)) - &(E, ;) are mutua 11y

independent.

]
O
gt

il
—

(i1) P{g(0)
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(iii) For O cu <u+ t we have

() P{g(utt) - £(u) < x} = o(X
' Y!_hff_e‘_ o(x) }s "g‘iﬁ'en by (2).

By Theorem 47.1 we can conclude that the above defined process {&(u) ,
O < u < »} indeed exists. The conditions (i), (ii), (iii) uniquely determine
the finite dimensional distribution functions of the process and these

distributicn functions are consistent.

B& Theorem 47.2 we may assume without loss of generality that the process

{g(t) , 0 <t <=} 1is separable.

The stochastic process {&(u) , O £u < «} was introduced in 1900 by

' ‘f_‘_;‘-:B!a.chélier [ 321 ] in studying the fluctuations of prices in a stock
exchange. The process {&(u) , O 2 u < )} also appoears in the theory of
random walks and in studying the phenomenon cf Brownian motion. (See Section
37..) The first rigorous mathematical description of the Brownian motion was
given in 1923 by N. Wiener [ 370]. See also P. Lévy [352 1, K. ItO and

H. P. McKean [ 342 ], and D. Freedman [ 334.].

Iet us define
), g(u) = au + og(u)
for O <u <« where {g(u) , O <u < =} satisfies the conditions (1), (ii),

(iii) and .a is a real number and o is a pesitive real number. Then {z(u) ,

0 2 u < =} too satisfies corditions (i) and (ii) and we have
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(5) Plz(utt) - z(u) < x} = o
Wcu g(u) £ X s

for O<u<u+t . The process {z(u) , 0 <u <=} 1is called a general

Brownian motion process. .

The following theorem was essentially found in 1923 by N. Wiener [ 370 ].
See also J. L. Doob [ 30 p. 3931.

" Theorem 1, Almost all sample functions of a separable Brownian motion

" process are contlnuous.

Proof. Let (Q,B,P) be a probability space and &g(u) = ¢(u, w)
ST w
(O=zu ‘< @, wefl) a family cf random variables which satisfies conditions
(1), (#1), (iii). If we suppose that {g(u) , O gu < =} is a separable

process, then sup £(u) 1is a randam variable for every t > O , and we have
O<u<t

the inequality

(5) P {sup &(u) > x} < 2P{e(t) > x}
T 0t -

for every x . We shall prove that for any k = 2,3,... and for any

tO=O<. t1<...< tk=t we have
(7) P{ max &(t.) > x} < 2P{g(t) > x} .
™ 0gjzn -

Since the process {g(u) , O £u < »} 1is separable, therefore (7) implies

(6).

The inequality (7) follows from the following two inequalities. First,
q y
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evidently we have

(8) P{ max £(t.) > x , &(t) > x} = P{g(t) > x}
" 0gjsn ~

for every x . Second, if we define v as the smallest Jj = 0,1,...,n (if

any) for which i(tj) > X , then we can write that

n-1
P{max &(t.) > x , &(t) <x} = ] P{v=3, gt) <x} <
“ogjs Y 3=0"
n-1 n-1
< ) Plu=3 , E(t) - &(t,) <0} = ) P{v=3P{e(t) - £lt,) <0} =
- J=0"™ J J=0" J
(9) |
| n-1 n-1 .
= ) Pf{v = JIP{e(t) - g(ty) > 0} = ) Plv =g, gt) - e(t,) >0}
j=0" J=0"™ J
n=-1 :
< ) Plv=3, e(t) > x} < P{e(t) > x}

for every x . If we add (8) and (9), then we obtain (7).

Fran (6) it follows that

: ¥’
Plswp |e(u)]| > x} < 4P{g(t) > x} = 4 [1 - o(x)] = C
Ozust
(10)
-] o 2/2t
- _ﬂ_ f e—u /2 au < 4/t f e-u /2 du U/t —X
JEE.X//E 2% X /VE ¥om x
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’ j 1 TR . 2
(11) A = Hw: amkhg@—d%,mﬂ>—iw ﬁx*lw—%[;a and j=1,2,...,01°}
1

for n=1,2,... and denote by A¥ the event that infinitely many events
occur in the sequence Als A2,..., A

n’co- .

Now by (6) we can write that

PAY < nzg{supls(u)~a<%)i > -nT}E for |u- %l < %} =

(12)
4 o 7/4
;=2n2P {sup|B(uw)| > %/M} ;:on e"/ﬁyz .
‘ ™~ 1 n Vor
] ng;zﬁ
|
Sﬁme!
(13) ngj DAY <,

therefore by Theorem 41.1 it follows that P{A¥} =0 .

Accordingly,if w £ A¥ , then

2

an e, o] <=5 for |u-d) <2 aa j=1,2,..., n
n

for every n = 1,2,... except a finite number of n's .

Thus if w # A¥ , then for any e >0 and t > O there exists a

§ = 3§ (e,t,w) such that |g(u,w)-£(v,w)| < ¢ whenever |u-v| < & and

uwe [0,t] , ve [O,t] . Foreach o £ A¥ let us choose an n = n{w) such

that n > (2/e)"

(a3

and 1n > t and (Q4) is satisfied and let i/n . If
2

lu~v| < & , then there is a J = 1,2,..., n° such that |u- %1 § and

| v~ %1 < § , and thus by (14) we have |&(u,w)-£(v,w)] _;2/111/u

in

A

€ . This
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completes the proof of the theorem.

Theorem 1 makes 1t possible to define a Brownian motion process in the
following way. ILet @ , the sample space, be the set of all those continuous
functions w(u) defined on the interval [0,») for which w(0) =0 . ILet
B be the smallest o-algebra which contains the sets A(t,x) = {w{(u):w(t) ;x}

for all £t >0 and x . Let /\P be the probability measure which satisfies

y

: k
. _ i 1 )
(15) P{A(t)%)) . Al 20 =[]l T () dy dy - - 07,
(r=1,2,...,k)
for al;i o= 0 < tl <eae < tk and X1s Xpreens X where
|
| ] —x2/2
(16) ' $p(x) = —e X
/or

The probability measure P 1s uniquely determined for B by (15).

If we define &(u,w) = w(u) for O<u <~ and we Q whenever
w = {w) ,0<u <=}, then {g(uw) ,Ccuc<e, we Q}is a Brownian
motion process for which the sample functions are continuous for every

we Q .

In what follows if we speak about a BErownian motion process then we
may assume without loss of generality that all the sample functions are

continuous functions of u .

In 1956 G. A, Hunt [539 ] demonstrated that a separable Brownian
motion process has an important property, the so-called strong Markov

property. This property 1s based on the notion of stopping time. ILet
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{g(u) , O 2 u < »} Dbe a Brownian motion process. A nonnegative random
variaeble t 1s called a stcpping time if for every u > O we have
(a7) {t cut e Bu

where Bu is the o-algebra generated by the random variables {z(s) ,

O<s<ul.

Let us denote by A the o-algebra which consists of all those events

A e B for which AN{t <u} e B, for every u .

‘Thecrem 2. I1et 1 be a stopping time of a separable Brownian motion

process f{&(u) , 0 <u <=} . Let
(18) E*(w) = £(rhu)-E(x)

for u 0. Then {g*¥(u) , O Lu <=} 1is also a separable Brownian motion

process and {g(uw) ,0<ustl and {E%(u) , O <u < =} are independent

" processes, that is, if A e A and B € B*¥ where B¥ is the o-algebra

generated by the random variables {&¥(u) , O <u <o} , then A and B

are independent.

Proof. Iet .
(19) B = {E*(ui) 2% for 1i=1,2,...,r}
and
( 20) B(s) = {g(s+ui)-g(s) Ky for i =1,2,...,T}

‘where 0 < U, € U, eeo< U, and Xq, X5,...; X, are real mumbers.
== "1 2 r 12 72 g
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For each n = 1,2,... iet us define

C_k .o k-l K
(21) T, T if — < Tz

%— and k = 0,1,2,... .

We can easlly see that T, is a stopping time for each n = 1,2,... .

i

If in (18) we replace 1t by T, s then let Bn the event which

corresponds to B given by (19) .
If Ae A and Bn is given by (19) with = = T, » then we have

[><]

! P(AB and 1 =
k=0""

Siw

= ] PUBC) and =
k=0""

&
1

(22)

I Pa and 1 = 5pad) = prare)
~ N 'n o
k=0 e
because P{B(s)} = P{B(0)} for all s > O . Since the sample functions
are continuous with probability 1 it follows that 1ﬁn“E{ABn} = P{AB}

) N> « e
and thus P{AB} = P{A}P{B(0)} for every A e A and B defined by (19).
Consequently P{B} = P{B(0)} , and A and B are independent. This

completes the proof of the theorem.

We note that if {g(u) , O < u < «»} 1is a Brownian motion process and
s is any positive number, then {g(us)/¥s , O <u < =} is also a Brownian
motion process. Furthermore, {ug(l/u) , O < u < »} is also a Brownian

motion process.

- If- EO’”gl""’ gk,... are mutually independent and identically distributed
random variables with distribution function P{g, < x} = ¢(x) defined by (2),

then
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sinknt .

-~ — ~
(23) . g(t) =tgy + /2 ] Sk

k=1

is a Brownian motion process on the interval [0, 1] . Furthermore,
. 1

o sin(k+ §0nt

(2b) g(t) = /2 §

1 g
k=0 (k+ -é-) I

k
is also a Brownian motion process cn the interval [0, 1] .

Both in (23) and (24) the sums converge with probability 1 for every

t e [0, 1] and thus £(t) is a random variable for every t e [0, t] .

Tﬁe representations (23) and (24) can be obtained from some results of

N. Wiener {270 ] and R. E. A. C. Paley and N. Wiener [69 ] on the

harmoniic analysis of randam functions.

From a more general result of J. L. Docb [ 27 ] we can conclude that

the law of large numbers is valid for a Brownian motion process.

Theorem 3. If {g(u) , 0 < u < =} 1is a separable Brownian motion

process, then

(25) JE{ 1im Eﬁ%l..: 0y=1.

£t »
Proof. Since g(n) - g(n-1) {(n=1,2,...) are mutually independent
and identically distributed random variables with E{¢(n) - £(n-1)} =0 , it

follows from Theorem 43.3 that

(26) 1im t—(—r?l =G

n-—+- «

with probability. On the other hand
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(27) sup |g(u) - £(n)] (n=1,2,...)
n<u<ntl

are also mutually independent and idenfically distributed random variables

with expectation
n b X2/ 4
(28)  E{sup le(w-e(m) |} < 2E{le(W) |} = — [ xe " "“dx =— .
n<u<ntl ~ /21 0 /or

The last inequality follows from (6). Thus by Theorem 43.3 we obtain that

"
(29) md T sup 6w - £(3)] = B{eup | £ (uI}
n e j=1 Jj<u<j+l " Ofu<l

with probability 1 , and therefore

(30) lnE  swp [£w) - £()] = 0
n -« nu<ntl

with probability 1 . If n <t <ntl , then

g(t)  &(n)
(31) ’ il

;1}—1 sup |g(t) - g(n)| + %{g(n)\
n;t<_n+l n ‘

and by (26) and (30) we obtain that

(32) 1im ‘5(?- = 1im ‘5—(;‘—)— =0

t > n-—> «

with probability 1 . This proves (25).

For a Brownian motion process {&(u) , O < u < »} the law of iterated

logaricthm is also valid and we have
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(33) P{ 1im sup £(t) =1}=1.
A A Y2t log log t

See A. Ya. Khintchine [ 128 ].

Next we shall define a more general class of stochastic processes
which class contains the Brownian motion processes as a particular case.
This more general class is the class of Gaussian processes. The definition
of a Gaussian process is based on the notion of the multidimensional normal
distribution. AMultidimensional normal distributions were studied as early
as in 1846 by A. Bravais [ 11 J.

i
1
|
|

We say that the real random variables E1s E5se++5 &, have an

n~-dimensional normal distribution of type

: a ag g
1 ‘ 1"t ]_ni
l . .
(34) N N IO R
8, °.1°"°°
are
where 1 az,..., a “r’eal numbers, Gij = Gji and
n n
0., X, X.
(35) 121 jzl 15 % %y

is a positive definite quadratic form, if El’ 5;2,..., gn have the joint

density function

(36) f(xl, Xpsenes Xn) =

where
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lcll cew Olnl
(37) D= | ;
O'n:l-l ) Unn
and ,
, -1
Cll o cln 011 .o Oln
(38) : : = : :
%ﬂ"'%m %ﬂ "%m .

The parameters . Byseees an and G112+ O have simple probability

interpretation. We have

|
(39) E{g;) = a
|

1

for 1i=1,2,..., n and

(4o) 33{(£i— ai)(aj— aj)} = 044

for 1 <i<n and 1<xJ<n

et T be a finite or infinite interval, say, T = (0, 1) or T = (0, =) .

Definition 2. A real stochastic process

{g(u) , ue T} is called

Gaussian, if for any finite subset (ul, Upseees un) of the parameter set

T the random variables g(ul), &(ug),..., E(un) have a joint normal

distribution.

If {g(u), ue T} is a Gaussian stochastic process and if we know the

expectation
(41) : Efgu)} = a(u)

for ue T and the covariance
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(§2) - ggy{i(u), £(v)} =f§{[£(u) -~ a(w)]le(v) = a(v)]} = rlu, v)

for ueT and v e T , then the finite dimensional distribution functions

of the process are uniquely determined by (41) and (42).

Conversely, if a(u) 1is any real function defined for u e T and
r(u, v) 1s a real function defined for ue T and v e T which satisfies
the conditions: (i) r(u, v) =r(v, u) forall ueT and veT and

(ii) for any finite subset (ul, Ussaees un) of T the quadratic form

n
43) y r(u,, u.)x.X.
(43) Y 321 (w5 ug)x;x,

is positive definite, then there exists a Gaussian process {g(u), u ¢ T}

for which (41) and (42) hold. This follows from Theorem 47.1 .

If {g(u) , 0 g u < =} is a Brownian motion process, then {g&(u) ,

0 <u < «} 1s a Gaussian process for which E{g(u)} = 0 and
(44) E{z(w)e(v)} = min(u, v) .

We can obtain Gaussian processes from a Brownian motion process by
suitable transformations. For example if {g£(u) , O g u < «»} 1is a Brownian

motion process and
(45) n(w) = (L-wel
for O<u<1l, then {a{uw) , 0 <u <1} is a Gaussian process for which

(46) E{n(u)} =0
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and
(47) Enn()} = min(u, v) - uv .
See J. L. Doob [ 328 J.

If we suppose that {g(u) , O < u < »} 1is a separable Brownian motion
process and if n(u) 1is defined by (45) for O <u <1, and P{n(C) =0} =1
and P{n(1) = 0} =1 , then the process {n(u) , O <u < 1} has continuous
sample functions with probability 1. The process {n{u) , O <u 21} can
also bé represerited in the following form

|

(48) n(w = /2 ] S,
=7 ! g

where Nys Nossess Npseee is a sequence of mutually independent and identically
distributed randaom variables with distribution function »P{nk < xr = o(x)
defined by (2). In (48) the sum converges with probability 1 and thus n(u)

is a random variable for every u .

We note that if {n(u) , O £ u < 1} 1is the process defined above and
if ny 1s a random variable which is independent of {n(u) , 0 <ux<1}l and

which has the distirbution function Ng{”o < X} = ¢(x) , then
(49) g(u) = ugy + nlw)

defined for O <u <1 1is a Brownian motion process.
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51. Stochastic Processes with Independent Increments.

Definition. We say that a family of arbitrary random variables

{g(u) , 0 2u <=} forms a stochastic process with independent increments

< ... <%t the random variables

ifforanz‘k=2,3,...§m O;to<t1 "

(1 =1,2,..., k) are mutually independent.

We say that a stochastic process {g(u) , O < u < «} 1is homogeneous
if for O < u < utt the distribution of g(utt) - £(u) does not depend
on u.

Ir? what follows we shall consider only real hamogeneous stochastic

pr'ocesées with independent increments, or in other words, real stochastic

processes with stationary independent increments.

The Polsson process and the Brownian motion process,discussed in the
previous two sections, are examples for real hamogeneous stochastic processes
with independent increments. In fact these processes are the building blocks

of a general real stochastic process with independent incremerits.

Theorem 1. Let {g(u) , O £ u < «} be a homogeneous real stochastic

process with independent increments. If NE{g(O) =0} =1, then

(1) ‘E{e—SF’(u)} = eu‘{’(s)

AN

exists for Re(s) = O and the most general form of ¥(s) is given by
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' 1 2.2 -0 -SX 5X
¥(s) = -as + 50"+ [ (7771 + ==)a(x) +
o 1+x©
(2)
+ f(e X1+ SXZ)dN(x)
1+x

. 2 . .
where a 1s a real constant, 0 1s a nonnegative constant, M(x) (~= < x < Q)

and N(x) (0 < x < »). are nondecreasing functions of x satisfying the

conditions 1lim M(x) =0 , 1im N(x) =0 and

X - © X > o

-0
(3) | x dM(x) + f X aN(x)

-£

Proof. For every u=1,2,... we can write that

(i) (1) = ) o 3 - £32h]

i=1

1—1

where 5(—9 -~ (=) (@

ly distributed random variables. Thus by Definition 41.1 the distribution

1,2,..., n) are mutuaily independent and identical-

function P{&(1) < x} is infinitely divisible and by Theorem 41.2 we can
conclude that

(5) (eS8} = Y8

Faa'd

for Re{s) = 0 where ¥(s) is given by (2). Since

(6) pre~SEUV)y _ pe ms8(W . -sg(v),

NN
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for ux0 and v 20 and !E{e‘sg(u)}] 21 for Re(s) =0 and uz>0,

it follows that (1) holds for all u > C .

The representation (2) was found in 1934 by P. Le/yy 435 1,[ 436 1.

In some particular cases the representation (2) was earlier found by

“B. De Finetti [412 1, [ 4131, [414 1, [ 4157, (2161, and

AA.. Nv.. Kolmogorov [ 43221, [ 433 ].

From the representation (1) it follcws that

[+5]

-0 .3 3
(1) | E{fg@)} = -w'(0) =ufa + [ -= 5 dix) + ] —k—? (=) ]
lllw. —C0 1+x +0  1+x

|

l
provided that the integrals on the right-hand side are convergent. Further-

more, we have

-0 ®
(8)  Varfe(w)} = uy"(0) = ulo® + [ xPaM(x) + [ x°aN(x)]
At —o +‘O
provided that the integrals on the right-hand side are convergent. Both in

(7) and (8) we form the derivatives of ¥(s) along the line Re(s) =0 .

Now we shall prove a few auxiliary theorems which will be useful in

studying homogeneous stochastic processes with independent increments.

Lema 1. Let & and n be real random variables having finite

expectations. If E{¢} =0 , then

(9) E{ini};E{[F,+nl} .

A
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Proof. Since x = E{¢ + x} , we have
(10) |x| = |E{g + x}| <E{|g + x|} .
If we integrate (10) with respect to P{n £ x} , then we obtain (9).

" Temma 2. Let gl, 52,... s En be mutually independent random variables

for which E{lgkl} < (k=12,...,n) . Set g =gt gyh g for

k=1,2,.0., n . If the random variables £1s Erseves &y have a symmetric

distributicn, then

(11) E{ max |z [} < 2E{jc |} .
» " 1<ksn ~

Proof. Define v=k (k=1,2,..., n) if t, 1s the first partial

sum for which Ck >X . Let x>0 . Then we can write that

n-1
P{max ¢ >x and ¢ <x}= ] Plv=k and z <x} g
" 1gksn k=1"
< Plv=kand g -, <0} = Plv=kand g -t >0} <
kel ™™ n °k k=1 n °k
n=-1 _
<} Plv=k and c, > x} £ Plz > x}
k=1"" ~
and evidently
(13) P{ max g, > X and ¢, > X} = P{z;n > x} .

" 1<ksn e

If we add (12) and (13) then we get
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(1) P{ max g, > x} ;:EP{;n > x} = P{

c | > x}.
P A n
l1<k<n

Hence it follows that

- P{ max [ckl > x} < P{ max ¢, > x} + P{ max (-z,) > x} £
™ 1<ksn ™ 1<ks<n ™ 1<k<n

(15)
< 2plg | > =} .

If we integraté (15) with respect to x from O to « , then we obtain

(11) which was to be proved.
1

Lemma 3. Let E1s E55e-+5 &, be mutually independent random variables

fbr‘Whic@ ;E{Iekl} <o (k=1,2,...,n) . Set T, =t Bttt for

k=1,2,.00,n. If 'E{gk}=o for k= 1,2,..., n, then

(16} E{ max

™ 1<ks<n

olts ELr, 3 .

* *
- 'Proof., Let €15 52,..., En be mutually independent random variables

which are independent of the variables gl, gz,..,, gn and for which

% : . % % *
;?{gk < x} =;§{gk <x} (k=12,..., n) . Define g, =& t &, +...+ £

%
for k=1,2,..., n . Since the variables = By (k = 1,2,..., n) are

symmetrically distributed, by Lemma 2 we have

* *
(17) E{ max |¢, - ¢, |} < 2B{|z ~ z_|} < UE{]z |} .
e 1<k<n k ¥ ~m ' on n ~— N

If we take into consideration thab
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(18) Iz, o= o) + 15l
g X max |, - ¢ z ’
k' = en B K k
if we integrate the right-hand side of (18) with respect to the joint

% % % :
distribution function of (gl, Ensenes & n) s if we use the ineguality
(19) E{ick|}é§_{|¢nl}=fjlcnl}

which follows from Lemma 1, if we form the maximum of the left-hand side
of (18) with respect to k (k = 1,2,..., n) , and if we integrate both

sides with respect to the joint distribution function of (gl, €53333 ’gn) ,

i

then we obtain that

*
(20) E{ max ngl};g{max ng— ‘;k]}+E{|Cn“ .
1<ks<n 1ksn ° -

By (17) and (20) we obtain (16) which was to be proved.

In what follows we always suppose that {g(u} , 0 gu <} is a
homogeneous real stochastic process with stationary independent increments

for which NE{E(O) =0} =1.

By using Lemma 3 we can prove that the strong law of large numbers is
valid for homogeneous processes with independent increments. The following

result is due to J. L. Docb [ 27 .

Theorem 2. Let {g(u) , O £ u < =} be a separsble, real, homogeneous

stochastic process with independent increments for which P{£(0) = 0} = 1,

If E{g(w)} exists, then
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(1) o M5

t >

‘with probability one.

" Proof. We may assume without loss of generality that E{g(1)} =0 .
If E{g(1)} # O , then let us consider the process £(u) - E{g(u)}

(0 s u < =) instead of {&(u) , 0 2 u < =},

If E{g(u)} =0 for u>0, then for any t

O=O<tl<...<t = £

n

Ef{max [g(t) [} < 5B} ][} .
1<kzn e

Stnee the process {&(u) , O < u < »} 1is separable, it follows from (22)
that
(23) E{sup {g(uw)|} < 5E{|e(t) |}

: " Ozugt ~

holds for every t > O .

Now we can repeat word for word the proof of Theorem 50.3 . The only
difference is that (50.28) should be replaced by

(24) E {sup |g(w) - e(m)|} < 5EL{e(D)|} < = .
nu<n+l "~

Theorem 3. If {&(u) , O £ u < =} 1s a real, hanogeneous stochastic

proeess .with independent increments and if E{[s(u)]2} exists, and

Var{g(u)} > O, then
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t>w v/ Var{z(t)}

rrrrrr

“'where ¢(x) 1is the normal distribution function. -

Proof. We can easily show that the Laplace-Stieltjes transform of
: 2
[e(t) - E{g(£)}1// Varle(E)  tends to 72 45 t o« and Re(s) = O .

Thus (25) follows by Theorem 41.10 .

We note that by Theorem 47.3 we can conclude that any countable and
everywhere dense subset S of [0,«) ig a separability set of a separable

process {g(u) , O < u < =} . Since obviously

_ 2/e .
(26) Ple(t)] » e} 21— & ] ) gy
A —2/5

for any ¢ > O and since v¥(iy) 1is a continuous function of v , it follows

~

that

(27) : lim P{|g(t)]| > e} =0
| t > 0™

for any € > O . Thus Theorem U47.3 is applicable.

By the investigations of P. Lé\_fz (437 1, J. L. Docb [ 30 ], A. V.

Skorokhod [ 446] and I. I. Giklman and A. V. Skorokhod [ 44 ] we can

canpletely describe the behavior of the sample functions of a stochastic

procéss with independent increments,

We shall mention only briefly the main results without giving comolete

proofs.
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- Theorem 4. If {g(u) , O £u <=} 1s a separable, homogeneocus, real

stochastic process with independent irncrements, then with probability 1

the limits £(ut0) exist for all u z O and the limits ¢(u~0) exist

for all u >0 .

The proof of this theorem is based on the follcwing observation. If
for any € > 0 a function x(u) defined on the interval [0, t] has only
a finite numbér of oscillations greater than e > G , then x(ut0) exists for
uel[O ; t) and =x(u-0) exists for uc (0, t] . We say that a function
x{u) ?n [0, t] has at least n oscillations greater than e 1f there

tiseees ty In [C, t] such that O by <ty it <t

Q° 1 n

and Ith,k) - x(tkd)l > ¢ holds for ail k =1,2,..., n .

aré n+l points ¢t

We can prove that for any ¢ > O the sample functions &(u) in any
finite interval [0, t] have only a finite number of oscillations greater

than € with probability 1 . This Implies the theorem.

Since the process {g(u) , O < u < «} 1s separable, it fcllows that
if Ups Upseees Upye.. are elements of the separability set of the process
and 1f u ~u as n >« , then P{ 1lim a(un) = g(u)} = 1. Consequently,

n > o«

the process {£(u) , O g u < »} has the property that for every u >0 ,

either &(u) = £(ut0) or &(u) = g(u-0) with probability 1 .

Theorem 5. Let {g(u) , O < u < =} be a homogeneous, real stochastic

~ process with independent increments defined on a probability space , (2.8,P) .

Then there exists & separable homogeneous, real stochastic process with

*
independent increments {& (u) , O £ u < =} defined on the same probability

space such that
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(28) | 3{5*(u) =g(w} =1

for all u > O and with probability 1 the sample functions of {& (u) ,

- %
O <u <=} have a right limit & (utd) for every u > 0 , and a left

% %
limit ¢ (u-0) for every u>0 and ¢ (ut0) = g(u) for ux 0.

It follows from Theorem 47.1 that there exists a separable process
{¢ (W) , 0 <u<w} forwhich (28) holds for all u > O and by Theorem 4

we can prove the remaining statements,

Since the finite dimensional distributions of the two processes {£(w) ,
0 =<= u < w} and {E*(u) » O < u <=} are identical, therefore we can always
choose such.version of the process {&(u) , 0 < u < é} which has the sane
propértiés as the process {g*(u) » 0 <u <=},

Theoreém 6.  Let {g(u) , O <u < =} be a separable, homogeneous, real

stochastic process with independent increments for which NS{E(O) =0t =1,

Let I, = [ak, bk] (k = 1,2,..., m) be disjoint intervals not containing

the point x = 0 . Denote by v(%t, Ik) the number of points u in [0, tl

for which g(ut0) - g(u-0) ¢ I then {v(t, Ik) > 02t <o (k=1,2,..., m)

k 3

are mutually independent Poisson processes and

t[M(b,+ 0) - Mgy~ 0)] for a <b
(29) Elv(t, L)} =

t[N(b,+ 0) - N(a- 0)] for O <a by

“where M(x) (== < x <0) and N(x) (0 < x < ») are nondecreasing functions

of x satisfying the conditions lim M(x) =0, and 1im N(x) =0 .
X > - X > x
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Since the vector process {v{t, Ik) s (k=1,2,..0,m) , O0<t <=}
is homogeneous and has independent increments, it is sufficient to prove
that for each t > O the random variables v(t, Ik) (k = 1,2,..., m) are

:tndepéndént and v(t, Ik) has a Poisson distribution.

Theorem 7. Let {g(u) , O < u < =} be a separable, homogeneous, real

‘stochastic process with independent increments for which NQ{E(O) =0} =1,

Let Ik = [ak, bk] (k = 1,2,..., m) be disjoint intervals not containing

'the point x = O . Denote by &(t, Ik) the sum of jumps &(ut0) - &£(u-0)

belonging to the interval I, and occurring in the intervai [0, t] . Then

{g(t, ]‘::k) s 0<t <o} (k=1,2,..., m) are mutually independent campound

Polsson processes and

-s&(t,I, ) _
(30) Ele K} = expl-t [ (75 -1)dli(x)}

Ik

_J_‘._'_(_D_I: ak;bk<0 and

-sg(t,I.) _ ~-SX —
k! = exp{-t | (e ~1)dN(x)}
(31) Efe <y = et ]
k

for O<ak;bk. We have

-0 5 €5 _
(32) [ x"dM(x) + [ x“dl(x) < =

- +0

for any ¢ >0 .

The proof of this theorem is similar to the proof of the previofas
_t_heor'em._ Since the vector process {e(t, Ik) , (k=1,2,..., m) ,-o <t < «}

is hamnogeneous and has independent increments, it is sufficient to prove
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that for each t > O the random variables &(t, Ik) (k = 1,2,¢0., m)

| are independent and &(t, Ik) has a compound Poisson distribution.

We note that both Theorem 6 and Theorem 7 remain valid if we’assume
that each I, is one of the intervals [ak, bk]’ (ak, bk), (a, , bk]’

[ak, bk) . Only (29) needs obvious changes.

Iet
denote by 5n(t) the sum of jumps g(ut0) - £(u~0) having absolute value

greater than or equal to e = and occurring in the interval [0, t1 . We
l

can prove that
|

|
i

(33) Var{[g(t) - El(t)]} <w,
This implies that (32) holds for any € > O .

Let us choose €1 = 1, €nseces Epsece in such a way that

n
oo moo
(34) [ x5di(x) + [ x"dN(x) < =5
“En erﬂ"l n

for n=1,2,... .
Let us define

(35)  x(£) = gy(8) + Lim [g,(£) - & (£) = B{g (£) - £,(6)}]

N+ o

for t >0 . By (34) we can prove that on the right-hand side of (35) the
limit exists with probability 1 and the convergence is uniform in t in any

finite interval. Thus {x(t), O £t < =} is a stochastic process.

e = 1> 32>..>en>0 where €, 0O as n+», Foreach n=1,2,...
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let t(t) = £(t) - x(t) for t >0 . The process {z(t) , 0 <t < «}

is independent of the process {x(t) , O <t < =},

We can prove that there are only two possibilities: either {z(t) ,
0 <t <=} 1s a stecchastic process for which P{z(t) = aty=1 for t >0
where a 1is a real constant or {¢ {(t) , O <t < »} is a general Brownian

motion process for which

™~ o Yt

g

< x} = o(x)

if t >0 where a 1is a real constant and ¢ 1s a positive real constant.

A{:cordjngly,' {g(u) , 0 £ u < »} can be represented as the sum of two

|
independent processes, {z(u) , 0 2 u <} and {x(u) , 0 <u < =} , where
{z(w) , 0 <u <} 1Is a general Brownian motion process (or a degenerate

process) and {y(u) , O < u < «»} 1is the limit of centered compound Poisson

processes.

By (30), (31), (35) and (36) we can conclude that

(37) Ee S W) o (s)

for u >0 and Re(s) =0 where

-2 2
¥(s) = —ast+ = ; + [ (TFndix)+ [ (e Fo1rsx)dN(x) +
(==,1] (~1,0)

(38)

+ [ (e dsx)dAN(x)+ [ (e7S*_1)dN(x)
(O,l) [1’00)

and @ is a real constant and 52 is a nonnegative corstant.
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A camparison with (2) shows that necessarily M(x) = M(x) if x <0
and x is a continuity point of M(x) , N(x) = N(x) if x>0 and x is
a continuity point of N(x) , and & =¢° . The constant 3 can easily

be expressed with the aid of a , M(x) and N(x) .

In what follows we assume that {g(u) , O < u < =} 1is a homogeneous,
real stochastic process with independent increments for which Mg{g(o) =0} =1,
Then (1) holds with V¥(s) defined by (2). The finite dimensional distributions
of thé process | {g(u) , 0 <u < =} are campletely determined by the para-

meters a and 62 and by the functions M(x) (-~ < x < 0) and N{x)

(Q < x{< =) . We can classify the processes {g{u) , O < u < =} according

to the properties of a, 02 , M(x) and N(x) .

If a 1is a real number, 02 is a positive real number, M(x) = C for

X <0 ,and N(x) =0 for x>0, then

| .
(39) ¥(s) = -as + &3

for all s , and {g(u) , O <u < «»} 1is a general Brownian motion process

for which

(40)' P{ é_(_ll_)_:_:?_li; x} = o(x)

o Yu
for u >0 . If the process {g(u) , O <u < =} 1is separable, then the

sample functions are continuous with probability 1 .

If a 1is a real number, 02 =0, Mx)z 0 for x <0 and N(x) =0

for x >0 , then

(41) ¥(s) = -as
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for all s , and P{g(u) = au} =1 for all u >0 . If the process is

separable, then the sample functions are continuous with probability 1.

Conversely, if the sample functions of the process {g(u) , 0 < u < «}
are continuous with probability 1 , then M(x) =0 for x <0 and N(x) = 0

for x> 0, that is, {g(u) , O < u < «} 1is either a general Brownian motion

process cr a degenerate process.

If a=0, 62 =0, and A =M(-0) + N(+0) 1is a finite positive constant,

then there exists a distribution function H(x) such that if x is a

continuity point of H(x) , then

(42) M(x) = AH(x)

for x < 0 and

(43) N(x) = A[H(x)-1]

for x>0 . If

(1) W) = [ S
-00

for Re(s) = 0, then

(45) ¥(s) = AL1-y(s)]

for Re(s) =0, and {&(u) , O <u < =} is a compound Poisson process. If
the process {g(u) , O < u < »} 1is separable, then with probability 1 the
sample functions are step functions having only a finife number of jumps in

every finite interval [0, t] .

Conversely, if the sample functions of the process {g{u) , 0 < u < =}

fin

are step functions having only a finite number of jumps in every finite interval
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[0, t] with probability 1 , then {g(u) , O <u < «} 1is either a compcund

Poisson process or a degenerate process for which P{g(u) =0} =1 for all

uzxo0.
Let us suppose that a >0, o> = 0 , M(x) 20 for x <0, N(+0) < g,
and
€
(46) [ xadN(x) < =

+0

for some e >0 . In . this case

¥(s) = -as + [ (PX1)aN(x)
+O .

(47)

for Re(s) >0 , and if the process {g(u) , O < u < =} 1is separable, then
th probability 1 the sample functions are nondecreasing functions of' u .
Conversely, if with probability 1 the sample functions of the process
{&(u) , 0 £ u <=} are nondecreasing functions of u , then ¥(s) has the
form (47) where a ;O and N(x) satisfies (46). Furthermore, apart from

a set of probability zero, each sample function can be expressed as the sum

of the linear function au (0 < u < «) and a step function. If N{+0) = —= ,

then the step function has infintely many jumps in every interval [0, t]

of positive length.
If in the above case

(54

(48) p = [ xdN(x)
+0

#
. 1is a finite positive number, then there exists a distritution function H (x) -

of a positive random variable such that

A

/
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X
, [ Ny

(49) 9 = H (x)

[ N(y)dy

0
for x>0 . If
50) v (s) = [ &%t ()

0
for Re(s) > O, then (47%) becomes
- (51) : ¥(s) = psw*(s) -~ as,

If in laddition A = N(+0} < «» , then there exists a distribution function

H(x) of a positive random variable such that

|
(52) NGO~ 1) - p(x)

for every continuity point of H(x) in the interval [0, =) . If

@

(53) ¥(s) = [ & SXqH(x)

for Re(s) > 0 , then

(5) p'(s) = ML)

for Re(s) >0 and s #0 in (51).

Let a be a real number, o > 0 , M(x) =0 for x <0 and
€ 5 '
(55) [ x°aN(x) < =
| +0

for same € > 0 . In this case
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(56) wah%ﬂ%wjg%“

+0 i+x

=5 i (x)

for Re(s) > O and 1f the process {g(u) , O < u < =} 1is separable, then
with probability 1 the sample functions have no negative jumps. Conversely,
if with probability 1 the sample functions of the process have no negative

Jumps, then ¥(s) is given by (56) for Re(s) > O .

We note that if in (56)
€
(57) : [ xd(x) < =
+0

for some e > O , then (56) can be reduced to the following form

2.2 o
(58) ¥(s) = -as + T5-+ [ (eF-1)an(x)
+0

for Re(s) >0 where a is a real number. If in (56) we have

~
-

[--]

(59) . fXdN(X) < ™

€
for same e > O , then (56) can be reduced to the following form

2.2
a’s

(60) ¥(s) = -as + >

+ [ (751 + sx)aN(x)
+0

for Re(s) > O where a 1is a real number. The eonstant a is in general

not the séme as in (58).

We say that {g(u) , O < u < »} 1is a stable process of type 3(a,R,c,m)

if (1) has a stable distribution of typé S{a,B,c,m) . In this case

11+ 8 -2-dle, a)]

(61) ¥(s) = -ms ~ c|s|
|s]
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for Re(s) =0 where m is a real constant, ¢c> 0 ,0<a <2,

—l__<__3__<=l and

tan 3= for a# 1,

<

(62) d(s,a) =
- %1og |s| for a=1.

In (61) s/|s| =0 if s =0 . See Theorem 42.4 ,

. Finally, we shall prove a general result for separable, homogenecus,
real stochastic processes {g(u) , O < u < »} with independent increments
in the case when the sample functions are nbndecreasing step functions
withiprobability one. If N?{g(O) =0} =1, then for such processes we

have

(63) | . Efe~SE), o que(s)

for Re(s) > O where

(&b Ws) = [ (S Dai)
+0

and N(x) (0 < x < «») 1is a nondecreasing function which satisfies the

conditions 1im N(x) = 0 anrd
X >+

(65) [* xai(x) < o
+0

for some € > O . We note that if -N(+0) < «» then with probability 1,

the sample functions have only a finite number of jumps ih any finite
“interval [0, t] , whereas if -N(+0) = «, then with probability 1, the

sample functions have infinitely many jumps in any finite interval [0, €1 .
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" The general result mentioned above is based on the following

auxiliary theorem. (See reference [ 86 J.)

Lemma 4, Let x(u) be a nondecreasing function of u 1in the interval

[0, t] for which x'(u) =0 almost everywhere and x(0) =0 . Let us

extend the definition of x(u) for u > 0 Dby assuming that =xz(utt) =

x(u) + x(t) for u >0 . Define

1 if  ux(u) gv-x(v) for uzv,

(66) ' s(u) =
Q0 otherwise.
Then,
|
|
' t t-x(t) 1if =x(t) <t ,
(67) [ s(w)du =
0 0 if x(t) >t .

Proof. If x(t) >t , then &(u) =0 for all u > O and thus the

theorem is obviously true. Let x(t) <t and define
(68) y(u) = inf{v-x(v) for v > u}

for u>0 . Since x(utt) = x(u) + x(t) for u>0, v}e have y(utt) =

yu) +t - x(t) for ux>0 . Furthermore,we have O < y(v) - y(u) < v=u

for 0 <u ;&' « Thus y(u) (0 g£u < =) is a nondecreasing and

absolutely continuous function of u . Consequently, y'(u) exists for

almost all u, 0 £ y'(u) <1, and
t

(69) é y'(wdu = y(t)

y(0) = t-x(t) .

Now we shall prove that y'(u) = §(u) for almost all u , which

implies (67). We note that ¢&(u) =1 if and only if y(u) = u-x(u) .
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The inequality y(u) < u-x{u) always holds. Furthermore, we have

x(ut0) = x(u) and x'(u) =0 for almost all u >0 .
First,we prove that | .
(o) y'(u) < 8(u) for almost all u > O .

If y'(u) exists, and if y'(u) = 0 , then (70) is obviously true. Now
we shall prove that if y'(u) exists, if y'(uw)>0 and =x(ut0) = x(u) ,
then 6(u) =1 . If y'(u) >0, then y(v) > y(u) for v >u and
therefore y(u) = inf{s-x(s) for u <s v} holds for all v>u .

Thusi u-x(v) < y(u) g u=x(u) for all v > u , and consequently u-x(utl) <
y(u); u-x(u) . If x(ut0) = x(u) , then y(u) = u-x(u) which implies

that 8(u) =1 . Since y'(u) <1 always holds, therefore (70} follows.
Second, we prove that

(71) §(u) < y'(uw) for almost all u 2O .

If 6(u) =0 and y'(u)/ exists, then (71) is evidently true. Now we

shall prove that if ¢&(u) =1 , if y'(u) exists, if x'(u) =0 and u

is an accumulation point of the set D= {u : §(u) =1, 0 gu < «} , then

y'(u) =1 . Suppose that ue D and u = lim u_ where u, € D and
n-ow

W, #Fu. Then y(u) = u-x(u) and y(un) =u- x(un) . Accordingly, if

y'(u) exists and if x'(u) = 0 , we have

(72) - y(w)-y(u ) X(u)—x(un) w
72 y'(uw) = 1lim ———=1-1im ———————-=1 - x"(u) =1.
' n+oe YU n-+eo U



VII-147
Since the isolated points of D form a countable (possibly empty) set,
therefore (71) follows.

By (70) and (71) we obtain that y'(u) = §(u) holds for almost all
u20 . Thus by (69) we get (67) for x(t) <t . This completes the

proof of the lemma.
By using Lerma 4 we can prove the following result.

Theorem 8. Let {&(u) , O 2 u < =} be a separable, homogeneous,

real istochastic process with independent increments. If Ple(0) =0t =1,

and 1f the sample functions of the process are nondecreasing step functions

with probability 1, then

((t-y)/t for C<y<t,
(73) P{e(u) <u for O <ug<tlelt) =y} =
O otherwise,

where the conditional probability is defined up' t0 an equivalence.

Proof. Define ¢¥(u) for O <u < « by assuning that g*(u) = g(u)

for Ocu<t and g¥(utt) = g¥(u) + g¥(t) for u>0 . Let

1 if g¥(v) - ¢¥(w) g v-u for v>u,
(74 §(u) =
O otherwise.

Then 6(u) 1is a randan variable which has the same distribution for all
u >0 . Evidently 6(0) is the indicator variable of the event {g{u) < u

for O <u <t} . Thus we have




VII-148

P{e(w) gu for O zu g tla(t)l = E(s(0)|e(8)} =

(75)
1 t 1 £
= -Ej’ E{s(wle(t)tau = E{ £ ] s(waule(t)} =
o™ Y0
1-5%-)— for 0 <&(t) <t ,
0 otherwise,

with probability 1 because by Lemma 4

. t-g(t) if O < e(t) <t ,

(76) [ s(wdu =

O

0 otherwise ,

holds for almost all sample functions of the process. This canpletes the

proof of the theorem.

We note that Theorem 8 remains also valid if we replace the left-hand

side of (73) by P{e(u) <u for O < u < tle(t) =y}

Fram (73) it follows that

(77 P{e(u) 2 u for O<u<t)=E{l- -gﬁél]*-}

A

for t > O where [x]+ denotes the positive part of x .

If the process {&(u) , O < u < =} ‘satisfies the conditions of

Theorem 8, then (63) holds with ¥(s) defined by (64). If in addition
(78) | o = [ xdN(x)
+0

is a finite nonnegative rumber, then Thecrem 2 is applicable, and we have
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(79) pun oy -,
£ > o

In this case by (77) it follows that

1-p if p <1 ,-
(80) P{g(u) <u for O<u<=}=

For by the continuity theorem for probabilities and by (77) we have

P{g(u) cu for O<cu<w}=1imP{g(u) cu for C<usxtl~=
Ao t_)gg""" .

(81)
o cumEq -S89 -1t

t >

that
In the last equality we used . &(t)/t=» p as t > and that O <

[1 ;’%)-]";1 forall ¢ >0 .

Examples. We shall mention a few examples for the applications of

Theorem 8.

Compound Poisson Processes. Let us suppose that

(82) N(x) = -A[1-H(x)]

for x >0 where A 1is a positive constant and H(x) is the distribution
function of a nonnegative random variable. In this case {g(u) , 0 <qq < =}
is a compound Poisson process and Theorem § is applicable. In this particular

case we already proved Theorem 8. (See Theorem 48.13). .In this case
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(83) p = A f xdH(x)
and (80) also holds if ¢ < =

' ‘Stable Processes. Let us suppose that

(84) N(x) = = —2—n
T (1-a)x”

for x >0 w_her'e O<a<1. In this case

(85) ¥(s) = v [ (e75%1) E_ - g°
|

for |Re(s) 20 and {g(u) , O g u< =} is a stable process of type
|

S(a,1,1,0) . Now Theorem 8 1is applicable. However, in this case p = = .

Gamma Processes. Let us suppose that

e—-uy
y

(86) N(X) = - foo dy
X

for x > 0 where u 1is a positive constant. Then

(87) ¥(s) = [ (e7%%1)e™* . ~log(l+ )
0 x H
for Re(s) > O . In this case we say that {g(u) , 0 zu <=} 1is a

gamma process. Now Theorem 8 holds and (80) also holds with p = 1/u .
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52, Weak Convergence of Stochastic Processes.

Let ’{gnCu) ,O0<us<t) (n=1,2,,..) and {&(u) , 0 <u <t} be
réal stochastic processes. We say that the finite dimensional distribution
functions of the process ‘{En(u) >, O 2uxtl converge to the finite

dimensional distribution functions of the process {&(u) , O <u <t} 1if

for eny k = 1,2,... and O <%, <&, <ceo< t <t we have

(1) Lim Plg, (t)) <

n->w

l’ En(tz) ;Xz,..., En(tk) ;xk} =
= Ple(t)) < xp, &(55) < Xg5eues (E) £ %)

in every continuity point (xl, Xoseees xk) of the right-hand side of (1).

let Q be some real functional definea for En = { gn(u) s O<ucxt}
and £ = {g(u) , O £u <t} . The problem arises what conditions should we
impose on Q in order that

2) lim P{Q(g ) < x} = P{Q(g) < x}

n-> o

be satisfied in every continuity point of P{Q(g) < x} ?

The importance of the solution of the above problem is twofold. First,
it mskes possible to determine the probability f{Q(E) < x} for a process
m=' {g(w) , O 2u<t} if we can determine the probabilities P{Q(Z ) < x
for a sequence of sultable chosen processes g, = {gn(u) » O zucgt}

(n=1,2,...) . Second, it makes possible to determine the limiting

distributions of some functionals defined on a class of stochastic processes,

In what follows we assume that the sample functions of the prccesses
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{gn(u) ,0<u<t} and {g8(w) , 0 <u <t} belong to some metric space
Q with probability 1 . For x e R, y € & denote by p(x, y) the distance
betwéen X and Yy Denote by B / the smallest g-algebra which contains all
the open S€tS , (clesed sets ) in q . If Q is a separable metric

SPacé; thén B coincides with the smallest o-algebra which contains all the
open spheres (closed spheres) in . In what follows we shall consider
only such spaces R={ x(u),0¢u<+ty for which A , The minimal 6 -
algebra containing the sets {x(u)% a} for uef0,t]and ae(-w,®’,

contains all spheres in § .
For any A ¢ B let us define

(3) Un(A) =/~f{»§n € A} >

that 1is, un(A) is the probability that En = {‘én(u) » O<uxt}l belongs

to A, and
)] u(A) =P{ec A},

that is, p(A) 1is the probability that £ = {¢(u) , O <u <t} belongs to
A, provided that the probabilities (3) and (4) are uniquely determined
by the finite dimensional distribution functions of the processes{ gn(u) s

O<ust} (n=1,2,...) and {&g(uw) ,0zugt}.

We say that u =~ converges weakly to w , that is, un=> g as n-+ o,

if and only if

(5) 1im ,fh(x)dun = { h(x)du

n--«Q Y]

for every continuous and bounded real functicnal h{x) on @ . The funchtional
h(x) i1s continuous on @ if for every x ¢ Q@ and for every e » O thers

isa § >0 such that |h(z) - h(y)| <& whenever y e g and p(x, y) < & .

< the class of Borel subsets of 2 , that is, B is
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If we suppose that the space Q 1s a separable metric space and Q is
a continmuous functional on € , then Q(En) (n=1,2,...) and Q(g) wiil

be random varlables and

Q Lim P{Q(g)) < x} = PQ(E) < x}
n > o
holds in every continuity point of f{Q(E) < x} 1if and only if W, converges

weakly to u . For (6) holds if and only if

(7  lim fein(x)dun =/ ein(X)dﬁ
n->=yV Q

for évér'y real w . Since cos[wQ(x)] and sin[wQ(x)] are continuous and

boﬁmd‘e@i functionals on @ ,the statement is obvious.

Accordingly, if we restrict ourself to separable metric spaces & and
" continuous functionals Q , then (2) holds if and only if W= as
n -« , Thus the problem is reduced to find sufficient conditions for

Qn==> u . The following definition will be useful in solving this piroblem,

We say that the sequence {un} is weakly ccmpact if every subseguence

of {;n} contains a subsequence which is weakly convergent.

Yu. V. Prokhorov [ 523 ] proved that if @ 1is a metric space and if for

every € > O there exists a campact set Ke in @ such that

(8) sup u (0~-K ) < ¢
1<n<e = ¢ ’

then {uh} is weakly compact. (See Theorem 3,2 in the Appendix.)
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If we suppose that @ is a separable metric space, if {ﬁn} is weakly
compact and if (1) is satisfied, then we can prove that ﬁn=> u as n > e,
The proof is exactly the same as the proof of the fourth statement in
Theorem b5, 7 . (Formulas (46.143) to (46.157). The only differerice is

that in (46.151) fe Q .)

Thus we can conclude that if @ 1s a separable metric space and if
for every e > O there existSa compact set KE in @ such that (8) is
satisfied, theri (2) holds for every contimuious functioral Q on @ .
Actually, (2) also holds if we assume only that Q 1s measurable with
reSpect}; to B and almost everywhere continous with respect to u . The
preoof c,gf this last statemert is exactly the same as the proof of the last

statement in Theorem 46.7 . (Formulas (46.160) to (46.165).)
We can sumnarize the above results in the following theorem.

Theorem 1 . Let gn={gn(u) »O0zus<tl (n=1,2,...) and

g ={g(u) , 0 g uxtl be real stochastic processes whose sample functions

separable
belong to some metric space @ with probability 1 . Denote by B the class

of Borel subsets of @ and let us define un(A) for AeB by (3) and

u(A) for AeB by (4) . If (1) is satisfied and if for every e > O

there exists a compact set KE in @ for which (8) is satisfied, and if

Q is a functional on  which is measurable with respect to B and almcst

everywhere continuous with respect to u ; then

9) Lim P{Q(g,) < x} = PIQE) < x}

n-> o P

in every continuity point of N?{Q(g) <x}.
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Theorem 1 has many useful applications in the theory of stochastlc

processes.,

First, let us consider the case when the sample functions of  the
pmcéssés {gn(u) ,O0<ux<t (n=1,2,...) and {g(uw) , 0 <u <t} are
_continuous with probability 1 . Then & can be chosen as the space Cfo, t]
of continuous functions defined on the interval [0O, ¢] . If we introduce
the metric o(x, y) = swp |x(u) -y(u)| whenever x = {x(u) , 0 <u <t}

‘ Ozust : )
e@[0, t] and y={y(u) , 0 <u <t} eCl0, t] , then C[O, tl becomes

a complete separable metric space.
|

|
The following theorem is due to Yu. V. Prokhorov [ 5221,[ 523 ]. See

also I. I. Gikhman and A. V. Skorokhod [ 44 1.

" 'Theorem 2. Let us suppose that the sample functions of the processes

ffn:{@n(u) ;0custl (n=1,2,...) and £={e(w) ,0cuxth are

continuous with probability 1, and the finite dimensional distribution

functions of the process {& (u) , 0 <u <t} converge to the finite
n E—1 3

dimensional distribution functions of the process {g(u) , O <u st} as

n+>e«, If forany >0

(10) lim  lim sup P{ sup |&

(u) - En(V)] >e}l =0
h+0 n+o |u-v|<h

n

and if Q 1is a real continuous functional on G[O, t] , then

(11) 1im P(Q(g ) < x} = P{Q(E) < x}

n -+ e

in every continuity point of P{Q(g) < x} .
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yf_m_d‘ By Theorem 1 it is sufficient to prove that for every e > O there
exists a compact set K_ in ¢[0, t] such that ”n(Ka) > 1-e for n=1,2,... .
We can construct a compact set Ke in the same way as in the proof of the
second statement of Theorem 46.7 . (Formulas (46.133) to (46.142).) Only
the set FO should be chosen differently. Since g{gn(o) < x}==}£{£(0) < x}
as n -« , therefore for any e >0 we can find an m, such that E{[En(o)l <

My} > 1-e for n=1,2,... . Ifwe choose F, = {f:]£(0)| £ m.} , then

my
un(FO) > 1- ¢ and the remaining part of the proof remains unchanged.

Nc?w let us consider a few examples for the application of this theorem.
i

|
let us s pese that {g(u) , O < u <t} is a separable Brownian motion
up U=z
process defined on the interval [0, t] . Then with probability 1 the sanple

functions of the process are continuous functions. (See Thecrem 50.1.)

Let E1s Enseees £ be mutually independent and identically distributed

n’..‘
real random variables for which E(§} =0 and E{¢} =1 . Define t_=

L

(12) g (u) = 2] / /n

for O <u <t . Then the finite dimensional distribution functions of the
stochastic. process. En = {En(u) s O<u st} converge to the finite
dimensional distribution functions of the Brownian motion process £= fe(uw) ,
O<uxtl. This follows from the central limit theorem and from the fact |

that the process {En(u) »’0 2 u <t} has independent increments.

Now we cannot apply Theorem 2 directly because the sample functions of
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the processes {En(u) , 0 £u <t} are not continuous functions. However,

wé can éasily overcome this difficulty. Let us define

] + (nu - [nu})i[nu+l]
n

(13) £ (w =

* *

for u > O . Then the stochastic process € = {gn(u) s O0<u<t} has

continuous sample functions and the finite dimensional distribution functions
S %

of the process {gn(u) , O <uxtl converge to the finite dimensional

distribution functions of the Brownian motion process & = {g(u) , O <u < t} .

P

Since ig[nu+l]/'/ﬁ— =%0 as n > = , this follows immediately from the results

méntiohed above.
|

%

For the process {gn(u) » 0 2 u<tl we can apply Theorem 2 and we
can conclude that 1f Q 1s any real continuous functional on €[0, t] ,
then

(1) Lin FlQ(g)) < %) = P(Q(E) = x)

n > ™

in every continuity point of P{Q(£) < x} .

For in this case (10) is satisfied which follows from the inequality
(46,126). See formulas (46.126) to (46.132). This result is in agreement
with Theorem 46,7 .

If we suppose, for example, that E’{gn =1} = P{E,n = -1} = 1/2 for

n=1,2,..., then the randam variables s Cyseres Tpsese describe &
symmetric randan walk, and for several functionals Q the limit (1l) can

be determined directly.
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On the one hand this result makes it possible to find the probability
,\?{Q(E) < x} for a Brownian motion process ¢ = {g(u) , 0<u<t}l and on
the other hand it shows that the limiting distfibution (14) does not depend
on thé particular sequence of random variables 61, 52,.. .y & et it

depends only on the limiting distributionOf z;n/ /n as n+w,

As a next example let us suppose that {g(u) , O < u <t} 1is a general
Brownian motion process for which E{g(u)} = au and YEI:{E(U)} = 02u where
¢ 1s a positive constant. Then with probability 1 the sample functions of
thé prtéacéss- are continuous functions. (See Theorem 50.1.)

|
|

For every n = 1,2,... let gnl’ £n2""’ ‘Enk"" be mutually indepencent

and identically distributed random varisbles for which

noJ =

(15) Pley =1l =5+-—2— and Pz, =-1} =2 - &

20vn -~ 20

31

-

2,2 - c ' ; .
whenever n > a”/¢” . Ilet ¢, = £ .+ Epteeet &y for n21 and k21

and ;no=0 for n> 1. Define

16 g - ]
(16) g () = —
for O<uxgt and
R4 + (n - frul)z ]
an ehw = —malnu] n,[nutl]

/n

for O<ust.
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The finite dimensional distribution functions of both processes
& = {gn(’ﬁ) ,V 0 < u>__<= t} and f: = {g;(u) s O 2u <t} converge to the
finite dimensional distribution functions of the process § = {g(w) ,
0 ;u ; t} . While the sample functions of the process (g (u) , 0 fu <t}
are sftép functions, the sample functions of the process {F;fl(u.) s Ozugtl}
are contiruous functions. Purthermore, we can easily prove that (10) is
satisfied for the process {EZ(u) s O0<0<t} . Thus Theorem 2 is applicable,
and we can conclude that if Q is any real continuous functional on C[C, ],
th_én

¥
| m P{Q(g ) < x} = P{Q(g) < x}

n-+>wo

in every continuity point of P{Q(E) < x} .

%
For several functionals the probability .E{Q(én) < x} can be calculated
explicitly and by forming its limit as n + = we can cbtain P{Q(Z} £ x}

for a general Brownian motion process £ = {&(u) , O <u <t} .

A second important case for the application of Theorem 1 is the following.
Let us suppose that the sample functions of the processes {gn(u) s 0 <u g1}
(n= 1;2;.'.-.) and {g(u) , O < u <1} belong to the space D[0, 1] with
probability 1 . Here D[O, 1] denotes the space of real functions f(u)
defined on the interval [0, 1] for which f(ut0) and f(u-0) exist at

every point and f(ut0) = f(u) , £(0) = f(#0) and £(1) = £(1-0) .

Let us introduce a metric in the space D[0, 1] in the following way:
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If f e DO, 11 and g e D[O, 1] , then let us define the distance between

f and g by

(18) d(f,g) = inf {sup |[f(u) - g(a{w))| + sup ju - rlu)|}
S~ Aed Ogusgl O<us<l

whére A is the set of contirnuous, increasing, real functions a{u) defined
on the interval [0, 1] such that A(0) =0 and A(1) =1 . We can easily
check that a(f, g) defines a metric on D[O, 1] , and the space D[O, 1]
with the metric (18 is a separable metric space. For each f e D[O, 1]
let us define

|

b (f) = Sup {min(|f(t) - £(u)| , |£(v) -~ £(])} +

! ™ Omu~astingviavtagl
(19)

+ swp [fw) - £O)] + sup |f(u) - T(1)] .
Ozuz<a l-azu<l

The following thecrem is due to A. V. Skorocknod [ 537 1.

Theorem 3. Let us suppose that the sample functions of the processes

&y = {gn(u) , O0<us<lt (n=1,2,...) and E=1{g(w) ,0<uzx1} lrelong

to the space D[O, 1] with probability 1 , and the finite dimensional

distribution functions of the process {En(u) s O 2ug<l} converge to the

finite dimensional distribution functions of the process {g(u) , 0 < u < 1}

as n»«, If for every ¢ >0

(20) lim lim sup P{A (£ ) > e} =0,
a+on+m A a ~n .

and if Q 1s a real continuous functional on D[O, 1] with the metric (18),
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@1) 1im P{Q(E ) < x} = P{Q(E) < x}

n-o

in every continuity point of P{Q(g) < xI .

For the proof of this theorem we refer to 1. I. Gikhman and A. V. Skorokhod

[44 ppv. 469-478]1 . Here we shall sketch only briefly the proof of Theorem
3. First, (20) implies that

(22) lim sup P{A (€)>e} =0,

‘ a>-0 n™
1

Since for any € >0 and ¢ we have
!
!

(23) Pl sup g (W] > ch g Pimax [g )| > c - e} + Pidymlg !
Ogus<l O<kzm

and since

(24) lim P {max Ig (—)l < x} =P max lg(—)l < x}
n-e O<k=<m Oz<kzm

in every continuity point of the right-hand side, therefore by (20) we
obtain that

(25) lim sup P{ sup |€ (W] > ct =
cC+>e n O<u<l

Denote by KX(c,w) the set of functions {f(u)} in D[O, 1] which

satisfy the inequalities [f(u)] z'¢c for O<u<1l and & ,(0) 2 w(a)
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for a > QO where w(a) is a nonincreasing continuous function of a for

Q0 <a and 1lim w(a) =0 . Then K(c,w) 1s a compact set. If for every
a-~>o0 v

e » O we choose KE_= K(c,w) with a sufficiently large c¢ , then by (25)

thé'inequality (8) is satisfied, and by Thecrem 1 we obtain that (21) holds.

In the following we shall give a few examples for the application of

Theorém 3.

First, let us suppcse that El’ 52,..., En"" is a sequence of mutually

Independent and identically distributed resl random variables. Write Ly =

Eqt 624...+ g, for n=1.2,...and ;=0 . Let us assume that

z
(26) 1im P { g~ < x} = R(x)
n->e n

where R(x) 1is a nondegenerate stable distribution function of type S(u,8,c,0)
(the case of a =1, B #0 is excluded) , Bn >0 for n=1,2,... and

lim\Bn = o,

n > «

Define
7 () = [oul
| T TR

for Osu<1l and n=1,2,... and gn(l) = cn_l/Bn for n=1,2,... &

Let {g(u) , O < u < 1} be a stable stochastic process of type S(a,8,c,0)

. where 8 =0 1if a =1 . (See formulas (51.61) .and (51.62).) Then

l/ax}

(28) Ple(w) cu = R(x)
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for 0 <u 1.

Since both {En(u) ,02ux<1}l and {g(u) , 0 < u <1} have independent
incréménts, it follows from (25) that the finite dimensional distribution

fﬁnctions>of the process = {gn(u) » O 2u <1} converge to the finite

mg I ] ]
dimensional distribution functions of the process £ = {&(u) , 0 <u ;=l} as

n -+ e«

Tor the process {gn(u) , O <u =<1} the condition (20) is satisfied.
This can be proved by using (26) and the inequality

€

|
! P{A (E ) > e} £ 2P {sup Ig (w! > H'} +
‘ O<u<4a

(29)

+ (1+ —9 [E {sup lglfu)i > Iﬁ] .
* Ogugha *

For details of this proof see I. I. Gikhnen and A. V. Skorokhod {44 pp.480-u831.

Thus we can conclude that if Q is a real and continuous functioral on

D[0, 1] with the metric (19), then (21) holds.
If, in particular,

|£(u) + a(w)]
b(u)

(30) Q(f) = sup
T O=ugl

where a(u) and b(u) > O are continuous functions of u , then & is

continuous in the metric (19), and by Theorem 3 we have
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g . .
K K
1mpm%>—mé9;§;a%ymmw for k =1,2,...,n} =

n-> &

(31)
Pla(u) - xb(u) < g(u) <a(u) + xd(u) for 0 <u <1}

for x20.

If

| 1
(32) L) = é h (£(u))du

where h(x) is a contiruous function defined on the interval (-, e} , then
Q(f) 1s a continucus functional in the metric (18), and by Theorem 3 we

|
obtain!that

1 b Zy 1
(33) m P{= ) h(g®) < x} = P{ [ h(g(u))du < x}
n->« n k=1 n 0

in every continuity point of the limiting distribution function.

As a second example, let us suppose that {gn(u) »b Osugll is a

campound Poisson process for every n = 1,2,... and that

-san(u) u‘i’n(S)

(34) Ele }=e

for Re(s) = O . Furthermore, let {£(u) , O <u < 1} be a homogeneous

stochastic process with Independent increments for which

(35) E(eSE(Wy o W (s)
for Re(s) =0 .

Iet us suppose that the finite dimensional distribution functions of
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the process { gn(u) , O <u <1} converge to the finite dimensional

distribution functions of the process {£(u) , 0 su <1} .

We can easily see that the finite dimensional distribution functions of
the process {g (u) , O cu £ 1} converge to the finite dimensional
distribution functions of the process {g(u) , 0 £u <1} if and only if

(36) Lin ¥_(s) = ¥(s)

In =& o

for Re(s) =0-.

Nﬁi note that if {g(u) , 0 < u < 1} is any homogeneous stochastié
proces% with independent increments, then we can find a sequence of compound
Poissor& processes {& n(u) s 0 <u <1} such that the finite dimensional |
distribution functions of the process { En(u) » O <u <1l converge to the

functions

finite dimensional distribution of the process {g(u) , 0 <u < 1} .

>
b

Let us suppose that the processes {g (u) , 0 fu <1} and {g(w) ,
Q su g1} are separable. By Theorem 5 we can always choose such versicns
of these processes for which the sample functions belong to D[O, 1] with

probability 1 .

Now in a similar way as in the previous example we can prove that (29)
holds and that (36) implies (20). Thus Theorem 3 is applicable and (21)
holds for any real and continucus functional on D[O, 1] with the metric
(18).

As a third example, let us suppose that for each n we distribufe n
points at random on the interval (0, 1) in such a way that each point has
& uniform distribution over (0, 1) . For each n = 1,2,... denote by

vn(u) the number of random points in the interval (0, u] where O <u <1,
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Define

v_(u) - ru

n
(37) np(u) = — =

for O cus<l. Then n = {nn(u) » O <u <1} is a stochastic process

whose sample functions helong to D[0, 1] .

Let n = {n(uw) , 0 g u<1} be a Gaussian stochastic process for which
le.‘.{n(u)_} =0 if O<u<1l and N@{n(u)r.(v)} = min(u,v) - uv if O <u <1l

and Q<vz<l, (See Section 50.)

Wé can easily prove that the finite dimensional distribution functions
|

of the!process {nn(u) s 0 2u <1} converge to the finite dimensional

distributicn functions of the process {n(u) , 0zxu <1} as n== .

For the process {n(u) , O <u <1} we have N?i{n(o) =0} = P{n(1) =

0} =1 and we can represent n(u) for O <u <1 1in the following way:
= (1- R

(38) : n(w) = (1 u)&(l_u

where {g(u) , Q < u < »} 1is a Brownian motion process.

If we suppose that {n(u) , 0 £ u <1} is a separable process, then
by Theorem 50.1 we can conclude that the sample functions of the process
{n(w) , 0 <u <1} are continuous with probability 1 . For, in this case,
g(u) = (I+u)n(uw/(1+u)) (6 £u < ») , is a separable Brownian motion process,
and thus Theorem 50.1 is applicable. Accordingly, if {n(u) , O <u < 1}
.is a separable process, then the sample functions with probability 1 belong

to the space C[0, 1] and consequently to the space D[0O, 11 toc.
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Now we can prove that
(39) ~1im  lim sup P{a_(n.) > €} =0
a>0n-w ~ &0

for every e > O . This foliows from the inequality

(k) P{a_(n)>e} <P { sup |n () ~-n (V)] > e}
~a a ~n e ' u_v];a n n

and the limit relation

(L1) lim 1lim sup P{ sup Inn(u} - nn(v)i > el =0,
a>0n-=>= 7 lu-ka
l
|
By Theorem 3 we obtain that if the process {n(u) , 0 <u < 1} 1is
|
separable and if Q 1is a real and continuous functional on D[O, 1] with

the metric (19), then

(42) 1im P{Q(n,)) < x} = P{Qln) = x}

n-» <«

In every continuity point of P{Q(n) < x} .

In Section 39 we have already mentioned some particular cases of (42).

In particular, we considered the functionals Q(f) = max f(u) , Q(f) =

A

Ozu<li
max |f(u)| , and
Ozusl
1 2
(43) L) =£ [£{u)] du

which are continuous in the metric (18).

Finally, let us consider the following example. Letrus suppose that
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for each n = 1,2,... we have a box which contains 2n cards of which n

are markéd +1 and n are marked -1 . We draw each of the 2n cards

fram the box without replacement. Let us suppose that every outcome of

this random trial has the same probability. Denote by cn(k) thé sum of

the first ¥k numbers drawn (k = 1,2,..., 2n) and let op(O) =0 . Define

cn(2nu)

(44) n () = e
yon

for 0 <u<1 and let n (2n) =o (2n-1)/¥2n . Then n = {n (u}, 0 gu 1}

is & stochastic proces whose sample functions belong to D[O, 1] .

Let n={n(u) , O <u <1} be a Gaussian stochastic process for which
Enw)} =0 1f 0gusgl and Em@n()} = min(u,v) -uv if 0 <ugl

and 0<svsl.,

We can easily see that the finite dimensional distribution functions of
the process {n,(u) , 0 <u <1} converge to the finite dimensional

distribution functions of the process {n(u) , 0 <u<1l} as n-+ .

As we mentioned earlier, if we suppose that the process {n(u) , 0 <u <1}

is separable then the sample functions are contiruous with probability 1 .

By using the inequality (40) we can prove that (39) is satisfied in
this case too, Thus by Theorem 3 we cary conelude that if the process {n(2) ,
O gux< 1}l is separable and if Q is a real and continuous functional on

D[0O, 1] with the metric (i8), then

-

(45) lim P{Q(n ) £ x} =P{Q(n) < x} .

n-—+ o
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For example, 1f Q(f) = max f(u) , then Q is continuous in the
. paud O<u<l
metric (18) and by (45) we can conclude that

(L6) lim P{ max o (k) < v2n x} =P

{sup n(u) < x}
n >« 0O<k<n O<u<

We already saw that .

)
(47) P{max o (k) <c} =1~ ngL:c
o O;k;n n (n )

for ¢=0,1,...,n (See formulas (39.71) and (39.172).) If we put
[

¢ =[v2nx] in (47) where x>0 and let n > » , then we cbtain that

2
(18) Piswp n(u) <x}=1-¢eF

" Ozl

for x 2 0 whenever {n(u) , O <u <1} is a separable Gaussian process
for which E{n(w)} =0 and E{n(wn(V)}=min(u, v) —uv (0 cuxl,

O<vzl).
We note that 1f in the last example we define

cn(Znu) + (2rnu - [2nu])[cn(2nu+l) - cn(,2nu)]

*
(49) n(w = ,
yon
*
for O<ugxl, then {n (4) ,0 gux1} has contiruous sample functions,
: B

and the finite dimensional distribution fm:lctions of the process {nn(u) R
O <u <1} converge to the finite dimensional distribution fumections of -

the process {n(u) , 0 <u<1}.
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% . ¥
We can prove that (U41) is satisfied for the process n, = {nq(u) s

0<u=<1} . Thus by Theorem 2 we can conciude that if n = {n(u) ,

0

fin

u < 1} is a separable Gausslan process for which E{n(u)} =0 and
Efn(uin(¥)} = min(u, v) —uv (0O<ug<l,0<v<l) and if Q is a real

contimuous functional on G [0, 1] with the metric o , then

(50) limf{Q(gz) < x} = P{Q(n) g x}

n- o
in every continuity point of P{Q(n) < x} .

If, in particular, Q(f) = max f(u) , then Q is contirmous on ¢ [0, 1]
"~ O<u<l

and (50) reduces to (46).

We shall close this section by giving a brief account of the historical

jevelopment of the subject of weak convergence of stochastic processes.

The problem of weak convergence of stochastic processes goes back to

1900 when L. Bachelier [ 4871 ] approximated a Brownian motion process

{g(u) , 0 2 ux =} by a sequence of random walk processes and found the

probability P{ sup g£(w) < x} .
O<u<t

The general problem of finding conditions for the validity of (2) has

received considerable attention.

In the case where the process £ = {f (u) , 0 <u <t} is defined as

suitably nomalized sums of mutually independent random variables and ¢ =

A

{g¢(u) , 0 <u <t} is a Brownian motion process, the limit theorem (2)
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was proved for various functionals Q in 1931 by A. N. Kolmogorov { 511],

[512] and in 1946 by P. Erdds and M. Kac [ 50271,[ 50% ] . Their results

were extended in 1951 by M. D. Donsker [ 494 ] . Several results are

mentioned in Section 45 for the applications of Donsker's theorem. Theoren 2

was found in 1953 by Yu. V. Prochorov [522 1, [523 ] . See also A.N,
Kolmogorov and Yu. V. Prochorov [514—] .
In 1949 J. L. Doob [ 328 ] considered the case where £, is defined

by (37) and & is defined by (38) and Q= sup {f(u)] . Doob's heuristic results

In 1955 A. V. Skorokhod [ 53%5] proved Theorem 3 for stochastic processes

with independent increments andinl956 A. V. Skorokhod [ 537 ] proved Theorem 3

in the general case.

Further extensions of the results given in this section can be found in

the references at the end of this chapter.
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53. Problems

53.1. Let {v(t) , 0 £t < «} be a recurrent process with mean
recurrence time a where a 1s a finite positive number. Prove that
4 1
P{ 1lim 3’—%—)-=—-}=1.
Mt"*‘” a

(See J. L. Doob [199 ].)

be independent random variables for which

53.2. Le? 51 and 52

2 K! (k'-:o’l,.,..) .

Prove that there exists a constant ¢ such that €l+ ¢ and 52— ¢ both

have a Poisson distribution. (See D. A. Raikov [ 157 1.)

53.3. Let {v(u) , O £ u < =} be a Poisson process of density A

Prove that

n'k

{(n-k)! nk+1

P{v(i) =1 for k values 1 =1,2,...,n[v(n) =n} =
for k=1,2,..., n .

53.4. Let {v(t) , 0 £t < «} be a recurrent process where the recurrence

times 8, (k = 1,2,...) have the distribution function

1-—1 for x>e,

F(x) = x(log x)2

0 for x < e .

Determine the asymptotic distribution of v(t} as t » « ,
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53.5. Let };l’ 52, cees En,. .. be matually independent and identically
distributed random variables having the same stable distribution function of

type S(a,B,c,0) where o #1 ,c >0 . Iet cn=‘g+g+...+ & for n =

1 -2
1,2,... and o = 0 . Denote by Tys Toseees Tpoeoe the successive ladder

indices in the sequence CO’ :1,..., Tprenes that 1s, 1‘1 1s the smalilest

n=1,2,... for which Zn 7 %0 2 T, is the smallest n = 2,3,. .. for which
> z;Tl and so cn. Then Tys Ty Ts 3™ Tosees
independent and identically distributed random variables taking on positive

4

- T T~ T is a sequence of mutually

n

integers only. Define v(t) for t > 0 eas a discrete random variable taking

{Tk;t}

~ for all{ t >0 and k =0,1,2,... . Then {v(t) , 0 <t < «} 1s a recurrent

on nonrﬁegative integers only and satisfying the relation {v(t) > ki

[H]

process. Determine the asymptotic distribution of v(t) as t -+ =

'53.6. Find the asymptctic distribution of t, as n»e in Problem

n
53.5.
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