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LIMIT THEOREMS FOR SUM3 OF INDEFENDENT

RANDOM VARILABLES

11, Fundamental Theorems. 1In this section we shall prove some basi

theorems which will be needed in studying the limiting behavior of sums of

mutually inde pandenu and identically distributed real random varisbles.

Random Trials, If we speak atout a random trial, then we suppose that

a probability space (Q, B%E) is associated with the random trial. In the
probability space, & 1s the sample space, that 1s, the set of all the
possible ouficomes of the randum ftrial. The elements of @ are called
sample peints and are denoted by « . In the probability space, B is the
class of random events considered in the random trizl. Each random event
is defined as a subset of @ . We shall denote random events by capitsal
ILatin letters, such as A, B, C . There srec two exceptions. We shall dencte
by @& the sure event, which always occurs, and by 6 fthe impossible event,
which never occurs. The sure event § contains every sample point and the
impossible event €  contains no sample poirt. If the occuwrrence of A
implies the occurrence of B , then we shall write A< B . Then every

point of A 1is confained in B . The comnplementary event of A will be

dencted by A ., The simultansous cecurrence of tiw rarndom events A, 2, C,...
s 5 e Ay . < r - T D I 2y
will be denoted by ABC ... . The eventv that at least one event occurs

among, A, B, C,... will be dencted by A+2+C+ ... . We suppose that B dis
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a o - algebra of subsets of @ , that is, B 1is a class of subsets of Q

which satisfies the following two requirements:

(i) If Ae B, then LB .

(11) If A e B for n=1,2,..., then ) A eB. i
n=1

With every event A ¢ B we associate a real number P{A} , the
probability of A . We suppose that the set function P{A} 1is nonnegative,
normed and o--additive, that is, P{A} defined for A e B satisfies the

following three requirements:

(;i) P{A} >0 for AecB.
(1) P{e} =1. .

(ii1) 1If An e B for n=1,2,... and AiAj =0 for i#Jj, then

(1) P{) A}= )] P{A}.
~p=1 O n=1 ™ 1
If Al’ A2,..., An"" is an infinite sequence of events, then
2 = 11 A = 1 7
(2) A" =limsup A = I ) A,

n+ n=1 r=n

is the event that infinitely many events occur in the sequence Al, Ag,...,

An"“ , and
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1s the event that all but a finite number of events occur in the sequence

Bys Ayseens Aseen

*
Ir A = A, , then we say that the sequence of events Al, 5rtees

*
has a 1limit and it is defined by lim An =A = Ay o
I‘l—}oo

%
ir AneB for n=1,2,..., then obviously A e B and A, ¢ B ,

and we can easlly prove that

.. o, }
(4) P{A'} = limP{ ] A}
' ~ nre  ren
|
and |
| o
(5) PiA} = 1imP{ I A} .
- [ r
n+« ren

If 1im A’ exists, then it follows easily from (4) and (5) that

n «

(6) P{lim A} = 1im P4 } .
e n> @

If A, A,,..., A ,... 1s a monotone sequence of events, that is
1, 23 2 n’ 3 5

either AjCA,C ...cA C... or ADA, 2...2A >..., then by (2) and

¥ .
(3) we have A = A, , that is, 1lim An exists and (6) holds.

> o

The events A, Aj,.e., A

y  are said to be mutually independent if

1’ 72

(7N P{A. A, ... A. } = P{A. }P{A. }... P{A.}
A~ ll 12 lk A ll 1 1k

)

for a11 1 :;il < 12 <eow < ik sn oand kK= 1,2,,.., 1.

Ajyeeuy A




We say that Al, A2,..., Alseee is an Infinite sequence of mutually

independent events if (7) holds for all n = 1,2,... .
The events Al, A2,..., An are said to be interchangeable if

P{A A,...A}

,
(8) | PO A e A b= POAALLLA

1 2 e

if

for all 1 < i, < i2 <eas < ik <n and k=1,2,...,n.

1

We say that Al, A2,..., An"" is an infinite sequence of inter-

changeable events if (8) holds for all n = 1,2,... .

Now we shall prove two theorems for an infinite sequence of random
evénts. These theorems were proved in a particular case in 1909 by

"E. Borel [ 16 ], and in a more general case in 1917 by F. P. Cantelli [ 18],

Gee also P. Iévy [ 113] pp. 126-128.)

Theorem 1. If Al, A2,..., An"" sre arbitrary events, and

(9) L PAY <=,
n=1

then

( 10) ' P{A} = P ) AY=0.
~~ ™ n=l r=n

" Proof. Obviously we have’
£ _ %

(11) Ay AI’
r=n

for all n=J,2,... . Hence by Beole's ineguality it follows thas
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[oo]

(12) 0<PE} g ] PlA

for n = 1,2,... . Now by (9) the extreme right member in (12) tends to

%
O as n+, Thus P{A } = C which was to be proved.

Theorem 2. If Al R AQ seves An"' . ére mutually independent events,
and
(13) : I PIAY ==,
n=1
then
% ® s
(1) P{A"} = P{ O ZAI,}=1.
-~ “~ n=l r=n
Proof . We shall prove that P{A*} = O which implies (14). By (1)
we have
(15) P{A%} = 1im P{ 1 K } .
A o~~~ r
n> < r=n
Furthermore, we can write that
' © m m _
(16) Oz Pl AP A} = T P{A}
™ r=n " r=n r=n""

for all m > n . Here we used the fact that Al, Ag,..., A

mutually independent events. Since evidently

— —Ng{Ar}
(17) PA) = 1-P(A} e )
it follows that
m
- ' - I 3'{Ar‘}
@ rn
(18) C<P{r A}ze

o
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for m>n . Nowby (13) the extreme right member of (18) tends to O
as m-> e« ., Thus
(19) P{n A}=0
™ r=n
for all n = 1,2,... . Finally, by (15) we obtain that P{A¥ = O which

was to be proved.

Corollggy_l;"}ii Al’ A2,..., An"" are mutually independent events,

then
§ * o« .
( 20) j P{A"} = O whenever ) P{An} <o,
| o n=1""
ana
* [e0)
( 21) P{A'} =1 whenever ) PIA Y == .

This last statement is the so-called Borel-Cantelli theorem.

Random Variables. ILet us consider a random trial and let (@,B, P)

be the associated probability space. If we speak about a real randcm
variable & concerning the random trial, then by this we understand a real
function & = &(w) defined for w € @ and measurable with respect to B ,
that is, for every real x the event {w : &(w) < x} e B . A random
variable &(w) may be finite or infinite. If it is not specified cther-
wise, then by a random variable £ we mean a finite, measurable, real

function €{w) defined on @ .

If ¢ =&(w) is a finite random variable, then the function




(22) F(x) = P{g < x}

defined for -~ < x < +» 1is called the distribution function of the random

variable. We define Fl4e) = 1im F(x) and (=) = 1im F(x) .
X > X—)-—oo

If we know the distribution function of & , then we can determine the

probability
(23) , Q(8) = Plg e S}

for any Borel set S of the real line, that is, for any set S which
belongs to the minimal o- algebra which contains all the intervals of the
real line., This follows from the extension theorem of Carathéodory. (See Theorem

1.2 ‘iﬂ the
A:Appendix .) The set function Q(S) is nonnegative, normed and 5 - additive,
that is, a probability measure defined on the o- algebra of ail the Borel

subsets of the real line.

We can classify random variables according to thelr distribution
functions. Iet & be a finite random variable and let ;E{g < x} =Fx) .
The point spectrun S of ¢ 1s defined as the set of discontinuity points

of F(x) , that is,
(24) S = {x : F(x+x0) - F(x-0) > 0} .

The set S 1is either empty or finite or countably infinite. The continuous
spectrun R of ¢ is defined as the set of all those continuity points of

F{x) in which F(x) is increasing, that is,

(25) R = {x:F(xte)-F(x-e) > O for all e > O and F(x+0)~F(x-0) = 0} .




The set R is perfect (possibly empty), that is, R is closed and

contains no isolsted points.

If R 1s the empty set, then we say that & 1is a discrete random
variable. In this case each a e S 1is called a possible value of the

random variable & . If ¢ 1is discrete, then

(26) ) Ple=al=1
asS™
and
(a7 F(x) = ] Ple=a}
a<x
aes

is a step function.

a
If ¢ 1is.discrete random variable, if P{g = 0} <1 , and if
S {m :n=0, +l, +2,...} for some positive 1 , then we say that ¢
is a lattice random variable. The largest A which satisfies the above

requirement is called the step of & .

If S 1s the empty set, then £ 1is called a continuous random

variabie. Then F(x) is a continuous function of x .
Iet ¢ be a finite real random variable, and P{g¢ < x} = F(x) . If
(28) [le@)]ap = [lx|aP{x) < =,
Q -0

then we say that & has a finite expectation defined by
fre]

(29) Ele} = Je(w)dp = J xdi(x) .

2 0

In this case we say alsc that E{£} exists.
A
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If the integrals in (28) diverge, then E{¢} = += or E{g} = -« or

E{g} is indeterminate. Obviously E{¢} exists if and only if E{|£|} < = .

If g(x) 1is a finite Borel measurable function of x , then n = g(&)

is also a random varliable and its expectation is glven by
(30) F{n} = [e(g())dE = [ g{x)dF(x)
A~ Q Hon —c
provided that the integrals in (30) are absolutely convergent.

The expectation F{ gk} (k = 0,1,2,...) 1is called the k-th moment of

¢ {(about the origin) provided that it exists.

If the expectation E{g} exists, then we define E{[g—E{g}]k}
(k = 0,1,2,...) as the k~th central moment of & provided that it exists.
The second central moment is called also the variance of & and is dencted

by Var{g} .

The following inequality which was found in 1855 by J. Bienaym_é_ [ 8 ]

and in 1867 by P. L. Chebyshev [474. ] for discrete random variables is a

very useful one in the theory of probability. (See also A.AM. I-;Earkov[_58f*]p. 54, )

Theorem 3. LIf & 1s a nonnegative random variable, then

(g}
(31) Plg z al ;Ag—g—

.

for any a > O .

Proofs Let ws define a random variable y in the following way:

x =1 if £€>a and x =0 if & <a . Then we have
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(32) ax < & .

If x =0, then (32) is evident. If x=1, then & > a , and thus (32)

holds in this case too. By (32) we obtain that
(33) ai{x} < E{¢}

and obviously E{x} = P{x =1} =P{g >2al . If a >0, then (31) follows

from (33).
Tet gl, 52,.‘., &n be n real random variables. We define

(34) F(Xl, Xosenes X)) =A§{£l S Xys By S Xpyeeny £ S XD

for all real Xqs Xgyeess X, @8 the joint distribution function of

El, E2,..., En .

If we know the joint distribution function of gl, 52,..., En , then

we can determine the probability
(35) Q(S) = PI(Eq, E5:eeny £)) € S}

for any Borel set of the n-dimensional Euclidean space, that is, for any
set S which belongs to the minimal o¢- algebra which contains all the
"intervals" of the n~dimensional Fuclidean space, This follows from the

. . , Theorem 1.2 in t?e .
extension theorem of Carathecdory. (See Appendix . The set function

~
Q(S) 1is nonnegative, normed and o- additive, that is, Q(S) is a probability
measure defined on the o- algebra of all the Borel subsets of the n-dimensional

Euclidean space.
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We can introduce some useful classification for a finite or an infinite

sequence of real random variables based on their joint distribution functions.
are said to be mutually independent

I

n

~E‘nerealrandcmwn’iam_es gl,gz,“.,

if
=Plg) < Xl.]t\}i{EE < X2}. . Nli{in s Xn}

X
1’1*‘1’1}

(A

(36)  Plgy 2%, 85 £ %X550005 &

holds for all real X5 Koseees X oo
We say that &1, €2,..., gn"" is an infinite sequence of mutually
n=1,2,...

independent real random variables if (36) holds for all
The real randan variables 15 Eoseees &, are said tco be inter-

}

P

changeable if
(37) EgiéXPgi;&y””gi;§9=ﬁwléxrg2;%?“”gn;X

1 2 n
holds for every permutation (il, 1pseees ln) of (1,2,..., n) and for

all real Xys Xppeees X o

We say that El’ 52,..., En,... is an infinite sequence of inter-

changeable real random variables if (37) hclds for all n = 1,2,... .

The Borel-Cantelli theorem (Corollary 1) implies the following result:

let Al, A2,..., An”" be a sequence of mutually independent events,

Define &y = 1 if An occurs, and En =0 if Arl does not occur., Then

o
(38) P{ ) & converges}
S~ n =
n=1
is either 0 or 1 . This last statement is true for any sequence of
This follows from a more general

mutually independent random variables.
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theorem, the so-called "zero-cr-one law", which was discovered in several
cases in 1931 by P, Le’vy_ [ 428] and was formulated in a general form in

1933 by A. N. Kolmogorov [100]. (See also P. Lévy [112 1, and [113]

pp. 128-130.) Before proving this theorem let us make some preliminary

statements. 9

A class of events A 1s called an algebra of events if it satisfies

the following two requirements:

(1) If Aec A, then Ee A
and

n
(i1) If A e A for k=1,2,...,n, then } A e A for any finite

k=1
n=1,2,.4. .

A class of events M is called a monotone class of events if it

satisfies the following requiremert:

Ir An e M for n=1,2,... and {An} is a monotone sequence, then

. [
1im An e M .
n>

Denote by B the minimal ¢- algebra which contains the algebra A ,
and denote by M the minimal mcnotone class which contains A . We can

easlly prove that B and M coincide. (See Theorem 1.1 in the Appendix.)

Now let us consider a random trial and denote by (2,B, P) the

assoclated probability space. Let gj, g?,.. s gn,. .» be an infinite

sequence of mutually indepencent real random variables. Denote by Bn the

o- algebra generafed by the randcm variables g, Eoseens & s That is,
= L
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BY1 15 the minimal o - algebra which contains the events {w : Ek(w) < x}

b

for all k = 1,2,..., n &nd for all real x .

Denote by Av1 the o~ algebra generated by the random variables ¢ , &

n’® "ntl’°°t?

that is, An is the minimal o- algebra which contains the events

Ao e &k(w) <x} for all k =n, ntl,... and for all real x .

Let A be the intersection of Al’ A2,..., A

n,...’ that iS,

(39) ' A= N A, -

The class of events A 1s obviously a o- algebra, the so-called tail

o- algebra.
Now we can formulate the zero-or-one law in the following way:
Theorem 4. If A e A, then either P{A} =0 or P{A}=1.

Proof. let

(40) MO ={B:Be Bn for some n =1,2,...} .

We can easily see that MO is an algebra of events, and Al is the minimal

o - algebra which contains Mo .
For a given A € A let us define
(41) M= {B : P{AB} = P{AIP{B} and B« Al} .

We can easily see that M is a monotone class of events and by definition

MCAl .

P
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We shall prove that MOC:M . Since A1 is the minimal o- algebra
which contains MO , this implies that AlCZM . Consequently we have
M= Al and therefore A € M. Thus we can conclude that A e M (being
AeA ) , that iS,AE{A} = P{A}JP{A} . Accordingly, if A e A, then either

P{A} =0 or P{A} =1.

It remains only to prove that MO<: M , that is, if B e MO , then
BeM. If Be Mo , then B e Bn for sane n = 1,2,... . On the other

hand if A e A, then A e An for every n =1,2,... . Thus B ¢ Bn and

Ae An*l for some n = 1,2,..., which implies that, A and B are
indepehdent, that is P{#B} = P{A}P{B} . Hence it follows that B e M .

This completes the proof of the theorem.

For many purposes it 1s convenient to introduce complex random variables
too. A camplex random variable ¢ 1is defined as ¢g+in where £ and 7
are real random variables and 1 1s the square root of -1 . If we know
the joint distribution of ¢ and n , then we can determine the probability

that ¢ = g+in belongs to any Borel set of the complex plane.

Ir E{¢} and A@ﬁn} exist, then we say that the expectaticn E{z}

exists and it is definad by
(42) | E(c} = E(g} + iE(n} .

Otherwise we say that E{z} does not exist. Evidently E{z} exists if

and only if E{lzl} < « ,

If & 1is a real random variable and g(x) = gl(x) + igz(x) where

gl(x) and gz(x) are finite Borel measurable functions, then g(g) is &
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canplex random variable. If P{¢ < x} = F(x) , then

P

(43) Elg(e)} = [ g(x)aF(x)

-_—C

provided that the integral in (43) is absolutely convergent.

By choosing various functions g(x) we can define by (43) various
transforms of F(x) which have great importance in the theory of proba-

bility.

In what follows we shall assume that & 1is a real random variable
x

and its distribution function is P{g < x} = F(x) .
|
let gx) = e 5% where s 1is a real or complex number. The expecta-
tion
(44) Ee™%) = [ ™ (x) = s(s)

is a function of s , if it exlsts, and it is called the Laplace-Stielitjes

transform of £ , or the Laplace-Stieltjes transform of F(x) .

If Re(s) =0, then ¢(s) always exists, If ¢(s) exists for

s = ol+ it and s = 02+ it where 01 <05 s then it exists in the

strip oy < Re(s) < B and ¢(s) is a regular functicn of s in this

2 2

strip.

Irf  ¢(s) exists for Re(s) = ¢, then F(x) 1is uniquely detennined

by ¢(s) given for Re(s)} = ¢ . This is a consequence of the inversion
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formulas given below.

In 1922 P, Lévy [1101,[111p.166] proved the following inversion formula.

Theorem 5. If ¢(s) is the Laplace-Stieltjes transform of a non-

decreasing function F(x) defined on (==, «) for which F(+~) and F(-=»)

are finite, that is,

sy o) = [ ar(x)

then (45) is absolutely convergent for Re(s) = O and
|
J iT sb sa \ :
1 f e’ ~ e _ F(b+0) + F(b-0) _ F(a#+0) + F(a~0)
S

6y | 1im wi 4(s)ds
> 2™ 37 2 2

for any real a and b .

Proof. Iet us suppose that a < b . For any fixed a and b let

, AT sb_ _sa , T itb_ _ita _
(47) Ip = 50 _{T = ¢(s)ds = 5“__{1 S5 —¢(it)at .

If we put (45) into (47) and interchange the order of integration, then

we obtain that

(48) Ip = _i Jp(x)aF (x)

where

. ) Te-2) sin u

(49) Ip(x) == == d
T{x-b)




VI-17

Since
\ ¢ sinu "sin u
(50) o< | —u—du;f-u du = 1.8519, ..
C 0
for any ¢ > 0 and
“sin u T
(51) [=g—du=3

by Dirichlet's integral formula, it follows that JT(X) is a bounded

functicn of x and

| 1 if a<x<b,
|
I
(52) lim J(x) =3() = {5 if x=a or x=b,
T> o ©
0 1if x<a or x> b.

Hence by (48)

. : e _ F(b+0) + F(b=0) F(a+0) + F(a-0)
(53) %ﬂl ---{OJ(k)dF(x) 5 - ;

for a <b . This completes the proof of the theorem.

The following inversion formula is given by D. V. Widder [215 ] p. 242.

Theorem 6. If ¢(s) is the Laplace-Stieltjes transform of a non-

decreasing function F(x) defined on (-», @) for which F(+~) and

F(-~) are finite, that is,

(54) o(s) = [ e >*ar(x)
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and if (54) is absolutely convergent for gy < Re(s) < 5 s then
ctiT sa
. 1 F(a+0) + Fla-
(55) lim o [ S g(s)as = B0 L F(80) g
Treo """ c=iT °
whenever gy < ¢ <o, and ¢ >0 , and
ctiT sa
. ) F(at t -
(56) lim sre [ S (s)ds = (a+0) u F(2=0) _ p(4e)
. T c~-iT
whenever o, <.¢ <o, and ¢ <O0.

Proof. The preof is based on Dirichlet's integral formula (51) and

follows on similar lines as the proof of the previous theorem.

Now we shall show that if PF(x) is a distribution function, then F(x)
is uniquely determined by its Laplace-Stieltjes transform ¢(s) given for
Re(s) = ¢. If F(x) is a distribution function, then F(+x) =1 , F{-=) =0
and F(x+0) = F(x) for every x . For every a we can determine
[F(at0) + F(a=0)1/2 by (46) if ¢ =0 (b > +=) , by (55) if ¢ > 0 , and
by (56) if ¢ <0 . If x =a 1is a contimuity point of F(x) , then
F(a) = [F(at0) +F(a-0)]/2 . If x = a 1is a discontinuity point of F(x} ,
then F(a) = F(at0) , and we can find a sequence of continuity points {an}
of F(x) such that a > a for all n and lim a =a. Then F{a) =
F(at+0) = 1lim F('an) . "

> ®
1f 51, gg,..,, gn are real random variables and S1s Spsee., 8. are

canplex or real numbers, then we can defins the expectation
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=S E_ S g ~ e S g
171 7272
(57) d)(sl, 823--‘-, Sn) = E{e

if it exists. The function ¢(sl, Spaeees sn) is the multi-dimensicnal

Laplace—~-Stieltjes transform of the random variables gl, 52,..., En . If
(58) ’f{il S X5 By S Xgyeeey £ ;=xn} = F(xl, Xpsenns xn) .
then

(59) #(sys Sppenss ) = [ [eer fo T

=00 a0 -—CO

=SoX5me e 8 X
d, 4, ..., F(Xl,x2,..,,xn)
172 n

is the multi~-dimensional Laplace-Stieltjes transform of the joint distribution

function F(Xl’ Xoseees Xn) .

The expectation (57) always exists if Re(sl) = Re(s2) = ... =Re(s ) =0

and (58) is uniquely determined by ¢(SJ, Sosenes sn) .

We note that if gl’ 52,..., gn are mutually independent random variables,
then
=8181780807 - 788y 8181 TSo8) —Spt

(60) Efe } = E{e "}E{e }o.o. Ele OO

AA=

}

for all those S15 Spseens By for wnich the expectations exist.

In a similar way as the Laplace-Stieltjes transform we can define various

other transforms of a real random variable & ., Let P{g < x} = F(x) .

The expectation
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(61) E(zt} = [ ZaFx) ,

O

if 1t exists, is called the generating function of & .

The expectation

(62) E{eiwﬁ} - f ei(DXdF(X)}

—C0

if it exists, .is called the characteristic function of & , or, the

Fourier-Stieltjes transform of F(x) .

The transforms (61) and (62) are merely variants of the Laplace-Stieltjes
’ .
transform (44) . If in (44) we put s = -log z , then we obtain (61) and

if in (b4) we put s = -iw , then we obtain (62).

For nonnegative random vardieblies &£ we occasionally consider the Mellin-

Stieltjes transform
(63) E(£%} = [ x°@F(x) = u(s) .
™~ +0

< Re(s) < o,

If (63) is convergent for o 5

1 , then

S cHT. -5

s 2 1)
(64) lim ?%T u(s)ds = Flo) - F(a+0) ; F(a-0)

Troe™ 7 c-iT
whenever o, < C <@ and ¢ >0 and

1 2 s

ctiT ~-s . PR

165) 1im L 2 L(s)ds = F(+0) - F(at+0) t F(a~-0)

T °°2ﬁl ~3T S o

< C <¢Q 811d C <O . Ir] (6”) B‘<°°) = l .

whenever ¢ 5

1

For norinegative random variables & we occasionally consider alsc

Co
o
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the Stieltjes transform

’__J

4 1 — Al
(66) Bl ) = f dr(x) .

4]
+
>

The integral (66) converges everywhere on the complex plane except the

negative real axis,
For any positive a we have

(67) , lim 5= f (-u-ie)=p(~utic)Jdu =
+O 0

_ F(at0) + F(a-0) _ F(+0) + F(0)
2 2 '

Here F(a+o) =F(a) forall a >0.

|

Two Theorems of Helly.In 1912 E, Helly [73 1 discovered several important

theorems for a sequence of nondecreasing functions. These theorems are
extremely useful in the theory of probability because we can apply them to

a sequence of distribution functions. Our next aim is to prove these thecrems.

Let Gn(x) (n=1,2,...) be a sequence of nondecreasing functions
defined on the interval (-=, ») ., Let G(x) be also a nondecreasing
function defined on (-, «) . Denote by C the set of all those real numbers

x for which G(x) 1is continuous.

Definition. We say that the sequence {Gn(x)} converges weakly to
G(x) if
(68) 1im G {(x) = G(x)

n>® n

for every x e C . We shall write also Gn(x)my G(x) .
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Temma 1. We have

(69) lim G (x) = G(x)
N> O

for every x e C if and only 1f

(70) lim G_(x) = G(x)
n-e

for every x ¢ D where D 1is a set dense everywhere on the real line.

Proof. The necessity of the condition is obvicus. The set of dis-

~

continuity points of G(x) is at most comtable. Thus C 1is dense every-

where.! let us prove the sufficiency of the conditicn. For any x e C let

|
i
i
|
|
|

us choose two sequences 815 8psees and bl’ D,,... in such a way that

a € D, bk e D and a <X ;=bk for k =1,2,..., and }im 2 = 1im bk =X .
K> oo k> o

Then

(71) G (a) 2 G (x) <G () .

If n -« in (71), then we obtain that

(72) G(ak) < lim inf Gn(x) < lim sup Gn(x) ;=G(bk) .
n—)-oo n—-)oo

Since

(73) iiT;G(ak) = iiﬁ;G(bk) = G(x)

it follows fraom (72) that 1lim Gn(x) = G(x) forany x e C . This completes
n—a—m
the proof of the lemma.
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Theorem 7. Let G](X), G2(X),..., Gn(x),... be a sequence of non-

decreasing functions defined on the interval (~~,») , Let us assume that

Gn(m) < K and Gn(—w) =0 for all n=1,2,... . Then the sequence

{6 (%)}

contains a subsequence {Gn'(x)}
X
which converges weakly to a nondecreasing function G(x) . §

Proof. let D = {al, B5seees an,...} be a countable set which is

dense everywhere in (-~,») ., For example, D may be choser as the set of

rational numbers. Since 0 <G {(a;) <K for n=1,2,..., by the Bolzano-

Weierstrass theorem {Gn(al)} contains a convergent subsequence {G al)} .

{
|

Since éO <G (1)(a2) <K for n=1,2,... by the Bolzano-Weierstrass thecren

(1‘)(

G (lj(az)} 2&50 contains a convergent subsequence {G (2)(a2)} . Obviously
e P
{q (2)(a1)} is also convergent. Continuing this procedure for every
e
r=1,2,... we can find a subsequence {G (r)(x)} such that it is convergert
"k
for x = 815 89seees &, and the r—th sequence 1s a subsequerice of the r-1 st
one. By Cantor's method of diagonals, we can conclude that if Gn‘(x) =
K
G (k)(x) for k =1,2,..., then {G_ (x)} is convergent for all x e D .
. :
let us define

(74) G(x) = Lin C_ (x)
ko "k

for x ¢ D . Obvicusly G(x) is nondecreasing on the set D . Thus G(x*0)
and G(x~0) exist for every x and arc uniquely determined by C(x) ftor

xeD. If x#D, then let us define CG(x) as any real nunber satisfying
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the inequalities G(x-0) < G(x) < G(x+0) . Then G(x) is a nondecreasing

G(x
function of x defined on the interval (-~,») and lim Gn(x)=ﬁégr) xeD.
n> «

By ILemma 1, it follows that Gn(x)=%>G(x) which was to be proved.
We note that O < G(-») and G(+») < K necessarily hold,

Theorem 8. Iet '{Gn(x)} be a sequence of nondecreasing functions,

defined on the interval (-«,») , which converges weakly to a nondecreasing

function G(x).. ILet us assume that Gn(w) < K and Gn(—w) =0 for all

n=1,2,... . If

i

|
(75) | Um G (-=) = G(=) and lim G (+») = G(+=)
; N+ « n>

and if h(x) is a continuous and bounded function of x on the interval

(+=,) , then we have

(76) Iim [ n(x)dG (x) = [ h(x)dG(x) .
n_—>oo-oo -—00

" Proof. Let |h(x)] <M for —= < x <« . Denote by C the set of
continuity points of G(x) . For any e > O let us choose a e C and
b e C such that G(a) < ¢/M and G(+=») - G(b) < /M . Let us choose &
- sufficiently large number of points X, € ¢ (k=0,1,..., m) such that

<eaw < Xm =Db and
Y - \ E_
(77) [h(X) h(Xk,,l <%

i xS X

is uniformly continuous on the interval [a,b] . Let us chocse N so lavge

L% (k =0,1,..., m-1) . This can be achieved because h(x)

that if n > N , then
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y P« &
(76) l(’n(xk) - Gyl < g

for k¥ =0,1,,.., m and [Gn(oo) - G(=)] < eM .

Now we shall show that

(79) |/ n(x)dG, (x) = [ h(x)dG(x)| < 10e

=00

if n>N.
Let us define
|
1 — g td
(80) | ha(x) = h(xk) for X LX< X4

and k =0,1,..., ml . With this notation we cen write that
w @ a a b b
|/ hdG - [ haG| < [f ndG - [ ras| +]f hdG ~ [h dG |
- -0 OO —C0 a

a
(81)

b b © ©
[ h,dG - [ ndG| + |[ndG - [hdG| .
a b b

b b
+ | [hdg - [ hdG| +
ae aE a

On the right hand side of (81) the first term is < M[Gn(a) + G6(a)] = 3¢ ,
the second term is <e, the fourth term is < ¢ and the fifth temm is

< M[Gn(w) - Gn(b) + G(») - G(b)] < 3e. We can easily prove that the third
term on the right- hand side of (81) is < 2 e, whence (79) follows. To

prove the last statement let us observe that
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b b m~1
[ nde - [ a6 = ] h(x)6 (x,) -6 (x)] -
a a k=0
(82)
- nix JG(x, ) ~ G(x, )] = h(x, )G (%, ,.) - G(x, )]
oo K k+1 K 2o kK’ Ynt Kkl k+1
m-1

UL CRIERCRIELCRR R

By (78) it follows immediately that the absolute value of (82) is < 2e€,

This caompletes the proof of (79) which implies (75).

Finally, we note that if 1lim h(x) = iim h(x) = O , then (76) is
i X+ o X> -
true W;thout making the assumption (75).

Continuity Theorems. ILet {Fr(x)} is a sequence of distributicn

functions, and let

o0

(83) ¢n(s) = f e_SXan(x)

be the laplace-Stieltjes transform of Fn(x) . If Re(s) =0, then (83)

is absolutely convergert.

Theorem 9. lg.'{Fn(x)} converges weakly to a distribution function

F(x) and

(84) 6(s) = [ e ar(x)

2 OC

is the Lapolace-Stieltjes transform of F(x) , then

(85) lim ¢n(8) = ¢(3)

i

n> o

/
A Ve note that if G (x) => G(x) end (75) holds too, then we say
that Gn(x) converges wealrly and completely to G(x).
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for Re(s) = 0 , and the convergence is uniform on Re(s) = 0 .

Proof. This theorem is a particular case of Theorem 8. For if

Re(s) = G, then h(x) = e™>% 45 a continuous function of x and In(x)| <1

-~SX|

for —= < x <« , Since |e <1 forevery s with Re(s) =0, it

follows that ¢n(s) + ¢(s) uwniformly on Re(s) =0 .

Under certain conditions the converse of Theorem 9 is also valid. The

following thecrem was found by H. Cramér [50% 1. He improved an earlier

e

1922 P !
version fouﬁaiby)P. Léyz{flll p. 197Jb {110 ]f,

Theorem 10. Ir

|

(86) Lim ¢ _(s) = 6(s)

nr

for every s for which Re(s) =0 and

(87) lim ¢(s) = 1,

s>0

" then {Fn(x)} converges weakly to a distribution function F(x) and

o]

(88) [ e aF(x) = ¢(s)

-—C0

for Re(s) =0.

Proof. By Theorem 7 it follows that every subsequence of {Fp(x)}
contains a subsequence {Fn (x)} which converges weakly to a nondecreaszing
K
function F(x) and O < F(-=) and F(») <1 ., Without loss of generality

we may assume that F(x+0) = F(x) for every x . We shall prove that

F(w) ~ F(~=) > 1 , whence it follows that F(x) is a distribution function.
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We can easlly see that for any

e > 0O we have the inequality

\ 2 . 2 1 C .
(89) Fn,(EJ -F (-2 ;:Zl 5 [ ¢ Clu)du1— 1.
K k - ek
If k>, then ¢ (s) » ¢(s) for Re(s) =0 and I¢r (s)] =1 for
k
Re(s) =0 . Thus if x = 2/¢ and

¥ = -2/c
F(x) , then by (89) it follows that

are continuity points of

(90) F(e)-F(-=) 2 F(2) - F(-

o fno

1 €
) ;=2| 5= [ e(iwaul- 1 .

-€

Since by (87) 1lim ¢(s) = 1 , it follows that the extrems right menber of
| s 0
(90) tends to 1 if e > O . This implies that F(») - F(-=) > 1 , that

|
is, F(x) 1s a distribution function.

Accordingly, we proved that F_ (x) = F(x)

where F(x)
function.

is a distribution

We can apply Theorem 8 to the sequence {Fnk(x)} to obtain that
(91) lim [ %GR (x) = [ e Far(x)
k> o0 w0 nk -0

for Re(s) =0.

By (86) and (91) we can conclude that
(92) f e SXdF(X) = ¢(s) for Re(s) =0,

that is, ¢(s) 1is necessarily the Laplace-Stieltjes transform of a distribu-
tion function. The distribution function F(x)
${s) .

(See Theorem 5.)

is uniquely determined by
Thus

the distribution function F(x) does not
depend on the particular sequence {Fp (x)Y .

For every subsaquence of
k

{ﬂq(x)} contains a subsequence which converges weakly to the same distribution

-
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function F(x) . This implies that the whole sequence {Fn(x)} converges
weakly to F(x) .

This last statement can be proved by contradiction. Let us suppose

that x = a 1is a continuity point of F(x) and 1lim Fn(a) #®a) . We

>
shall show that this assumption leads to a contradiction. If 1im F _(a) # F(a) ,
Ti> «©
then for some € > O there are infinitely many m, (i = 1,2,...) such

1

that |Fm (a) - F(a)| » € . By Theorem 7 the sequence of distribution
1 )
functions {F%1<X)} contains a subsequence
1

'{Em,(x)} which converges weakly to a distribution function. By owur previous

1 |
result: this distribution function is necessarily F(x) . Thus 1lim F_,(a) = F(a) .
| . e i
However, this contradicts to |Fm,(a) - Ma)| > e for i=1,2,... . This

i
contradiction proves the last statement.

- Note. If we suppose that {Fn(x)} is a sequence of distribution functions

of nonnegative random variables and if
(93) 1im ¢ () = ¢(s)

> o
for s € I where 1 is an interval of positive length on the imaginary axis
Re(s) = O , which contains the point s =0 , and if 1im ¢(s) = 1 , then

s »0

{Fn(x)} converges weakly to a distribution function F(x) of a nomegative
random variable and
(94) [ e aF(x) = 1im o (s)

-0 e

for Re(s) > 0.

This last result was found in 1950 by A. Zygmund [ 2261,

g
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Finally, we shall mention another theorem for the weak convergence
of distribution functions. This theorem is based on the convergence of

the moments of the distribution functions.

We define the r~th moment (r = 0,1,2,...) of a distribution function

F(x) as

(95) M, =[x dF(x)

-—00

provided that-

[12|Far(x) < = .
(96) : —c0

(97) W) = [el% ar(x) ,

the characteristic function of F(x) , for —~ < w < » , then we can
determine the r-th moment of F(x) by

v r
(98) M, = %E'(d P(w).

dwr w=0

for r = 0,1,... provided that Mr exists.
Ir Mr (r = 1,2,...) exists, then

r .
(59) h, = B (G lole),

r dw w=0

also exists and is called the r—-th semiinvariant of F(x) . (Sec T. N.

Thiele [2001.)
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We can prove easily that

v | MlOL1 Mzg... M;r
(100) A, =rt ] (-1)77(v-1)1 ) o
v=1 1+0L2+ o=V aplagle.. a 121y s..(r1) T
1**20L2 ..+mr—r
for r = 1,2,... where o, = 0,1,2,s.., and
oy On a
All Ry e A"
(101) M =r!
r +20. 4. e = 1a.! 1{o1 0‘2 o
aqt20,t, ctre =1 oo, last.. .o {21 (rD)

for r=1,2,... where ay = 0,1,2,...
|
We mention here that if

| 1/2m
(M2m)
102) lim syp ——————— < ®
n - c m
or if
(103) L i
=1 (MZm)

then the sequence of moments {Mr} determines F(x) uniquely. This is

not always the case. In 1894 T. J. Stieltjes [L91 ] gave several examples

for infinitely many distribution functions which have the same sequence of

moments.

Theorem 11. 'Let'{Fn(x)} be a sequence of ditribution furctions for

“‘which the moments

(v

(104) M, (n) = fxrdﬁn(x)

—C

Cexist forall r=0,1,2,... . Furthermore, let F(x) be a distribution
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function for which the moments

(105) M, = [ x"dF(x)
‘exist for all r =0, 1, 2,.. 1if
(106) lim  [¥dF (x) =[x dF(x)

&1 > ®© =%

for all r =0,1,2,... and if F(x) 1is uniquely determined by the

sequence of moments Mo s Ml’ Mg,. .., then

(107) lim F_(x) = F(x)
i n > o™

L

in ex}ery continuity point of F(x) .

_lir_'_c_)gg.. By Theorem 7 the sequence of distribution functions {Fn(x)}
is weakly compact, that is, every infinite subsequence of ' {Fn(x)} contains
a subséquence S, Fn (x)} which converges weakly to a nondecreasing function
G(x) as j »~and O < G(~) and G(+o) <1 . Without Joss of generality
wé_ may assume that G(xt0) = G(x) for every x . We shall prove that

G (e ) =G (=) > 1 , whence it follows that G(x) 1is a distribution function.

By Theorem 3 we have

v
-]
|
)
1

(108) F (a) - F, (-a) 2 5
J J a

forall a>0. If x=a and x = -a are continulty points of G(x)

and if we let j » » in (108), then we obtain that

- M,
(109) G(a) - G(-a) 21 - = .
2

-~
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s

If a + « , then the right-hand side of (109) tends to 1, and therefore

G(#w) - G(==) > 1 . Accordingly G(x) is a distribution function.

Now we shall prove that

(110) 1im f:ran (x) = fwxrdG(x)
j —

j-—)oo.-.oo
for all r =0,1,2,... .
If x=3 and X = -a are continuity points of G(x) , then by

Theorem 8 we have

11
(111) lm [ xdF, (x) = [xdG(x) .
j>>-a J -a

On the other hand we have

M, (n.)
[T (w) < SR
I n, =

1

2 | | For ] = [ T (0 25
X j X J a |x|>a J a

for all a >0 and j = 1,2,... . If J - «» , then the extreme right
member in (112) tends to Mzr/ar . By (111) and (112) we can conclude

that for any ¢ > O

© a
(113) |f 'aF (0 - [ Faa(x)| < e
—C0 J -a

if i and a are sufficlently large. Thic proves (110).

By (106) and (110} it follows that
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(114) fmxrdG(x) = jmxrdF(x)

for all r = O,Al,2,'... . Hence G(x) = F(x) . Thus we proved that every
subsequér‘lcé of { Fn(x)} contains a subsequence which converges weakly to
th_é' s‘amé distribution function r(x) . This implies that the whole

séqﬁéncé A {Fn(fx.)} converges weakly to F(x) . This completes the proof

of the theorem.

We note that if Ar(n) denotes the r—th semiinvariant of Fn( X)
and ;Ar the r-th semiinvariant of F(x) , then obviously the condition

(1063 can be replaced by

i [ 3 [ =
(115) Hm A (n) =45,

nNs
for all r=1,2,... .

In the particular case when F(x) =¢ (x) , the normal distribution

function, in 1830 P. L. Chebyshev [616 ] proved that ¢ (x) is uniquely

cetermined by 1ts sequence of moments and used Theorem 11 in his inves-
tigations in the theory of preobability. However, he did not prove this

theorem., The theorem was proved only in 1898 by A. A. Markov [580]

(See also J. V. Uspensky [ 204 pp. 383-388].) Under the condition

- {102) Theorem 11 was proved in 1920 by G. Pélya [596] . In the gereral

‘ - R 4 . -
case Theorem 11 was proved in 1931 by M. Fréchet and J. Shohet [223 ] .




42, Infinitely Divisikble Distributions and Stable Distributions.

The notion of infinitely divisible distributions and stable distributions
play an important role in finding all the possible limiting distributions
of suitably normalized sums of mubtuzlly independent random variables and
in finding all the possible distributions for stochastic processes with

independent increments.

The definition of infinitely divisible distributions and stable

distributionsﬁbased on the notion of convolution.

The convolution of two distribution furictions G(x) and H(x) is

defined as

(1) G(x)#H(x) = H(x)*G(x) = [ G(x=y)WH(y) = [ H(x-y)daG(y) .

=00 —C

Definition 1. A distribution function F(x) 1is called infinitely

divisible if for every n = 1,2,..., it can be represerited as the n-th

iterated convolution of a distribution function with itself, that is, if

for every n = 1,2,... there exists a distribution function Fn(x) such

that
(2) F(x) = Fn(x)*...,*Fn(X)
n times.

Definition 2. A distribution function F(x) is called stable 1if for

GVETY &1, 8y, e, > C, b2 > 0 there exist two cowstants a and b > C
- . e anm—r—

such that




) % T : = Wiy
(3) F(al+ blx) ® F(a2+ bzx) Flatbx)
holds.

Obviously every stable distribution function is infinitely divisible,

whereas the converse is not true in general. b

Iet us mention a few examples. The normal distribution function

2
U
2

1 X
ch) : o(x) =— [ e du
/§TT— -0

is infinitely divisible ard stable. The Cauchy distribution function

'
t

(5) F(x) =

+%—arc tan x

n) -

1s infinitely divisible and stable. The gamma distribution function
o X
1 i ~U a-1
e u "du for x>0,
(6) a,(x) = { @ g
O for x<0O,

where a > O , is infinitely divisible, but it is not stable. The Poisson

distribution funection

-—a'a‘]
S 3T 0

(7) F(x) =

C,

)
O<j<x

where a > O , 1is infinitely divisible, but it is not stable.

Our ailm is to find the most general form of an infinitely divisible
distribution function and the most general form of a stable distribution

funetion., We shall find explicitely the Laplace-3tieltjes transform
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o

(8) $(s) = [ e FaF(x) ,

—(
where Re(s) = 0, for an infinitely divisible distribution function F(x)

and, in particular, for a stable distribution function F(x) .

Infinitely Divisible Distribution Functions. ILet us suppose that

F(x) is an infinitely divisible distribution function. ILet the Laplace-
Stieltjes transform of F(x) be defined by (8) for Re(s) = 0 . For
every n = 1,2;... there exists a distribution function Fn(x) such that

(2) 1is satisfied. Let us denote by

(9) ; 6, (s) = _Z e R (x)

thé Laplace- Stieltjes transform of Fn(x) , which exists if Re(s) =0 .
By (2) we have

(10) ¢(s) = Lo ()"

for n=1,2,... .

Now we shall show that ¢n(s) is uniquely determined by (10) for

Re(s) =0 and n = 1,2,... .

This follows from the following auxiliary theorem.

Lemra 1. If ¢(s) is the Laplace-3tieltjes transform of an infinitely

divisible distribution function, then ¢(s) never vanishes on Re(s) = 0 .
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Proof. Since ¢(0) =1 and ¢(s) Is continuous on Re(s) =0,
there is sn a > O such that |¢(s)] >0 for s =1u and |u| za.
Hence by (10)

| 1
(11) lim ¢ _(s) = lim [¢(s)| 7 =1
n+ o n N> o«
for s = iu and |u| <a . If we write ¢(s) = [¢(s)] 18(s) , then it
follows from (11) that
: 1 18(s)

(12) lim ¢ _(s) = 1im {s(s)|Pe 7 =1

|
for s;=1du and |u|l za.

|

Since |¢n(s)] <1 for Re(s) =0 and
(13) 1-Re(4,,(28)) < 4[1-Re(o (s))]

for Re(s) = 0, it follows fram (12) that
) 1im ¢n(s) =1

> ©
for s =1iu and [u| £2a . By doubling the interval |u| ga as many
times as we like, we obtain that
(15) Lim ¢ _(s) = 1

n> ®
for Re(s) = 0 . This excludes the possibility that ¢(s) = 0 for some
Re(s) = 0 . TIf we would have ¢(s) = O .for some s with Re(s) = O,
then by (10) it would follow that ¢n(s) = (y for the same s aznd for

all n=1,2,... . This, however, would contradict to (15). Hence the
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lerma follows.

Since ¢n(0) =1 and ¢n(s) is continuous for Re(s) = 0 , we can
write that
1

_ n
(16) 6,(5) = [4(s)]
for Re(s) =C and n = 1,2,... where the right-hand side is the principal
branch for which ¢n(O) =1, Since ¢(s) never vanishes for Re(s) =0,
the Laplace-3tieltjes transform ¢n(s) is uniquely determined for all

Re(s) = 0O .

Theorem 1. The function ¢(s) defined for Re(s) = O is the Laplace-

Stieltjes transform of an infinitely divisible distribution function F(x)

if and only if 1log $(s) can be represented in the form

2
X 1+ _8X 1+x

) =L
1+x2 x2

(17) log ¢(s) = -us + (e™ ac(x)

b s

where u is a real constant, G(x) 1is a nondecreasing function for which

G(=) = 0 , G(+=) is finite, and the integrand at x = O is defined by

(18) (™14 Sy My s

The representation of log ¢(s) by the formula (17) is unique.

Proof. First we shall prove that the condifion is necessary, that is,
if ¢(s) 1is the Laplace-3tieltjes transform of an infinitely divisible

distribution function, then 1og ¢{s} can be represented in the form (17).

We assume that loge(0) = 0 and loge{s) is continuous on Re(s) = O .
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1r ¢n(s) is defined by (9) for n = 1,2,... , then by (15) we have

(19) lim ¢, (s) = 1

n> ©
for all s with Re(s) = O . Thus by Theorem 41.10 it follows that
1 if x>0,
(20) lim F (x) =
- ® 0 irf x<0.
If we refer to Theorem 41,9, then we can conclude that in (19) the convergence

is uniform on Re(s) = C .

Lot

| o
(21) I.(s) = nle (s)-1] = n—.cj; (e‘SX-rL)an<x>

for Re(s) =0 . Then

(22) 1im I (s) = log ¢(s)
e 1

and

(23) lim Re[I (s)] = log|é(s)]
rl-} oo

1

for every s with Re(s)

o) ,/4 the convergence is uniform in every

finite interval of Re(s) =0 .
Define
X yg
'\ Y L, = i Yo AT I
(24) Gn\x) nyo- 5 Pp“&)
.} _L+y

Then

4 L oy . 2 :
/[Since |In(s)—log¢(s)] < |toge(s)|“/n for Re(s) = 0, and for sufficiently

large n values, it follows that




(25) T(s) = [ (") lit ac_(x)

x“
for Re(s) =

The function Gn(x) is nondecreasing in the interval (-=,») ,
Gn(_oo) =0 and Gn(oo) <n . We shall prove that actually {G_n(w)} is

bounded. However, first we deduce some inequalities which will be useful.

Since
sin x x° sin x _ 1
(26) Ty &dmg for Ogxg<2 and =p—gn for x2z2,
it follows that
r
§ {Yz it vyl £5
(27) %—f (l-cos y u)du = —= (1_ sin dy);‘
e (Lif? if |yl 2%
< =34
for &6 > 0 . From (27) we obtain that

g ° 2
(28) --3—f (1-cos yu)du > y
8§~ © 1ty
for 0<6 <2 and
5 )
(29) 5 J (1-cos yu)du > 1 > —y——2—
o} 1+y

if |yl 2 2/8 .

If we use (28) with 8 = 2 , then we can write that
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©w 2 2 o
Y - r .
(30)  Gy(=) =n [ == (y) <[ [n] (-cos yw)d F.(y)]au =
—0 ]_-I»-y 0 —a00
2
=~ [ Re[T _( iu)ldu .
n
0
i . j/
Since limjln(jjl) = log|¢( iu)| uniformly for u e [0,2] , it follows X ;Qe;
n+ o

that {Gn(w)} is bounded,

By Theorem 41.7 we can find a subsequence {Gn.(x)} of {Gn(x)} and
K
a nondecreasing function G(x) for which O < G(-») and G(») < « such

that G, (x)=>>G(x) . Now we shall prove that
K

(31) lim G (=) = G(») and 1lim G_ (==) = G(-=)
k> = Kk>r

also hold. We shall prove that for any ¢ > O

(32) { d.G (x)< ¢
Xl>a

if a >0 and n are sufficiently large. This implies (31).

If we put & = 2/a in (29), then we obtain the following inequality

2 2/a
(33) dG (x) =n —X~§-an(y) c<a [[n [ (Q-cos yw)dF (W)dy £
x|>a ly|>a 1ty 0 |vl|ra

2/a
< -a é Re[ln( in)]du .

Now 1im Re[In( in)] = logj¢( iw)| wuniformly for u e [0, 2/a] and
> o
log{¢( 1u)| + O as u - 0. Hence it follows that (32) is valid if a > O

and n are sufficiently large.
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By (25) we can write that

[+ <3 «' ) 2

(34) I (s) = [ (7% +_.,__)dG (x) = u_s g _,2_1+X
nk -0 ,l’LA A nk nk AN X
where
- 1 ® X
(35) u. = [=dG (x)=n, [-S=dF (x).
nk o X nk Koo 1+x2 nk
By (22) we have

(36) 1lim In (s) = log ¢(s)

k> "k

for Re(s) =0 . If we define the integrand in (34) for x =0 by {18),
then the integrand in (34) is a continuous and bounded function of x in

the interval (-»,») . Consequently by Theorem 41.8 we obtain that

e 2 0 2
(30 um [ a4y HEqa 0= [ (a2
K> 00 weco 14+x X k —00 1+x A

for Re(s) =0 . By (36) and (37) it follows that in (34) 1lim Wy = H
kreo Tk
necessarily exists and pis finite. Accordingly, we have

w L2
(38> lOg ¢(S) = —us + f (e—SX_l + SX 14x

) dG{x)
—o 1+x.2 x2

for Re(s) = O where u is a real constant, and G(x) 1is a nondecreasing
function of x for which G(-») =0 and G(») < » ., This proves that (17)

necessarily holds.

Now we shall prove that ¢(s) uniguely detepnines G(x) for every

continuity point and the constant
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Let
ist+l
(39 p(s) = 2 logp(s) + [ logo(iu)du
' is-1
for Re(s) = 0, that is,
(40) b(s) = [ e aH(x)

0O

for Re(g) = 0O where

(41) | H(x)}

I

X . 2
1+ .
2 [ (1~ §£§_X)__%m.ag(y) .
0 y y

The function H(x) is nondecreasing, H(-») = 0 and H(e) < « . By Thecrem
b1.5 the function H(x) is uniguely determined for each of its continuity

points by ¢(s) and therefore by ¢(s) . 3Since

. 2
(42) (1- St xy X7

X 2

for all x , the function G(x) is also uniquely determined for each of

its continuity points.

Finally, the constant y is uniquely determined by forming the difference

between the integral in (38) and log ¢(s) .
This proves the uniqueness of the representation (17).

It remains to prove that the condition is sufficient too, that is, if
log ¢(s) 1is given by (17), then ¢(s) is the Laplace-Stieltjes transform
of an infinitely divisible distribution functicn. It is sufficient to prove

that log ¢(s) 1is the logarithm of the Laplace-Stielties transform of a
& [
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distribution function for any real constant uw and for any ncndecreasing
function G(x) for which G(-») =0 and G(») is finite. For in this }
case if we replace u by u/n and G(x) by G(x)/n then we obtain that
log ¢(s)/n is the logarithm of the Laplace-Stieltjes transform of a
istribution function for all n = 1,2,... . This proves the infinitely

divisibility.

To prove that ¢(s) defined by (17) is a Laplace-Stieltjes transform
of a distribution function we observe that for any choice of the real numbers
Xy € Xp € Xy <een< X the function

’)
-S sxk l+x

m
(43)  legy () = -us + ) (e R 5) —5= [6(x) - G(x,_,)]
i k=1 1+xk x] ~

delfined for Re(s) = O is the logarithm of the Laplace-Stieltjes transform

of g distribution function.

For every m = 1,2,... we can choose wm(s) in such a way that
lim log wm(s) = log ¢(s) for Re(s) =0 . Since lim ¢(s) =1 , it follows
mr = s=+0
by Theorem 41.10 that ¢(s) 1s necessarily the Laplace~Stieltjes transform

of a distribution function. This completes the proof of the theorem.
From Theorem 1 it follows easily another representation of log ¢(s) .

Theorem 2. The function ¢(s) defined for Re(s) = O is the Laplace-

Stieltjes transform of an infinitely divisible distribution furction F(x)

if and only if log ¢(s) can be represented in the form
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4 -0 , 4o
(44)  log ¢(s) = =us + T+ [ (71 + SRA(x) + [ (71 + SE5)aN(x)
~ 14x +0 1+x”

. : 2 . . .
where u is a real constant, o 1is a nonnegative constant, M(x) is a non-~

decreasing function of x in the interval (-~,0) , N(x) is_a nondecreasing

function of x in the interval (0O,») and these functions satisfy the

requiraments
(u5) lim M(x) = 1im N(x) = 0 ,
’ X¥ = X >+ o
-0 , € 5
(Le) [ xTaM(x) + [ x“dN(x) < =
-€ +0

for sane e > O . The representation (44) is unique.

Proof. Let us suppose that log ¢(s) is given by (17). Iet us define

X 2

(u7) nx) = [ - asy)
00 y

for x <0,
® 1+y2

(48) N(x) ==[ =5- dG(y)
Xy

for x>0, and

(49) o° = G(+0) - G(-0) .

In this csse the function M{x) 1is nondecreasing in (-=,0) , N(x)
is nondecreasing in (G, +=) . The functions M(x) and N(x) are

continuocus at those and only those points at which G(x) 1is continuous.
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Obviously M(~=) = N(+=) = 0 and

-0, e,
(50) f x~“dM(x) + f xTdN{x) <
> +0

for any finite ¢ > O .

By Theorem 1 we can conclude that u, 02 and the functions M(x) and

N(x) for their continuity points are uniguely determined by ¢(s) .

Conversely, any two functions M(x) and N(x) satisfying the
conditions in Theorem 2, and any real constant w and nonnegative constant
02 determine the logarithm of the Laplace~Stieltjes transform of an

infinftely divisible distribution function by formula (44). We note that L
. /

Several examples for infinitely divisible distributions have been known
for a long time. Suchare the normal distribution, the Cauchy distiibution,

the Polsson distribution and the gamma distribution. In 1929 B. De Finetti

(241 ], [ 242], [243 ] found a class of infinitely divisible distributions
in his studies of stochastic processes with independent increments. In

1932 A. N. Kolmogorov [280], [281] determined the most general form of

log ¢(s) for infinitely divisible distribution functions with a finite
variance. In 1934 P. Le/g [288 ] determined the most general form of
log ¢(s) for arbitrary infinitely divisible distribution functions. The
formula of P. Lévy is given by (44) in this section. Formula (17) for

log ¢(s) was deduced in 1937 by A. Ya. Knintchine [273], 2797 1 . For a

comprehensive study of infinitely divisible distributions we refer to

B, V. Gnedenko and A. N. Kolmogorov [260].

}\ if (46) holds for some e > O, then it holds for every e > O .
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Stable Distribution Functions. ILet ¢(s) be the Laplace-Stieltjes

transform of a stable distribution function F{x) . Our aim Is to determine
the most general form of ¢{s) . By Definition 1 it follows that ¢(s) is
the Laplace~Stieltjes transform of a stable distribution function K(x) if
and only if for every bl >0 and b2 > 0 there exlist two constants a and

b » O such that

(51) log ¢(2) + log ¢(2) = log ¢(2) + as
1 2

for Re(s) = O . On the other hand every stable distribution function is

necessarily infinitely divisible, and therefore log ¢(s) can be expressed
|

in the form of (44). The problem is to determine what conditions should we

impose on u, 02, M(x) and N(x) in order that log ¢(s) satisfy (51).

This problem was solvedf\in 1936 by A. Ya. Khintchine and P. Levy [279] . See S

- N
From Theorem 2 we can deduce the following result. \'1150 A.l aahbuubc.l...ne [&’7 *W ;

Theorem 3. The function ¢(s) defined for Re(s) = O 1is the Laplace-

Stieltjes transform of a stable distribution function if and only if

log ¢(s) can be represented in the form

o2 0 _sx sX T
(52)  log ¢(s) = ~us + —— + [ (%1 + =2 =)dM(x) + [ (751 + ——-—)d“\l(x,
— 1+x +0 14x°

. . 2 . . .
where either u 1s a real constant, o is a nomnegative constant, M(x) = O

‘ . . 2
for x <0 and N(x) =0 for x>0, or u is a rezl constant, ¢° = O

ard

?
\\ in 19’Jr by P. ~,evy [1117 and some details were proved
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(53) W(x) = —= for x <0, N(x)==-= for x>0,

- where ¢y 20,¢,20,¢cte, >0, and O0<a <2,

Proof. Without loss of generality we may assume that in (52)
M(x+0) = M(x) for x <O and N(x+0)} = N(x) for x>0 . Then M(x)
for x <0 and N(x) for x> 0 are uniquely determined by ¢(s) .
In this case by (51) we obtain that for every b1 >0 and b2 > 0 there exists

a b >0 such that M(x) and N(x) satisfy the relations

54y M(blx) + M(b?x) = M(bx) for x <O
| )
and i
(55) N(blx) + N(b,x) = N(bx) for x>0,

Furthermore, we have

(56) o (

O‘ll——'
+

== N
o |-
PN
o

It is not necessary to lmpose any restriction on u .

First, let us suppose that M(x) = 0 for x <O and N(x) = 0 for
x>0 . Then (54) and (55) are satisfied with any b > O , and (56) is
satisfied with b = blb2/¢é§+ b5 if ¢°>0 andwithany b >0 if
02 =0 . In this case

2.2
(57) log ¢(s) = —us + 9—2—

. . - . 2 . .
for Re(s) =0 where p is a real constent and o¢° i3 a rcriegative constant.
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no

If ¢ > 0, then

(58) F(x) = o(=H
2
is a normal distribution function, whereas if ¢ = O ,then
1 for x2>vu,
(59) F(x) =
O for x < u.

In both cases, (58) and (59), F(x) 1s a stable distribution function.

Second, let us suppose that M(x) # O for some x <0 or N(X) #0

for so@e Xx > 0 . We shall show that in this case 02 =0 and M(x) and
|

N(x) are given by (53).

Let N(x) #0 for some x > O . By (55) it follows that for every

b, >0, b, > 0,..., b, >0 there exists 2 b > 0 such that

1 2 k

(€0) N(blx) + N(b2 X) foo. + N(bkx) = N(bx)

for all x>0 ., If bl = b2 = el = bk = 1 , then let us denote by p(k)

the corresponding b , that is, for every k = 1,2,..., there exists a

p(k) > O such that

(61) kN(x) = N(p (k)x)

for all x> 0,
Now we shall show that

(62) p(ke) = p(klp (L)

for k=1,2,...ard 2 =1, 2,00, .
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On the one hand k&N(x) = N(p(k&)x) , and on the other hand kiN(x) =

= kN(p(2)x) = N(p(it)p(2)x) for x> C . Thus
(63) N(p(k&)x) = N(p(k)p(2)x)

for all k= 1,2,e0e5 & =1,2,.0., and x>0 . If N(x) #0 for some

x > 0 , then it follows from (£3) that (62) holds.

This last statement follows from the fact that if N(ax) = N(x) for
all x>0, where a >0 and a # 1 , then N(x) = 0 . For we have N(x) =
N(anx)v for n=0, +1, +2,... . If a>1 and n-» », then N(anx)»-N(m) =

|
O/{fop all x>0. If a<l and n>~wo, then N@x)>N(») = 0, and
|

therefore N(x) =0 for all x> 0O, Thus if N(x) #0 for some x > O ,

then necessarily a =1 .

By assumption p(k) > O for all k = 1,2,... . It follows from (62)
that p(1) =1 and p(1)> o0(2)>... > p(k)>.. . For if N(x) # 0 for
some x > 0, then kN(x) > (k+1)N(x) , that is, N(p(k)x) > N(p(k+1l)x) .

Hence p(k) > p(k+l) follows for all k = 1,2,... .

The only solution of the functional equation which satisfies the above

requirements is given by

(64) o(k) = 1K

where 1/¢ 1is a positive constant, or which is the same, a is a positive

constant., (Below we shall provide a proof of this statement.)

By (61) and (6U) we cbtain that

/< , and therefore N(x) =0
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(€5) KN(x) = NG %)

for a1l x>0 and k =1,2,... . Hence it follows that

: k- K
(66) (™) = Enay
for k=1,2,... and 2 =1,2,... . Let x Dbe any glven positive mmber.

For every & = 1,2,... let us choose a positive integer k such that

(67) G x a1 &V
g >

|
»

Ther: by (66) we obtain that
l

68) | N(xH0) = N(x) = N(L)F*

I

for every x > O and o is a positive constant. I1f N(x) #0 for x>0,

thenn N(1) = ~02 where 02 > 0 . "he condition
1 ol
(69) f X"dN(x) < =
+O

implies that o < 2 .
Accordingly if N(x) Z 0 for x > O , then
(70) NGx) = - =
for x>0 where O<a <2 and c¢, > 0.
Furthermore, by (56) it follows that

(71) 0" (k= =) = 0O
(o (k)37
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- _ . ey / - 2 _ .
fer k= 1,2,..., that is, ¢ (k-k* =0 . Thus o =0 necessarily
holds.

In exactly the same way we can prove that if M(x) # O for some

x < 0, then

(72) M(x) =

|x

for x <O where O <a <2 and cy > O . Furthermore, o =20

This completes the proof of the theocrem.

|
Finally, we shall give the solution of the functional equation (62).
|

|

Ilemma 1. ILet us suppose that p(l), p(2),..., p(k),... is 2 decreasing

sequence of positive numbers and

(73) p(ke) = p(k)p(5)

for k=1,2,... and 2 = 1,2,... . Then we have

(74) o(k) = kK ©

for k=1,2,..., where c¢ 1s a positive constant.

Proof. By (73) we have p(1) = 1. If a and b are positive integers,

then let us define

- a a
(75) o(@) = 248
% e
If 455' B;- where ay5 8n; bl’ b2 are pesitive integers, then
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(76) D(B—)> p\'b_) .
_ 1 0
This follows from the inequalities a;b, < ajb, , p(alb2) > p(agbl) .

p(al)o(bz) > plag)e(by)

Thus we extended the definition of p(x) from
positive integers to positive rational numbers in such a way that o(x)
is a positive decreasing function of x on the set of positive rational

numbers and

| p(xy) = p(x)p(y)
|
|

for positive rational numbers x and vy .

Iet x> O be a rational number, For each n = 1,2,... let us choose

an integer r, such that

1 rnfl

r
Lynyc@+d

(78) (1+

is satisfied. Then 1im rn/n = log X .
n-o

. 1.n . . . -
Since (1+ ﬁ) (n =1,2,...) 1s an increasing sequence for which

1< (1+ %_n < e , it follows that

(79) Lim o1 + D) = Lin [+ DI = ¢

n->o n > >
exists and C < C <1 . By (78) we have

+1

o s L
(80) b+ DTT 2p() 2 lp(+ 2T 7.
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If n -+~ in (80), then by (79) we obtain that both extreme members tend

to C1Og X . Thus
_ Jlogx_  ~c
(81) p(x) =C = X
for every positive rational number x where 0 <C <1 or c¢=-log?C

1s a positive real number. This canpletes the proof of Lemma 1.

From Theorem 3 we can easily deduce an explicit expression for log ¢(s)

which was foun-d\in 1936 by A. Ya. Khintchine and P. Lévy 279 7.
\ .

Theorem 4. The function ¢(s) defined for Re(s) = O 1is the

Laplace-Stieltjes transform of a stable distribution function 1f and oniv

if log $(s) can be represented in the form

<

e

(82) log ${s) = -ms - cls|[®[1 + 8 TsT d(s,a)]

where m 1s a regl constent, ¢ >0 , O <a <2, -1 < B

A

1 and

Y tan 9%- for o #
(83) d(s, a) =

- —Tgr—loglslf_o__r_ a=1.

=

In formula (82) s/[s| =0 if s =0,

‘Proof. By Theorem 3 we have for Re(s) = O that

2q2 "':O Sy ax 0dx
_ ) _ o7 BT 00X
(B4 log ¢(s) st 5= ey (e 1+ 1 2) v atl *
0 1+x 'X
+oo QX sx dy
+ e f (7501 + —=5)
2 +0 1+X2 XOHl ?

L in 1925 by P. L@[_\[_ [111] and was completely proved
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A
4 is a real constant o° > C , and

2 .

where either 2

c

1:

=0, 0r u

o

is a real constant, o~ =0 , ¢y 20 ,c,20, ¢t c, > O and O <a < 2.,
If w>0, then
-
_ iam
—F(l—a)wae 2 - —5931—f for O <a <1,
amn
2c08 —=-
(85) [ (e79-1- =2%5) % =\ ~lwloge - F + 1w(1-C) for a=1,
0 1+x° x \
_ dam
‘ —F(lwa)mae e _ won for 1 <a<2,
A QT
208 =5

\

where C = 0,577215 ... is Fuler's constant and T (1-a)

function. By using the relation

sinwa *

(86) I(a)r(l-a) =

where o # 0, +1, +2,..., we can express TI'(l-a) by

is the gamma

I'(a) in (85).

If K;Ei;jgwtig~£§ﬂzj, and ¢y =c, =0, then (84) reduces to (82)

6°/2 , and a

where m=yuy , ¢ 2 .

2 . [ .
S I
Ii {;—uﬁ—;\}n (81)5and Cl+ cy > o, cq 2 o, sy

we obtain that (84) reduces to (82) where O < o < 2

for

(87}

for

> 0 , then by (85)

3

O<a<l or 1<aog=<2

a =1,

>
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and C is Euler's constant,

(Cl+ C?)ﬂ
c — for O < a<?
(88) or (o)sin 2 !

£

- » - [ i _— o
end in particular o= (et e)) 5z for a=1, and

furthermore,
c~¢C
(89) g = 02+ nl for O0<a<2,
- 1 =2

Conversely, if m, c, a, B satisfy the requirements of Theorem 4, then

|

2 \

the parameters p, o°, Cqys Cpy @ in (8L) are uniquely determined and they |
also satisfy the requirements. These follow from the relations (87), (88),

(89).
Finaily, we note that (82) can also be expressed in the following way:
If O0<a <1, then

log ¢(s) = -ms~c|s|*[1+8 121 tan ] =
(90)

(o9

adx -3X odx
ATt % [ (e77-1) Tatl
| x| 0 X

0 )
-ms + ¢y / (e™5%_1)

for Re(s) = O where ¢y and c, can be obtained by (88) and (89). This

can be proved by using the integral formula

(91) [ @) 9 = r(ea)ate ©

which is valid fer w >0 and G <o < 1 .




log ¢(s) = -ms-c|s|[1-8 5§¥%§%L§!]=

(92)
9 -SX sx  dx * -3X iéx dx
=auste) [ (€7 =1t —5) S, [ (e7 -l )
=0 1+x- X 0 1+x~ X

for Re(s) =0 where u, ¢y and ¢, can be obtained by (87), (88) and

(89). This can be proved by using (85) for o =1,
If 1 <a <2, then

log ¢(s) = wms—#[s|a[l+8 T§T~tan %; 1=

(93)
_ - 7 SX y _adx (o—SX v ods
= -mstey [ ( ~1+5Xx) T-Ti:a-+ 5 [ (€77 -14sx) v
—00 0] X

for Re(s) =0 where ¢y and ¢, can be obtained by (88) and (89)., This

can be proved by using the integral formula

® _lam
(ob) f(elwx—l—iwx) g@%i = - (1-a)u’e 2
0 x>
which is vaiid for w >0 and 1 <a < 2.
If =2, then
i \ - - ‘2
(95) log ¢(s) = -ms—c|s|
for Re(s) =0 .

In this section we established that if a real random variables £

has & stable distribution, and
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(96) n{e 5}

S

= ¢(s) ,

which necessarily exists for Re(s) = 0, then log ¢{3) can be expressed
in the form {82). Accordingly, in the most general case , the distribution
of & depends on four parameters a, B, c, m where ae(0, 2] is the so

called "characteristic exponent”, Be[-1, 1] can be considered as a measure

of asymmetry,c > O 1is & scale parameter, and m 1s a location parameter.

If ¢ has a stable distribution function and log ¢{(s) 1is given by
(82), then we say that £ has a stable distribution of type S(a,8,c,m) ,

and write
(97) £~ S(a,B,c,m) .

If & has a stable distribution S(e¢,B,c,m) then -f has also &

stable distribution, namely
(98) £ v S(a,~B,c,-m) .

If & has a stable distribution S(a,B,c,m) and a and b >0 are

real mmbers, then (¢-a)/v has also a stable distribution, namely

(©9) | 5 vsles, I B

for o #1 and

(1CO) E2 o 81,8,

=IO
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Let El’ 6;2 ssess & n be mutually independent real random variables
having the same stable distribution S(a,B8,c,m) . In this case

gl+ g2+...+ g —-A

n
(101) 5 e v S(a,B,c,m)
n
if
{ & .
‘m(n-—n ) for o #1 ,
(102)

208 n logn

for o =1

Q|

and Bn =n . For by (82)
(103) gt Etet g S(a,B8,nc,m) ,

and therefore by (99)

(104)

if a #1 and

g1+ g2+...+ g =A

A
n n nm 2cenf
(105) B v S(l B B s E—' + ET log bn— g%
n n n n
if a=1. If we choose An according to (102) and Bn = nl/a , then

(104) and (105) imply (101).

We note that if ¢ =0, then Pl¢ =m} =1, If ¢ >0 then £ is
a continuous random variable which has a continuous density function

flx; a,8,cm) o« If ¢ >0 ,0<a<i and 8 =
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and f(x; o,8,c,m) >0 for x>m. If ¢>0,0<a<1 and B8 =-1,
then AE{E <m}l =1and f(x; ¢,B,co,m) >0 for x<m. If c¢>0, and
either O<a <1 and -1 <B <1l or 1 <a<?2 and -1 <8 <1, then
f(x; a,8,c,m) > 0 for every x . 1f B =0, then ¢-m has the same
distribution as m-£ . If a =2 , then B is irrelevant, but &-m has

a symmetric distribution in this case too.

If a random variable ¢ has a stable distribution and log ¢(s) is
given by (82), then we use the notation F(x; a,8,c,m) for denoting the
distribution function of & . IT7 ¢ > 0 then ¢ has a continuous density

function which we denote by f(x ; a,B,c,m) .

In some particular cases F(x; a,B8,c,m) and f(x; a,B,c,m) have been

known for a long time.

If o =2, when B is irrelevant, and ¢ > O, then

(106) F(x; 2,0,c,m) = F (50)
V2c
where
2
u
~ : 1 T
(107) F(x) = —— [ e du

2 —o

is the normal distribution function, and

(108) f(x; 2,0,c,m) = f(EZ@)_l::
Y2e VZ2c
wnere
2
X
. N 1 T 7
( 109) £x) = — ¢
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is the normal density function. In this case

2
~mstes
(110) ¢(s) = e

for any complex s .

The normal distribution function was studied first in 1782 by

P. S. laplace [106]. In 1809 C. F. Gauss [59 ] proved that the normal

distribution is steble. There are extensive tables for the normal distri-

bution funection and for the normal density function.

If a=1,8=0 and ¢ >0, then

(111) F(x; 1,0,c,m) = F(==
where

;
(112) F(x) = 5+ %— arc tan x

is the Cauchy distribution functlion, and

(113) £(x; 1,0,¢,m) = £(X0 i

where (x) = l/n\Hx ) for -« < x < « is the Cauchy density function.

In (112) we define - -g— <arc tan x < g— . In this case
(114) o(s) = o msels]
for Re(s) =0 .

ri

The distribution function (112) was found for the first time in 1827

by A. Cauchy [2%1 ] as a particular case of symmetric stable districutions.

Ir a=%—,s 1, =1 and m=0, then

by S.D. Poisson [1 ] and in 1353

J
/

N
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.2
] i - e (
. 201~ ;%: [ e “Jau for x>0, \y

(115)  F(x; 5,1,1,0) = Zr -

\ 0 for x <0,
and

’ -t

i“/':"l_:e o for x>0,
‘ ' 3
(116) f(x; ;2__’1’1,0) = '\ VT

L 0 for x<0.
In this case
( ~/25
(117) () = e’

for Re(s) > O . The distribution (115) has been studied by P. I@’_&_@; [2ce 1.

The transform (117) has been found by G. Doetschl24.51].

I_l"oa'—“%-;—lf_B;l,C:l and m = 0 , then we have
1 Z -~ —22
(118) £(x; 5, 8,1,0) = Re{ = Ve e 4 2iw(z) ]}

for x > 0 where

__Z2 Z u?.
e J e du
0

1]

(119) w(z)

and z = [(1+8)+1(1-8)1/VBx . 1If, in particular, 8 = 0 , then in (118)

we can write that

wl,
. B 4.x .
(120y  wekthy o DA Tl gl
/8x < 4x 4x

where S(x) and C(x) are the Fresnel integrals dzfined by
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—
7 nE 2 S,

(121) S(x) = /J- [ sin v"au and C{x) = /—f cos u-du .
i O i O

The formula (118) has been fourd by V. M. Zolotarev [3587]. The function

w(z) has been tabulated by K. A. Karpov [90 ].

Now we shall consider the procblem of finding f(x;a,8,c,m) in the
general case, It is sufficient to find f(x; «,8,c,0) for some particular
¢ > O because the general case can be obtained by linear transformation
from this partj:cu].ar case. If c¢ > 0, then |e(s)| is integrable cn the
line Be(s) = 0 and by Fourier inversion we obtain that
SN | _ 1 ® Wt =1/a o on
(122) f(x; a,8,c,0) = n_cj%?(}; e cos(uc” " "x-u B tan ~=)du

for a #1 and

(123) f(x; 1,8,2,0) = 7J~'~~f e Yeos (EX 4+ 2uf log Byau .
C > T c
Obviously,
(12h) f(x;5 a,8,¢,0) = £(-x; a,-8,c,0)

holds for every x . Thus it is sufficient to find f(x; a,8,c,0) for

x>0 ,0<ax<2,-1<8<1 and some particular c > O .

In what foliows we shall determine the density function f(x; «,8,2,0)
for O<a <l ,1l<uag2,-1<8<1 andsome particularly chosen

c >0,

First, for any o and 8 satisfying the inegualities C <o <1 or
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l<o<2 and -1 <8 <1 let us determine a real y such that

(125) tan %g = g8 tai %g

and -1 <y < 1 . Then let us define
(126) ¢ = cos %; .
We note that the inequality

(127) Iyl <1 - ol
alwaysiholds.

1

If ¢ is defined by (126) then let us write
(128) (x5 a,B,¢,0) = h(x; a,y)

for a#1 . If o #1 , then by (122) we have

1]

Yri
. _ 1 ® ixu-ule G .
(129) h(x; a,y) = = Re{] e du }
0
for every x .
Since
(130) h(x; a,v) = h(-x; a,-Y)

holds for every x , it is sufficient to determine h(x; a,y) for x > O .

By (129) and (130) we can write also that
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_ymi
: N G ® —ixu-u e 2 ’
(131) h(x; a,y) = = Re [ e du}
C
for every x and a # 1.
Theorem 5. If O <a <1, then

o k=1
- b + U g

(132) h(x; a,y) = = y (-1) Egku 1) i, Klaty)n
o ka+l 2

=1 k}x

w
for x> 0.

Proof., If x > 0 ard if in (131) we use the substitution 2z = ixu

then we obtain that

. + i
- —z—zqy'""o‘e_'gg'_{)—lnm:£
e T dz} .

— L),

(133) h(x; o,y ) = = Fe (F

O

If 0 <a <1, then the integrand in (133) tends to O as Re(z) » +o
and therefore by Cauchy's integral theorem we can replace the path of
integration in (133) by the positive real axis. By using the exponential

expansion and the integral representaticn of the gamma function we obtain

that
_ loty)nd
o - P
1 1 —u-u"x"%e
h(x; a,y) = FE'Re{‘I é e du }=
(134) _ kf{aty)ni
@ k 2 -~
- };{ Re {% Z (“1) e - J‘ -u uk(). du }=
T * k=0 k! x° 0
Sl 07 PGty L k(e)n
TX ko - 2

k=0 k! x
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for x>C and 0 <a <1 . This proves (132).
Theerem 6. If 1 <a <2, then
o k=l K o k-1
~ N 1 (--1) I'(z +1)x . kloty)w
(135) h(xs a,y) = = ) == Al sin 25

for x>0 .
2

Froof. If x> and if in (131) we use the substitution =z = e ut o,

then we obtain that

yrl 1 .
| . e e 1L,
| e " ~Z~1x2 -
(136) | h(x; a,y) ==Rel =7/ € 2%, g
Yri
where L = {z:z =e © W and 0 <u<e}, If 1<a<z, then the
integrand in (136) tends to O as Re(z) » + = and therefore by Chaucy's

integral theorem we can replace the path of integration in (136) by the

positive real axis. By an exponentisl expansion we obtain that

AALEN Loymd
o .oa 20 ] )
1 * ~u-ixu - y
n(x; a,y) = p Re { "e"’OT-f U-ixu - € R 1 au J
0 .
(137) ymi (k=1)ywi "
1 . e 20- © (—l)k l K"'l yk‘l e 2a @ -U .d. .-17
= = Re {—— ) =) [ e u du }
k=1 e 0
. k-1 K gy k-1
_ 1 ¥ (.—l) P(a X k(aty)m
- ki 2a
for x>0 and 1 < a <2 . This proves (135).

. — 4
For the proofs of Theorem 5 and Thecrem 6 we refer to H. Bergstrom

~ez

W,

(2281, [229]

I\and Chung-Jeh Chac [23%2 1.

(2521, [

22 pp.

she-5igll  See alsc
AN
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A, Wintner [333% ], P. Hunbert [ 262], and H. Pollard [3101.

There is an interesting relation between h(x; a,y) for <o <1

ST

and h(x; a,y) for 1 <a <2 . This relation was found in 1954 by

V. M. Zolotarev [ 3%8].

Theorem 7. If 1 <a <2, then

' 1 1 1 aty-1
(138) h(X; OL,Y) = '——&j’*_‘I h —&', -&-, Z )
. X X
for x>0,
i

E;@.Qi . The proof of (138) follows immediately from (132) and (135).

We can write (138) in the following equivalent form. IT %— <o <1

2

then

(139) hix; a,) = —=5p h o
. X

for x > O . That is (138) is valid if %—< 0 <2 ad x> 0.

Examples. In the particular cases when o = %— or o = % and
g =1, 0, ~1 we can express h(x; a,y) with the ald of Whittaker

functions. If Re(mt %« -k) > O , then for every =z the Whittaker function

W

k,m(z) is defined by

e Z

N

k = g = s TR
[ et 1+ 2 °  at .
—k) 0 Z .

o
i

x

ES

4
k%

(140} W (z) =
: k,m
r'{m+

PO}

(See E. T. Whittaker [331], and E. T. Whittaker and G. N, Wetson [ 208

p. 339].)
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If 2m 1is not an integer then the Wnittaker function WK m(z) can

also be expressed in the following way:

(12;1) W. (z) = .ﬂiﬁ)___m (z) + __EL?J_P_)._, (z)
k,m 1‘(% —mk) k,m T,(_ k) Mk s=n 2

for |arg z| <« —g-n and

(h2) W, (-a) = gy LEW ()

% F(%— ~nHk ) ~k,m 12'- +mk ) —k,-m

for J|arg(-z)| < 53—11 , where

. | 12'- +m Z %— +m-k (‘—,1)- +-k ) (% Hre-ko) 5
1 D =z + - :
(143) e m(?) = 2 e ‘v TIzaT) 2 F oo (amrey 2 e
and

1 %— -m - -g— % -m-K (— -m-k)(— -m=k) 5

! 7Y = z° 1+ Sy -

(144) M (z) e "l iy 2 2,<1 m)(?-an) A R

- % _m %— -
(145) Z Mk (z) = (~2) M—k m(—z) s
\
that is,
-1— mk (— - L')( k)
~ g TTomn)? * 2'(2m+1)(2mF2) zmt =
( 146)

b
-

! . 1 R
= Hmtk = +mtk) (55 4milc)
(2 ) (2 HYRL 0

[Y - Tymmn) 2 sremiyEeey & 7 e )

N
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By using the sbove results we can prove that

2
3 Xy —) for x>0
2 1 ﬂx2 L ; 27x2 ’
(147) T(x; 3- , 1, -5— ,0)= 2° b6
0O for x<0,
and
2
2
2 3 (327X I
(148) £x; Z 0,1, 0) = W 17 (—~——§ for x e {=o,=) .
6vn | x| -5, 7 20x
E;rn’oof of (147). If «a =‘—2§ and 6 =1, then by (125) v =% and
! 3
by (126) c¢ = cos %— = % . Thus by (132) we obtain that for x > 0O
i ~el By
~ — B { + =
f(x; %_’ l’ ..]2:, O) = h(X; %_, %) = 7;/'7? Z ( 1) F\aJ j;) -
J=0 23+ %—
(149) 3+ x
A3 (-1)9 23+ )
2T 5= 25t 3
(35-1)! x
<—— where we used that
( —‘%’: if k= 3j+1
N~
(150) sin °13‘" O .if k= 3j
- —‘/?E if ko= 3j~1
for § =0,1,2,... « If we use the abbreviation y = L:/27x2 s then by

£
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(143), (1h44) and (145) we can write that

-y/2 1/2
(x; %"s 1, %‘9 C) = "93'-7:[“-"-
- 2vn
(151) o
BRI r- 3
{ — M 1(5’) t—F Ml 1(5’)} =
@ g TP &7
) 9e—y/2 1/2 -
- o/ =
2> 6
for x > O where y = ’-!-/27X2 . The last formula follows from (151).
(151) we used that
(-_ = 1. - = e T
T2 0 26 T2 8 278

for y > O, and further that

(153) F(%—)r(%} =L 2n
sin '3‘ vr§
1.5y - ne2ysl/2
(154) r(xrip = r(~3~)2 o,
and
rE@) = —L-=2r |
sin Y

If x <0, then (147) is obviously true. We note that

- 2 ay 2
(155) £x; % -1, =, 0) = fl-x; 7> 1,

holds for all x .

In
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Prcof of (148). If a = %- and 8 =0, then by (125) y = 0 and

by (126) ¢ =1 . Thus by (132) we obtaln that for x > O

)
. '— «© I-(ZJ'*‘ _)
2 L2 V3 :
f(X; '3‘, C‘, 1, O) =h(X;"3- -§-—- Z . 5.._
2+ %
(156) N (3J+1)'X 3
_E r(2j+ ~3‘)
2T ., 1
I (35—t 3
where we used that
5/3: (-—1}:' if k= 3j+1 ,
(1s7) sin %1 = 0 ir Kk =3j,
i
| - {3 1Y ir k=331,

for j =0,1,2,... . If we use the abbreviation y = 14/27}(2 for x>0,
then in a similar way as in (151) we obtain that
2 _1/2
0 y/
£(x; £, 0, 1, 0) = £
W
r) (- %
(158) (=M )+
M@ -3 g ri@ -

2 1/?
v/ y /

for x > O where y = 1!/27x2 . Since f(-x; 2, 0, 1, 0) = f(x3 %— 0, 1,.0)

for all x , (148) follows from (153).

Formulas (147) and (148) have been found by H. Pollard [310]
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and V. M. Zolotarev [3%8 ] respectively.

Next we shall prove that

3 ae

2x°/27 3

3 e —_W ] 1(ﬂ§70 if x>0,
6/7? X - T '6'

(159) f(X; ‘g‘: 1, "_/—31-_, O) = l |3/
> =2|x|°/27 3

Se W, 1(”}57) if x <0

‘/:"- IXI '2—9 '6

and B =1, then by (125) v

-1/2 and

by (126) ¢ =cos p=1/3 . If o =2 and 8= -1, then y=1/2 and

= 1//7 .
|
If x > C , then by (128), (136) and (156) we obtain that
1 1
£(x; 3, 1, = 0) = h(x; g -3 =
(160) -
= 1 1 _2_ = 0
7zt Gy 5 0 = 5 € (g 5 0,1, 0

and the extreme right member in (160) is given by (148).

If x <0, then by (128), (138) and (149) we obtain that

f(X§ ‘3—9 1; E s 0) = £( X5 %‘: -1, L s 0) = h(-x; g: "1;) =
/2 V2 -
(161)
) 3/2 3/2
1 1 2 2 1 1 2 1 .
= — =h ((=) , 3 5) = £ ((= =) = 1, 5, 0)
RTCA 33T 5 UL

and the extreme right member in (161) is given by (1L7). This completes
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the proof of (159).

Formula (159) was found by V. M. Zolotarev [ 3387,

Finally, we consider the case when o =1/3 and B =1 . The density
function f(x; %—, 1, ¢, C) for c¢ > O can be expressed with the aid of
modified Bessel functions. If v # -1, -2,..., the modified Bessel

function of order v is defined by

o 23ty
- - (z/2)°"
(162) L) = L 3wy

| J=0

for every z . If v =-1, -2,..., then I(2) =1_(2).
The function

(163) K (2) = s [I_ (2) - T (2)]

2sin vw
is called Basset's function or MacDonald's function.
We have

T 1

Kb( ) for x>0
o 3? £ 3%
(164) (x; %3 1, %;, 0) =
L 0 for x <0,
where
(165) Ky (0 = 1‘; Ei_‘ }.m - I_l_<x>]
3 : 3 3
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or by Airy's integral

(166) K1(2x3/2) =1/%-'f cos(t3+ 3tx)dt
= O
3

for x>0 . (See A. Erdélyi [49 ] Vol. 2, p. 22.)

=1/3 and 8 =1, then by (125)

If x>0, then by (128), and (132) we obtain that

| P (jHL %-)

Ot 5 1, 5:; 0) = h(x; 3, 3) = §§ ) 1
“ | ! j:O j+l+ %
(167 (3j+1)tx -
] 1
s : r(j+l- 3‘)
27( j;-l J+1”‘ %
(33-1)!x

where we used (157). Since

R 1 1 2
r(j+1+ —3-) B T(—?)—) T("?:)

(168) 3 :

for j =0,1,2,... and

CT(j+1- =)

Lyp 2
rz)r(z)
(35-1)!

(3-1)1r(3+ 33

-l

(169)

for J =1,2,..., we obtain from (167) that
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) 1 /3 1 ! 1 -
(170) f(x; =, 1, =%, 0) = —=0e [I =) = I (—)]
3 2 (3} )3/2 _ !‘__ ) ‘/27}( _‘% VoT7x

for x>0 . This proves (164). See also V. M. Zolotarev [ 338].

We shall close this section by mentioning several useful properties of

stable distribution functions.

First we observe that if B = 1 then the Laplace-Stieltjes transform
of the stable distribufion function is convergent for Re(s) > O , whereas
if B8 = -1 , then the Laplace-Stieltjes transform of the stable distribution

functioh is convergent for Re(s) < O . By symmetry it is sufficient to

conside&’ the case of B8 1.

If O<a<l,B=1,cs=T(l-a)cos 2~ and m=0

5 . then

® _sx Ao _ g adx 1 _
ée d F(x; ay 1, ¢, 0) = exp {(f) (e ™7-1) Xaﬂ'}“

(171)
- e—I‘ (1-—-0L)Su

for Re(s) 0. Forif O<a <1l ,m=0, and in (90) we choose c, = O

“1
and c, = 1, thenby (89) g =1 and by (88) c = I'(l-cos ?— . For the
evaluation of the integral in (171) see Problem 46.5,
If a=1,8=1,c¢c=n/2 and m= 0, then
Jr e—.SdeF(X; 1, 1, %} C) = exp {J((G—SX_I + "§% Q;{ + (1-C)sj =
—co & 0 1+x° x°

(172)
_ eslogs
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for Re(s) >0 . Forif o=1,m=0, and in (92) we choose cy = 0

and c, = 1, thenby (83), # =1, by (88) ¢ =1n/2, and by (87) u = =(1~C)

For the evaluation of the integral in (172) see Problem 46 .5.

If 1<a<2,p=1, c=F(l—oc)cos-%11=ﬂ/21“(a)sin%—r'—, and m =0 ,
then
Co,_sx ‘ iy -3X OLdX
[0 F(x; @y 1, ¢, 0) = exp { [(e77-1 + sx) b =
e O X
(173)

- e-—l‘ (1-a) s

for Re(s) 20 . Forif 1 <a <2 ,m=0 and in (93) we choose c1=O

and c, = 1, thenby (89) B8 =1 and by (88) ¢ = r(l-a)cos g- . For the

evaluation of the integral in (173) see Problem 46. 5.

From (171) it follows immediately that if 0 < a <1 and

g~ Sla, 1, cos —g—ﬂ— , 0) , then

o
(174) E{e %) = 78

A

for Re(s) > 0 . From (173) it follows immediately that if 1 < a <2

and ¢ ~ S(a, 1, -cos —g—“—, 0) , then

o
(175) Ag{e‘sg} = &5

for Re(s) > 0.

We note also that if ¢ ~ S(a, 8, ¢, 1) and 3 =0 and m =0 , then ¢

has a symmetric distribution, that is, if ¢ ~ S{o, 0, ¢, ¢) , then

&
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-£ v S(a, 0, ¢, 0) too. 1f c > O, then we have

o

ERY
(176) [ e n(x; a, 0, ¢, 0) = e°l°

2000

for Re(s) =0 . If ¢>0 and a =2, then (176) is convergent for every

s and is equal to e®® ., If ¢ =0, then (176) is equal to 1 for every s .

Now we shall concider some distributions related to the stable distributions.

Let us suppose that & ~ S(a, 1, cos %E , 0) where 0 <o <1 . Then £ is
[

a positive random variable and (174) holds for Re(s) > O .

. -0 X . ‘s
The random variable ¢ has some importance in probability tkeory.

Iet
(1717) ¢ (x) = Ple™ ¢ x

for G < a <1 . Obviously we have

1-F(x s a, 1, cos =, 0) for x>0,
(178) G, (x) = )
e for x < 0.
The random variable £~a has a density function
1 T f(x_l/CL ; a, 1, cos %E, 0) for x>0,
1+ =
(179) g, (x) =47
0 for x<0.

The Laplace-Stieltjes transform of Gg(x) can be expressed by the

Mittag-leffler function
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K
3 E (z) = Z
(180) Bo'® = L TlRatI)

for 0<a<1l. (See G. Mittag-Leffler [1351,0 1367 and A, Eradlyi

49 ] Vol. 3, p. 206.) We have

(181) [ €7%%6 (x) = E (-s) N
0 o o
for every s and O <a <1 . (See H. Pollard [711] and W, Felier [253 Jp.428.)

By using Theorem 7 we can deduce from (181) the following result:

IT 1 <a <2, then

o]

(182) | [ ™% £(x; a,-1,~cos <&, 0)ax = = E. (=s)
‘ O 2 [0 l_-
' o
for all s . ({(See V. M. Zolotarev [339 ].)
By (175) it follows immediately that
oo a
(1.83) / e_SXf(x; Gy-1,~-cos 2L 0)dx = e(_s)

2 3

-0

for Re(s) <0 and 1l <a <2,

If we use Theorem 7, then we can prove that
(18h) f(x; o,-1,-cos %23 0) =
for x>0 and 1 < a <2 where the right-hand side of (184) is given by
(179). By (181) this implies (182). By using the notation (128) we can

write (184) in the following form




VI-T75

(185) h(x; o, 2-a) = =7 h(x °, %B.é
X

for x>0 and 1 <o <2 . This is indeed true by (138).

According to (181) if & ~ S(a, 1, cos %1, 0) and C < a < 1 , then
_vg_a
(186) E{e 77 1} = Ea(—s)

for every s .

4 N . - . - o N
If O0<a <1 and if take into consideratiori that hu(nx ) is a
decredsing function of x 1in the interval [0, =) which varies from 1

to Oj, then we can easily see that

51 - B tx ) for x>0,
(187) Ha(X) = I\
0

for % < 0O

1s a distribution function. We have

(188) [ ™% (x) = -2

for Re(s) » =1 . If Re(s) > 1 , then by (180) we cbtain that

[~ oo k=]l o 1
[ e aH (x) = S%%%fj—-f e™S% JKo-lyy o
0 * k=1 0
(189)
) 30 .(__l)k-l _1
& ka L, o
k=1 s 1+s

and (188) can be obtained by analytical continuation.
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In his investigations of branching processes V. M. Zolotarev [ 240 ]

encountered the distribution function

;. o _(éja s du
1- ——= [ e f(u, a, 1, cos =, O)a—- for x > 0,
190) 8, () = e )

( 0 for x <0

where O < o < 1 , and showed that

o«

B ) -SX %) =1 - S __
(19.L, é e dSCX. (f/ 1 “"-'—’-'( 14.80'17&'

for Re(s) » =1 .

In 1953 Chung~Jeh Chao [232] proved that if ¢ v S(a, B, ¢, 0) where

o #1 and c > 0, then

roj =

( R
(192) Ple 0} =5- L

where vy is defined by (125), that is,

A

X}
)

(193) Yy = 5

arc tan{B tan

and —%<arctanx<—g—. (See Problem 46, 7 o)

If €~ S(a, B, ¢, O) where c¢ > 0, then & has a continucus density

function f(x; o, 8, ¢, 0) for which we have

(194) £(0; a, 8, ¢, 0) =

whenewer o # 1 . The constant y 1is defined by (192). Both (192) and

(194) are mentiored by V. M, Zolotarev [ 2417,
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If o # 1, then by (122) we cobtain that

-1
,u du

QIFJ

-u
f e ~ cos(u B tan =—
c 1/ Yo 2

(195) £{0; a, B, c, O} =

and the evaluation of (195) leads to (194). (See D. Bierens de Hahn [ 11 ]
p. 505.)

The Moments of Stable Distributions., If ¢ ~ S(2, O 0) , that is,

’2,
if & has a normal distribution N(O, 1) , then

o
O')

w X (§+1
2

(196) | E(]g]%) = = | —
1 ~ Vor 0 v
for Re(é) >~-1. If g£~3(, 0,1, C), that is, if £ has a Cauchy

>

distribution then

(197) B

for -1 < 8§ <1,

If €~ S(a, B, ¢, 0) and a # 1 , then we have

8 ' BRZX
- T(1- ») cos 2%

(198) Bilg|%) = (—2)° =
o~ Yy r{1-6) S

cos 5 cos -

for -1« & <1 where vy 1is defined by (193). Formula (198) has been

found by Chung-Jeh Chac [232 ] and V. M, zoloterev [341 ]

If £ S{e, 8, c,m) and O < a < 2, then
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(199) E{[£]°} <=
if =1 < & < o and

[aTa" 4 (S -
(LUQ) Ellgi } =

if 8§ > a . (See B. V. Gnedenko [ 2597.)

Finally, we shall mention some characteristic properties of stable

distribution functions.

Let us suppose that F(x) is a stable distribution function. We
exclude the normal distribution (o = 2) and the degenerate distribution
(¢ = d) . Then there exists an o (0 < o < 2) and nonnegative constants

Cia Co with sun c¢.+ ¢, > O such that

1“2
(201) 1im x°[1-F(x)] = ¢,
X >
and
( 202) lim x*F(-x) = c. .
X > @ +

The constant o 1s the characteristic exponent of F(x), and ¢y and

c, are the constants appearing in the representation (84)., Thus it follows
that necessarily F(x) = F(x; o, B, c, m) where o (0 < a < 2) is the
constant appeaving in (201) and (202), 8 = (c2— cl)/(02+ cl) ard ¢ is

determined by (88). The constant m is not detemmined by (201) and (202).

(See P. Lévy [113] n. 201.)

If F(x) Iis a proper stable distribution function (the degenerate

case, ¢ = 0 , is excluded), then F(x) is ahsolutely cortinuous and has
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derivatives of all orders for every x . If ¢(s) denotes the Laplace-

Stieltjes transform of F(x) , then by (82)

nlal®
(203) l6(s)| = e~cls]

where ¢ >0 and O < a < 2 . By Theorem 41.5 we can conclude that

- (n) i n-1 R iux n-1
(204) FYU(x) = | o( iuw)e u “du

-0

for all x . (A. Ya. Knintchine [ 278 1.)

I. A. Tbragimov and K. E. Cherriin [ 268 ] proved that every stable

distribution function is unimodal. A distribution function P(x) is
calied unimedal if there exists at least one x = a such that P(x) is

convex for x < a and concave for x > a .

A proper stable distritution function F(x) with characteristic
exponent o > 1 1is regular on the entire real axis. For o > 1 the

distribution function F(x) is an entire function.

If ¢(s) 1is the Laplace-Stieltjes transform of F(x) and we expand

F(x) into Taylor series at the point x = a , that is,

o _(n)
(205) Fex) = ] T8 (ayn
n=0 )

then by (204)

\ n n
,F(n)(a) <F(&J -

n! = rant

(206)

for n = 0,1,... and hence the radius of convergence at the poirnt x = a

is
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,/‘

{== for a>1,

(207) R(a) = L - <
L

»C for a =1,

an)(aﬂt \

_...H!_.__..

1lim sup
n > «

This result is due to A. 1. lapin. (See B. V. Gnedenko and A. N.

Kolmogorov [ 26C ] p. 183.)

A. V. Skorohod [ 3207 proved that if a < 1 , then

1
gl(x-d) for x>0,

(208) f(x; a, B, ¢, 0) =
1 1

l e fo 3 X < O
=T g2(lx!“) r >

N

where gl(’z) and g,(z) are entire functions of =z .

43, Limit Laws. Throughout this section we suppose that gl’ E;E_q...3
F;k, ... are mutually independent real random variables. We consider a random
trial with which a probability space (Q, B, P) is associated and we suppose

that each gk(w) is a finite measurable function of « defined on o and

that (41.36) is satisfied for n = 1,2,...

If E{Igl{!} < = , then let us write

oo

(1) 3 =Elg )= [ xdplg <x)

for k =1,2,..., and if ,@;{5;}2{} < o , then let us write
2 o ir b o [ fen 2a ,
(2) b, }«Wd:‘r;{t,k} _;[ (% a ) d, Plg < x}
for kX =1,2,... .
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Mozt of the results deduced in this section are concerned with the
case of mutually Independent and identically distributed real random

variables, In this partlicular case we use the notation

= F(x)

~
w

i

5e

—~
Kaat
A
>

—
!

R
() a = [ xd(xz) ,
]
and
o0 o
(5) b% = [ (x-a)°ar(x)

0
provided that the integrals in (4) and (8) are absolutely convergent,

-
1
1

The Weak Law of Large Numbers. In 1929 A. Ya. Khintchine [ 4183

LA

proved the weak law of large numbers in the following general fomm,

Thecrem 1. Tet {ék; k= 1,2,...} be o sequence of pairwise irdependernd
real random variables with a comnon distrilution functlon Piik < vl o= B(x)
z (=
R (. — , P
e B{iz i< o and a = E{z} then for any e > 0 we have
1 =31 >
T A ¥ - A K e e e

(6) lim P{| -al <e} =1,
n > w

Proof, First, we note that in Theorem 1 it is not necessary Lo assune
that the random variables {av} are mutually independent for (6) is valid
L4W
for pairwise independent variables {Ek} too. The variables {ak} are

pairwise independent if (41.36) holds for n =2 .

2 )
Next, we observe that if Ng{ig} < o then (6) 1s a simple conscuuence

of the inequality (41.31). If we write b° = var{gk} and
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(7)

L2l
n n
. 2
for n=1,2,..., then h{nn} = g and Var{nn} = b /n
e >0 by (41.31) we have

(8)

5 - 2
: N
al > e} = P{{n~8) >¢ < e
e n
__ e 2, 2 .
If rn» e then o /e™n +» O

, and (6) follows.

To show that (6) is valid, we

chall remove in the above proor
restrictive condition thet VHW{EY] existe, This can be
aa e N

the method of truncation.

Thus for ¢

tf\

()

achieved by usling
We shall prove that for any e > 0 and ¢ > 0 there exists an Nie, )
such that
(9) P{|n - al > ¢} < w
R = =
if n > N(e, w) . Fora fixed 6§ >0 and for k =1,2,...,n let us
define
S if b < 8n
% g "k ’Kl =t
(10) Ek =
: L 0 ir |gyl > én
for k=1,2,...,n , and write
% % y
2 o .
9 €—L4 (SN A '+ E,T
(1) N o= = SR !
n n
e i [ e T o T S ® b Ie) - ° ) AT A T
Define A = {|nn~ aj > el and B = TN o Then we have A = ABHABLADTS
= f I
and thus P{A} <P{ABMP{B} , that is,
e~ A -
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(12)

Since E{lt

Vo (Y
_.(/<oo,

¥ _ 2
e} < Flin - &a| > e} + Pin_ #1 .
=W‘\' N CI 2. oty # ln}

it follows that

v - n
_ g, w ( N
(13) Elg ) =a = [ xdf(x)
A Y i -—61’1
(k = 1,2,...,n) converges to a as n - o
¥ £ . . ¢ e
have [an~ al < 5 if n 1is sufficiently large,
. - 5 # ] €
If n is-sc large that [an— al <= , the
[
- % | b < p(] * % €. oS
{In ~ al > e} < Plin ~a | » =} <
m’w\i‘ql’l { == ::-:M 'nfl Cn = ;_J.J E=

()

; * \ %2

b ., % ITefy
g S s Bl - A
en £n g™ ™ g

c

and here we uced (41.31)

b4

- . 1 ) v ot
mf{”n ’ r’n} ;:kzlg{gk 4 gy}

N
L
g

Here we used that

(16)

if n is large enough.

n >« it follows that

and (10). On the other

n %

‘ k=1""

[xiam(x) < 6°

J

|x|>on

Since the left~-hand side

(16) is valid it n

then we ¢

Uyo Ty

e

hand we

. Hernice for any

}

n
) el
2

nave

e >0

we
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Thus by (12), (14) and (15) we obtain that

Ll Al
179 -z < 2Ly
(37) /Eﬁlnn. al > e} < (62 1)5

i n is sufficiently large. Since ¢ > C and 6 > 0 are arbitrary,

the last inequality proves (9) and consequently (6) too.

It 51, 52,..., Ek"" is a sequence of real random variables for

which 8, ~ E{Ek} exists for k = 1,2,..., then we say that the wesk law
7 _ whenever

of large rumbers is valid for the sequence {gk; Tor every e > O
-

(18) | al <e)=1.

| 0
Lim P{} = ) £ -
noe 8 M K

o
3
i~

First, at the end of the seventeenth century J. Bernoulll [ 348 ]

proved that if {g 1} is a seguence of mutually independent random variables

k

for which P{E;k =1} =p and P{gy =0} =q (phy) = 1), then (18) holds.
M ' £

In 1837 S. D. Poisson [4497 proved that if {Lk} is 2 sequence of
X

it

1} = Dy and

+q = 1), then (18) holds. 1In 1367 P. L. Chebyshev

k 'k e

(47847 proved that if {Ek} is a sequence of mutually independent discrete

mutuaily independent random veriables for which P{Qk

P{g, = 0} =q,

Ly kP

random variables for which ¥

el
~
Faal
—
i

=3 Var{s = b St Ten
a, and Aﬁf{gk} by exist, ther

A

n
, - 1 ;
(19) P{I . }: (gl," )I e} __>'_l - ¢
SRR Ut B A naed - k

for any e > O . Y¥ram (19) Chebyshev concluded that (18) holds if

) : - - .
b £ B <« forevery k. ( See also A.A, lerkov | 554 Jup. 58-62.)

Covicusly, we can replace Lhe last condition vy
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1 n
(20) ] ) D
n+>n" k=l

jr‘“! 7’*7 n
=

)

i

In 1928 A. N. Kolrogorov [&21 derived necessary and sufficient

conditions for a seguence of mutually dindependent real random variasbles

to obey the weak law of large numbers. TIn 1929 A. Ya. Khintchine 7418 ]

proved that if {E]} 1s a sequence of pailrwise indepencei ldentically
distributed real random variables with finite expectations, then (18) holas.
For further extensions of the weak law of large numbers we refer to B, V.

Cn%wnko[:) 517, and B, V. Gnedenko and A. N. Kolmogorov [2CO0 ],

The Strong Law of Large Numbers. Let 51, S senns Sk"" be a sequence
; - & -

of real random veriables for which g = E{Ek} (k = 1,2,...) exist. Ve

A

say that the sequence {iK} obeys the strong law of large nubers if

(21) P{lim )+ Com 2t e ) 0} =1 .

n
n o e

I (9, B, P) is a probability space and gk(w) (k = 1,2,...) are
real random variables defined on @, then for any choice of g,

the function

(22)

o]
M
/\

( W ) - ')L-
n . A( ) “K)
I{'—

is a random variable. Denote by A the sebt of poirts o ¢ 9 for wirich the

e

sequence {nn(w)} is convergent and the limit is ¢ , that is,

(23) A= {w: Limn_(w) = 0 = {w: 1in sipbn (W) = 0% .
n oo n - e« n




We can easily see that A 1s a random event, that is, A ¢ B , and thus

we can speak about the probability of A . If P{A} = 1 , then {gk}
N

obeys the strong law of large nuwbers (for the given sequence {ak}).

By using Theoren 41,1 we can formulate a useful sufficient condition
which ensures that P{A} = 1 .
Pasm
Lenmz 1. Let (2, B2 ) be a probebility space and {n ()} be a
sequence of real random varlables deflined on @ . If for any ¢ > 0 and
Tor some positive integers Ny < Ny<...s ny<i... We have
« i
(z2h) Y P{ max|n.(w)] > el< @, :
=1"" n. <i< T
K = e,
2
{25) P{ Lim n_(w) = 0} =1 . |
A n 1
1> e
Proof. Let
(26) Ale) = { 1im SU_p!nn(w)l > ¢}
1 > <«

for e > 0O . Then A(e) ¢ B for every e > O,

If (2) holds for every < > O , then by Theorem 41.1 we can conclude
that with probability 1 only finitely msny events {{nn(w)l >el (n=1,7,...)
occur, and this implies that P{A(e)} =0 for every ¢ > O . DNow we shall :

prove that P{A(0)} = O . Sirce evidently,
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[en)

1) Ao e ] A

it follows by Boole's inequality that

(28) 0 < P{A(O)} < } P{p( =0,
. A r_l

Accordingly, P{A} = P{A(0)} = O which proves (25).
A P

We note that, conversely, 1f P{A(O)} = O , then P{A(e)} =0 for
LV o
every e > O . VYor, obviously A(e) < A(O) holds for every e > O , and

therefore O < PfA\c‘} < P{A(O)} = O .

A,

Next we shall prove a generalization of the inequality (19) which makes

1t possible to prove the law of large numbers for mubually independent randon

variabies. This inequality was found in 1928 by A. N. Kolmogorov [n21 ]9{@3'

lerma 2, Let Ql, Eseens gn be mutually independent real random

7

) . 2
variables with expectations ay = E{¢.} &and variarces b_i a”{g }
A J o AN
(G =1,2,...,n) . Forevery ¢ >0 we have
i 109 0
(29) P {max | } (QJ— a)l zet <75 ] by .
l<k<n  j=1 e k=1
Proof. let

i
2 = -

J ___l < [
for k =1,2,...,n . Define n random varishles Xps Kosenes Xy, &9

folliows
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[ < i:lcgl S Cyseny i.{’-k—l! < g, ic‘

(1 i |e,
(31) X, = 2
IP
L

fiv
™
-

k[
0 otherwise.

is either O or 1, ard X1+ XP+“"+ x., =1 1if

hen + Xt ot
Then %1 x2 X n

1

end only if ]ck| 2 e for some k= 1,2,...,n .
The left-hand side of (29) can be expressed in the following way:

P {max |z, | > e} = P{
A -

<k<y

!

-

(32)

11
= Btk oy b= Z Bl ).
k=1

"
If we multiply (32) by €“ then we obtain that

n I
(33) e“P{ max Ckl > e) = e? Z/g{xp} < ) E{xyaf}
~ a8 :l A~ S

iksn & k=1 k

n ) n o 2 n -
< Z'E{szn} = BLO T 0] S Efg b= )by
k=1 k=1 " o~ k=1

which proves (29). In (33) we used the following inegualities:

2 2.
! 2. o
(34) € Elx ) < Elx o)

and

~

\ - 2 — o2y
B < Bix, o]
(35) Elgtd £ Bl o
. . ) ) o) o
for k =1,2,...,n . To prove (3%) let us cbserve that e“xk < Ly, for
AT i

i
T

k=1,2,...,n. If X = O, Then this is cbvicus. If y,. = 1 then
b
2 € , and the inequality hoids in this case teo. By forming exvectablons

7,

in the inequality just menvicned we get (31). 7o prove (35) let us write
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2 2 .,

136) sz’n - sz’k !

and form the expectation of (36). The second term on the right-hand side

< s eymectatic v YE{r . = 0 because : -
of (3%) has expectation 2&{>,ch)£{c,n } = 0 because X1 and - t,

°k n <

are independent, and E{g - = 0, The last term on the right-hand

L}
~ n 7k

side of {30) has expectation > O . Thic proves (35). In (33) we also
used that Xqteo ot X, = 1 . This campletes the proof of the ineguality (29).

In 1930 A. N. Kolmegorov [#24 ] proved the strong law of large nurbers

in the following general form.

Theorem 2. Let {gl,} be a sequence of mutually independent resl random
2

varigbles for which a, = E{¢ } &nd b = Vor{+, } exist. If
kO %k R S 2
2
o D
o K
(37) 2 Y ®
k=1 k"~

(6= ap)t(e,- ay)t o o+(E ~a )
(38) P{lim —2 2.2 2= 0) =1,

N i

1 2> o

Proof. let g = (i;l—- a1)+“.-'l-(€n- a ) for n=1,2,... . Then (38)

can be expressed as

Z;1'1
(39) P(lim ==0}=1.

If for any e > C and for scne posivive integers N, < N, <ove < T4 < oo
o

=
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(40) YoOPL wmex |

then by Lemna 1 we can conclude that (39) is true. In (40) we can write

that
| Z;i .
P{max | = | >elsP{max | z.|>n ¢} <
™ ono<isn o ™ n <izn * ko=
K kAL K =L
I
(41) n .
| k+1 5
max . > —— DY
‘”E f\<?ii ]Cl‘ nke}:_—szna ]'.:Zl n‘]
==, Tk
where the last inequaiity follows from Lemma 2.
Now if
I,
« k1 © ‘
(h2) D S S O W P
k=1 n° j=1 9 421 Y n >3 o
- I ki Tk

then (40) holds and this implles (38).

K

If we choose n_= 2" for k= 1,2,..., then in (42)
k
1 1 ! 16
) S = =
(43) . L : k+§ K 2y = 2
k1= T 2T 3.2 J
k k +1

for §=1,2,... . In (43) 2 %< j <

j A
no
I

Accordingly, if (37) is satisfied, then (42) and (U4C) hold and there-

fere (28) is true. This completes the proof.



From Theorsm 2 A. N. Kolmogorov [424 1 deduced the following general

theorem for mutually indernendert and lidentically distributed random

i

variables.

Theorem 3. let {g} be a sequence of mutvally independent and

identicaliy distribufed real random variables for which a = E{£ } exists.

A 1{ -

Then

[ R P R R &
(L) P { lim L — e
In >

et
It
]

o

i .
Proof, First we shall introduce a useful definiticn. Two sequences

; %
of random variables {Ck} and {¢

k} are called equivalent if

e

%
(45) PoPle Ae ) <
S
b2
From Theorem 41.1 it follows immediately that if {gk} and {g, } ars

equivalent seguences, Then

- *
(46) P{lim (¢, -¢) =0} =1

Kk
holds. Iurthermore (16) implies that

* &
(g = £ )H(E= E )+ (B ~ &)
(47) P {1im — T2 2

n » o«

n

e

vy using this observation we shall prove (B4} in such a way that we

replace the sequence {& .} by an eguivalent sequence {£ 1} for wohich

iz

Theorem 2 is applicable, and then by (47) we can conzlude that (B4) is
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valid. To find an eguivalent sequernce {Ek} we use the method of truncation.
Let
- AL
(48) £ =
o if ';1| >k,
<
Since
Y PUe > kb= ) ) PLI < e | git1d =
k=1" K k=1 j=r<m L
(L9} -
= ZJEA{J < igj = J41t < B{ E»ll} R
J=1

it follows that {g,

%
} and {Ek} are equivalent sequences.,

et Plg < x} = F(x) Then
N
[
(50) a= [ xd%(x)
200
and
(51) & = Blg, ) = [ xdm(x)
"~ |x] <k
— *
for k = 1,2,... Ve have 1im = a , and hence
kK >
*+ *+ + *
a.+ a.t...+a
. 1 2 1
(52) 1im . =g
n > « I
. * o 2 -
Now each F,k has a inite variance, namely
y ! * %D 2
(53) Var{z, } < B{g, "1 = [ x|far{x) < eyt 2e bt ke
Pty o A A ! X l <k . " A

whers
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for j = 1,2,... . TIurthermore,

o Var{g } oY k o o
B Lo vl
L s ) S ZJJ~ Lde. ) =<
=1 k k=1 k° j=1 j=1 Y k=3 k°
(55)
; 2 Z - ;gt{ggll}<m'
g1
Here we used that
| v 11 N ) Lo, 1 2
(56) | I maiTst L ey om ot oo
L k=] 1/:2 d7 k=i+l k(ie-1) oo 3 3
|
for 4 = 1,2,... .
The random variables E;l, Enseens Epsces are mutually independent. They
# 3

‘have finite expectations a = E{Ek} (k= 1,2,...) and (55) holds. Thus
N

by Theorem 2 it follows that

kgl“’ al)+(£?— a2)+...+(‘~=n" an)

(57) P {lim - =0} =1,

n - o« n

By (52) it follows from (57) that

¥ % #
S et t by
(58) P ilim — = = =3} =1

n -+«

By a comparison of (47) and (58) we obtain (44) which was to be proved.

Theorem 3 in the particuler case when Plg = 0} = P{gl, = 1} =
o o~ S\ .

Py

PO

V4
Tor k = 1,2,... was proved in 1909 by E. Borel {16 |, In 1917 F. P, Cantelll

1 g~ T 3 T PO - - . T k
[ 18 ] proved Theorem 3 in the particular case when P{Ek =1} =p ad
aa™y
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\E{gh =0} =q for k=1,2,..., where p+q = 1 . In the general case

Theorem 3 was proved in 1929 by A. N. Kolmogorov [424 7,

Some General Limit Laws. let &l, Ensenes se.0 D€ & sequence of
[

K

mutually independent and identlcally distributed real random variahles.

let Ly = €1+ £_+...+ En for n=1,2,... . We are interested in studyinrg
the asymptotic behavior of L, @ n->e. To achieve this goal we shall
introduce some useful definitions and we shall prove several auxiliary

theorems. The results presented here have been found by K. L. Chung and

W. H. J. Fuchs [25 1. See also K. L. Chung and D. Omstein [ 3657,

Definition 1. A real number c¢ is called a pessible value of the

sequence {cp} if for every ¢>0 fthere exists an n (n=1,2,...) such

that

(59) P{|:n~ el <e} >0,

Denote by P the set of all the possible values of {cn} .

Definition 2. A real nunber ¢ 1ig called a recurrent value of the

sequence. {cn} if for every ¢ > O

(60) P{lz_ - ¢| < e for infinitely may n =121,2,...} =1.

n

Denote by R the set of all the recurrent values of {Qn} .

Theorem 4.  Either R is empty or R is identical with P .

Proof. Cbviously R <P because every recurrent value is necessarily

a possible value. We shall prove that 1f R#0 and ce P, then o e R .
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Supposge that ¢, ¢ R and Cy € P . First we shall show that cy= ¢ € K.

This follows from the following inequalities:

P{lcnm ¢yl < e for only a finite nutber of n = 1,2,...} 2
(61)
izf{ickf 02I < € lck+n" g~ (cq- c2)| < 2¢ for only a finite
mmber of n = 1,2,...3 = P{|g, - c2| < e} . Nf{Icnn (cq- 02)| 2¢

for only a finite number of n = 1,2,...7} .

Now 1f sy € P, then there is a k = 1,2,... such that P{ig.- c.,| < e} > C

If Cl“ ¢y ¢ R, then by (60) P{ S )[ < 2e for only a finite number
of n = 1,2,...} > 0 and thus by (61) P{ !cn" 01, < e for only a finite

rumber of n = 1,2,...} > O, This contradicts to the nypothesis that

c R . Consequently, Cy= Cs € R .

18

® ¥

If R 1s not empty, then there is a ¢ e R, and then obviously ¢ ¢

]

)

.

%
By the previcus argunent ¢ -c =0e¢ R, If ¢ e P, then also by the
previous argument O-c = ~c ¢ R . Hence -c ¢ P . By representing the
same argument, we cbtain finally that O-(-c) = ¢ € R . This completes the

proof’ of the theorem.

Next we shall study the structures of the sets P and R .

Theorem 5. Let {gk} be a seguence of mutuszlly independent and

identically distributed, nomegative random veriables for which P{ip =0} < 1 .
% L
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£ &, is a lattice variable, then there exists & X > O such that

w

P& {a, 2 yuuu, NA,...} and there exists an m such that nx e P for

n>m.

If ¢ 1is a non-lattice varlable, then P 1is asymptoticaily dense at

I 7

© o that is, for any e > O there exists an a = ale) such that the inter-

val (x, xte) contains at least one point _of P whenever x > a .

Proof. First, let us suppose that Ek is a nomegative lattice variable

= (0} <1 . Then there is a A > O such that x ¢ P implics

1
K

for which P{g

that x =n» (n=0,1,2,...) . Denote by \ the largest pesitive number
with the stated property. Then the g.c.d{n: nx ¢ P} =1 . TIn this case
we can find a finite nuber of positive integers Brs Bosenes O such that.

g.c.d {a, Boseees gl =1 and a) e P for r=1,2 s . ['he integers

+

815 8pyeesy B, CAN be obtalned in the following way: Let us choose an  a,
it ) '

)

such that alx e P . Denote by Pos pB,..., ¢, the prime divisors of a

B
o

For every r = 2,3,..., 5 there is at least one & such that a A e P

'I ’ ""Iz
and a, is not divisible by Pp The integers 815 Apseees B satisfy

the required properties.] Then

(62) } kaxeP
r=1 - -

for all kr = 0,1,2,... « 1T n 2. 8p8see8y then n  can be represented
- Py

in the form kja +...+k a where every k, (r=1,..., 8) is a nomegative

integer. This proves that nx e P if n>m = IR
[

\‘lvl'.

Second, let us suppose that g  1is a nomnegatlve, non-labtice variabie




for which P{g, =0} <1 . fThen there exist an a ¢ P anda b e P such
i

that O <a <b . In this case ma + j(b-a) = (m-j)a + jb ¢ P for every

J=0,1,000,m .

If aze>b-a and if m is so large that (mtl)a < mb , then every
subinterval of length € of the interval (ma, mata) contains at least
one point of P . Hence the statement of the theorem follows in this case.

The case ¢ > a 1is trivial.

It remalns to consider the case wnen there cxists a positive ¢ such
that e <b-a whenever ae P , b e P and a <b . We shall prove that
this is impossible. If the assumption were true, then we would necessarily

{

have P = (X5 %5s0ees Xspeeod where x, 20 and x,,, - Xy 26 > 0

In this case we would have that

(63) 1im (xn
n >

+17 kn) =d
exists where

(64) d = inf (x,

For it follows from the previous proof that for every 1 = 1,2,... we have

X1~ ¥ S X547 Xy if n is suflficiently large. Thie dmplies that
6 lim sup(x - % ) <d < XV inf (x_ .~ x )
( 5) h e -2 ( n+l n) = :__}1 e \ n_+1 n’ E)

S~
.

which proves (63

Now if x e P and x > 2, then X, b x e Poforevery 1= 1,27,... .

Therefore x,+ x = X where necessarily k, » 1 . Thus for cvery
4 5 i
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i=1,2,... we have x = x_ - X, and this implies that

k., i
i
(66) x = 1lim (Xl - x,) =4 lim (k.- 1) = 4]
ise 107 10wt

where the limit exists and J 1s a positive integer. Accordingly, if the
assumption is true, and if x e P and x > O , then it follows that x = dj
where d >0 and j=1,2,... . This implies that gy is a lattice random

variable. This contradiction proves the second half of the theorem.

The next theorem follows easily from the previous one.

Theorem 6. Let {gk} be a seguence of mutually independent and

identically distributed real random variables for which P{& > O} > O and

"k ans

P{E;k <0} >0,

EE

P={nx:n=0,+1, 42,...}.

is a lattice varlable, then there exists a X > 0O such that

Ir Ek is a non-lattice variable, then P = {X: —-» < x < =} |

Troof. Let us apply the previous theorem to the random variables

+ - . .
£y = max (0, gk) (k = 1,2,...) and £ = min(0, gk) separately. Denote
by P+ the set of possible values for the sequence {g;} and by P the

set of possible values for the sequence {g;} .

If & ds a lattice random variahle, then there exists a 1 > 0 and

k

o ‘s . Ao~ N
a sufficlently lerge pcoitive integer m such that P C{x, 2x,..., m,...}

+ . - . N X -~ e
and nie P if n>m and P C{-A -2A,..., =DA,...} and -nix ¢ P if
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n>m . This implies that P< {nain=20, +1, +2,...} . On the other

hand for every n (n = 0, +1, +2,...) we have ni e P because we can
choose a sufficiently large integer a such that nta >m and a >m.

. + - s 2 . .
Then (M+a)x e P and -ax € P . This implies that nx = (nta)r-ax ¢ P .

This proves the First part of Theorem 6.

it gk is a non-lattice variable, then for every positive e there

X X
a+t =
2

X X , € . . -
5, ~a t -+ z3) contains a point of P .,

S
)
[

. € . . .
exists an a such that the interval (a + + ?) contains a point

of P' and the interval {(~a + -
This Zmplies that the interval (x, x+te) contains a point of P Tor every

e > 0 and for every x . This proves the second part of Theorem 5. We note that
in the &&tter case it may happen that both f; and_?l'{ am lattice wamniables .

Now we are in a position to characterize the structure of R .

Theorem . Iet {g } Dbe a sequence of mutusily indeperdent ana
et k : = S

identically distributed real random varisbles. Denole by R the set of

recurrent values. There are three possibilities: (1) R ds empty, (ii)

R={nx:n=0,+l, +2,...} where A 1is a nonnegative rumper, {1il)

H

R = {x: ~o < X < w0} ,

Proof. If ¢ e R, then necessarily nc ¢ R for every n =0, +1, 42,... .

>

his shows at once that R 1s necessarily empty 1f ¢ 1ig a normegative
random variable for which P{gy =0} <1 orif £, is & nonpositive random
A v 1%

°

varisble for which P{gy =0} <1 . If P{g, =0}=1, then R = P = {0}
Arn v e K i

i P{ik >0} > 0 and P{gk <0} >0 and R iz not empty, then R = P .
A e \

If in the latter case g dis a iattice random variable, then R = P =
|%¢ 3

{nA: n=0, +1, +2,...} where X 1is a pesitive nurcer; if g, is
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non-lattice random variable, then R =P = {x; -~ < x < o}, This completes

D

the proof of Theorem 7.

Obviously R is not empty if and only if' x = O ¢ R . The next theorem

gives a necessary and sufficient condition for the non—-emptiness of R

Theorem 8. let {gk} be a sequence of mutually independent and

identically distributed real random variables. Denote by R the set of

recurrent values. The set R 1is not empty if and only if for some positive

€ we have

(67) Mie) = ) Pijg | <e} ==,
} o AN r]
! n=1

CProof. First, we shall prove that if M(e) < « Ffor some ¢ > Q_, then

M(e) < for all e >0 ., This follows from the fact that .M(e) for

o

0 < e <» 15 a non decreasing function of e and from the ineguaiity
(68) M(em) < 2mf1 + M{e)]

which holds for all € >0 and m= 1,2,...

Since
(69) Mle) = ] Plle | <emp g [ ) Pl-L)e < ¢ 2 ke)
n=1"" k= -m+l n=1"" :
and
) P{(k=1)e <« C, & kel = ) Z'}j{c_.i Z{(k-1)e, kel for
n=1"" ; n=i r=l1
(70) ) _
1=12,.., -1, ¢ ¢ ((k~L)e, kel , t_e({e-De, kel <

n
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[ee) [ee]
L)

TN
i

=1 n=r

) Blzy ¢ (=1)e kel for 1 =1,2,..0,r-1, ¢ e((k-De,ke];{1#0(e)] 2
r=1

il

A

1+ Me) ,
cenizequently (G8) is indeed true.

Now if M(e) <~ for some e > O , then by Theorem 41.1 P{Icni < e
for infinitely‘many n=1,2,...} =0, and nence O £ R . Thug R is
empty .

|
If M(e) = o for all e > O, then

(71) Qle) = P{lc | =e forall n=1,2,...} =0

for all e > O . This follows fram the following inequalities

1 ;'P{!Cnl < e for a finite number of n = 1,2,...} =
= ) P{lg. | <eand |z | 2e forall n>m}+ Qle) 2
et m n' = 2
ms=1
(72)
= mzlfg{limf < ¢ and icn— Emi > 2¢ for all n>m} + Q(e) >

2 Qee)r+ ] Plg | < e}l = Qze)1 + M(e)]
m=1"
If WM(e) = «, then necessarily Q(2¢) =0 .

We shall show that if Wle) == for ail e > O then O ¢ R . Thus

it follows that R is not empfy, and hence R =P,

) X;E{ci ¢ ((k=1)s,kel for 1 =1,2,...,r-1, CP€((k~1)E,K€], !cn— Crli<f}
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The last statement follows from the inegualities

P{ gnl < g for a finite number of n = 1,2,...} = Q(e) +
g
+ ) Pllg | <e and |z | z2e forall n>m} <
. m nl = =0 =
m=1
73 o : |
< ) Plle | <e -5 and g | 2e forall nzmlg
k>1/e m=1"" b
- e 0}? ~-\r9 ' . - - ] AT 9] "t el
= L ) ':Ligm; < e and l?p— L_,m| v for all n :>_:Hl_}
k>1/e m=1"" ’ ) :
. )
= b L Blgl <elalp =0
k*1/¢ m=1
By (73) P! cni < ¢ for infinltely many n = 1,2,...} =1 for all e > O

Thus 0 e¢ R and R 1s not empty. In this case R =P . This compietes

the proof of the theorem.

Theorem 9. Iet {Ek} be a sequence of mutually independent and

identically distributed real random variables. If E{|£K[} < »  gnd
= b Sl

E{ik} =0, then R 1is not empty.

‘Proof. We shall prove that O ¢ R . By the weak law of large numbers

(Theorem 1) it follows that for any § > O

. Cp
(74) Lm P{j = | <6} = 1.

n -«

For any € >0 and m=1,2,... we have

ez i
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Lem/s ] r
il v
LM(e) 2, 5= Mem) 2 5= AT I Y
=1
(75)
. [em/8] .
1 TP <) o e as o e
z & E» Pl <8y > 5 a5 mo o, i
n=1 4

Here we used (68) and (7H). Since in (75) & > O is arbitrary, it

follows that M(e) = « for all e > 0O . Hence O e R .

We car utilize the previous results in finding the limiting hehavicr

of the partial sums of mutually independent and identically distributcd

real random variables gl’ Eoseens Epeseer « Lot = El+£2+...+an for n=1,2,...
and Lo™ O. We shall be interested in studying the random variables
(7€) 1im sup ¢
n -~ &
and
77D no=osup g
O<kees |

They are nonnegative random variables which may be o with positive

prcbabhility.

Tet us define the probabilities

(78) V(x) = P{lim sup - < Xi = 1im P{ sup g, < %}
n-> n o> o rn<k<eo
and
{755 V(x) = P{ sup g, < xb = lim P{ max Ly 2 x}
O<k<o n > o (<k<n

for ~» < x <=, Equivalently we can wiite thab
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(80) V(x) = P{gl, > x  for only a {inite nunber of k = 0, 1, 2,...}
o 28
and
(81) W(x) = P{-‘;k > x for none of the subscripts k =0, 1, 2,...} .
~ |
Lenma 3. If F’l’ 5,2,, . F,k,. .. 18 a sequence of mubtually independent
and ddentically distributed recal random variables for which P{ £ = 0y <1,
T A .
then either V(») =0 for every x or V(x) =1 for every x .
Proof. By Thecrem 41.4 1t follows that for every given ¥ elther
s - . ; . . . _ i
Vix) =0 or V(x)=1. Since V(x) 13 a nondecreasing function of x , !
there are only three possibilities (1) V{x) =0 for every =, (ii}
Vix} =1 for every x , and {(i1ii) V(x) =Q for x <c¢ and V(x) = 1
for x > ¢ where c¢ 1g a finite real numper.
If P{gk =0} =1, then V(x) =0 tor x <0 and V(x) =1 for
Fava™y
x>0,
I Flg, =0} <1, then elther V(x) = O for every x or V(x) =1 :
A . "
k|

for every x . "This can be proved by using the following inequality
(82) V(x) < P{c¢ > alV(x—-a)

which hcelds for every real a .

Ir P{gl >al >0 forsome a>0C, and V(x) =1, then (62) imcliies

34

that Vix-a) = i . Henee it follows that either V(x) = 0 or V{x) = 1 .




s

Ir Pi
At
<

1 >al =0 forevery a> 0, then P{<§1 <0} =1 . Since
1

P{gl = (O} by assunptlon, there exists an a < 0 such that P{g

At

In this case for any =x < O there exists a sufficiently larpe n such

that E{ Z, < x} > 0 , and consequently we have
(83) 0 < P{;n < x} = P{Ck <x for k »n} < V(x).

That is for any x < O we have V(x) > 0 . Thus necessarily V(x)

for x < O . Consequently, V(x) =z 1 . This camletes the proof of the

i

lemma, We note that a theorem similar to Lemma 3 has been provad by

P. Iévy [11% p. 1311

FPurthermore, we observe that

8

(84) Wix) < Vix) < W(x) + ) Pig
1’\.:1 -

k> KIW(O)

holds for all x ., The first inequality in (84) is obvious. Since
[ee]

V(x) = W(ix) + Z Plg,, > x and ¢_ < x for all n » k}
k:_l . n 1 ==

in

—
(we)

7

~r
A

SWx)+ ) Pl >x and g~ <0 forall nzk) =
=1 £ = -

wTLb

W(x) + ) Plg, > x3W(0)
k=1

for a1l x , it follows that the second i.nequaliri';yiis also validlin (31)

A

If we exclude the trivial case of DP{ g, = 0} =1, then by lemna 1
~ K
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it follows that lim sup h is either + 9« with probability 1 or -«
n->

with probability 1. We shall give various criterions to decide which is

The following theorem is an easy consequence of Theorem 9. This

theorem was found by K. L. Crhung and W, H. J. Fuchs [ 25 ],

Theorem 10, Let {gk} be a seguence of mutually independent and

identically distributed real random variavles for which B

-

{)]l} < o

E{E‘K‘}‘ =0 _e_l_ndw .P{{;k =0} <« 1. If ¢

for n=1,2,...
o n i L M

and io = 0 , then
|

(86) Af{ sup gy = w} =1
. Ogleco
( 87) P{ lim sup ¢_ = «} = 1 .,

A ¢ W S
Proof. Denote by R the set of recurrent values of (¢ } . By
Theorem 9 it follows that R 1s not erpty. Since Nf{gk =0} <1, it
follows from Theorem 7 that either R = {nx : n=0, +1, +2,...} where

A is a positive number or R ={x : —» < x < »} , In both cases R

contains arbitrarily large recurrent values. This proves (80) and (87).

For another proof of Theorem 10 we refer to Y. S. Chow, H. Robbins
-

and D, Siegmund [ 20].

ol

We shall prove two more theorems fowwd by D. V. Lindiey [ 115 and

F. Spitzer [181].
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Theorem 11. let B (v = 1,2,...) be a sequence of mutually

independent and 1ldentically distributed real random variables for which

N [ . . -~ .
E G < x> [et = g+ oot £ 1or = g e e { = .
1 | CK‘ J Cv =1 52 > ) n 1,( s anq_ CO 0

If E{Ek} > 0, then
=L Py Laen

(88) P{ sup g, = =} =1
ladale I
Ogk<oo
and
(869) P{ 1im sup ¢ = «} = 1
- n o ® n

I E{g } <0, then

K
(90) Plsw g <=}=1
Oxk<ee
(91) - P{ 1im sup ¢, = —} =1,
- N > w

}"rool: . let

First, let a > O . By the weak law of large numbers (Thecrem 1)

we have

E1’1
(93) Um Pl - al < e} =1

n -+ <«

for any & > C . Hence

(ou) lim

o
-~
¥

< nla-e)} =0 .
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For any » we have x <nfle~c) 1f ¢ < a and if n is sufficiently

large. Thus (94) impiies that

(95) Lim Plr < x} =0
n > oow

for any x . Since evidently O < W(x) ;UE{CH < x} , it follows that
W(x) =0 for any x . This proves (83). In this case by (84) we obtain

that V(x) =0 for any x . This proves (89).

Second, let a < O . By the strong law of large nunbers (Theorem 3)

we have

s z
(96) 1im P{ sup iEE.— al <er =1

n > o ri<k«eo

forany € >0 . If a+ e <0, then we have

") bk
{ sup | y\ -al <e}l={ sup —<a+ e}
n<lg<es n<k <o
(97)
T,
< { swp <O}c{sm)%,<0}.
n<k<ew Nn<k<e

By (96) and (97) we cbtain that
(98) Lim P{ sup e <03 =1,
n > » n<k«w
" Evidently for any x 2 0 we have

(99) W(X> 2 P{ max ¢, < X} + P{ sup ., < U} -1,
Z 30 c F
Ogksn n<k<e
Let now e be any positive number. Tor any e > O we can chosse 1 so

large that the second term on the right-hand side of (99) is preater than

i~e . This follows from (98). For any Tixed n the first term on the
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right-hand side of (99) tends to L if x + =, Therefore we can choose
x so large that this term is greater than I-e . Thus it follows from

(99) that for any e > O
100) W(x) > 1-2¢

if x is large enough. Accordingly W(~) = lim W(x) = 1 which proves
s e
o)} = 1im V(x) = 1 . Hence
X &

necessarily V(x) =1 for every x . This implies (91).

ye
(9C). 1In this case by (84) we obtain that V(

" Theorem 12, Let £ (k= 1,2,...) be mitually independent and

identically distributed real random variables for which P{g_ =0} <1 .,

e K
Let &y, = g1+ 52+.¢.+ gn for n=1,2,... and Lo = O . Furthermore,
let
@ P{(,n > 0}
(lOl) M = N e .
ne1 n
I M=e, then
(102) P{ sup Ly = o} =1,
" O<k<e
and
(103) Ei{lim sup ¢ = w} =1 ,
n - oo
If M<e, then
(104) P{ sup 0y < o} = T,
~ Oiﬂl((\m
and
(105) PU Yim sup T, = —<} o= 1,

n > «w
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Proof. I1et

(105) W (x) = P{ max ¢, < x}
1 ~ k=
O<kszn
for n=0,1,2,... and =-» < X < » ., Obviously, Wn(x) =0 if x < 0.
We have
W(x) = 1im W _(x)
fo> o o
for any x .
If we let s » + « in formula (15.1), then we cbtain that
@ 0
- :{7<£ﬁgn 0}
. n =
(107) ) W ()" = e
n=0
for !pl <1 , whence 1t follows that
‘}0 pn
- — P{¢_ > 0}
g o~ 0
(108) (1~p) Z W (0)e" = ¢
n=0
for !pi <1 . Since 1lim Wh(O) = W(0) exists, by Abel's theorem we
n >
obtain that
o
(e i Mcw,
(109) W(0) = lim (1-p¢) S W (0\
S —f\
e =y 0 if M=,

Accordingly 1f M = « , then W(0) = 0 and by (&4) V(0) = 0 . Hence

V()

i

0 for every x and this proves (103). Agzin by (84) it follows th

Wix) = O for every x . Thls proves (1C2).

If M < «, then by (109) W(0) > 0, and therefore by (84) V(0) » ¢,

wat
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Hence V(x) = 1 for every x ., and this proves (105). It remains to

prove (104}, that is, that W) = 1im W(x) = 1.

X > w
Por every x we have the obvious inequaiity
(110) W(x) > P{ max ¢, < x} + Plsup g,, < x} ~1 .
T aee k—“ A~ K =
O<ks<n n<k<e
If n- « in (110), then the second term on the right-hand side tends to
V(z) =1, and if x » o , then for any fixed n the first term on the

right-hand side tends to 1 . This implies that  1im W(x) = 1 , that 1s,
X = ™

W(e) £ 1 ., 'This proves (104),

By the previous three theorems we can conclude iImmediately that the

following corollary is true.

Corollary 1. 1ot ‘51, E2,..., Epsene be a seguence of mutually

indepencent and identically distributed real random variables for whilch

Ple, =01 < 1. Iet ¢ =gt etenat g for n=1,2,... . Supose

2 11 ot e v s

-

that E{|g, [} <« . Yhen E{g} » 0 if and only if

= P{g > 0}
(111) ] —e—— = o,

=
e
\
2

By Theorem 12 1t follows that if P{gy = 0} <1 angd >, then
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W(x) 1s a proper distribution function. The cese Pl{g, = 0} = 1 1is
trivial. The problem arises naturally how te determine W(x) for a given
P{ e = x} = P(x) . For this problem a solution is given by the next

M~

theorem due tc F. Spitzer [181]. See also . Tacklind [ 196 ] and

F, Pollaczek [158 J.

Theorem 13.  let il, &2,..., Ck,.. . be a segquence of mutually

independent and jdentically distributed real random variables. lLet g =

ot E‘n for n=1,2,... and L, =0 . Define

Llsup g < x}

(113) W(x)
i O:in,(oo

® P{z.;n > O}
(114) M= ) T < w
n :
n=1
then W(x) 1s a proper distribution function and its Laplace-Sticltjes
transform
[¢s)

(115) o(s) = [ e ¥ aqu(x)

+
is given by E’ ;{»] - {C—-sgn}_}
T nt -

n=1

for Re(s) > O .

Proof. Obviously W(x) =0 for x < O and by Thecurem 12 we have

W(e) = 1 ., Thus (115) is convergent for FRe(s) > O and Q{Q) =1 .

e g s e
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let
(117 Wn(x) = P{ max Ly < x}
™ 0Ozxs<n
and
(118) Q (s) = [ e W _(x)
n 0 N

for Re(s) >0 . Since 1im W (x) = W(x) for every x , by Theorem 11,9

n - o
it follows that 1im Qn(s) = Q(s) for Re(s) =0 .

n -+

By formuda (15.1) we have

+
o 1 =80,
A Y OB Ele }
: : v n n=1
(119) Yoo (s) =e
| - 'n
: n=0

for Re(s) > O and |p| <1 . Since by Abel's theorem

(120) Q(s) = 1im (1-p) )

Qﬂ(s)pn
e > 1 n=0

for Re(s) > O , we obtain (116) by (119). This completes the prool of

the theorem,

We note that obviously

(121) WO) = lim q(s) = ™1 |

S > o«

The distribution function W(x) can also be cbtained by the following,

theorem found by D. V., ILindley [1157.

Theorem 14, Let

(122) Ple, < xp = 1)

PN, ~

for -w <x <= . If Plg = 0} <1 agnd M <« , then the distributl
== 5 Lthen Ul sty

an

NS




function W(x) can be obtained as the unicue sclution of the integral

equation
" Wix)  for o xz 0,
(123) [ W(e-y)ar(y) = g

L O for x <0,
Proof. If we use the representation

- -+
0 3 = Sl -7
(124) Oiggwan Lyt 1:22®(Cn b,

L) is dndependent of g
L 1

and if we take Into consideration that sun (C”~ C
1<ri<oo -
nd has the distribution function w(x) , then we obtain (123). Accordingly,

W(x) can be cbtained as a solution of the Wiener-Hopf type equation (122).

Now we shall show that W(x) is the wigue solubtion of (123). Tet

us define a sequenice of random variablies Ngs Myseces Npseos by the following

n

recwzrence formula

. _ +
(125) n, = lIn_+e]

for n=1,2,... where n. 1is a real random variable which is Jindependent

C

of the sequence '{ik} . By (125) we can write also that
(126) Ny, max (0, Enr bpoqt Bpseees ottt g

for n=1,2,... . Thus it follows that

‘ I ()-Pin+ 7z > xF < Pln_ < x} o W {(x)Pig > x
(127) \'»n\}.)/w ot 2 1n < M NES M\ o }

for every x . 1If P{t:k = 0} <1 and M <= , then by (10%) it follows
a'ad

that
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{ im Pl t ¢ > x} =0

(128) wlﬁr;if‘U S

for any x and for any no . hLccordingly, if P{Ek =0} <1 and M< = |
then

(129) lim’jvfj{ny1 < x} = 1lim wn(x) = W(x)

n >« n -«

for every x regardless of thne distribution of ng

%

Now let us assume that W (x) is any distribution function which
satisfies (123). If in (125) we choose Ny in such a way that P{no <) o=
ER L _ , %

W (x) , then by (123) it follows that Pi{n_ < x} =W (x) for every
- =

-»V N ‘ - . - » - ¥
n=1,2,... . Then by (129) we obtain that necessarily W (x) = W(x) .

This coampletes the proof of the theorem.

[ many cases we can easily solve the integral equation (123) by usirg

the method of factorization.

Ilet us define

o3

"'K)g 0 .
(130) $(s) = Ble 1= [ e ap(x)

v OO

1l

for Re(s) = 0 , and suppose that P{gk =0} <1 and M < «

N,
ILet us suppose that

(a31) EIORKHORNCY

A
for Re(g) = 0 where ¢ (s) satisfies the regulrements:
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+, . - ~ i . P .

Al : 9 (s) s a repular function of s in the domain Re(s) > O,
+,. I S : . N .

A2 : ¢ (3) 1is a continuous and free from zeros in Re(s) > O ,

A3 : lim [log 2 (s)1/s = 0 whenever Re(s) >0,
HES

and ¢ (s) satisfies the requirements:

t

o (s) 1is a regular function of s in the domain Re(s)

A

0

B2 i @ (s) is continuous in Re(s) < O , and free from zeros in Re(s) < O,

B, : 1im [log ¢ (s)]/s = O whenever Re(s) < O .

AP

Such a factorization elways exists., We can provice an example by using

Theorem 6.1. If |p| < 1 , then by Theorem €.1 we can write thot
(132) l1-p¢(s) = o (5, p)o (5, p)

for Re(s) = 0 where we can choose

, +oo - 1 T{iog[l-p¢(s)]}
\133) ] (_u, p) '('I_-:p—)'- (SIS (5]

for Re(s) > O and

(134) 0" (s, p) = (1_p>61»€[1"o¢(5)]— {logll-co(s) 1}
. ) / \ - -
for Re(s) <0 . HNow let
+
Tl ~5ly
dromie
) . nﬁl n“i‘&{t 1]
(135) ¢ (s) =1lim o (5, p) = e

p > 1
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for Re(s) > 0 and

<136) q,"(s) = Llim <I>“(5, p) = g
p 1

for Re(s) <O .

We can easily see that @+(s) and ¢ (s) satisfy (131) for Re(s) = 0
and the reguirements Al’ A2, A3 and Bl’ B?’ E3 respectively., However,

it will be dnstructive to give another proof.

+ - .
By using Theorem 19.4 we can represent ¢ (s) and ¢ (g) in the

|
following way too:

Denote by 04 the first ladder index for the sequence Cm’ Cl""’ Cn"““

By Theorem 19.1 we have

.{.
@ -8
«scp - } %{E{e n}-P{Kn < 03]
(137) 1-E{e  Tp=e M = e ots)
P
weak

for Re(s) 20 . If 0. denotes the first ladder index for the sequence

_CO, _gl,,.,,-cn,..., then we have

(“r.,_

N

o
~5g— - E 1{F(e n }- P{g_ > O}l
P1 n=1"" ~ 0

(138) 1-E{e } = e =47 (3)

¥

In (137) ¢ is a nonregative random variable. If s > 0 in (137)
Pl
then we obtain that
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(139) Plz < w} = lee |
Thus it follows that ¢ (0) = 1 and
(140) RO

e - . . . +, 5
for Re(s) > O . The representation (137) shows immediately that ¢ (s)

is regular in the domain Re(s) > O and continuous for Re(s) > O .

Tn (128) = 1is a nomnepative random vardiable, If = - 0 in
°1
(138), then we obtain that

!
ah) Pl-g <o} =1.

For if M < « then necessarily
5 «

v 1__._.-.._. = o
(142) L .

[N

n=1

w )P{L,r < 0O}

By (138) it follows that ¢ (0) =0, {#7(s)] > O for Re(s) €0 and
- . - "I\J[ - I3
(143) lo (s)]| < e for Re(s) €0 .

The representation (138) shows immediately that ¢ (s) is regular in
the domain Re(s) < 0 and continuous for Re(s) < 0 . On the line
Re(s) = O the zeros of ¢ (s) and the zeros of 1-4(s) coincide and

have equal multiplicities.

Now we shall prove that the requirements (131), hys Ayy £, and

B
Ly

o8
N

\ + - s s
B3 determine @ (s) and ¢ (s) up to a constant factor. This 13

the content of the next thecorem.
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Theoram 15. let

us suppose that Pie. =0} <1 and M <

})
~w {

(1h44)

for FRe(s) = 0 where

?, A, and B

\; and By, Bg,B

of W(x) dis gilven by

T=p(s) = 07 (s) ¢7(s)

3
£

L3

+, - i
o (s) and ¢ (s) satisfy the requirements Al’

respectively, then the Laplace-Stiel

tjes transformn

3

(145)

Proof ir ®+(s}

e

then all the requirome
Now let us suppos
(146)

for Rel(s) = 0 where
Bys By By

Then W+(s)/®+(s)

is glven by (135) and ¢ (s3) is given by {130

nte are satisfied, and by (116) we obtain (Ld5).

e that

, + -
l—(j)(S) =Y (S) Y \5)

+ . -,
y'(s) satisfies A,. A, A, and ¥ (s)

12 722 3

+

is a regular function of & in the domain Re(s) > O .

and centinuous and free from zeros in Re(s) > 0 . 3Similarly

.

is a regular function

of s in the domain Re(s) < C , and continuous and

free fron zeros in Re(s) < 0 . For the wueros of o (g) and

coineide on the line

ratio ¢ (s)/% (8) .

Re(s) = 0 and they cancel out each other

+

If Refs) = 0, then

’ -~

N~

3

o (o TP
¢ (a) /Y (s

PV Y
\LI S J

in the




(1h7)

By using Morera's thecorem (see e.g. W. ', Ozpood [782 71 p. 122) we can

~—

easlly sece thatl

o+ +
¥ (s)/¢ (8) for Re(s) > 0

v

(148) G(s) = {
[ ¢7(s)/% (s) for FRe(s) <O

is & regular function of s on the whole complex plane, and indsed G{s)

s an entire function., By our assumptilons

i

Lim 206000

-0

(149)

<
Pel

»

and this implies that Jlog G(s) 1s corstent on the whole complex plane,

G(g) = ¢ where C 1is a complex constant. (See J. Hadanard G4

that 1g,
pp. 118-119.) Thus

+ . 4
(150) ¥ (s) = Co (5)

for Re(s) » G . Since we excluded the trivial case ¢(s) £ 1, we have

C A0 . Thus by (150)

_ 8 (0) -

vt o)
vis) 6T (s)

(s)

~~
)

1
e
N

) i . . . .. +, :
for Re(s) > O where ¢ (3) 1s given by (135). OCbviously, ¢ (0) =1 ,
and thus the last eguality in (151) follows frow (116) and (135). This

compietes the proof of the theorem.

For the sclution of the integral equation (123 we also refer to
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F. Smithes [18C 1, W. L. Swith [ 179), and F. Spitzer [181 1.

Mme law of the Tterated Logarithm, The law of the iterated

legarithin has its origin in a probablility problem in the theory of numbers.
Pl -
In 1909 E. Borel [ 16 ] considered the following random trial. We choose
a poirnt « at random in the interval (0, 1) and assumne that the random
b

voint has a uniform distribution over the interval (0, 1) . Iet us form

the binarv expansion of w, that is
3 b 3 5

(152) o= ] kT

If there ic any ambiguity in the expansion (152), then it is immateris’
which form we choose., Denote by vn(w) the number of ones {(or zeros)
anong the first n digits of the binary expansicn of w . The problem

is to determine the asywptotic behavior of vq(w) as n v w o,

[

To describe the above random trial mathematically let us assume that
the assoclated probability space is (Q,Zi,ji) where Q 1is the interval
(0, 1) , B is the class of Borel subsets of « , and ;g is the Lebesgue
neasure. Then ¢(w) = o defined for 0 < w < 1 is a random variable
which has a unlform distribution over the interval (0, 1) . In this case

gl(w), &P(w),..., gy(m),... definad by (152) is a sequence of mutually

independent and ldentically distiidibuted randon variables for which

Jr:\q) P{El}(\o\) = 1} = P{ELQ&) = (O} =

A~ O

~~

and vn(w) is a random variablie whicn has the Bernoulli distribution
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. My L
(154) Plv () = J = (1) =5
laad o ;2 B

\.

In 1906 E. Borel [ 16 ] proved that

In 1914 F. Hausdorff [0 pp. 419-L22] indicated that

\Y) ((L\)
' . §
P{1lim n° (-
N n
n > o

—~
=i
1
LOAN

p—

ST
p—

li
@
—

1!
}_._)

for all § <

nof -

-

Tn 1914 G. Hardy and J. E. Littiewood [402 ] proved as a particulsy

case of a more general result that

1
A 5 vle) o
(157) P{lim sup n° |——— = 3| ==} =1
.«un 5w n -
and

n
) . ’J\)n<w)~~ 7} 1
(158) P{lim sup b 1 =) w1
n - e Y n log n /2

See also H. Redemacher [45%7] and H. Stelnhaus [45H8 1.

In 1923 A, Ya. Knintchine[413 ] nroved that
! n
RO
(159) P{lim sup - < 17 = ]
n > w

and in 1924 A. Ya. Khintenine [4L47, (415 ] proved also that
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i

ERORS
P{1im sup -———rm———ae -
T
vri log log o Ve

(160)

e
n >

Actually, A. Ya. Khintchine [415] pioved a

.e.e 15 an

result, namely that if '&:l, 52,..., E;K

mutually independent end Jdentically distributed

which

(i61) P{g, =1} =p and P{g = O}

~ K ~ K
where ptg =1 and O <p <1 and if v ® zjl+
then |

o - ol

P{Llim sup

Yy - w

YZrpa log log n

This result can also be
(n =

the events

V= NP
(183) A, l—me y(n)t
VIipQ

(164) A

be the event

BAoyeesy A .
L)" 2 n’

follows that if

By (162}

1}

interpreted in the lollowlirg way.

1,7,...) be an increasing sequence of positive real numbers.

that infinitely mony events occur In the sequence

scmewhal more general
infinite seqguence of

random variables for

E oot & Tor n o= 1,2,

fot i1 -
=1,

let v(n)

Delins

A
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(165) () = /IO Ton T |
for n > 3, then
|
C for ¢>1,
%
(166) P{A} =

Vs

In 1931 P. Iévy [428 ] proved that if

3
{167) y(n} = (2log log n + ¢ log log log 1)

for sufficiently large n , then

0O for ¢ > 3,
%
(158) P{A } =

In this result there is a gap for 1 <c¢ < 3.

~

Ry the zerc-or-one law which was proved in 1633 by A. N. Kolmogorov

[ 100 1 (Theorem 4 in Section U41) we can conclude that for any v(n)

arn

]

* ¥
(n=1,2,...) we have either P{A } =0 or FA } =1. In our case we
laat A
have

T2
o © oy =)
(169) P{A} =0 if F RACEVAN < o,
™ n=y M

¥ C Y T ;{Y(F‘7P

[Tl | : - PP - Y0 z R
(170} P{A} =1 if p o dil e © =
~ 7'1:: 7 ’ n
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the above results. In fact he missed the facto

(170). 1In 1937 P. Lc\/j [11Z p. 266] menticned

(170) without proof and attributed them © A N.

cture which was c¢lose to

r yi(n) in (169) and

the results (169) and

Kolmogorov,

In 1937

J. Ville {478pp.

101-1117 proved (169, and in

proved that if y(n)/"n (n=1,2,...) is an i

positive numbers, then (169) and (170) are true.

that i p=q =% in (161) and if
(a71) y(n) poa— log n

‘ 2log log

+o..t dlog 18 +c 10@1,

for sufticiently large n where k > 3 and 1

. LR » ) x s
r~th iterated logardithm off n , then P{A } =0

N
%

PIA } whenever ¢ < 1.
o =

Now let us conslder some generalizations o

A L R
1942 P, Erdbs [ 377 ]

nereasing sequence of

» i )87F = .
P. J_ljg_(_sé_ | 3777 demonstrat

F 3

5 log-;a)n + ]vogun 4

(r =

N
LiiE

Og, 1t

wheltiever

I the previous resulls,

let us azsune that gl R 52,. ces gk"‘ . 1s a sequence of mutually indeperndent
regl random variables Tor which E{g } a,. and Varf{t } = b7 exist for
~ K k ~— K k
9]
kK =1,2,0c. « let 5;1”*‘ I Eh R Aﬂ = a,t a,t.. ot o snd E( =
fas I8 | L & il T
12+ b2+ ¢b?‘ i 1 d define
O F bote..v b for n o= 3254005 and define
r - A
N n n
T = e
(172) n, =

N

il

e
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. . Lo LRl
where Bn is the positlve square root ol B .

Following A. Ya. Khintchine [778 ] we say that the sequence (£}

obeys the law of the iterated logarithm if

n
(173) P{1lim sup £ =1} =1 .

n > V2 log log B,

Tn 1926 A. Ya. Khintchine [ 4167 proved that (173) ie valid if

) e A T

where pot =1 and 0< ¢ <p <c,< 1.

T 1929 A. N. Koluwogorov [422 7 proved that if lim B = « and the

oo *

random variables iil,! (k = 1,2,...) o&re bounded, ranely le, | < m, whewee

M, /1—527"@—%{_
(175) lim - =0,

K > Bk

then (173) is valid. In the particular case when blf =1 ana m =71 Jor
“ n

In 1937 J. Marcinkiewicz and A, Zyprund (455 ] construched an oxamplie

which demonstrates that if we replace (175) by the weaker conditlorn

o Py
m Vicg log 8
(176) 1im sup --Li-'--——g——--——l L&
k > e K

where e is some fixed positive number, then (173) Is nov rneconon

valid anymore.
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In 1041 Pn. Hartman and A. Wintner (404 ] proved that if g], Egacns
Hiie SGTARG e WLIbiinl 1 o

Ep"" are mutually indepencent and identically distributed random

O

e - L2 . .
variables for which B{f } =a and Var{g } =" exist, and if ¢_=
k m— K n

N

+ g2+...+ En for n=1,2,..., then

3)
. L e

(177) P{1im sup . =1} =1,

n - o«

/ébdn log loz n

[

that is, (173) is valid in this case.

T™h 1966 V. Strassen [ 470] proved that if L, = 6t Eoleuot - for

n=1,2,... vhere {EK} is a sequence cof mutually irdependent and

identically distributed real random variables and Lif

lz |
(178) P{lim sup £ L< w}r O

n - Y2n log Jog n

then E{g } =0 and E{Ei} < w o,
K 4 falaas \

In 1941 Ph. Hartman [403 ] proved that if &., £,,..., & ,... are

1°

mutually independent random variables and & has a normal distribution

jo

e

. 2
N(ak, bK

for the validity of (173).

) for k=1,2,..., then 1im B = « is a sufficient conditlion
n -+ «©

The law of the iterated logarithm (173) can also be interpreted in
the followinz way. let y(n) (n=1,2,...) be an increasing sequence

ef positive real numbers and define A as ftne evenc thab infinitely

o)

many events occur in the sequence




V1-128

y (1)

v

(179) {n,

a3 i}
n = _L,(_,...} .

( 130)

for sufficilently large n  values,
fotlowing statement:

evaelr ¢ < 1 .

111 1931 P, Léwy (42871, [429) studied 3

problem of finding necessary and

T{A }

A

Iy(n)} to imply -0 or P{A

By the zero-or-one

N »
or P{A Y =1 .
A~

1 1633 B, P. Cantelli [49Y] proved that if (¢}

mutualiy Indeperndent ra

?+6

3{ I <o for scme § > O

we define y(n) by (167),

P{A} =1 whenever c < 1.
P

P, Tévy [428"

P, Tévy [428].

%
P{A } = O whene
LAY

then

ver

} o=

law (Theorem 41,4

v(n) = ¢v2 log log Bp

.

i

¢ > 1 and

sufficiont conditions for

b
. 1. - A ~ e
ndom variables for which FB{g } =C , E{f } =1
~ TR
and some other conditicns are =zatis
*
P{A }
Aaa

This is a generalization of a

then (173) 1s equivalent to the

%
PiA } when-
A

icular cases the

a sequence

follows that eithor PLA )

= 0 whenever ¢ > 3 and

In 1943 W, Feller [ 284 gave necessary and sufficient cond’tions

for {Y(h)} to imply FiA P= 0 or

of gradually weekering conditions on

1946 W,

, Feller [ %8971 considered the

the rondom va

case

of

=1 by

-

inposing a seguence

{e.} . In
A

“1ables

mubually independent and

o

w
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LR

identically distributed random variables ffK} for which P{Ek < X} o= P(x)
A .

o)
(181) log log a I { x“dF(x) < C
Ix|>a

. M
as a» e« , where C < « and proved that P{A } = C if and only if

1 S
lgpl e" ;?‘[Y ()]
n

<

He also showed that the theorem is no lorger valid if

s

(183> 1im log ]‘Og a f }{Zcﬂ?(x) = o,
a > w |x|>a

In all the results mentioned until now it was assumed that the random

17

variables {& } are independent and have finite variances. However, we
can consider any sequence of mubtually independent random variables

€15 gz,..., gq,,.. and pose problems analogous to the above ones. 'Thus
1

let Cn = £l+ 9 A gn for n=1,2,... and let us ask whether there
I8
exist constants Cis Coseres Cpsons such that

. by
(1.84) _P{1im sup = it =1,
n -+ e« ip!

- ),

SRS
satisfy in

or what conditions should the constants c.,

rder that

{(165) P{[rl{ > ¢ for intinitely many n = 1,2 §

~ v Lty s
e~

e O or 1.

2
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*+ 2 > : . 1. . . o~y . - .t .
Such problerms were consldered for the filrst time in 1931 by P. levy

(429 1. See also P. Levy 4707, [ 1135 pp. 258-276] and J. Marcinkiewlcs

[o34], They assuned that

\ -~ o33 1 -0
(1.86) Cx <M{{|gk| > x} < Cx

holds uniformly for large x and all k where O <o <2 and C, and 02

are positive constants, and that

a
(187 Lim >:dP{gk < x} =0
; a > <.y ad -

in the case ¢f 1 <a < 2 . They proved that if

(188) ¢, =[nlogna (log n) L/

where A (x) is a positive increasing furction of x for which

Lim A(2x)/x(x) = 1 , then

X >

(189) P{]z | > ¢ for infinitely many n = 1,2,...}
~ 1 n

is O or 1 according as the series

‘ o) 1
(199) L Gy
n=1 ~

converges or diverges. This result bhas been proved by

the case O < a < 1 and by J. Marcinkiewlicy [£.74. ] in the case 0 < a < 2 .
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mutually ind€pendent and ildentically distributed rendom varizbles for

. . ~ I 1+5. .
which E{g } =0 and E{g, | °}= » for sane O < ¢ < 1, then the
A PR PR
: . " : 1/(14
probability (1385) is 0O for c,=n and 1 for c, = n*/ Lta)  pop

any sequence {C'q} for wnich there exlsts an e with O < e < 1 such

. -1/(1te . : .
that {cnn /( E)} is Increasing and {c,, /n} 18 decreasing, the

robakility (185) is zero or one according as the series
e >

(191) Z Pl 2 et
n=1"" .

converges or diverges. RFurthermore, w I«el]er [3687 1] proved aiso that if

{g, } are mutually independent and identically distributed randon variables

for wrdch ¥{ z’;}_]} = o _ fhen the probability (18%) is 1 for ¢, =n
[a%a s
For a: y sequence {cn} for which {cn/n} is increasing, the probabllity

(185) is zero or one according as (181) converges or diverges.

In 1968 W, Feller [ 38Y] considered mutually in Went and identically

distributed symmetric random variables with infinite second roments and gave

conditions for the validity of (184). See also B, A, Ro

Ir 1969 W, Feller [391 ] considered mutually independent vandom verizbles

{f;k} for which b =0 and E{g } < @ gnd gave conditions for the validity

of (184). See also W. Feller [ 392] for more wefined resulis,

Finally, we mention the works of V. Strassen [4097] and J

hese authors considered a sequen mutually dndependent snd ldentically
These authors considered a sequerice of mutually ey RS

[ e,

R ; e el
distributed random varisbles {g I for which h{gzy} =0 end B{g b =1,
I8 A < T 4

and studied the asymptotic behavior of the randan varisble v (¢) defined

as the number of subscripts k = 1,2,..., n for wunich

. /0
(]92) €1+ Lot ot > > eldy ‘Ob LOH 1_),[./_. .




by, Limit Dletributionz. fre main object of this

the soiutions of the following problems. lLet R{x) be a distribution

function. Let &,, L5500 & 5., € a sequence of mutually indeperdert
4 [

real random vardables having the same distribution func

(1) Plg, < x) = F(x)

for k=1,2,... . Write ¢_=¢+ g +...+ ¢ for n=

e n 71 < n

What conditions should R{x) satisfy in order that

. 3

saguence of wutually independent and idewti

vordabies {gk} end real constants An

r o A

. s n_n \

(2) 1im P{ -——— < x) = R(x)
n > e n

in every continuity point of R®{z) 7

What conditions should we impose on F(x) and now
the constants Al (n=21,2,...) and 3,20 (h= 1,2

z
(3) lim P{ —- = < x} = Rx)
in every continuity polnt of Kix) ?

By the works cf
W, Doeblin [508 1, [£

and 4. N. Kolmogorov [0 ] we can give

on

>
1,2, 000 .

e ey N ST
Thers eXist a

AY
/

5% e

P

should

vie o

such

l:r—\p(\ SitH]

NeCose

thet

anovE
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problems.

The solutions are based on some continuity theorems for the Laplace-
Stieltjes transforms of infinitely divisible distribution funetions.
These continulty theorems were proved in 1938 and in 1939 by B. V. Gnedenko

(5291,
[5261], [ 52771, [528:Lﬁﬁ;531]. They are the consequences of Theorem 41.9

and Theorem 11.10 in this chapter.

let Rr(xj (n=1,2,...) be a sequence of infinitely divisible
Es

distribution functions. Let

o<

O b(s) = [ e TR ()

-l

for Re(s) = 0 . By Theorem 42.1 we can write that

e D
- . ~3X Ly GRE D S
(5) logy (s) = —us + [ (777« 1+ —255) =-5- A6 (%)
n n e 1 1_}:& e n

for Re(s) = 0 where b, 1s a real comstant, Gr(x) is & non decressing
y !

function of x for which Gn(—w) =0, Gn< w) 1s finite, and the integ

at x = 0 1is defined by

2 2
=5 SX \ 1+x ’
(6) [ 1+ =5) =5-1 = 5- .
x5 x x="

Let us suppose that Rh(x) converges weakly to a distribution function

R(x) , that is,

(7) 1im R (x) = R(x)

n->

e

[
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in every continuity point of R(x) . It is evident that in this case
R(x) 1is necessarily an infinitely divisivle distribution function. ILet

[2e]

(8) vis) = [ e *FaR(x)

- OO

for Re(s) = 0 . Then by Thecrem 42.1 we can write that

) . . ,2
(9) C logy(s) = -ws + [ (7o 14 S “55 4G (x)
— X7 x

for Re(s) =0 where u is a real constant, G(x) is a nondecreasing
i

function of x for which ((-=) = 0 and G(«) 1is finite and the
i

integfand at x =0 1is defined by (6) .

The following theorem gives a necessary and sufficient condition for

R (x)=3 R(x) .

.

Theorem 1. let Rl(x), Rg(x),‘.., Rn(x),... and R(x) Dbe infiniteiy

divisible distribution functions whose lLaplace-Stieltjes transforms are

given by (4), (5) ana (8), (9). The sequence Hgl(x)} converges weakly

to R(x) if and only if

(10) lim Gn(x) = 3(x)

Ty > ®

in every continuity point of G(x) ,

(11) 1im,Gn(w) = ()
Il - <«

and

(12) 1im . = u.

In - o
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Proof. In proving this theorem we can use the same method as in the
proof’ of Theorem 42,1

First, we shall prove that the conditions (10), (11) and (12) are

necessary. lLeb Rn(x)rrﬁb R(x) . By Treorenm §1.9 it follows that

(13) 1im ¢ (8) = y(s)

n+°°'

i)
Q
3
=]
D
—
Ul
N
Y
O

and the convergence 1s uniform on Re(s) = 0 ., Hence

() lim lobu (s) = logu(s)
| i > o
for {s) =0 and the convergence is uniform in every rinite intervz]

pa

of Re(e) =0, By using this fact we can prove that the sequence

{Gn(@)} is bounded. Since

L2 2
(i5) f"§5'é:. 1-cosxu)du
1+x b
10T every x , we have
2 2
+ T+x© i
6y(=) = [ (X ~> L 4G,) £ [ T f Clocommu) 150 6, (%) Ju
1 - l+x x O -~ -

(16)

i

n - o

Q
9]

2 2
- 1og]wn(iu)}du >~ [ logly(iu)|du
0 0
This implies that {Gn(m)} is bounded.
We observe that for any e > Q

a7) f dG_(x) < ¢
a0
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if g is a sufficiently large positive real number and n 1s a sufficient-

ly large integer. Since

X2 2/a
(18) 5 < d [ (1-cosxu)du
1+x~ 0

for |x| > a > 0 , we have

‘ 2 12 2/a P
[ aa (x) = | (=) ag_(x) <a [ [ [ (1-cosxu)==—- dG (x)]du
P n- (. 2 n == . N 2 n
{x|>a v>a 14x°  x O |xj>a X
(193 2/a 2/

/8
< -a 1og{¢n(iu)idu > -a [ logle(iw)|du as n - e,
0

in (19) the last integral tends to C as a » « and this proves (17).

Since Gn(—w) =0 , and Gp(m) < K , the sequence {Gn(x)} is weakly

compact, that is, every infinite subsequence of {Gp(x)} cortains @ sub--
seguence {Gn (x)} which converges weaklily to a nondecreasing funculon
k

G (x) . (See Theorem 41.7.) By (17) it follows also that 1im G_ (-=) =
% % k » o 7k
G (==) and lim G (©) = G (») . Thus we can apply Theorem 41.8 to
k> Kk
obtaln that

e e * - o 2 4
(20)  1im [(eT- 14 5 ~—-—1+§ o, (x) = [ (€771 + - X a6 (x)
k > e 1+x°  x k —oo H+x- %"

for Re(s) =0 . By (14) we have

(21) lim log wn (s) = log ¥(3)
k > e Iz
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for Re(s) =0 . Thus it follows that

(22) Timp. =y
k> o

1

alsc exists.

Accordingly, we have

o 2
* —_y v %
(23) log (s) = -w's + [ (714 2 T 45" ()
-0 IE>'d X

for Re(s) =0 .

By Theorem 42.1 the function log ¢ (s) defined for Re(s) =0
% %

uniguely determines uw , and G (x) in its continuity points. Thus
b3

p'a
by (9) we have u =y and G (x) = &(x) at the coatinuity points of

<

1

G(x) . Thus G (%) = G(x), Gnk(w) > G(w@), Gny("“> > G(=e) and Un<+ u
4 ¥

k

[}

as k » o ., Since every infinite subsequence of { n(x)} contains a

subsequence {Gn (x)} which converges weakly and completely to the same
'k
limit G(x) , it follows that Gn('X> =» G(x), Gn(oo) > G(w) and Gn(_oo) >

G(=») as n-> » ., Furthermore, p_ -~ pyas n -+ o . This proves that the
N 2 n

conditions (10) (11) and (12) are recessary.

Now let us prove that the conditions (10), (11) and (12) are sufficient
too. If (10), (11) and (12) are satisfled and log wn(s) and 1oz g(8)
are given by (5) and (9) respectively, then it follows immedlately frou

Theorem 41.8 that
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(24) Lim log ¥ (s) = log ¢(s)
o

for Re(s) = 0 , and therefore

(25) Lim y_(5) = ¥(s)

n-> e

i

for Re(s) = 0 . Finally, by Theorem 41.10 we can conclude that Hn(x) =

R(x) . This completes the proof of the theorem.

We can express Theorem 1 in an equivalent form if we use the represerntation

(42.44) for log q‘)n(s) and  log ¢(s) instead of (5) and (9).

Let 15 suppose that instead of (5) log wn(:s) is given by the following

expfe sion

O?Cz O o
(26) log v _(s) = i st ——— + [(e” X + )dM (x)+ (751 + _;’33-)41\] \x)
n / 1 n
-0 {‘r[ +O .L+x

. 2
for Re(s) = 0 where W, 1s a real constant, o) 1s a nomnegat ive conshant,
Mn(x) is a nondecreasing function of x in the interval (-=, 0), Nn(x)
is a nondecreasing function of x din the interval (0, ») and these

functions satisfy the regquirements

27) im M (x) = 1im N (x) =
n n
X > - X > + x
and
—O 2 € ”
(28) [ xaM (x) + [ x°a (x) < o
-t n +0 n

for some € > 0O .

4
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Furthermore, let us suppose that instead of (9) log ¥(s) 1is given
by the following expression
2 2 =0 oo
(29) log ¢(s) = ~us + ———2--+ [ (7% 1+ --———)dM(x:)+ [ (e7 ~~——-)dm )
— 14x° +0 1+x~
for Re(s) = 0 where u 1is a real constant, ¢° is a nonnegative
constant, M(x) is a nondecreasing function of x in the interval (-=, 0),
N{(x) 1is a nondecreasing function of x in the interval (0, «) and
these functions satisfy the requirements
(20) lim M{x) = 1im N(x) = O
X > = Yot
and
i -0 £ ,
(31) [ x°au(x) + [ xai(x) <o
—£ +0
for some e > 0O,
Let us introduce the notation
, 0 5 > Fo0
(32) T (e) = [ x°aM (x) +0° + [ x"dN (x)
n n n : n
—-€ +0
for € >0 and n=1,2,... .
Theorem 2. let Rl(x), Rg(x),..., Rn(x)"“‘ and R(x) be infinitely

divisible distribubion functions

whose Laploce-Stieltjes transtorms are

given by (47, (26) and (8),

weakly to R(x)

(33) Lim M (%)

n-—-

(29)

if and only if

l?a _sequeiice

e {R (x)}

COLJ”/"”}"“O

= M(x)
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at every continuity point of M(x) in_the interval (-=, O0) ,

(34) Lm N (x) = N(x)

n -

at every continuity point of N(x) in the interval (0, =),

(35) m oy =,
N & o
and
(26) lim  1im sup Ir‘(ej) = 1im 1im inf In(ef) = 02 )

g > 0n» e e >0n -«

Proof. If in Theorem 1 we define

x 1+‘,72
(37) M (x) = f = 46, ()

=00 Y4
J

i

£ 0N " :H'Vg
(38) N () = - {( 5= A6 (v)

37

for x > O , and

2
(39) o = G_(+0) ~ G _(-0) ,
furthermore,
SRP SN
(4o} M(x) = [ e da(y)
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for x <0,

Q
(41) N(x) = j -—~-—J“”y)

for x> 0, and

no

(L2) o7 = 0(+0) ~ G(-0)

then we obtain Theorem 2 and conversely Theorem 2 can be reduced to

Theorem 1 by the substitutions (37), (38), (39) and (40), (41), (42).

First, we shail prove that the conditions (33), (34), (35) and (36)
are necessary. 1T Rn(x)*:#>R(x) , then by Theorem 1 we have Gn(x)=%>G(x)
Gn(w) > G(e) end w > as n>e . Thes by (37) we obtain (33), by

(38) we cobtain (BM)wand (35) is obvicus. It remains to prove (36).

If we take into consideration that

-0 ,2 2
(43)  G_(e) = G(-e) = [ T a () + o2 + i s anl (%)
' - 1+x n +0  1+x
for ¢ > 0 and that
z 2
(k) Lty
1te 1+x

for |xl < ¢ , then obtain that:

I“(s)
ey R, e - O (e T ()
(H5) l+ﬂ2 =fun(a) Yt c) é=in‘°’
e <

for e > O ., Now let us suppose that ¥ = ¢ and X = -¢ are continull;
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points of G(x) , then

(46) 1im [6,(e) ~ G,(-e)] = G(e) = Gl=e)

n - o

and by (45) we obtain that

(47)  G(e)-G(~e) < 1im inf T (e) < 1im sup T, (e) < (1e*)[0(e)=G(-e)]

n - o n->- o
Since

(48) C1im [G(e) - G(=e)] = G(+0) - G(=0) = o~ ,

e >0

we obtain (36).

Now let us prove that the conditions (33), (34), (35) and (36) are
sufficient toc. We shall prove that these conditions imply (10) and (11)

in Theorem 1,

Since by (37)

(49) G (x) =:_£ 2 at (y)
for x < 0O and by (40)
_ X N
(50) G) = [ < au(y)
—c ]_+y

for x < O, therefore (33) dmplies tnat
(51) lim G (x) = G(x)
N ol

at every continuity point of G(x) in the interval (-=, 0) .

By (45) we have
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T (¢)

70 1 - . n '< - ! — ) -

(52) G (=€) + 5 £ G (e) £ G (-e) + T (e)
1+4e

for e > 0 and therefore by (36) it follows that

(53) 1im lim sup G _(e) = 1lim 1im inf G _(e) = G(-0) + 02 = G(+0) .
n n

e >0n-—> e >0 n->

It 0 <e <%, then by (38)

(51)

and by

(55)

x 2
(%) - G = gt (v
6,0 = 0y(e) = [ T @ ()
e 1ty
(4
X V2
G(x) - Gle) = [ S aN(y) ,
e 1ty

and therefore by (34) we obtain that

(56)

for O

1im [Gn('x) - GIJ(S)] = G(x) - G(e)

nn > «©

< g < x provided that x and ¢ are continuity points of

Thus by (53) and (56)

(57)  lim sup Gn(x)_ = lim  Lim sup [G (e) + G (x) - Gn(e)] =
n > « e >0n-»> wx H '
= G(+0) + G(x) - G(H0) = G(x)
and
(58)  1im inf Gn(x) = lim  lim inf [G _(e) + Gr(x) -G {e)] =
n > « E—>On»><o o g i
= G(+0) + G(x) - G(H0) = G(x)
if x > 0 is a continuity point of G(x) . This proves that Gn(x)

G(x) .

=2 (%)

e
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for x>0 .

Finally, since

~

© 2 !

(59) 6. (=) - 6 () = [ s an () 1
x 1ty '
and
© 2
( 60) G(=) - G(x) = [ == aly)
- X LHy©

for x » 0, it follows from (34) that ]
O
(61) | im [G (=) - G ()] = G(=) - G(x)

|
I

z n - e
if x > 0 is a continuity point of G(x) . This proves that Gn(m> N

G(«») as n =« ,
This completes the proof of the theorem.

Note. Theorem 2 remains valid unchangeably if in (20) and in (29)

we choose another centering function. Thus we may assume that instead
of (26) log wm(s) is given by

o)
<
(O

-0
¥ - X , =S ,
(62) log ¥ (s) = —p st —e— + [ (™ 1bss (x))aM,_(x)+ [ ~1+s8(x))AN_(x)
m m 2 o n +0 n

[oe]

%
for Re(s) = 0 where W is a real constant, and oé., Mh(x) s Nn(x)

satisfy the same requirements as in (26). The function &(x) defined
for -= < x < « can be chosen as any bounded and continuous function of

e s 2 .o ) ..
x for which 6(x) - x =0(x") as x-» 0. (Instead of continuity we
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may require only that §(x) 1s plecewise continuous and the discontinuity
points of &8(x) are continuity points of Mmﬁx) or Nn(x) as the case
may be.) Beside &(x) = X/(1+X2) the following functions are suitable
choices in {62): 6(x) = sin x or &(x) =x 1if |x| <1 and &§(x) =0
it |x| zt where t >0 and M (x) is continuous at x = -t and

Nn(x) is continuous at x =

)
-

Let us assume also that instead of (2¢) log ¢(s) 1is given by

5 22 =0 oo

¥ o's -5 ‘ , =BX f NN s

(63)  log w(s) = -y st =5+ Je™ P arrss GOai(x)+ [ 14as (o) )aie)
| S +0

? %
for Re(s) = 0 where n  1s a real constant, and 02 , M(x), W{x) satisfly

the samne requirements as in (29). The function &{x) is the sane as in

(62).

If we suppose that log %n(s) is given by (62) and log w(s) is
given by (63), then Theorem 2 remains valld provided that the condition

(35) is replaced by

D *
(64) Tim y_ = u .
n -+ 4l
For if in (62) we put
(65) § 1 —? [6(x)- L=Jam ( fm [§(x)= ——=]dN_(x)
) K = ot X)— ——= X/ e X )= ] YW\X s
nol e 1x? 0 +0 1 T

then we obtain (26), and if in (63) we put
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-0 o
% , . , .
(66 po=p ot [ [e(x)- ——52—]@‘\4.(__:()4- J Le(x)- Xz]dN(X) ,
—o0 1+x +0 1+x

% %
then we obtain (29), and Wy M implies Wy W and conversely.

In what follows we shall prove some more auxiliary theorems which
are needed in solving the problems formulaved at the beginning of this

section.

Iet R(x) be the distribution function of a real random variable

and define

| [+ ¢]
67 w(s) = [ % aR(x)
for Re(s) =0 . Iiet
(68) a= [ xdR(x)
|x] <1

fhere 1t 1s some positive real number and let m be a median of R(x) ,

that is, any real number for which

(69) R(m) ;:%~ and 1-R(m~0) >

NOf

Theorem 3. If Re(s) =0, if ¢(iu) #0 for O u<é 22, ad

if 1> |m| , then

1620045102 (8,

a 1
(70)  |u(s)e®1] < = — | Gog Ty U .
3= lal)P(emlmp)” 0 WOWT

a
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; Proof. We shall prove (70) in several steps. First we shall prove
;

that

A

[ (s)e®-1] = [ fm(e"sx—l)dﬁ(ﬁa)l
(71) o

fin

‘ <r{[§j2[l+(T+fal>2]\+ (2+ §ij§j)[l+(1:l§ll§l} fmm§i~ dR(x+a)
1 - 2 ° 2 X
(T—,al) = 1x

for Re(s) =0 .

let us write

i

$()e™1 = [ (751 yar(yta) = [ (@™ lts0)ar(xa) +

——X3

|x+al<t
(72)
—3X o\
o[ @D dR(xa) - s [ xdr(xia)
|xta|z1 xta | <1
In (72) in the last term
(73) ] xdR(xta) = (x-a)dR{x) =

=a-a [ dR(x) =g | dR(x) .
xta|<t | x| <t [

<t X];j

I Re(s) =0, then |e™ 0] <o 4yg

. -5x 51952
(747 le™ 1 + sx| < 5

for all real «x . By (73) and (74) we obtain from (72) that

e

(75)  Jus)e®| ¢ Jel” [ x°dR(x+a)

2 - “(etlsllal) [ ar(xta) |
i [x+a]<.T !

xta| >
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Since

. 2 2 % 20 %8

(76) [ x“dR(x+a)< [L+(xt]a])] —=dR(xta) L I+ (+[a] )] f A dR(xta)
| x+a| <t |xta]<r 1+x° -0 1%

and )

2 0 2 w2

() [ aeea) OOy X ary  BOlaDT X angra)

ixtal>1 (t-la])® |x+alzr 1+x (t-la])" - 14x°

we obtain (71) by (75), (76) and (77). From (71) we obtain easily that

T . 2y, 2w 2
| i { - S
! 2(1—|al )" ~o 14X
for Re(s) = 0 . We note that by (68) ta] <1 .

Next we shall prove that if 1 > |m| , then

79) foo X2 AR (x4a)<([ 1+ (x+]m| )2]+ _[_ﬂl+(1*—im[ )2][],+2T(T+imi Y] : f°° x2
BARIE B (1~|m| ) o T

AR (xtm) .

Since
( 80) (x-a)2 = (X—m)2+ 2(m-a)(x-a) - (m—a)2 ;:(x~m)2+ 2(m-a)(x~a) ,

we can write down that

2 ,
—»(X"a)g aR(x) < [ (x=a)ar(x) + | ag(x) < [ (x=m)aR(x) +
—o 1+(x-a) | x| <t x| %<t
(81)
fo(etim]) [ (eaddR() 4 [ aRG) = [ (eem)Par(x) +
x| <t %] 2 | x| <

+[2(T+!m|)a+1] f ar(x)
{x|>x
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and further

) 182 (X”m)2
(82) [ (x-m)~ d (>)_I1+(T+|m;) 1 f —
|| < | x| <t 3+(x~m)
and
- N 2
(83) [ aR(x)< L‘:(,E:”Uﬂlw —-<~Y:—n—ll— dr(x)
x>t - (fr-—]mi)2 |x|>r 14 (-m)°
for « >|m| By (81), (82) ard (83)

easily that

we obtain (79).

l+(T— m )
(r—lml)

2
: l {
(84) f—- dR(xta) < T I Lot ) [ R ()
o 140 (*—]m!) o TR
for t© > |m|
Now let
* oo
(85) R (x) = [ R(xty)dR(y) .

We shall prove that

jee]

(86) /-

—0 l+x

—00 l'*z(

If we suppose that & and n

whicn P{g < x} = R(x) = R(x)

and P{n < x;

and (86) can be expressed as

(87)

are independent

?
d}?(x-}m) <2 f -———dR (x) .

, then P{&n < x}

dP(X‘:;[]+(r+|m|)

random variableg

( X--111) e

—c0 1+(x-"1)

2
_xem) 5 AR(x)

w00 1+ (x-m)“

From (79) it follows

for

*
=R (%) ,

dR(x)
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f'or any x we have
P{¢-n » x} = P{(g-m) - (n-m) > x}>
(88) ~ ~
P{-m > x,n-in < 0} = P{g-m > x}P{n < m} ;:%-P{€—n > x},
that is
(89) P{g-m > x} < 2P{g-n > x]

for all =x .- If we replace &, n, m by -£, -n, -m respectively in

the above inequality, then we obtain that
(90? "E{m—ﬁ > x} £ 2P{n-¢ > x}
for al1 x . Thus by (89) and (90) we have
(91) Ple-m| > x} < 2pife-n| > x)

for x > O , and hence it follows that

2
(92) pp LETT L oy <opp LEWT L

~ 1+(E-m) ™ 14 (&-n
for x 0 . If we integrate (92) from C to « , then we obtain (97)

and therefore (86) too.

If 0<§68 <2, then we have

> g

(93) | ==

. 2
[-w(iu) [ “Jau .

=
&
s
N
e
g
[1Ea
> oo
L]
O

i
8
s
+
>4
(o)

’\

Since
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[29]

(o) [ &R () = [u(s)]?

0O

for Re(s) = 0 and since by (42,.28)

2

% $

2—;=§§-f (1-cosxu)du
1+x 67 0O

(95)

for every x if O <6 <2 , it follows that

oo

(96) f';z_%-dﬁ*(x) <=1 (1-cosxu)dR (x)}du = mg.j [1—!w(iu)|2]du
0

0 1-{-x" §~7 O - S

whicﬁ was to be proved.

J
H —’X ) . .
For any real x we have 1-x < e and hence 1-x < -log x for

x > 0 « Since ¢{0) =1 and ¢(iu) is a continuous function of u ,
it follows that there exists a positive 6 such that ¥(iu) # O for
0 i}u.;:é . Then log|y(iu)| is continuous and bounded in the interval
ue[O; §1 . Thus

| Y- ° 1

(97) é [1-{v(iuw)| ]dQ <2 é log TEZEGST-du

whenever ¢(iu) #0 for O<ux<é .

If we combine (78), (84), (86), (93) and (97), then we cbtain that
(70) holds for Re(s) = O whenever t > |m| , 0< 6 <2 and v(iu) #C

for 0<ugé .

We shall mentilon two more inequalities. ILet £ be a resl random
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(98)

o0

for Re(s) = 0. We have

(99)

v(s) = [ e ¥ ar(x)
1/e
Plle] 2 2¢} < ¢ [ |1-p(iu)|du
" =1/¢

for any e » 0 and

{100)

1/

(101) | § fq)(iu)du
-1

and -

€
(102) 1-] 5

<
-

1-Re{y(2iu)} < 4[1-Re{y(iu)}]

sin(x/¢g)

- |

8 “— 28

1/e : o 1/e
J w(iuw)au| ;:%-l [ [1= y(iu)Jdu]
€ T =1/¢

fin

for any ¢ > 0 , (99) follows immediately.

Since 1l-cos2x = 2(1—coszx):; 4(l-cosx) for

immediately.

Grey - RO < [171:{!«:[ > 2e}] +

NOJ k-
Fae)
2
—
|\

[}
I

. e
5 [1=v(iw)]au
~1/¢

every x , (100) follows

We shall need also the following auxiliary theorems.




VI-153

Lemma 1. Lel R(x) be a nondegenerate distribution function. If

(103) R(x) = R(atbx)

for every x where a 1is a real constant and b 1is a positive real

constant, then a =0 and b =1.

Proof, If O < b < 1, then by (103) we cbtain that

(104) _ R(x) = R(a(1+b+...+bn_l)+bnx)

Iy

. n :
for n=1,2,... and for every x . If n-« , then b > 0 and by (104}

R(x) = R(a/(1-b)) which is impossible,.

If 1 <b <« , and we express (103) in the form

(105) R(x) = RGT - )

then this case reduces to the previous case and thus we obtain that

1 <b <o 1is impossible. Consequently, b = 1 must hold.

Finally, we shall prove that a=0 . If a#0 and b =1, then

by (103) we obtain that
(106) R(x) = R(x + na)

for n=20, +1, +2,... . If n-»> o« and n -+ —= in (106), then we obtain
that R(x) = R(+=) = R{~~) which is impossiblie. This implies that a =0

must held.
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Lenma 2. let {Rn(x)} te a sequenice of distribution functions,

and a_  (n=1,2,...) and b]1 >0 (n=1,2,...) be real constants.

ot e e n ———

(107) R, (%) =$R(x)

and ‘

(108) R (a_* bHX):%S(X)

where R(x) and S{x) are nondegenerate distribution functions, then

i
=

there exist two constants a and b > C such that

(109) lima_ = a
nn > o« n
and |
( 110) limb_=b
i =
and
(111) S(x) = R{atbx) .

Proof. We shall prove that every infinite subsequence of (ar,
e It

(n = 1,2,...) contains a subsequence (an,, bn.) (i =1,2,...) for

J J

which ah_ + a where -~ < a <« gnd bn > b where 0 <D < o gs
j J

j > e~ and that (111) holds. If (111) holds, then a and b do not

depend on the particular subsequence of (an, bn) (n=1,2,...) . Thus

the whole sequence (an, bn) (n=1,2,...) 1is convergent and (109) and

(110) hold.

Obviously every infinite subseguence of (aq, b)) (n=1,2,...)

contains a subseguence (an s bn ) (3 = 1.2,...) such that 1lim a,
J J J e

b )
n

= a
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and J1im bn =b where -» <a < and 0 <b <~ ., Nowwe shall show

Jret
that necessarily -~ <a <o and 0 <h < o,

If b=, and c¢ = sup{x: lim su.p(ar + bn X) < =} , then
. 1. .
Jd T J
lim sup(an + b X) = -o for x <c¢ and lim sup(an + bn X) = 4o for
SRR R R
X>c¢ . Then by (108) S(x) =0 for x<c and S(x) =1 for x> ¢ ,
that is, S(x) 1is degenerate. This contradicts to the hypothesis and

therefore O < b < =,

If O<b<e and a=« or a= -~ then by (108) it follows that

S{x) =1 or S(x) =0 which is impossible.

I b =0, then for every x and every ¢ > 0 we have a-c <

8, + bn X < ate whenever J is sufficiently large. Hence
J J J

R (a_+b
i (dn4

i

—~
oy
i
m
S
A

n X) §=Rn (ate) if J is large enough. If x = ate and
J o J J J

X = a~e are continuity points of R(x) and if we let j » o in the
above inequality, then we obtain that R(a-e) < S(x) < R(ate) . Since x
is arbitrary, it follows that R(a~e) = 0 and R(ate) =1 for any ¢ > O
for which x = ate and x = a-e are continuity points of R(x) . This

implies that R(xz) is degenerate which contradicts to the hypothesis.

Thus we proved that -~ <g <o and O <b <o, Now for any ¢ > O
we have atbx—e < a + bn X < atbxte if J 1s large enough. Thus Ly

J J
(107) and (108) it follows that
(112) R{atbx~e) < S(x) < R(atbxie)

provided that x 1s a continuity point of S(x) and atbyxte and atbx-o
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are continuity points of R(x) . If € -+ 0O in (112), then we cobtain
that (111) holds whenever x 1s a continuity point of S(x) and atbx
is a continuity pcint R{x) . However, if two distributicn functions
are equal on a set which is dense everywhere, then the two distribubion

functions are identical. This proves (111).

Since by lemma 1 the constants a and b are uniquely determined
by S(x) , that is, they do not dependent on the particular subsequence

(ah., D, Yy (J = 1,2,...) , 1t follows that (an, bn) (n=1,2,...) is

K]

o
conv?rgent and (109) and (110) hold.

Corollary 1. If in Lemma 2 we have S(x) = R(x) , then iecessarily

lima =0 and limb_ =1 .
n-}co n—}OC

This follows from Lemma 1.

Now we are in a posltion to provide a solution of the problems stated

at the beginning of this section.

First we shall characterize the class of distribution functions
R(x) which can appear as limiting distributions of suitably normalized
sums of mutually indepencent and identically distributed real random

variables.

>

Iet us suppose that El, 62,..‘. Ek,... are mutually independent

and identically distributed reai random variables for which

(113) Plg, <3 = F(x)
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and

(114) 0(s) = [ e ar(x)

for Re(s) 2C . Let Ly = 6t Bt £ for n=1,2,... . Let us

suppose that there exist constants A (n=12,...) and B, > o

(n=1,2,...) such that

T]—A
a1s) lim P{ =5 £ X} = R(x)
N > o n -

in every continuity point of the distribution function R(x) . let

o

(1162 p(s) = [ e VaRK) .

O

for Re(s) =0 ,

The following auxiiiary theorem contains some information sbout. the

asymptotic behavior of Bn as mn - o,

Lerma 3. If R(x) 1s a nondegenerate distribution function and

(115) holds, then

(117) 1im B = e
noe

(118) 1im gni]___ =
n -+ o

Proof. If (115) holds, then we have
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n SA_,//B
(119) 1in (0T e T T =)
T > o n
for Re(s) =0 This implies that
(320) lim ¢(§5_) =1

n- e n
for all Re(s) = O . The proot of (120) follows on the same lines as
the procf of Lemma 42.1. Since ¢{0) =1 and ¢(s) is continuous on
Re(s) = 0, it follows that there is an a > O such that [|v(s)]| > O
for s =41iu and |u] <a . Hence by (119)

1

(121) Lim [oG0)] = Lin [9()|" = 1
n-> e n n - o

for s =1u and |u| < a . This implies aglso that (120) holids for s = in
| = :

and |u[ < a . By using the inequality (100) repeatedly, we can conclude

that (120) holds for all Re(s) =0 .

Now we shall prove (117) by contradiction. If (117) does not held,
then ‘{Bn} contains a bounded infinite subsequence, and by the Bolzanc-
Welerstrass thecrem this latter segquence contains a convergent subseguence

{Bn } for which  1im Bn =B < o, Then by (120) we obtain that
J Jred

an‘ 5
(122) ¢(s) = 1im ¢(g—) = Lim ¢(5=) = 1
J e nj J > e nj

for Re(s) =0 . If B >0, then in {122) we use that ¢(s) is uniformly

continuous on Re(s) = C . If B =0, then ¢(s) =1 is obviously true.

b
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It ¢(s) =1 for all ke(s) = O, then by (119) lo(s)] =1 for

all Re(s) = 0 . In this case R(x)

proves (117).

Ifr Br1+w as _n—>oo,then

£
(123) P{]| E—Pil- <) =
-~ n+l

as n >« for a > 0 . Thus by

)
g
m

: - A
‘ L A
(124 lin P{ = £
o : n - w n+1l

in every continuity point of R(x) .

1s degenerate. This contradiction

[ dx) »1

|X|_<_€B
= n

(115) 1t follows that

If we compare (115) and (124), then

by Corollary 1 we can conclude that (118) holds, and furthermore that

A - A
+1 'n
(125) 1im E—= = 0
n - « n

The following theorem was discovered in 1925 by P. Lévy [1117]. Sce

also A. Ya. Khintchine [2781.

Theorem L. The distribution function R(x) ig the limiting

distribution of suitably normalized sums of mutually independent and

identically distributed real random variables if and only if R(x) is

stable.

Proof'. Pirst we shall prove that the condition is necessary. I
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R(x) is degenerate, then R(x) 1is stable. If R(x) is nondegenerate,
then we shall prcve that for every a1, 8o bl > 0, b2 > 0 there exist

two constants a and b > O such that

(126) R\,al+ blx) %R(a2+ b2x) = R(atbx)

holds. Without loss of generality, we 13y assume that bl = b2 . In

this case by lemma 3 we have 1im B o and lim Bn/BV1+1 =1, and for
n >« n > «© :

every n = 1,2,... we can find an m =min) < n such that m-> « as

n > e« and
|

(127) 1im

where 0O < <b,<w ., Since B./B >0 ¢ -+ 3 /Bo=
iere 0 < b 5 < i 178, as n + « and Br"n 1,

l = i

for every sufficiently large n we can find an m such that 1 <m<n

and

b
< = <
=L, =

n 2 n

Fm«l

tIJI EUU

(128)

holds., If we choose m = m(n) in such a way, then (127) is satisfied.

Now left us write

1 (Cl’l— A —a) + B (Cn+m” “ A A =
- 12 . 13
o 1 un 1 b an .Lﬁrn 2
(129)
- (A_+ A + a,l a.b )
L S Bt AT 3B, ¥ ags)
b.B

I™n
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for n=1,2,... and m=m(n) . On the left-hand side of (129) Ly

- has the same distribution

3 independent and
and Cn Cn are pena an Cn+m, 0

+m

4 3¢ R . > oo = < 2 4
as ¢ . Furthermore B/ bB »1/b, as n~« . Thus by (115) it
follows that the distribution function of the left-hand side of (129)

converges weakly to
- ( , o
(130) Rlaq+ le)9€PK82 b,x)

as n-> o, If n-> e, then by {115)

o S An+m
(131) Lim p{ PRI ¢y = R(x)

n - e n+m
in every continuity point of R(x) . Now by Lemma 2 we can conclude that
there exist two constants a and b > O such that the distribution

function of the right-hand side of (129) converges weakly to
(132) R{atbx)
as n -+« ., This proves (126).

We can easily prove that the condition of the theorem is sufficient
too. Let R(x) be a stable distribution function of type S(«,8,c,m)

defined by (42.97). If we suppose that f1s Epseves Eppe.. are mutually

=03 ¢ 3 S

independent random vardables having the same distribution function R{x) ,

and
m(rn-nt’*) for o # 1,
(133) A = ,
n 2cfn log n for o =1

T >
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and

. 1/
(134) B =n"'",

then by (42.101) we have

gt e teo .t E - A
(135) P22 M0y = R(x)
n

for every n =1,2,... . Thus if n -~ « in (135) then R(x) appears

also as a limiting distribution. This comletes the proof of the theorer.

let F(x) be a distribution function and denote by Ph(x) the n-th

iterated convolution of F(x) with itself.

We say that the distribution functiom ¥F(x) belongs to the domain
of attraction of a distribution function R(x) if and oniy if there exist
constants A (n=121,2,...) and B, >0 (n=1,7,...) su~h trat
(136) Iim F (A + B %) = R(x)

n n I
n-> o«

in every continuity point of R(x) .

Ir El’ 52,..., gk"" is a sequence of mutually independent and

identically distributed random variables for which P{gk < x} = F(x) and

L, = Eyteat £ for n=1,2,..., then (136) is equivalent to the
1 . J

requirement that

(137) lim P{ =t < %) = 2%

in every continuity point of R(x)
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It follows from Thnecrem 4 that all steble distribution functions

and only those have a demain of attraction.

Our next aim is to find necessary and sufficient conditions for F(x)
to belong to the domain of attraction of a stable distribution function
R(x) and to give a procedure for determining the normalizing constants

3C g¢c e )

A (n=1,2,...) and B >0 (n=1,2,...) .

If R(x) 1s a stable distribution function of type S(a,8,c,m)

defined by (42.97) and

oo

(138) ¥(s) = [ e ar(x)
for Re(s) = G, then by Theorem 42,1 we have

(139) log y(s) = -ms-c|s|*(1+p TST-tan %EJ
for Re(s) =0 whenever O <o <1l or 1<ax<?2,-1<8<1,c2>0

and m 1s a real constant, and

(140) log ¢(s) = -ms-c|s| (1~ %%SllogISI)

for Re(s) =0 whenever o =1, -1<8<1,c¢c>0 and m is a real

constant.
We can write down also that

Ly - _ o5 . 9 sx sx \ _adx 7 —sx 58X ., adx
(141 log w(s) = ~ust = +c, [ 1 -25) te, {77014 -5
C—0 O

2 x| 9H 2
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2

for Re(s) = O where ¢, 20, ¢, 20, ¢ 20 and v is a real number,
and 02=O if et e, >0 .
1 72

If in (141) o° 20 and ¢y =¢, 7 0 , then we obtain (139) with

oc=2,c=02/2 and m =y .

in (1l 2=
If in (A41) o 0, and ¢yt ¢, 1 5

(139) with O <a <1 and 1 <a <2, and (140) with o =1 and with

>0, ¢, 2.0, ¢, 20, then we obtain

the following parameters

oy = . S P <
(ah2) R e for 0O <a <2,

(Cl+ 02)W

(143) e = TTTTTan for 0<a <2 ,
' 2T (a)sin %
. . N i . - § .,
where,in particular, c=(cyt ) 5 for o =1, and
am o
u~(c2- cl) ————= for O<a<lorl<acx<??,
: 2C0os ~5
(e~ g {1-C) for o =1,

where C = 0.577215... is Euler's constant.

If we use the centering function

(145) s(x) =

i
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where T 1s some positive number, then (141) can be expressed in the

e g e

following equivalent form i

2.2 -0 o

o onfoar 98 -SX ... adx [ (-—SX adx

(146) log ¥(s) u(t)st =5—+ ¢y _;l;(e ”1+DO(X))“i‘}‘(———!a+l te, & e —l+s¢3(x)) )
A v
h
for Re(s) = 0 where %
v T.1-ot . ‘
u+(c2— cl)a[l — - 0“T] for O<a<lorl<ac<2, ;
: 2C0S = ;

(a47)  u(x) = 2

u+ (c2— c])log T fora=1,

By (1?4) and (147) we can express the relation between m and u(t) as
folloﬁs:
. Tl—a
m+(02-cl)a-i-—:—-a if O<a<1l or l<au<?2,
(148) u(r) =
m(cz— cl)[log -(1-C)] if a =1,
where C = 0.577215... is Euler's constant.

To prove (147) we compare (141) and (146). Then we obtain that

(149) ~u(r) = wt(e,m cpde Ia,t)
where
_ T _2-a © g
(150) I(o,t) = [ o dx = [ Z—5 ax .
0 1+x T 1+x

If 0O<a <1, then
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T & ® o Tl—-a i
(151) I(a,r) = f X dx - f ) dy = T - — .
0 0 1+x~ 2cos =~
If l<d<2,then
@ x2-a oo-a w l—’(l
(152) I(Q,T) = f g, dx - J’x dx = - + ]T_ —
‘ 0 1+x T 2cos —;—E o
If « =1, then
T o 1
(153)  IQ) =] Ssax o] [-Z5ldx=log T,
0 1#x T 1ix

Thus i(1117) follows.

|

b

|

Now let us suppose that R(x) 1is a stable distribution function of
type S(o,8,c,m) . If ¢ =0, then R(x) is degenerate. If ¢ >0,
then R(x) 1is nondegenerate. Let F(x) be a distribution functicn and

denote by Fn(x) the n-th iterated convolution of F(x) with itself.

Theorem 5. Let R(x) be a nondegenerate stable distribution function

of type S(a,B,c,m) , F(x) a distribution function and A (n=1,2,...)

and B >0 (n=1,2,...) constants. We have

(154) lim Fn(An+ an) = R(x)

n->

in every continuity point of R(x) if and only if

(155) 1im nF (B x) = A

for x <0,
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e
(156) lim n [1-F(B x)] = -2
n a
n-> e« X
for x>0,
Qs7y ln g~ [n [ xdFG)-A 1 = u(x)
n -+ on x|<1B
n
and
(158) " lim lim sup 2_2_[ f x2dF(x) -C f xdF(X))‘gj =
e+0n-> o Bn |X|<€Bn |X!<aBn
|
| = 1itm liminf [ XdF(x) - ( i xdF(x))°] = o°
e+0n-»>e B |x|<eB |x]<eB
n n : n
where ¢p =¢, = o} @g % =2,and c; and c, are determined by (142)
;a.l_q_q_(_'lll3)_f_‘_c_>20<a_<2,02=0lt_‘_cl+c2>0§_n20<a<2,§_r_1§_

o = 2c 1f ¢y =c¢c;, =0 and a =2, t1s an arbitrary poéitive nurber,

and u(z] is given by (148) for O <a <2 and u(x) =m for a=2.

Proof. Iet

(159) 6(s) = [ &R ()
and B
( 160) ¥(s) =_°J;me_sde(x)
for Re(s) =0.

= o and

By lemma 3 we have 1im B

N> o
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(161) lim ¢ (3-) = 1
n-> o n

for all Re(s)=0 .

By Theorem 41.9 and Theorem 41.10 we can conclude that (154) holds
if and only if
SA

S | B
(162) _ lm oz e 7 7= y(s)
n-*w n

for Ré(SJ = 0. In (162) the convergence is necessarily uniform on
l .

Ré(é)é= 0 . Now let us define

|

(163 a = | xdF(B. x)
n IXI<T n

for some positive real 1 , and let us write
a

‘ S
(164] b (5) = o(ge

n
for Re(s) =0 and n =1,2,... . Then (162) can be expressed as follows

-sna_+sA /B
(1651 m [y ()P e 00 Doys) .

N> N

The distribution function R(x) 1is stable and therefore it is necessarily
Infinttely divisible. Thus ¢(s) # 0 for Re(s) = ¢ and we can define
log ¥(s8) uniquely as a continuous function of s on Re(s) =0 for
which log y(0) = 0 . By (161) it follows that wn(s) #0 for Re(s) =0
if n 1is sufficiently large. Thus log wn(s) is uniquely determined

for Re(s) = 0 and for sufficilently large n values if we define it in
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a similar way as log ¥(s) . Thus (165) can be expressed as follows

} sA
(166) lim {n log ¢y _(s) - sna_+ =2 = log ¢(s)
n > o | n n Bn

for Re(s) = 0 and the convergence is uniform in any finite interval
of Re(s) =0 . Accordingly, (154) holds if and only if (166) holds

for Re(s) =0 .

Pirst we shall deduce necessary conditions for the validity of (166)

and thén we shall prove that the conditions are sufficient too.

l
ﬁe‘c us suppose that (166) holds. Then we can prove that

(167) 1im n{log wn(s) - [wn(s)-l]} =0

n+®

for Ré(s-) =0 .

Since
' « v 1 %k 2
168)  [1og@sw-ul = | ] gl <5 T [ul® < Jul
k=2 k=2
1f |u| <3, it follows from (161) that
(169)  |Log v (s) - [v (s)-11] £ |y (£)-1]°
for Re(s) =0 if n 1is sufficiently large. By (161) we have
(170) 1im lwn(s)—ll = 0
n > « )
for Re(s) = 0 and by Theorem 3 we have
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160’ @s|n? 2

aryy e (s)-1i] < [ log —3—du
° (e=la P(e=m DZ 0 [WCW]

for Re(s) =0 if n is sufficiently lerge and 1 > Imni where m,
is a median of the distribution function F(an) . If n-+ o, then
m, > 0, For m, = rn*/Bl,1 where m¥ is a median of F(x) . Thus (171)
holds for any 1.' >0 if n 1is sufficiently large.

TP (166) holds and if we form its real part, then we obtain that
72} 1im n logly (s)| = loglu(s)]

n-

for Re(s) = 0, and the convergence is uniform for s = iu where
O <u<2. Tus it follows from (172) that if we miltiply (171) by n
and let n + =, then the right-hand side has a finite limlt. This fact
t_oééthér with (170) proves that if (166) holds then

73] Lim nfy_(s)-1]2 = 0

n >,

Por Re(s) = 0 . Finally (167) follows from (169) and (173).

Accordingly, if (166) holds, then (167) holds too, and this implies

that
SAn
(74} lim {n[y (s)-1] - sna + g} = log ¥(s)
n- « n

for Re(s) =0 .

We recognize that
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ke n | (5% Shy

f1755 n[w (s)-1] - sna + g— = -—l)dF(an+Bna )—sna + 5
By By

is the logarithm of the Laplace-Stieltjes transform of an infinitely

divisible distribution function. If we define

‘X for |x|

A
~
"

76y 8(x) =

v
-

0 for x| >
then (175) can also be expressed as

\
. i .
Cm’iJ n f %1+ sé‘(x»d.F‘(B x+B a, )+ —:An—-sna -sn fxdF(B x+B a .
nad n

If n -+ « then by (174) the expression (177) tends to 1log ¥(s) for
Re(s) = 0 . Let us use the representation (146) for 1log ¢(s) . Then

by Theorem 2 we can conclude that (177) converges to log ¢(s) for

Re(s) 0 if and only if

[¢]
(178) lim rF(B x + B a ) = 1
n -> @ le(!
for x<0,
(179) lim n[l-F(B x+Ba )] =

><plm

n <> <

for x>0,




VI-172

T A
y 1 PR ¢ R
(1.80) lim [n [ xdF(an + Bnan) +na -~ g 1 = u(z)
n->e |x|<t n
and
(181) 1tm lim sup n [ xng(an+ Ba,) =
e>0n~+>= |x|<e
=1im Iliminfn | x°dF(B.xt Ba ) = o° .
n™ nn

e>0n-+>e |x|<e

Accordingly, (178), (179), (180) and (181) are necessary ccnditions
for (154). We can easily prove that they are sufficient too. Br Theorem
2 it &'ollows that (178), (179), (180) and (181) imply (174). Now we shall

prova’ that (173) holds in this case too. If we apply Theorem 1, then by

I

(11) it follows from (174) that

© 2
(182) limn [ X< dF(B x + B.a )
n+co—ool+x2 g nn

exists and is finite. By the inequality (78) we have

2 2 = 2
(1+lt )(1+|er) [ =5 &®Bx +Ba)
2(1’—[an|) = 1+x . ne

(183) v )1 <

for Re(s) =0 . By (170), (182) and (183) it follows (173), and thus
by (169) we obtain (167). By (174) and (167) we obtain (166) wr*ch further

implies (154).

Thus we have proved that the conditions (178), (179), (180} and (181}

are necessary and sufficient for the validity of (154).
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Finally, we shall prove that the two sets of conditions (155), (156),
(157), (158) and (178), (179), (180), and (181) are equivalent. First we
observe that by (163)

e+t [ dF(B x)
[X|>e

kA

X|<e

(184) EW <H

dF(an) + 1 { dF(an)
Xi>e

for any e > 0 . Since by (161)

v
O
-

1 if x
(185) ; 1im F(an) =
n-—+oe LO if x<0,

it follows from (184) that

(186) 1im a, .

n > o«
This immediately implies that (155) and (178) are equivalent, and further-
more that (156) and (179) are equivalent. Now we shall prove that

(187) imn [ xdF(Bx+Ba)=1lmn [ (x-a )dF(Bx) =0
n-+we |x|<t n > e |x-a|<t

and this implies that (157) and (180) are equivalent. Since by the
definition (163) we have
(188) ] (x=a )dF(B x) =a_ [ dF(B x)
e T Mgl BT
it follows that

l { uﬂ)@mmi_‘fumwwmw‘ / | x-a_JdF(B x) <
|x-a_|<t 1-|a |<lxl<1+|a |

<la| [ aFBx) + (r+a) f dF(B x) .
k|21 n T—lanl<|X|<T+lanl o
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If we miltiply (189) by n and let n > « , then by (155) and (156) we
have

, (cl+ c2)
(190} Umn [ dF@Bx) =

n-+e |x|>t ™

and since lim a, = 0 also by (155) and (156) it follows that

n > «

(191) lim n J dF(B x) = O .
. n-+ e r—lan|<]x|<r+!an|

In (189) Ianl >0 and (:r+|anl) ~tas n-», and thus (187) follows.
It remains to prove that (158) and (181) are equivalent too.

First, we observe that

[ x¥°dF(Bx +Ba) - (x-2_)°aF(B x)| =
||X|<sx X 2 - |xf]<e X an) ( X l

(192) , )
= (x~a_)dF(B x) - [ (x=a )°dF(B x)| <
le-i-nl% n n |XI<€ n n l =
< e+l )’ | dF (B x) .

e-la,|<Ix e+ |

Next, we observe that if O < e <t , then

[ (x-2 )2aF(B x) - [ [ x°dF(B x) - ( [ xdF(B x))°] =
|x|<e 7 n |x|<e n |x|]<e © :

(193)

= (a- | xdF(an))z— n X{ GF (B_x)

I 2 ([ xaFBx)>-a> [ aF(Bx)
X|<e

2e eLIX|<T | x|2e
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and henceforth

e 2 2
(194 [ (x=-a )aF(B x) - [ [ x“d@F@Bx) - ( § xdFB x))]1| <
) n’|xji<.ex o & | x| <e n |xj<e
< (2 [ F@Bx) +an [ dF(Bx) .
T xlze T T lxlze O

If we multiply (192) by n and let n » « then the extreme right
member tends to O by (155) and (156). If in (19143qflet n-+ o , then
the first factor on the right-hand side tends to 0 , and the integral
multiplied by n tends to (cl+c2)/s°‘ by (155) and (156). Thus
(195) Um[n J xdFBxtBa)-n [ (xa )°dF®Bx)]=0

' n n“n n n

|n>e |x|<e | x]<e

for any € > 0 and

(196) 1im (n [ (x—an)zdF(an) —narl / XZdF(an) - [ xR ) =0

n-—+ e |x|<e x| <e lx|<e

for O<e<r1t,

By (181), (195) and (196) we can conclude that (181) is equivalent

to the following relation

lim limsup n[ [ xzdF(an) -( xdF(an))2] =

e >0 n-+ = xXi<e x|<e

(197)
= 1im liminf n[ [ x2dF(an) —( xdF(an))2] = o2 |
e+>0n-+>e |x]<e |x|<e

which is the same as (159). This completes the proof of the theorem.

- -Theorem 5 makes 1t possible to find necessary and sufficient conditions

for F(x) to belong to the domain of attraction of a nondegenerate stable
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distribution function R(x) . First we shall consider the case when R(x)

is the normal distribution function defined by

du

(198 o(x) = =
) X /__Ie
for - <-x < o,

The following theorem was found in 1935 by A. Ya. Khintchine [545 1],
W. Feller [5171], [5181] and P. Lévy [ 5601.

Theorem 6., The distribution function F(x) belongs to the domain

|
of attraction of a nondegenerate normal distribution function R(x) if

and énly if F(x) 1is nondegenerate and

* [ aF)
(199) tm —ulzx o

X> e 1 uar(u)
lu]<x

-~ If (199) is satisfied, then

(200) 1im Fn(Anf an) = ¢(x)

n >«

defined by (198) if we choose A (n=1,2,...) in such a way that

(201) A =n| xdF(x)

OO

for n=1,2,..., and 1f we choose B (n =1,2,...) 1In such a way that

(202) B2 =n [ | x°aF(x) - ([ xaF(x))?]

for n=1,2,... whenever
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)
dF < o
(203) -£ ) ’

and if we choose Brl (n =1,2,...) in such a way that B, > 0 for

n=1,2,..., 1lim Bn = o gnd
n -+

(204) un L [ xPdR(x) = 1
n > «B lx|<eBn

for some € > O whenever

<o

(205) ' [ Par(x) = = .

O

i‘Ié’lf'oof. By Theorem 5 it follows that (200) holds if and only if (15%),

(156), (157) and (158) are satisfied with ¢, =0, c,
2

T>0 and o =1 . Using this result we can easily prove that (200)

=0, u(r) =0 for

holds if and only if for every e > O we have

(206) limn [ dF(x) =0,
n-> e ]x|>eBn
(207) Umi-[n [ xdF(x) -4 l=o0,
n->oeon b'd <an
and
(208) um [ [ PFG) - ( [ xF@E)]=1.

n -+ mBh |X[<eBn |X|<£Bn

If ¢y = 0, ¢, = O, u(t) =0 for t >0 and 02 =1, then we can
immediately see that (155) and (156) imply (206), and (157) implies (207).

It remains to show that (158) implies (208). Let
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(09) I () =nl [ x°dFBx) - ( [ xdF(Bx)%]

x| <e | x| <e

for € >0 . For O < e' < ¢ we have

I(e) =T (e =nl [ x@F(Bx)-( [ xdFEx)?]-
e'<|x|<e e'<|x]<e T

(210)
-2n( xdF(B x))( [ xdF (B x)) .

| x| <e? e's|x|<e

Hence

(211) T (e) - I (e ne® [ (B x) +2ne'e [ B,

x|2e |x]2¢"
|
and by (206) it follows that
i

!

(212) Lim [T (e) - I (e")] =0 |
n-> o .

for O0<e'<e , Now (158) and (212) imply that 1im sup In(e) =1 and

n > <«
1im inf In(e) =1, For by (212) these limits are independent of ¢ and

n->e

by (158) they tend to 1 as e -0 . Thus it follows that 1im In(e)

T - o

]
—

for all ¢ > 0 and this proves (208).

Conversely, the conditions (206), (207) and (208) evidently imply
(155), (156), (157) and (158) with c; =0, ¢, = 0, u(t) =0 for t > O

and o =1.

Before proving the theorem we shall deduce some relations which we

shall need in what follows. Let us introduce the abbreviation

(213) h(x) = | uwdF(u)
ul<x

for x>0,
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First, we observe that if we exclude the case when F(x) =1 for

x>0 and F(x) =0 for x <0, then (199) implies that

(214) 1lim %%?l =1

X >

for any O <p <=,

We note that if (203) is satisfled, then (214) is obvious. Now we
shall prove (214) for 1 <p <« , From this case it follows immediately
that (214) holds for O <p <1 too. By (199) it follows that for. any
e >0
(215) 0<x° [ dF(u) < ¢ h(x)

u|>x
1P x 1is sufficiently large. Thus if 1 <p < e , then
. , oL 2 2.2 2
(216) 0 < h(px)-h(x) = f u dF(u) < p°x [ dF@) <ep“h(x)
Xsjuf<px lul>x
M x is sﬁf‘f‘ieiently- large. Since e > 0 is arbitrary, (216) implies
(2143,

Next, we observe that if we exclude the case when F(x) =1 for
x20 and F(x] =0 for x <0, then (199) implies that

x [ ludP(u)

o ujEx =
217) | Xli.mm 163) =0.

To prove (217) we note that

i e - e
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[ Juldf(u) = [ [1-F(u)+F(-u) Jaurx[ 1-F (x)+F (-x) ]

(218)
lul2x x
for x>0 . If (199) holds, then for any ¢ > O (215) is satisfied if

x 1Is large enough, and in this case by (218) we obtain that

[ |ular@) < mﬁ(-li)du+ Y-l——x-)_<_ [ uldF(w)+2 h(x)
(219) Iul;} | €£ ul R _'iu1=;l [P (w+2e X

for sﬁfficiently large x . Here we used that

(220) [ ’?-(»-‘g-)du ;EXE) + [ |uldR(u)
| x u lu|2x
for x > O which follows by integrating by parts. By (219) it follows

that ¥f O <e <1 and if x 1is sufficiently large, then

(221)
Jul2x
S‘Incé 0 < e <1 is arbitrary, this proves (217).

Finally, we observe that if
[ PFG) =« ,

(222) =
. then ,
_, ( I uwFw)?
(2237 1im —ulsx 5 =0 .
x> o [ udF(u)
[u]<x

To prove (223) let O < c < x . Then we can write that
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224) ([ wlP- [ w@@N® g [ Juler@)? < (f wEeEu) [ @w).
lul<x lulze

/
ul<x |ul<e c<ul<x

Hence it follows that

([ udF)?

(225) O < 1im sup < [ dF(u) >0 as co>w,

X+ [ wdF(u) ~ ul>e
luf <x
Now we shall prove first that if F(x) is a nondegenerate distribution
function for which (199) holds and if we choose A, (n=1,2,...) and B,
(n = 1,2;...) according to (201) ang (202) or (204), respectively then (206),
(207} and (208) are satisfied.

|

Wé shall consider the two cases (203) and (205) separately.

First, let us suppose that F(x) 1s a nondegenerate distribution

function for which (199) and (203) are satisfied. In this case

(=2

(226 a = [ xdF(x)
exists and
(227) 02 = [ xaR(x) - ( | xdF(x))>

- ~-o
is a finite positive number, We note that in this case (199) is automatical-

ly satisfied because by (203)

(228) o ;;xg [ arw) < [ u2dF(u) +0 as x=+ o,
Iuigx ujzx
2

Now by (201) A, =na and by (202) Bi =nb- for n=1,2,... .
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We want to show that (20G), (207) and (208) are satisfied in this case.

Since by (203) we have

(229) 0<n | dF(x)<“2 I X°aF (x) = f x°dF(x) ~ O as n->e.
|x|>eB € B lx >eB_ 52b |x[>eB Y

it follows that (206) holds for e > O . Since by (203):we have

(230) Ig— [ xF@)| 2~ [ dF(x) >0 as now,

n |x|2eB b [x|2eB.

it follows that (207) is satisfied for ¢ > O . Since Bi = nb2 , (208)

trivially holds.

Second, let us suppose that F(x) satisfies (199) and (205). In
this case F(k) is automatically nondegenerate, and it follows from (221)
that the expéctation (226) exists. Now by (201) A =na and let us
choosé Bn > 0 in such a way that 1im Bn = « and that (204) is satisfied
for some ¢ > 0O ; If (204) is satigf;e; for some e > O , then by (214)
it follows that (204) is satisfied for every e > O . By (204) and (199)
we obtain that

B2

(2311 limn [ dF(x) = lim-—z———T [ dF(x) =

In -> o lxl>eBn n+co I I>EB

for € > 0 . This proves (206). By (204) and (217) we obtain that

(232) 1im - [ zar(x) = lim -—(——~)- f xdF (x) - 0
n > en ]x};an n > o168 lx[>eB '
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for & > 0 . This proves (207). Finally by (223) it follows that (204)
implies (208). This proves that the conditions of the theorem are

sufficient.

Next we shall prove that if (206), (207) and (208) are satisfied for
some A (n=1,2,...) and B, >0 (n =1,2,...) for which limB ==,
: n > o«

then F(x) 1s nondegenerate and (199) holds. Furthermore, we can choose

A according to (201) and B, according to (202) or (204).

From (208) it follows immediately that F(x) is nondegenerate. Since

lim Bh = » , for every sufficiently large positive x and for any given
n->x
e >0 there is an n such that eB_ < x < 2eBn . If an X< 2an » then

n
we have
2
- Xg.,f>_dF(u> * nlulieB )
(233) 0 —ul=x —— 5
‘ { wdF(u) - = [ [ udF) - ([ udF(w)“]
ul<x B |u|<eBn lu <eB_

If we suppose that (206) and (208) hold and if we let x -+ « in (233),
then n + « and we obtain that the extreme right member in (233) tends to

O . This proves that (199) is a necessary condition.

We shall consider again two cases, namely the case of (203) and the

case of (205).

If (203) holds and if we choose A, =na and B = nb° for n = 1,2,...
where a and b2 are defined by (226) and (227) respectively, then (206)

is satisfied. This follows from (229). The relation (207) is also satisfied.

P
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This follows from (230). Since Bfl = rb° , (208) trivially holds.

Now let us suppose that (205) holds. Then by (223) we can conclude |
that (208) is equivalent to (204) for all e > O . Thus it follows that
we can choose Bn (n=1,2,...) In only one way namely so that (204) is
satisfied for some € > O . Then by (208) it follows that (204) is
necessarily satisfied for all e > 0 . The condition (206) does not impose
further restrictions on the choice of Bn . We have already seen that if
(206) and (208) hold for some € > O , then (199) is satisfied, and further-
more.Fhat (19G) and (204) imply (206) for every ¢ > O. Since (206) and (208)
impli (199), and since (199) imply that the expectation of F(x) exists, therefore

V%%B%%%’ A, =na for n=1,2,... where a is defined by (226). If we

suppose that An =na for n=1,2,..., then (207) is satisfied; This

follows from (232). This completes the proof of the theorem.

We note that in the particular case when (203) is satisfied, (200)

has been proved in 1887 by P. L. Chebyshev [616 ] and in 1898 by A. A. Markov

[579]. This result is the generalization of some more particular results

of A.De Moivre [36 ] and P. S. Laplace [ 107].

In the above proof we have already used the fact that if (199) is
satisfied, then the expectation of F(x) exists. This is a particular

casé of the following more general theorem due to A. Ya. Khintchine [545 ]

and H. Cram§=[505].

Theorem 7.  Suppose that the distribution function F(x) satisfiles

(199). Then
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(234) [ 1x%aF ) < o

-0

for 06 <2,

" Proof., Sirnce

235) [ |x|%@Px) = a’[1-F(a) + F(-a)] + & i S U1F(x) + P(=x) Jdx
X|2a a

forany a >0 and 6 >0 , it is sufficient to prove that the last term
in (235) is finitefor some a >0 and for 0 <& <2 . If h(x) is

def‘inéd by (219), then by (199) we have
i
|

2

(236) 0 < ¥°[1-F(x) + F(-x)] < h(x)

for sufficiently large x values. Accordingly (234) is satisfied if

(237) fm%6-3h(x)dx < ®
a

for some a >0 . Let p >1 . If (199) holds, then by (214) we obtain

that for any € > 0

(238) '%%§§l < 1te

if x2a and a is sufficiently large. If O < § < 2 and if we choose

¢ such that 92-6 > 1+e and if we choose a such that (238) holds for

x;a',then
k - , o

- @ ap .. © ) '
[ X Bnx)ax = 7o 2 Phmax < ) h(ap™) i x3ax <
a

k=1 apk—l k=1 apk—l

(239)
h\a.) (p 2-8 Z (l+€ o
(2=3) L= T
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This proves (234).
Our next aim is to give necessary and sufficient conditions for
F(x) to belong to the domain of attracticn of a nondegenerate and non-

normal stable distribution function R(x) .

If R(x) 1is a stable distribution function of type S(a,8,c,m)

defined by (42.97), then R(x) is nondegenerate (c > C) and nonnormal

(O<a<2) ifandonly if 0<a <2, -1 <B8<l,c>0 and =-°<m< =,

If in thils case
i
|
]
i

¥(s) = f“e-sde(X)

(240)
for Re(s) =0 , then

(241) log ¥(s) = -ms—c|s|*(1 + 8 TET-tan %;)

for Re(s) =0, 0<a<l or 1<a<2,-1<B8<1l,c>0 and -»<m< e
and

( 242) log v(s) = —-ms-c|s| (1 _ 285 log|s])

TS|
for Re(s) =0, a=1,-1<B8<l,c>0 and - <m< ®,
For any 1 > O 1let us write
2Bcarl_a am
m + ET6E R I(a)sin = if O<a <1l or l<a<2,
(243)  u(x) = |

m+§—-ﬁ—c-[logr - (1-0)] if «=1
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where C = 0.577215 ... is Euler's constant.

\

Iet F(x) be a distribution function and denote by Fn(x) the n-th

iterated convolution of F(x) with itself,

The following theorem was found in 1938 by W. Doeblin [508 ], [ 510]

and in 1939 B. V. Gnedenko [629 1, [ 530] deduced it as a particular

case of his more general theorem ([ 5271, [528 1).

Theorem 8. Let R(x) be a stable distribution function of type

S(a,B,c,m) where O <a <2, -L<B<1l,¢c>0 and -~ <m< =, The

distribution function F(x) belongs to the domain of attraction of R(x)
|

if and only if 1-F(x) + F(-x) > 0 for all x>0 ,

: 13m F(-x) _ 1-8
(244) x M TFxY T I¥6 °
~and
(245) lim 1-F(x) + F(-=x) _ 0%

SF(ox) + F(-px)

for 0 <p <>,

Let A (n=1,2,...) and B,>0 (n=1,2,...) be real constants.

We have

( 246) l:LmF (A+Bx) R(x)
n-)co

if and only if in addition to (244) and (245) the following conditions ave

satisfied too
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2L r(a)sin G when o £ 1,
(247) 1im n[1-F(B)+F(-B,)] =
n-> o :
2c when o =1,

™

- and

( 248) A =n [ xdF(x) - u(t)B, - e B
|x|<tB

n

where +t 1s some positive number, u(t) is defined by (243) and 1im €, = 0.

n -+ «

Proof. First we observe that if F(x) 1is nondegenerate and

1-F(x) + F(~x) = C for some x > O , then F(x) is the distribution function

of a éounded random variable. In this case the second moment of F(x) is
finite and by Theorem 7 F(x) belongs to the domain of attraction of a
nondegenerate normal distribution function. Thus 1-F(x) + F(-x) > 0 for

all x > 0 1is a necessary condition in the theorem.

If R(x) is a stable distribution function of type S(a,8,c,m) where
O<a<2,-158<1,c>0 and == <m< = , then by Theorem 5 we can

conclude that (246) holds if and only if the fbllowingvconditions are

satisfied:
¢
(249) lim nF(-B x) = =
Il &> o X
for x>0 and
- C2
(250) 1im n [1-F(B x)] ==
n > o ) ‘

e

for x > 0 where c; and c, are determined by (142) and (143), and

furthermore
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(251) 1im B-— [n [ xdF(x) - AT = u()
n-+on |x|<B
n
where 1t 1is some given positive number and u(1) is defined by (243),
and

(252) Ln  lmswp L[ [ x@F0) - ( [ xdF)7] =
e>On~>= B [x|<eB |x|<eB_

In (249) and (250) c¢; 20, ¢y 20, ¢+ ¢, > O and the constants ¢,
and c, can be expressed by o and B by the relations (142) and (143)

which are as follows:

»
. C~— C
(2531 B=c2+cl for 0 <a <2
2 1
and
{c t c,)
1 72
(254) C = 2T (o)5in g_ﬂ— for O < a < 2,
particular, , (c1+ 02)1r
where, in c=——5—— for x=1.

First we shall prove that the conditions (244) and (245) are necessary
and that the constants B (n=1,2,...) and A (n=1,2,...) should

be chosen according to (247) and (2U48) respectively.

Now we suppose that (249), (250), (251) and (252) are satisfied.
Since Bn + « , for every sufficiently large x there is an n such

that Bn;x<Bn+l. If x+>» ,then n>« ., If B _<_=x<B+1,then

(255) F(~pB_,;) < F(-px) < F(-pB,)

and
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(256) 1-F(pB_ ;1) = 1-F(px) < 1-F(oB )

for any p > 0 , and consequently we have also

F(-B_,,) F(-B )
ntl < F(-x) < n
(257) l—F(Bn7 = l—F(x) = l-F(Bn-}-l)
and
(2583 l—F(Bn+1)+F(—Bn+1)< 1-F(x)+F(~x) 1-F(B )+F(-B,)

1-F(p3n)+F(—an) = 1-F(px)+F(-pX) é=l—F(an+l)+F(-an+i7

If we let x ~ « in (257), then by (249) and (250) we obtain that

|
|
(2591 1im

F(-x) _ %1
% > &l—FZx5 C5

where the right-hand side of (259) is » if c, = 0. If cy > 0 , then

by (253) we obtain (244) from (259). If ¢, =0, then 8 = -1 , and thus

2
(244) follows in this case too. If we let x > = in (258) and if we take
into consideration that cl+ cy > O , then by (249) and (250) we obtain

that (245) holds for all p > O .

If we put x = 1 in (249) and (250) and add the two equations, then we

obtain that

(260) 1im n[l—F(Bn) + F(-Bn)] = ¢t ¢,
n >«

where cl+ c, can expressed by (254), This proves (247).

The condition (248) is exactly the same as (251).
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This completes the proof of the necessity of the conditions (2L4),

(245), (247) and (248).

Next we shall prove that the conditions (244), (245), (247) and (248)

are sufficient tco, that is, they imply (249), (250)) (251), and (252).

Let

(261) ‘ G(x) = 1-F(x) + F(-x)

defined for x >0 . Then G(x) >C for all x>0, and G(x) is a non-

increasing function of x for which G(C) =1 and 1im G(x) =0 .

X >
every n = 1,2,... let us choose a Bn > O such that

(262) lim n G(Bn) = lim n {l—F(Bn) + F(—Bn)]= ¢t ¢y

n- o n-> o

that 1s, such that (247) be satisfied. Then 1lim By= .

N > o
Now by (245) it follows that
cF ¢
(263) lim n [l»-F(an) + F(—an)] = =
n->w X

for x> 0 . From (244) it follows that

nF(—an) Cl
(264) lim = =
. wn| l—F\an5 [ cs

For

for x >0 . By (263) and (264) we obtain that both (249) and (250) hold.

If we choose the constants A (n =1,2,...) according to (248),




VI-192

then (251) is satisfied too.

It remains to prove that (252) is satisfied too.
that (244) and (245) imply that

@©

(265) | [ x [1-F(x) + F(-x)]dx = «
0

First we shall prove

and then we shall show that 1f we choose B (n=1,2,...) according to

(247), then

an

(266) 1im lim sup 2 [ x [1-F(x) + F(-x)]dx =

| e+0n-»>o B O
I n
|

This implies (252) because

eB

(267) ——[ f XdF\x)( / xdF(x))2];n—2 i xng(x _<_=-2-g-f [1-F(x)+F(-x)]dx
B

Bn | x| <eB, | x| <eB, B |x[<eB,

The last inequality follows from the fact that

a
[ PaF(x) = 2 j x[F(a)-F(x)+F(~x)-F(-a)ldax =
-a

(268)

a
= 2 [ x[1-F(x)+F(-x)Jdx - a°[1-F(a)+F(~a)]
0

holds for all a > O .

We shall use the notation (261) and prove that

>

(269) [ x G(x)dx =
0

Iet e > 0 and choose p so that p2_a >1+¢e .,

that

0

By (245) we obtain
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(270) a%%)r < p%(14¢)

if x>a>0 and a is sufficiently large. Thus 1f x > a , then

2
ax a px 1+e P X
(271) [ uG(w)du < 7 (I+e) [ uGlow)du = = [ VvG(v)dv .
X X P pX
By applying this inequality repeatedly we get that
w w g k+l ap © 2=0 k
(272) [ xG(x)axz [ [ x:@axz[ xwGx §] Eg) =
0 k=0 _ k a k=0
ap
which proves (265).
| :
|
i 2—~a

|Finally, let us prove (266). Let € >0, p

be so large that (270) is satisfied for x> a .
Since (269) holds, we have

a B
(273) ([) xG(x)dx < [ xG(x)dx
a

if n 1is sufficiently large. Then

EBn g‘Bn
(274) [ x6(xax g2 [ XXX .
0 a

For each n 1let us choose an r such that apr
(271) we obtain that

1
S apr‘+

8

eBn r r 1+ ¢ S
fFxex)ax < § [ x6(x)dx < [ xG(x)dx J ( ) =
s=1

s-1 r

a ap

g

(275)

2 1+e¢
;EBnD G(eBn)EBnp(o—l)(m

) .

~1

>1l+eand a>0

r
;eBn<ap

=1 p2-—a

Then by
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Thus by (27L4) we obtain that if n 1is sufficiently large, then

eBn
(276) S5 [ xG(x)dx £
Bn 0

282‘(1+e>p“ nG(eB)

p2—a_l_€

Since by (263) 1im nG(eBn) = (cl+ 02)e_a ,and 0 < a < 2 , it follows from

n =

(276} that

eB
n
77 1im 1lim % [ x6(x)dx =0
e>0n->=B O
n
which proves (266). Finally, (252) follows from the inequalities (267).
|

This ?ompletes the proof of the theorem.

The following theorem was found by B. V. Gnedenko [775 1.

Theorem 9. If the distribution function F(x) satisfies (2U45) for

O<p<e gndif O <o <2, then

(278) [1x|%aF(x) < =

- OO

for O <8 <a.

Proof. By (245) for any € >0 and for any p >1 there exists a
sufficiently large a > O such that

1-F(x) + F(=x) *
(279) T F(px) ¥ Fl=o%x) I i €

i1f x>a. If 0<é<a and p* 0> 1+ e, then we obtain that
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2

[ 1x1%Prx) = [ |x|%ar(x) + y [ x| Sar(x) <
: za k=0 a0 <|xl;gpk*l

[ 1x°aF ) + ] 2% ™80 mianky 4 piapky] «

x|za k=0 -

(280)

A

| s §8 (1+e')p§' k
< x| "dF(x) + [1-F(a) + F(-a)]a NLTEID Y ¢
2 X{ | x| b P go ( = )

za

which proves the theorem.

We observe that if F(x) is a stable distribution function with
characteristic exponent o where O < a < 2 , then (278) is satisfied,
because F(x) "belongs to the domain of attraction of itself and thus (245)

holds. _This proves that (42f199) is indeed true.
Note. If 1 <o <2 in Theorem 8, then

(281) Xl < -

and in (248) we can choose

(282) A =n _fxdF(x) -m3 .

For if © + = , then by (243) 1lim u(t) =m .

T > ©
If 0<a <1 in Theorem 8, then in (248) we can choose
(283) An = -m Bn .
For if t© > 0, then by (243) 1lim u(t) =m .
Tt >0

If o =1 in Theorem 8, then in (248) 1 can be chosen as any finite

positive number. However, if we suppose that 1 = el"C where C = 0,577215...,

then by (243) we have u(x) = m and by (248) we can choocse
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(284) A =n f xdF(x) ~-mB .
1-C ¢!
|x[<(e)B,
Second we observe, that if F(-x) = 0 for some x > O , then by
Theorem 8 it follows that F(x) belongs to the domain of attraction of a

stable distribution function R(x) of type S(a,B,c,m) where O <a <2,

B=1,c>0 and -~ <m<» if and only if

. . 1=F(x) a
(285) : 1im - =p
X > o l—FipXi

for 0 <p < =, For in this case necessarily B =1 .

Third, we observe that if the limits

(286) 1im x% F(-x) = 2
(287) lim x*[1-F(x)] = a,

X >
exlst where a1+ a, > 0, and O0< o <2, then the conditions of Theorem 8

are satisfied and F(x) belongs to the domain of attraction of a stable
distribution function R(x) of type S(¢,8,c,m) where now g = (a2— al)/(a2+ al) .

In this case we can choose
(o
(288) B =(br)
for n=1,2,... Where b = (al+ a2)/(cl+ 02) and (cl+ 02) can be obtained

by (254).

Fourth, we note that in Theorem 8 the conditions (244), (245), (247),
and (248) can also be expressed with the aid of @(s) , the Laplace-Stieltjes

transform of F(x) . In this respect we refer to B. V. Gnedenko and V. S.

Korolyuk [535 ], and B. V. Gnedenko [776 ].
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If R(x) 1s a stable distribution function of type S(a,B,c,m) and

¥(s) denotes the Laplace-Stieltjes transform of R(x) , then log y(s)

is given by (241) and (242) for Re(s) =
We have already stated in the proof of Theorem 5 that
(289) F_ (A + B x)=>R(x)

holds if and only if

n sA /B
(290) 1im [¢(—-)J e = y(s)
‘ N+ « n
for Re (s) = 0, or equivalently,
i
sA
(291) lim [n 10g¢(B ) + 5 1 1= logy(s)
n>® By
for Ré('s) =0 . Now let us put s = 1iu , where u 1is real, in (291) and

form the real part and the imaginary part of (291). Then we obtain that

(292) lim n 1oglq>( )] ==cul®
n-> «
and
-ulu]a-lsctan gn for a#1
U.A
(293) lim [n Im(log¢( ))+ 2= <um + ﬁ
Il > «© n
280 u loglu| for a=1

\

for real u are the necessary and sufficient conditions for (289).

Now let us suppose that R(x) is non:degenerate, that is, ¢ > O . By

(292) and (293) we can easily deduce the following necessary conditions for
(289).
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First, the constants Bn >0 (n=1,2,...) should be chosen in such '
awagy that 1im B = » and
n
n > o« :
(294) lim n logle(z9)| = — .
n->® n

This follows from (292) if we put u =1 in it.

By (293) it follows that the constants An (n=1,2,...) should be
chosen in the following way:
1 n afor 1 <ac<2,
I )
_ i .
(295) An = -(zr1+x~:n)Br1 + —anIIn(log¢(Bn)) for a=1,
O for O<a=<l

where 1lim e, = 0 and

n > «

(296) a= [xdF(x) .

If we divide (293) by u and if we let u +» O , then we obtain An for
l<a<2,and if we let u-~> « , then we obtain A for O <a < 1.

If we put u=1 1in (293) then we obtain (295) for o = 1 .‘J’By (292) and
(29‘4) we obtain that

. logle(ipu)| . o
(297) ulimo Tog[¢Ciw ] = °

for O<p <o, If u>0 in (293), then by (295) we obtain that
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Im(logd(ipu)) + apu
log|¢(iu) |

am o
)0

= (gtan 5

(298) 1lim for 1 <a<2,

u-+0

Tmf logg(tpu) ~ plogg(iw)] _ 28 _
(299) ul_:’L)mO Tog |4 (T | == plogp for a=1

and

. Im(logg(ipu)) _ oy QT O
( 300) ulimo Tog s (T0I] = (Btan 5 )p for O <a<1

and for any O <p < =,

It can be proved that these conditions are not only necessary but
sufficient too for Fn(An+ B nx) to converge weakly to a nondegenerate

stable distribution function R(x) of type S(«,B,c,m) .

To close this section we shall give a brief account of some results
concerning the limiting distributions of suitably normalized sums of
mutually independent real random variables whose distributions are not
necessarily identical. Most of the results mentioned here are concerned

with the solutions of two main problems.

First, let us assume that gl, g2,..., gk,... is a sequence of mutual-
1y independent real random variables and write Ty = 'c:l+ g2+...+ En for
n=12,... . PFurthermore, let R(x) be a nondegenerate distribution

fuention.

The first problem is as follows: What conditions should be imposed
on P{g < x} (k=1,2,...) in order that there exist constants A  and

Br > O such that

1
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z,- A
(301) lim P{ ——Cc x} = R(x)

n-> o« n
in every continuity point of R(x) and what kind of distribution functions

R(x) can appear in (301)?

Second, let us assume that €n12 €n2""£nkn are a finite number of
mutually independent real random variables for each n = 1,2,... and write
g, = &t Eoteeet gnkn for n=1,2,... . Furthermore, let R(x) be a
nondegenerate distribution function.

Thé second problem is as follows: What conditions should be imposed
on P{g, sx} (Lsksk and 1<n<e) inorder that there exist
constants A, (n=1,2,...) such that
(302) lim P{z_ - A < x} = R(x)

, n+s o0 .
in every continuity point of R(x) and what kind of distribution functions

R(x) can appear in (302)%

The first result concerning the first problem was found in 1733 by

A. De Moivre [ 36 ]. He found that if v denotes the number of successes

in n Bernoulli trials with probability p for success and if O <p < 1,

then
v -~Tp B 2
(303) 1im Plo <~ < g} = == [ e /2
n - e Yrp (1-p) Y21 a

for o < 8. Actually, A. De Moivre demonstrated that
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_ (k=ny )2
1 enp(L-p)
(304) P{\)n =k} v ————e——— e
~ V2mnp(1-p)

as n-« and |k-np| < C/h and obtained (303) for g = -a = 1,2,3 by

nunerical integration.

Let us associate a sequence of random variables &l’ gz,. ves gk,. .o

with the sequence of Bernoulli trials in the following way: z—;k =1 if

the k-th trial results in success and gk =0 1if the k-th trial results

in failure. Then {Ek} is a sequence of mutually independent and identically

distributed random variables for which f{gk =1} =p and f{gk =0} = l-p .

By (303) we obtain that (301) holds for the sequence {gk} if we choose

An =np , Bn = /np(1-p) and R(x)=¢(x) where

X 2,
(305) s(x) = = [V Py
/3T o

is the normal distribution function.

By using the method of Fourier transforms (characteristic functions)

in 1812 P, 'S. Laplace [ 107 ] demonstrated that if {g,} 1s a sequence of

mutually independent and identically distributed symmetric random variables

b2 > 0 exist, then (301) holds when-

for which E(g} =0 and Var{g}

ever %=O,Bn=b/ﬁ and R(x)

¢(x) defined by (305). It should be
noted that although Laplace's proof is ingenious, it is not rigorous by
pfesent standérds .. A rigdr;ous proof for this result was given only in 1925
by E_-_.__I-éﬁl 111 p. 233 ] by using a continuity theorem for characteristic

functions.

/
Z( {1781 pp. 588-604.)
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Now let us follow first the historical development of the sclution
of the first prohlem mentioned above in the particular case when R(x) = #(x)

is glven by (305)..

In 1887 P. L. Chebjjshév [616 ] considered the case where E15 Epseees

Ek, ... 1s a sequence of mutually independent random variables for which

E{|gk|r} <Cp e for r=1,2,...and k=1,2,... . Bywriting Elg} =

2 ‘ _ 2 _ .2
a > Var{ak} = bk for k= 1,2,... and A = ajt...ta and Bn = b1+..
2

+bn for n-l,2,.;., Chebyshev proved that if B +® as n - « , then

(306) llmE{fC A“ RE R S

‘ n-e. V21 -
for r = 0,1,2,... and hence he concluded that (301) holds with these
An’ Bn and R(x) = ¢(x) . Chebyshev's conclusion is based on two auxiliary
theorems. First ,> that the normal distribution function o(x) is unigquely
determined by its manénts.r This follows from some extremely useful

inequalities of P. L. Chebyshev [ 197 lwhich he announced in 1874 without

proof. These inequalities were proved first in 1884 by A. A. Markov[130],[ 131].

See also P. L. Chebyshev [1981,[ 1991, T. J. Stieltjes [189 1,[1901,[192]

and J. V, Uspensky [204 pp. 356-395]. From these results of Chebyshev it

follows that if F(x) is any distribution function for which
(307) xFaR(x) =[x de(x)

holds whenever r = 0,1,...,2m,then

(308) F(x)-e(0)| < LI
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Sincé the right-hand side of (308) tends to O as m > « , it follows that
the normal distribution function is uniquely determined by its moments.
The sécond auxiliary theorérn which 1s needed for Chebyshev's conclusion
is 'Ihe’or"em 11 in Section 41. Chebyshev did not prove this theorem. He
accepted it as an obvious fact. The proof of this auxiliary theorem was

_ givén in 1898 by A. A. Markov [ 5801 .

It sheuld be noted that in his proof Chebyshev proved the convergence
of the semiinvariants instead of the moments; however, the equivalence of

the two procedures is obvious. Indeed in 1899 A. A. Markov [ 579]

pmvi;déd a direct proof for (306).

In later years A. A. Markov [584 pp. 77-81 lproved that Chebyshev's

conditions for the validity of (306) can be weakened. He showed that if

Eg |™r < »  for r=1,2,...and k=1,2,..., if B, >~ and if

n
1 r

(309) lim = J E{lg~a | }=0
n—*mBﬁ k=1" k ak

for r = 3,4,5,..., then (306) is satisfied and therefore (301) holds

with R(x) = ¢(x) .

In 190Q a significant step was made by A. Liapounoff [ 564 ]concerning

the solution of the first problem in the case of a limiting normal

distribution. He supposed that {gk} is a sequence of mutually independ—

ent, random variables for which (g, }= a  and Var(g} = b> exist.

k
. - 2 _ 2 2 _ : "
Write An = al+. .ota, and Bn bl+‘ . .+bn for n=1,2,... . Liapounoff

proved that if Bn +© 335 n -+« and if
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\ 1 n 2+<S_
(310} 1lim 5%5 yzlg{ IEK" akl 7=0
- <

n->«i

for § =1, then (301) holds with R(x) = #(x) . Let us observe that

Liapounofft's conditions do not require the existence of the moments

E{l&;k]r} for r >3 . In 1901 A. Liapounoff [ 565 ]showed that the
same résult holds unchangeably if we require only that (310) hold for
sane 6 > O . In his proof Liapounoff made use of Dirichlet's discon-

tinuity factor

1 for |x| <h,

_ 2 (sin hu /1 _
(311) Jx) = ?éx —— cos xudu ={ 5 for x| =h,
0 for |[x] >h.

(_Seé also A. A. Markov [584 pp. 67-76 1) It should be mentioned that

the factor (311) was already used in 1872 by J. W. L. Glaisher | 525 1

In his study on the generalization of Laplace's result mentioned earlier.

It is interesting to mention that in 1913 A. A. Markov [ 585 pp.319-338 ]

demonstrated that Liapounoff's result can also be proved by the method
of moments by introducing an ingenious artifice, the truncation of random

variables.

If €15 Eoseees £k,... is a sequence of mutually independent random

variables for which E{ Ek} =a  and E{(Ek‘qﬁbi exist and if we write

_ _ ~ ‘ 2 . 2,.2 2
- €l+ €2+ro+ En 9 An b a1+ 8.2+.‘.-+ an arld Bn—bl+b2 +.Q. +bn P

then following the terminology which was introduced in 1920 by G. Pélxa

4
n

[ 596 [we say that the central limit theorem is valid for the sequence
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' {gk} whenever

(312) lim P{ -7 < x} = o(x)
n->e n

where o(x) is defined by (305).

The Investigations of P. L. Chebyshev, A. A. Markov and A. Liapounoff
ylelded weaker and wesker sufficient conditions for the validity of (312).

The ultimate condition was found in 1922 by J. W. Lindeberg [ 566 1. (See

also { 567 1.) Lindeberg proved that if

., n
(313) 1im _1_§ ) i (x—ak)ed;i{gk <x}=0
n+eB k=l lx-ak|<an

for all ¢ > O , then the central 1limit theorem is valid for the sequence
' {Ek} ;'that is (312) holds. Actually, Lindeberg's condition is somewhat
different from (313), but it can easily be seen that it can be replaced
by (31%). Lindeberg's method is entirely different from the previous
methods., It is based on the estimation of the difference Nlj{gn < An +

B nx} - ¢(x) for large n values. Similar methods were used in 1919 by
R. v. Mises [588 ].

In 1922 P. Le/vy [110 ] found powerful theorems which proved to be
the stepping stones for the solutions of the problems mentioned at the
beginning of this historical review. P. Le/vy proved that a distribution
function F(x) is uniquely determined by its characteristic function
p(w) . His inveréion formula is g;?_ven by Theorem 41.5 . P. Lévy also

proved that if 'Fl(x),'F2(:<),...,-Fn’(x), ... and F(x) are distribution
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functions and their characteristic functions are q;l(m), 11;2(0;),..,., \pn(,w),...
and  (w) réspectivély, then Fn(x)=} F(x) as n-»« 1f and only if
um y () = y(u) for all w . (See also P, , Lévy [111] pp. 195-200.)
?n+1§23 G'.; Polya [ 598 ] showed that the latter theorem of P. Leévy can be
proved in a similar way as a continuity theorem found in 1919 by himself,

(See G. PSlya [596].)

For. another approach of the proof of the central limit theorem we

refer to A. Ya. Khintchine [ 97 1.

I‘n 1935 W. Feller [ 517 lproved that Lindeberg's condition (313) is

not orjily sufficient but necessary too for the validity of (312). W. Feller
proved that if (312) holds and if

g -
(314) Lim  max P{| = i

| >e}=0
e >~ Q 1<kzn n

for all ¢ > O , then Lindeberg's condition (313) is satisfied. However,
it shoﬁld be noted that it may happen that (;n- An)/Bn has a limiting
normal distribution as n »+ « and Lindeberg's condition (313) fails. In

this case, however, the limiting normal distribution has variance <1 .

In 1926 S. Bernstein [ 491 ] gave sufficient conditions and in 1935
and also in 1937 W, Feller { 517 ],[518 ] gave necessary and sufficiént
conditions for the existence of constants An and Bn. > 0 such that (301)
holds with R(x) = ¢(x) defined by (305). These results of Bernstein and
- Feller show that ‘even if the random variables have infinite second moments

it may happen that there exist normalizing constants A and B > 0

such that (.- A )/B_ has a limiting normal distribution as n »
n” fn’'’tn
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In the particular case where the random variables {F, } have an identical
distr'ibu'cion and RE) = @(x) the solution of the first problem was

given in 1935 by W. Feller [517 ], A. Ya. Khintchine [545 ] and P. Levy

[560]. (See Theorem Ul.6.)

In the case where R(x) =%(x) , a necessary and sufficient

condition for the validity of (302) was given in 1939 by B. V. Gnedenko

[528 ], as a particular case of a more general result.

Now let us consider the solutions of the first problem in the case
wherq: R(x) 1is not necessarily a normal distribution. jAJready in 1827

S. D¢ Poisson [154]and in 1353 A. Cauchy[231 ]demonstrated that if

(315) P{g, < X} = 3+ = arc tan x ,

3

then R(x) 1s not a normal distribution. Since in this case

+%arc tan x

‘n

(316) : ,E{ .

=

<x) =
for a1l n = 1,2,..., 1t follows that if An =0 and Bn =n , then
(317) R(x) —% % arc tan x .

In 1853 A. Cauchy [231 ] proved that if the random variables have
a symnetric distribution, then necessarily
(318) W) = [ &M% @r(x) = e~olol®
) _ . ,
where o > O and ¢ > O . Cauchy, however, did not recognize that
Y(w) 1s not a characteristic function if o« >-2 . This fact was poinﬁed

out only in 1923 by G. PSlya [598]. In 1925 P. Lévy [11lpp. 254-257]
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showed that R(x) is necessarily a stable distribution function and

found the general form of y(w) .  (See Definition 427.72 and Theorem

42;-“.._) Actually P. 1&vy used a somewhat more restrictive definitior

of a stable distribution function than Definition 42.2 (having excluded

the case where o =1 and g # O) . A rigorous proof for the general &

form of w(w) was given only in 1936 by A. Ya. Khintchine and P. Lévy

[ 279 ]. It is easy to see that every stable distribution function

R(x) can appear as a limiting distribution in (301).

\} In 1938 W. Doeblin [508 1,[ 510 ] gave necessary and sufficient

conditions for the validity of (301) in the case of identically

| ,
distributed random variables. In 1939 B. V. Gnedenko [ 529 ] gave

another proof of this result as a particular case of a more general

result, See also B. V. Gnedenko [ 530 1.

If the random variables {gk} are not necessarily identically
distributed, the solution of the first problem has interest only if

we impose the following conditions on {g 1

g -
(319) 1im maxP{kBmk>g}=o
n+wo l<k<n™ n

for all e >0 where m, is a median of £

Following A. Ya. Khintchine [ 278] we say that R(x) belongs
to the clas.s L if R(x) can appear as a limiting distribution in
(301). - In solving a problem of A. Ya. Khintchine (stated in a letter
to P. Lévy) in 1936 P. Lévy [ 561],[563 pp. 195-197] gave necessary

and sufficient conditions for R(x) to belong to the class L .
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" In 1939 B. V. Gnedenko and A. V. Groshev [ 534 ] gave necessary

and sufficient conditions for the existence of constants An and

Bn > 0 such that (301) holds with an R(x) belonging to the class L .

Now let us consider the solution of the second problem. To exclude
obvious cases we assume that the random variables {Enk} satisfy the
following condition:

(320) . lim max P{lgy-m, | >el=0

n- ml;k;’_kn

for any ¢ > O where m, 1s a median of Eue

The first result concerning the solution of the second problem

was obtained in 1837 by S. D. Poisson [156 1,[157 ] ( § 66 - §93>.

For every n = 1,2,... he considered a sequence of n Bernoulll trials
with probability Pn for success. lLet us define X k" 1 if the
k-th trial results in success and Xie = 0 1if the k-th trials results
o X . : - 2 _
in failure in the n-th sequence. Write An pl+ p2+. . .+pr1 and Bn
pl(l-pl)+p2(l_p2)+...+pn(1-pn) . By the results of Polsson we can
conclude that if Bn + o, then

Yy teeet xnn‘ A

(321) lim P{ 5 2%} = o(x)
n -+« n

defined by (305) and if 1lim np, = a where a 1s a positive number,

n->

then

it
D

_ | : )
Q ) ] .o .+ = ] —a 'a;'
(322) L Pl ey, = K= €

for k= 0,1,2,... .
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 In 1936 G. M. Bawly [482] considered the case where for each
n=1,2,... the random variables &1, & 55+-+> & are independent

and E{Enk} = ay and Yar{gnk} = bﬁk exist:.. He supposed that

2

(323) lim max b5, =0
n » «l<k<n nk
and
' n
( 324) _ B2= ] g <C

k=1 ‘

where C is a finite constant independent of n . Under these conditions
Bawl:;r showed that R(x) 1s necessarily an infinitely divisible distribution
ﬁchcion with a finite variance. The most general form of the character-

istic function of such an R(x) was determined in 1932 by A. N. Kolmogorcv

[ 280 1,[ 281]. By using a continuity theorem for infinitely divisible
distribution functions with finite variances (a particular case of Theorem
hh, 1) G. M. Bawly [ 482 ] gave necessary and sufficient conditions for
the validity of

) n
(325) nl%’*g{kzl_@“k- 8,) £ ¥ = R(x) .

In 1937 A. Khintchine [277 Iproved that if the condition (320) is

satisfied, then in (302) R(x) is necessarily an infinitely divisible
distribution function. The converse is obvious. Every infinitely
divisible distribution function R{(x) can appear as a limiting

distribution in (302).

In 1938 B. V. Gnedenko [ 526 lgave necessary and sufficient

conditions for the validity of (302) in the case where R(x) 1is an




VI-211

arbitrary infinitely divisible distribution function. This result of
B. V. Cnedenko is based on a continuity theorem for infinitely divisible
dis*tribﬁtion functions which uses Khintchine's representation of the

characteristic function of R(x) . (Theorem 41.1.)

In 1939 B. V. Gnedenko [527 ] published another paper which contalns

the same fundamental theorem as the previous paper except that in this
paper he used Le’vy's representation of the characteristic function of

R(x) . (Theorem 41.2.)

1

l
\In 1939 B. V. Gnedenko [ 528] published in detail the results

;
anmmounced in the previous two papers. In 1944 B, V. Gnedenko [ 531 ]

published an expository article which contains most of the results concernirig
the solution of the second problem formulated at the beginning of this
" historical discussion. Finally, let us call attention to the excellent

book of B. V. Gnedenko and A. N. Kolmogorov [260 ] which was first

published in 1949.

The problem of finding the limiting distribution of suitably
normalized sums of real random vardiables have been considered also for
various types of dependent random variables. In 1908 and in 1910

A, A. Markov [ 582 1,[58% ] extended the central limit theorem for a

sequernce oﬁ random variables depending on each other like the links of

a chain (Markov chains). Markov's results have been extended further

by P. Lévy [560], W. Doeblin [6401, N. A. Sapogov [670],[ 671 ]
Yu. V. Linnik [ 654,655 1, R. L. Dobrushin [639], S. V. Nagaev 1659]

and others. In 1922 and in 1926 S. N. Bermstein {4901],[491 ] extended

the central 1imit theorem for weakly dependent random variables.
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Further extensions of the central limif theorem have been given by
M. Loéve [ 5721,(575 1, w. Hoeffding and H. Robbins [647 ], P. H. Diananda
636 1,637 1, 638], a. Rényi [6621,[663] A. N. Kolmogorov [653],

M. Rosenblatt [6661]1 and others. Limit theorems for sums of interchangesble

random variables have been obtained by H. Chernoff and H. Teicher [633 ]

and H. Bihlmarn [7711,0772]1.

Limit distributions for sultably normalized sums c¢f randan vectors

have been studied by R. v. Mises [5881, S. Bernstein [#91 1, A. Ya.

Knintchine [ 97 1, P. Lévy (113 1, H. Cramér [503], E. L. Rvacheva [605 ]

and éthem .
|
I

45, Limit Distributions of Various Functionals

In the previous section we considered a sequence of mutually independent
and identically dlstmbuted real random variables El’ sece s gk, and
demonstrated that 1f P{ B < A} satlsfies certain conditions, then the
partial sums ¢ n- gl+ E,2+...+ £ n have a nondegenerate asymptotic

distribution as n - = , that is, there exists a nondegenerate distribution

function R(x) and sultable normalizing constants A, and B > 0 such

that
: g, — A
(1) lim P{ =5 < x} = R(x)
n-> o n

in every contlnuity point of R(x) .

In this section we shall cons:.der two extensions of the limiting

dlstrlbu‘clon (l)
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First, instead of considering the asymptotic distribution of [

as n - « , we shall be interested in studying the asymptotic distributicn
of Cvkt) as t >« where v(t) (0 <t < «) 1s a random variable which
takes on only nonnegative integers and which converges in probability to <
as t - m»; that is, lim P{v(t) >m} =1 for all m=0,1,2,... . In

_ general; we shall asgu;émfhat '{cn , n=0,1,2,...} and {v(t) ,
0 <t < «} are independent. waeverffgﬁz gégults can easily be extended
to the case where {v(t)} may depend on {cn} . We note that if
v(t) = [t] for 0 <t <=, where [t] is the greatest integer less than

or equal to t , then the»general results reduce to (1).

4

|

Second)we shall be interested in studying the asymptotic distribution
of W1=E$%’CP'“’5H as n +~ o where q#%,;r.“,;a is a
Borel measurable function (Baire function) of the random variables
Zos Lystees &y o If, in particular, L Y for n=0,1,2,..., then
this more general case reduces to the case investigated in the previous
section., In this section we shall consider variables such as n, =

max(gos Cls'°': Cn) > T = max(lﬁol,'ClI,-eo, |Cnl) » and nn = ICOI t

lCll+;‘°+lCni .

Swnis of a random number of random variables.

. In 1948 H. Robbins [165],[ 696] extended the central limit theorem

for sums of a randam number of random variables in the following way.

Theorem 1. Let £15 g2,..., Eeaeee be a sequence of mutually

independenf and identically distributed random variaples for which

)E{Ek} =3 éﬂé__yéﬁ{gk} =1 >0 exist. Let g, = £+ Eteut £
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for n=1,2,..., and 4, =0. Let (%) , Qs t < =} bea fanily

of randam variables taking on nonnegative integers only. Let us assume

2) | lim p{ S (£)-ut

< x} = o(x)
t > g/t

where ¢(x) is the normal distribution function and u and ¢ > O

are constants. If {g} and {v(t)} are independent, then

A . z - apt
(3) 1im P { v(t) <x}=o(x) .

t > ]

/(ac+bu)t

'Proof. By Theorem 44.6 we have

E—na
() {

;X} :CD(X) .
n—>°°“ b 'n

By using (2) and (4) we can show that the characteristic function of
Cr,'v )™ aut) /Y (fa202+ bzu)t tends to the characteristic function of
o(x) as t » = . Hence by Theorem 41.10 we can conclude that (3)
holds. It should be noted that while this proof is conceptually simple,

1t 1s quite involved in technical details.

In what follows we shall prove a more general theorem which contains
Theorem 1 as a particular case. This more general theorem is based on
same simple properties of the convergence of real randam variables. Let

us summarize bfié,f‘ly these properties.

Let us consider a probability space (,B,P) and a sequence of real

random variables En(m) (n=0,1,2,...) . Let &(w) be also a real
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random varisble. Then A = {u: lim.&n(m) = g(w)} 1s a randan event,
.. .- n—,&m

that is, A ¢ B , and therefore ?{A} is defined. If P{A} =1 , then

we say that the sequence of random variables '{En} converges to g

with probability one, that is,

(5) P{lim £, = g} =1.
nn-> o
It
®) - : lim P(lg -] <eb=1
n >«

foriall e > 0 , then ws say that the sequence of random variables

'{sfi converges to £ in probability.

Chvicusly (5) inplies (8), whereas the converse is not true in

»general;
th (5) and (6} imply that
(7] Hm P{g, < x} = P{g < x}
n-

in every continuilty point of P{t¢ < x} .

Conversely, if Fn(x) (n=0,1,2,...) and F(x) are distribution
fﬁnctions and
(8) Lin F_(x) = F(x)
n-w
in every continuity point of F(x) , then we can define a probebility
space (9;8{3) and real rendom variables £, (n=0,1,2,...) and £

in such a way that Ng{gn < x} = Fn(x) ri = 0,1,2,...) , P{t < x} = F(x)

N

i~

and Ng{lim,gn =g} =1,

N = e
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To see this let us suppose that @ = {w: O <w <1} , B is the
class of Borel subsets of {4 , and / E is the Lebesgue measure.‘ Ir
En(w} = F;l(m) for O <w<l and &(w) = F—l(w) for 0 <w<1,
then all the requirements are satisfied. We define the inverse of a

distribution function F(x) as
(9) Fl(x) = inf {u : F(W) 2 x}
for O <x < 1.
| If N‘lf{lim t:n=€)=l end P{lim nn=n}=1 » then obviously

n <+ « n - o«

(10) P{lim (€n+ nn) =gt} =1 and P{limgn =&n} =1.

n - o« 1 » >

If le{lim £, = £} and h(x) is a Borel-measurable function

n-+ e

(Balre function) of x , then
(11) LB{limh(e ) = h(e)} = 1.
n-— «

We can define the notion of convergence not only for a sequence
of random variables, but for a family of random variables too. In waht
follows we assume that {gt} is a family of random variables defined
for O -i— t < « and we shall prove a few properties of the convergence

of such random variables.

We say that {g,_; O <t < =} converges in probability to the

randan variables & if

(12) ClmB(le -] <€} =1
- . t > o> -




for a1l e > O . In this case we use the notation F,t=> £ as t + =,

Obviously, & = £ 1f and only if (gt— £)=> 0 a5 T+ o .

We note that 1f limec_ = ¢ where ¢, and c¢ are real numbers,

| £ C €
then cn:> c .

lema 1. If €. ¢ and n=>n 8 tre, then
(13) . Egtn 2 E+n and £.n=> &n

’ #
Prcof. Let B = &~ & and ne T N o By assumption we have

*
=3 0 and nt==}0. Forany ¢ >0

A

X ¥ % *
(%) Prlggtngl 2 e < PUggI*+Ing] 2 X <Plleg] 2 53 +

+P(n ] 2 »0 t
n. | > =} > as > o,
Sl =3
# ¥
Thus Ee + nt’:% 0 , which proves the first half of (13).

Next we shall prove that if gt=> g , then g12:==> g2 . First, we
* ¥
chserve that th} O implies that (gt)z: 0. Indeed for any ¢ > O
we have

1

)2;€}=P{lgt|;€§}+o as L » =,

(15) (e

* %
Second, we observe that Ep = O Implies that £g, = 0. Forany >0

and m > 0O we have

A -

(16)  Pilegy| z e} < Plel 2 mb + Plfey] 221

If m is sufficiently large, then the first term on the right-hand side
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of (16) is arbitrarily close to Q . If t » «, then the second term on

. %
the right~-hand side of (16) tends to ¢ . This proves that e = 0.
2 _ 2 2

% £ 2
Stnce & = £+ 280, + ()7 , it follows that & => £ oas t e,

If we write

¢ )2 ( )2
_ 't 0t t 't

and apply the relations proved previously, then we obtain that

2

o 2 )

—— + - - 1)

(18) gtnt,_;; (g n) 4[[(5 ¥ £n
which completes the proof of (13).

" Lemma 2. If g = & and if bh(x) 1is a continuous function of x ,

*"then

(19) h(g.)=> h(g) .

Proof. Since h{(x) is uniformly continuous in any finite closed
interval, for any € >0 and m> 0 there is a 6 > 0 such that
lh(x) - h(y)] < ¢ whenever |x~y| <sand |x| <m and |y gm . On

*
the other hand for any ¢ >0 , m>0Q and & > O we have the inequality
. ) ¥ | *
(20) P{lh(_it)—hkﬁ)l‘ > e} < P{lg| >m8} + Pllge~ &l 26 #
| * ¥
(g )-n&)| ze,le]l £ ms” , [g-g] <87} .

* v
If we choose O < & < §, then the last tem on the right-hand side of -

{20) is 0O . The first term on the right-bhand side is arbitrarily close ..
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to 0 if m is sufficiently large and d* is sufficiently small. The
second term on the right-hand side of (20) ftends to O as t - « for any
6* >0 ,4 This proves (19). We note that (19) is not true in general for
measurable functions h(x) .

Temma 3. Let us suppose that 1lim h (x) = h(x) for every x,

t, -»> o©
he(x) and h(x) are continuous functions of x and the convergence is

wniform in every finite interval. If Et‘-‘:} £, then

(21) h (8.)=> n(g) .

Proof. By Lemma 2 we have h,(gt)#ﬁ;» h(g) . Thus it is sufficient
to prove that

(22) he (&) - h(g )=» 0 .

By assumption for any € >0 and m>Q there is a t > O such that
[h (x) = h(x)] <e if [x] £m and t 2 t . On the other hand for any

e>0,8>0 and m >0 we have the inequality

P{n () - nlg )| 2 e} ;Nlj{lgl zm-8} + P{lg -] 2 8}t
(23)
+ PO (g) - h(e)| 2 e, [E]l sm6, g ] < 61
Let us choose O < ¢§ <m . If m is sufficlently large and § 1is
sufficiently small, then the first term on the right-hand side of (23)
is-arbitrarily close to zero. For any & » QO , the second term on the
rlght-}*land "lde of (”?) tencL to O & tse. If t>1, then the

last term on the rlgtlt-hand side of (23) 1: zero. Thils proves (21).
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Lermma 4. Let {n(n) , n=0,1,...} Dbe real random variables for

which P{lim n(n) =0} =1 . Let {v(t) , 0 2t < =} be discrete random
n -+ :
variables taking on nomnegabive integers only and let w(t)=> « as

t > « , that is

(24) 1im Plu(t) 2m} = 1

£t >«

for gli m=0,1,2,... . Then we have

(25) n(v(t))=>0 as t -+ =,

Proof., For any € >0 and m> O we have

|
L
i
i
I
|
|
i

v

P{In(v{t))]| 2 e} = ] P{|n(n)| 2 ¢ and v(t) = n}
™~ n=0 "

(26)

v

<P{u(t) <m}+P{sw [n(n)] 2 e} .

M<h<eo

Since P{lim n(n) =0} =1 if and only if swp Inn)]=>0 as m~> o,

n-+w m<n<e

it follows that the second term on the right-hand side of (26) is arbitrarily
close to O when m 1is large enough. For any m > O the first term on

the right-hand side of (26) tends to O as t + « . This proves (25).

Now we are in a position to prove a fundamental theorem which was found

in 1955 by R. L. Dobrushin [ 678 1.

~ Theorem 2. Let z(n) (n=0,1,2,...) be real random variables

-.and let \_)(_t) (@ £t < =) be discrete random variables taking on non- .

negative integers only. Suppose that O <8 <a , b > 0 and
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5 . a
{ _L_(n;) "883’1_;}(} = F(x)
bn

27 '

n >

P
-~
N
=]

in every continuity point of the distribution functicn F(x) . Further-

more; let us suppose that 0 < 8§ <y ,d >0 and

(28) lim P{ M*ﬁn < x} = G(x)
t > o dac

in every continuity point of the distribution function G(x) . If {z(n)}

=

and {v(t)} are independent, then

| : A
(29) 1im p( SO Z B8 5 = p(x)

| t > nt T
in every continuity point of the distribution function H(x) . The constants

g, h, x, u and the distribution function H(x) are given in Table I where

z and v are independent random variables for which P{g < x} = F(x) and

LR

P{v < x} = G(x) .

TABLE 1I.

a,C,0,8,Y,8 g A h U H(x)

(a=1)y+s<By | 500 oy be? BY Ply < x}
Ja#0,c#o| | o ~T T

A... +8= : ' -

(amDIvH6=BY | 0o® | oy 1 BY P{be®, + aac®lav < x}

a #0, c #¥ 0. : i

(a-l)y+6>6~; ac® | oy aaca-ld {o~1)x+8 |- P{v < x}

a#0,¢c#0 ) - ’
a=0,¢c#0) 0 } -~ ¢ be" | By ; Plg < x}

b =0, ¢c=0] 0O - de B6 % P{cve < x}

A #0,c=0{0 | - | a® as | POV < x)
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. Proof, Let us ccnsider the probapility space. (Szl, Bl’ M{?l)_ where

Q. = {w;: 0 <w 3

1 1< 1, 1 is the class of Borel subsets of ¢, and
A

1
Pl is the Lebesgue measure, and defire a sequence of random variables

% # .
z (n) =¢ (n;ml) (n =0,1,2,...) satisfying the following requirements:

[ 67]

# )
P{z (n) < x} = P{z(n) < x} for n=0,1,2,... and all x and %

® a
(30) P{lim &AL (n) "Ban
n > e bn

.::z;}:l

where ¢ = c(.ml) is a randomn variable with the distribution function

P{z < x} = F(x) .

|

ilLet us consider also the probability space (Q2 R 82, £2) where
O Tae Subss ,
2, {w2.0 w, < 1}, B2 is the class of Borel subsets of 2, and P,

: %
is the Lebesgue measure, and define a family of random variables v (§) =

# : %
v ( t;wz) (0 £ £ < ») satisfying the following requirements: Pl (t

pa—g

= k}

= P{v(t) =k} for k=0,1,2,... and all t >0 and
*
S Y
(31) 2=t s e £
dt
where v = v(ma) is a random variable with the distribution function
P{v < x} = G(x) .

" Now let us denote by (Q,“B‘,‘E)' ‘the product probability space of
(Ql’

O<uwy <1,0<uw,c< 1} , B = By XE’>2 1s the class of Borel subsets of

By» Py) and (a,, B,, P)), that is, o= 2 X 9, = {(wy, wy):

e, and P = P1 X P2 the two dimensional Lebesgue measure. On this épace _
® * %

Jet us define ¢ (ni = g (n; W mz) =z (n; wl) for all w,, & =C(wl’ ,*»,2) =

c(wl) for all w, , v (£) = v (t; @y wz) = v (t; w2) for all w, , and

v o= v(wl? m2) = v(wg) for all wy .
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: * */ '3
By this definition {z (n)} and {v (t£)} are independent and
r (v {t)) has the same distribution as ¢v(t)) for all t > 0 . Further-

more, ¢z and v are also independent random varisbles.

If we write

o * a
(32) n(n) = C_(_rl-;é@_n__ -z
bn”
and
*
(33) : o) = L8 meth
at®

then P{limn(n) =0} =1 and w(t)=>0 as t >« .

n - «

Accordingly, we have

*
(34) z(n) = an® bnf(rn(n))
for n=0,1,2,..., and
. * v 8 .
(35) v (8) = ct¥+ dt” (viu(t))

for t > 0 . Hence we obtain that

g*(\)*(t)) = afctV+ dtd(v-l-m(t))]a +
(36)
+ blomn (v (B et +atd (vho(E ] ®

for t >0 where ¢ and v are independent random variables for which

Plz < x} =F(x) and Plv £ x} =G(x) .

- If we choose g, h, A, u according to Theorem 2, then we can prove

that in each case
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(37) SO Sy g e
nt*

where x 1is a random variable which depends on g and v and the para-
meters. The proof is based on the four auxiliary theorems. We note that
in each case v (t)=i> w a5 t » « and therefore by Lemma 4 we have

¥
n(v (£}))=> 0 as t > =,

# % .
Since ¢ (v (t)) and ¢(v(t)) have identical distributions for all

t >0, it follows from (37) that

(38) Lim py &) -

" < x} = P{x < x}
t > ht -~

in every continuity point of P{x < x} . Thus H(x) = P{x < x} and this

completes the proof of the theorem.

We shall mention in detall the proof of the second statement in Theorem
2. If we suppose that a #0 , ¢ #C and (a~l)y+s§ = By , then by (36)

we obtain that

% * »
+8Y £BY =
(39) L8
+ oGy (©)) 110+ Lo (wru(e )
ct

for t >0 . Since w(t)= 0 as t > » , by Lemma 3 we obtain that the
first term on the right-hand side of (39) converges in probability to

» % . _
sac’dv . Since v (t)=r » &as t >« and P{limn(n) = O} = 1 , by
B - ) n->-w
Lemma 4 we obtain that n(v (£))=> 0 as t » » , and therefore the second

term on the fight—hand side of (39) converges in prcbability to chg .
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Thus we have

£40) x = aac’dv + bebr

which proves the second statement oif' Theorem 2. The remaining five state-

ments can be proved ir: a similar way.

Theorem 1 can be obtained as a particular case of the secord state-

ment of Theorem 2.

Theorem 2 is in fact an invariance theorem. According tc this theorem
the asymptotic distribution of z(v(t)) depends only on the asymptotic
distributions of z(n) and v(t) as n-> = and t + « respectively.

If we replace {z(n)} by {c*(n)} and {v(t)} by {v*(t)} where g%n}
has the same asymptotic distribution as z(n) ard v* (t) has the asymptotic
distribution as v(t) , then g{(v(t) has the seme asymptotic distribution
as c*(v*(t)) . We can choose {z;*(n)} and {v*(t)} in the simplest way as

fcllows. Let

%
(41) z (n) = an” + bnsg

for n=0,1,2,..., and

(42) v (£) = ct¥ + dtav

for t >0 where z and v are independent random variables with
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distribution functions Pi{g < x} =F(x) ard Plv £ x} = G(x) . In this

% %
particular case we can determine the asymptotic distribution of ¢ (v (£))

as t » « without difficulty.

In some cases we can generalize Theorem 2 by removing the assumption

of independence. For example, if instead of (27) and (28) we assume that

) - an® - otY
(43) 14 py S X, 28 = y3 = ik, )
n-> bn dat
t > o

in every continulty point of the distribution function F(x, y) , and
if we can prove that the limiting distribution (29) exists and depends
only on (43) , then H(x) can be obtained in exactly the same way as in

Theorem 2 except that now -
(4l) Plg <x, vyl =Fx,y)
A

where F(x, y) 1s given by (43) .

We note that Theorem 2 can easily be exterded to

£~




(45)
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more general normalizing functicns than power functlorsSwithout changing

the method of proof. Let us conslider the following example of this nature.

Iet us assume that E1s Eoseees Enseve is a sequence of mutually
Independent and identically distributed real random variables which belong
to the domain of attraction of a nondegenerate stable distribution function
R(x) of type S(e,8,c,0) where o #1 or a=1 and B =0 . Let
z(n) = gl+ 621%...+ £ j_for n=1,2,... and z{(0) =0 . By Theorem U4.6

and Theorem 44.8 we can conclude that

(46) lmj&w’{-‘E-i—r/l—)-—-'-'-—n-&l < x} = R(x)
n-+a= n’%(n)

vhere a =0 if O<a g1l and a=E{g ) if 1 <a <2, and p(t)
defined for t 2 O 1is a nondecreasing function of t for which 1im (%) =

t 5> o
and

(47) 1im "(f& =1
t > o

for all w > O . (See Problem 46.12.)

Theorem3. Let v(t) (0< t< «) be discrete random variables taling

o

on nonnegative integers only and suppose that

t)
t

~~

(48) 1ﬁn£{"

> @

<X} = G(x)

in every continuity point of the distribution function G(x) . Let us

s+ are mutually independent and identically

suppose that El’ 52,..., ‘En

distributed random variables for which (46) holds. If {e:n} and {v{th

are independent, and G{(0) = O , then
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(t) = ay(t)
tl/ctp /

< g
1

(49) 1in py &0

S_X}"—P{;
t > B "~

X}

@l

in every continuity point of the distribution function Flzy <x}. In

A

(49) ¢ and v are independent random variables for which P{y < x} = R(x)
Faa )

and Plv < x} = G(x) .

Proof. Let us define the random variables ;*(n) (n=0,1,...)
and v*(t) (0 £ £ < =) 1in such a way that {c*(n) , v*(t)} and {¢(n) ,
v(t)} have the same ~- . joint distribution function for all
n= Q,l,2,.., and t > 0 , and furthermore

1

| %
(50) ! AE{ME._(_I})_:.‘-E=C}=]_
n - on” %(n)
where FP{g < x} = R(x) and
*
(51) X—,E—Q‘é v a8 t -+ e

where P{v < x} = G(x) and ¢ and v are independent random variables.

By (50) we can write that
' *
(52) ¢ (n) - an = 0% (n) (ghn(n))
where P{lim n(n) = 0} =1 and by (51) we can write that
n-+

(53) v () = t(vtul(t))

where ow(t)=> 0 as t » » . Thus we obtain that

fr

sy EOTE) - at() | e (6)

SV A [+ a0 )y + w(8)1°
Y
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®,
In (54) w(t)=>0 as t +» . ByLama 4 n(v (£))=> 0 as t » =,

We shall prove that

.
(55 9-(—“—5%15-;1 = 1 as

4+
[0 <]
v > 3

and thus it follows fram (54) that

1

" * 1
z (v (£)) - av (t) =

(56) 1% (t) =

as t » «, This Implies (49) which was to be proved.
|

!It remains to prove (55). Forany € > 0 and m > O we can write
|

that
% * *
£57) ff"o—(—:-(%z‘)- -1f>e} < P{ y__é?__)_ < r—]r-f} + B .\.’._EE_). >m} + ) E{v*<t) = n}
where nefy
(58) A = {n: 27(%%- ~1{>e and ;—l;n <mt}

Iet us assume that x =m and x = 1/m are continuity points of G(x) .

If t + » , then by (51) the sum of the first two tér'ms on the right-hand
side of (57) tends to N?{v < %} +~13_{v > m} which is arbitrarily close to
zero for sufficiently large m values. By (47) we can conclude that for
any m +the set A’c is empty if t 1is sufficiently large. This proves

(55).

- We note that in the particular case where op(n) =1 for n= 1,2,..."

bTheor'emE reduces to the fifth statement of Theorem 2.

We note also that if we do not assume in Theorem 3 that {gk }
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and {v(t)} are independent, and if

(v - (
(59) 1m pe S8lmna o B oy o gy g
. o 1/0& N t =
Il > e n o(n)
t >

in every continuity point of the distribution function F(x, y) , thenin some

(49) remains valid except that .  Plg <x , v <y} = F(x, y) .

If in particular

(60) WE) oy gas £ oo
|

wheréz q 1s a positive constant, then in the result mentioned above v = g
| :
(constant), and consequently Theorem 3 is valid without the assumption of

indepéndence. In fact this particular case can be proved directly as.

follows.

Theoremdé. If v(t) (O <t < «) are discrete random variables taking

-~ on nonnegative integers only, if

(61) 2—(%)*2‘-’-}(1 as t -

where q 1s a positive constant, and if El’ g2,..., E’k"" are mutually

independent and identically distributed random variables for which {(46)

holds, then
(62) li:m'\g{ C(\)(g}g - av(t) < x} = R(X)
t>w  (qt)” " p(t)

regardlesss of whether {v(t)} depends on {gk} or not.
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Proof. In proving (62) we may assunie without loss of generality that
a=0. Let us define ¢(t) = ¢(n) for n <t < ntl and intrcduce the

following events:

Zro_s(e))
A (x) =1 v l < X},

(at)™ "p(t)
A (D) = C(ifj) <x}
(qt)™ "o (t)
B, = {|v(t) - q] < 2t by |

and
Vi — ] l/a
63) c, =1 max lz(n) - z(qt)] < e(at)™ “p(t)}

|n-qt | <«

for ¢ >0 and t > 0 . We can easily see that

Ng{At(x) } < P{A (x)} < P(A (x)B, C } 4 D{B }+ P{C }

and

P{A:(x-e)} - P(B } - P{C.} = Plhy (x)BC.} & P{A (x+e)}

hold for ¢ >0 and £t >0 .

Since 1lim p(gt)/p(t) =1 , it follows from (46) that 1im P{A (x)} =

t > o t~)—oo

R(x) for every x . By (61) we have 1lim P{B_} = 0 , and we shall prove

presently that

1im lim sup P{C 1 =0.
(64) e >0 t +»

Thus it follows that  1im P{At\x)} = R(x)} for every x which proves {62).
t >

Iet

D (e) = {]c(@)] > en®® 1y

p(m) for same n =1,2,..., (20 ¢
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ot

Then we have P{C‘—t} < 2P(D ()} If mgt <mtl and m 1is sufficlently

large. We shall prove that

it
&

(65) 1im 1im sup P{D (e)}
>0 m-> e

and this implies (64). If in (46), R(0)

il

O or R(0) =1, then (65) is

trivially true. If O < R(0) <1, then le

<t

= Inf{P{z(n) > 0} and P{z(n) <0} for n=1,2,...}.

Iet us prove that r > 0 . Since limj{c(n) > 0} = 1I-R(0) > 0 and
’ oo e

lim P{z(n) < O} = . R(0) > O , therefore r = 0 would imply that P{z(n) z O} =

n—)oo

0 or Plz(n) <0} =0 for some n =1,2,... . In the first case
necessarily R(0) = O and in the second case R(0) =1 . This contra-

diction proves that r >0 if O <R(0) <1 .

If 0<R(@)<1,e>0C and m=1,2,..., then we have

at+l 1/0

(66) PO ()} 3 Plle@n ] > e m Tp(m))

To prove (66) let us write z = ¢ ml/a m) and N = [2m ¢ l] , and denote
by T the smallest n = 1,2,... for which |z(n)] > z . Then we have

N
P{|z(n)| > z for some n = 1,2,...,N} = J [P{r=k, ¢(k)>2z} + P{r =

N

=k, (k) < -z}] < l I [Pit = k, £(k) > 2} P{z(N)-c(k) 2,0} + P{t =
k‘l
1 N
= k, z(k) < —z}P{c(N) z(k) <0 };; Y Plr =k, |c(N)]| > 2} =
k=1""

]
Y1 >z}
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which proves (66) . By (66)

lim sup P(D, (e)} < —-[1 - R(—2—) + R(~ =) ]
m e (2e)™° P
and if € + 0 , the right-hand side tends to 0O . This proves (65).

We note that Theorem 4 can be generalized in the following way.

Theorem 5. If v(t) (0 <t < =) are discrete random variables

taking on nomiegative integers only, if

(67)]% B%Zév

as ti» o where v 1s a positive random variable, and if, gl, 52,..., gk,...

are mutually independent and ldentically distributed randoum variables for

which (46) holds, then

(68) lim P{ ﬁ(\’(’j/)i av(®) ¢y = [ RO £ 9)

regardless of whether {v(t)} depends on {g, } or not.

Finally, we shall give a brief historical review of the problem of
finding the asymptotic distribution of a sum of a random number of random

variables.

In 1938 W. Doeblin [ 679] proved Theorem 4 in the case where

R(x) = ¢(x) , the normal distribution function, and p(n) = 1 . In 1948

H. Robbins [ 165 ], [696 ] proved Theorem 1. In 1952 F. J. Anscambe [676 ] proved.
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Theorem4 . In 1955 R. L. Dobrushin [ 678 ] proved Theorem 2, It should
be notéd that while Dobrushin's results are correct in his proof in one
place weak convergence should be replaced by convergence with probability
1. In 1957 the author {€98 1,[ 6991,[700 ],[ 7011,[702 ] found the
asymptotic distribufion of sums of a random number of random vardiables
where the number of variables depends on the variables themselves. In
thé papers [698 1,[ 699 ] direct methods are used, and in the papers
[700 ];E701 1,[702 ] Theorem 2 1s used. In 1957 A. Rényi [692 ] showed
that a result of the author [698 ] can be obtained by a theorem which,
as it turned out, was found first by W. Doeblin [679 ] and which is a

4

particular case of a theorem of F, J. Anscombe [ 676 1.
!

In 1960 A. Rényi [693 ] proved that if g(n) = g+ gyb...+ ¢ for

n=1,2,... where {é;n} 1s a sequence of mutually independent and identical-~
ly distributed random variables for which E{£ } =0 and E{gi‘} =1, if

' {\)n s n=1,2,...} 1s a sequence of positive random variables taking on

integers only and if

v,
(69) = vas noo

where v is a positive discrete random variable, then

c(vn)
(70) lim P{ —% < x} = o(x) ,
n->« v,

where. #(x) is the normal distribution function. In 1962 J. Mogyorddil 689 ]

and in 1963 J. R. Blum, D. L. Hanson and J. I. Rosenblatt [677 | proved.that
if in (69) v 1s an arbitrary positive random variable, then (70) holds un-

changeably. In 1964 H. Wittenberg [ 706 ] extended the above result to the

case when the random variables {gn} belong to the domain of attraction
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of a stable distribution function and (69) holds with a positive random

variable v . (Theorem 5.) -fig\\\\
——
- T
’ . - For other extensions of

the results mentioned sbove we refer to M. CsSr,gS/_ and R. Fischler [ 681 ].

Theorem4 has been extended by J. Mogorc;di [688 ] for non-identically
distributed random variables, and Theorem? has been extended by H. Teicher

[ 703 ]for vector random variables.

i’Ihe Maxdimun of Sums of Independent Random Variables. Our main interest

is tc% find the asymptotic distribution of the maximum of partial sums of
mutually Independent and identically distributed real random variables.

Wé shall assune that gl, g2 seees gk"“ 1s a sequence of mutually independent
and identically distributed random variables for which AE{ e < x} = F(x) .

let ¢

n

- ’ - o] = 3 i
F,l-l- €2+_"'+ En for n=1,2,... and ‘;O 0O . We shall consider

the random variable

(712 N = max(ggs Tyseees £)

for n =0,1,2,... and our aim is to find the asymptotic distribution of
n, 8 n->e«. In Chapter IT we gave methods for finding the distribution

of U for n=1,2,... . In Section 44 of this chapter we found the
asymptotic distribution of g, @ N> In fact we proved that if

F(x).. belongs to the domain of attraction of a nondegenerate stable
~distribution function R(x) of type S(a,8,c,m) then there exist constants:

An and Bn > G such that
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4
(72)

T > o

We can choose B_,1

lim P{ ——g— <

1l 11 \

x} = R(x) .

n

(n =0,1,...) 1in such & way that

lim B = » and

1+ o n

(73) B =n® o)

where

(74) 1im 9£%£%—= 1
n -+« 9\

for a1l w > C . (See Problem

]
{

showfthat if the above conditions are satisfied then "

distribution as n' = «

Beside (71) we shall also cansider other. functionals defined on

sequerice of randam variables '{;n

46,12, )

} .

has an asymptotic

In this section we shall

the

First)let us consider the case where {gk} is a sequence of mutually

independent and identically distributed random variables for which E{gk}

and gﬁiai} =1 , Then we have
E
(75) lim P{ —-'j_X} o(x)
n-« n
for all x where
.Lf.
(76) o(x) = —1— e 2

is the normal distribution function.

Now let us suppose that {g(u) ,

0 £ u < »} is a Brownian motion

process, that is, a family of random variables for which P{g(0) =

L

=0
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Pig(utt) - £(t) < x} = o(x/Yu) 1if u>0 , and t 20 and &(u,)-£(w),
E_(ug) - & u.l) seees E(U) = E(y ;_]) are mutually independent random variables

for any O;uo SUp < U, Cess < U and k= 2,3,... .

Forany u>0 and n=1,2,... let us define

T,
(77} g () = 2l

/n

Then {gn(u) s O < u < =} 1is a stochastic process for which P{gn(o) =0} =1,
(781 lim P{g (t+u) - g (t) < x} = o(=)

n->w ! Yu
* - - - . 3 i - {1
if u>0 and t >0 and t:n(ul) En(uo), gn(u2) gn(ul),..., En(uk) gn\uk_l)
are mutually independent random variables for any O = Ug < Uy < Uy <eee <U

and k‘,=;2’3’“‘ and n = 1,2,... .

By (78) it follows immediately that

nlipggjan(tl) < x5 £,(85) £ %5000, £ (8) 2x )=
(79) |
for O ;tl < t2 <eue <tk and k= 1,2,..., that is, the finite dimensional

distributions of the process {gn(u), 0 < u < »} converge to the corresponding

finite dimensional distributions of the process {g(u) , O < u < «} ,

By (79) it follows that if a(u) and b(u) are two real functions

defined for O su <t and O_itl,stz €ivs < tk__<=t where k = 1,2,...,

then




VI-237

1m Plalt,) < £ (t;) £b(ty) for & =1,2,...k} =

n -+

(80)

=3wﬁ&);gﬁ&);b&9 for i =1,2,...,k} .

By (80) we would expect that if {a(u) < g(u) £ b(u) for O < ug t}
is a random event concerning the process {g(u) , O < u < <} , then we

havé

1im Pla(u) < g, (u) <b(w) for 0 cguxgt)=

n - «

(81)
=£{a(u) < g{u) <blw) for O <cu<tl}.

i

i
|

Ir we: suppese that the functions a(u) and b(u) (0 <u < t) behave

r'eaSSnably well and 1f we suppose, for example, that the process {£(u),04u<oo} is
separable (see Section 47 ), then {a(uw) < &(u) <b(u) for 0 <u =<t}

is a random e_vent and therefore the probability on the right-hand side of

(81) is defined. Even if the right-hand side of (81) is defined, we are

still left with the problem of whether (81) is true?

This problem was solved for the first time in 1931 by A. N. Kolmogorov

(744 11,0745 1. Actually Kolmogorov considered a somewhat different case.
He did not assume that the random variables {F,k} are identically distributed,
but assumed that Liapounoff's conditions are satisfied for {gk} . In this
case too % has an asymptotic normal distribution as n » « ., Under these

- conditions Kolmogorov proved that if a{u) and b(u) (0 gu<t) satisfy
. Sor_ne_differentiability conditions, then (81) holds and the probability on

the right—hand side of (81l) can be obtained by solving the heat-equation




2
(82) aflu,x) o 1 a7f(u,x)
b u 2 3x2

in the domain {(u,x) : O <u <t , a(u) < x < b(u)} with the boundary

conditions:

]
o

flu,alu))
(83) f(u,bu))

for O<u<t,

i
(&

for O<u<t,

£{0,x) =0 for x#0 .

The probability (81) can be obtained as the integral of f(t,x) from

x=a(t) to x=0b(t) .

|

‘In 1946 P, Erdds and M. Kac [ 730 ] proved the following result.

" Theorem 6. Let Z15 Enseses Eype.+ be mubually independent ard

d

&

identically distributed random variables for which E{g } =0 a

. 2- - o ~ . ) - - .
E{gn}—l. Let ¢ =¢gt+t i tet g for n=1,2,...,07=0 and n

max(;o, Lyseees cn) for n=1,2,... . Then we have

p( 2

(8W) 1im P; < x} = G(x)
n-+e vn
where
2¢(x) ~1  for x>0,
(85) G(x) =

0] 592_ x <0 .

(]

-Proof. If x<O0, then G(x) = 0 . Let us suppose that x

.
ﬂ \/

First we shall prove (84) in the particular case when

1

(86) Pl = 1y = Plg = -1} = 3
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for k= 1,2,... . In this case by the theory of random walks we obtain

easily that

A

(87) CPln <a} = P

Pz, al} _E{cn < -a}

for a=1,2,... . Ifweput a=a, [x/n] in (87) and let n ~ « , then

by (75) we obtain that

‘ o 'n ‘n
(88) lim P{ — g x} = 1im P{=x < — < x} = &(x) - o(=x)
n->w» ¥n n-> o n
for x > O which proves (85) in this particular case.
1
!
: . ¥ % ¥ a
gNext, let us suppose that gl, E‘Z" .oy gn,. .+ are mutually independent

* # ¥ % *
random variables for which NP;{EH x}=o(x) . Let ¢ =g+ E5 touut g

= n n
% R £ % %
for n=1,2,..., 2,=0, and U =ma.x(co, Zyseens cn) for n=0,1,2,00s .

Define
(89) G (x) = Pln, < x/n}.

Now we shall prove that for every k = 1,2,... and ¢ > O we have

the inequality

* :lL . : X L] &l " * . F”
(90) Pin, < (x-¢)Vk} - > < liminf G (x) < lim sup G (x)Pin < 0k} .
~ ek no>e : no : ~

For every n = 1,2,... and every k = 1,2,... let us define

1Y = w.— | 4 = O -
(91) n, (51 G L,l,...,k}
and write |
(92) G (%) =N£>{max(cno, t;nl,..., Z;nk) < x /n} .
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By (75) we obtain that

AY 5 ~ 2 —— ® ¥ *\ 1
(933 nL_J:nwunk(x/ = Plmax(zy, 27,000, ) <x vk 1.
For by (75) we have
nlimé}“{cnl < %, cnz- cnl S x M., r,nk- an-l <xMl=
= \ g 4 ,T < v A
@(XlrfE,@(X?/E)...@(Xk@ Nlj{gl;xl/i s g2 =<=X2Vk,..., EK < kk 1
* * * * * .
= Plgy _<__x1v'l'€ 5 0o = T _<__x2/l'€,..., E Tl ;xk/E}

for alny Xys Xpseoey X o This implies (93).
|

let
(95) Q.(x) = Plgy < x/n, zy < x/h,..., L. <%0, g, > A} .
Then
)
(96) (x) =1-G (x) < 1.
r=lQr n a

For n;, <rz<n. ., (1 =0,1,...,k=1) we have

Qr-(X) =~Jé){""O ;g/ﬁ,..., °p-1 < %/, p 7 x/n, ian_l_l" Crl ze/nl+
(97) -
+P{z, < X/M,..., T £ ¥/, z, > /A, icni+1_ gl < e},

For any e > O the first term on the right-hand side of (97) is

98 Q0 Pl -] zeM Qx5
B ~~ i+l ke
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which follows from Theorem 41.3 being E{(¢ N, DRSS N
Thus from (97) and (98) it follows that
? 1
I-6x)= e&x £ = +
n r=1 r k£2
n-1 _
(99) + ) ¥ Plgy < X/H’“"Cr—l s xm, ¢, > x/n, lcn. -z;rl<e/r_f}
i=0 n,<r<n., i+1
i itl
<A+ Plmax(c , z ) > (x-e)/n}
= 5 n, 5 By 30t G s
ke 1
that is,
|
: 1
CLOO? 1l - Gn(X) §= '-L;E—g‘ + 1 - Gnk(X-’e)
| ‘

for any x and e > 0 . Since evidently Gn(x) < Gnk<x) , it follows

that

1 -
(" - -— <
(101) G e g) ke2 < Gn(x) Gnkgx)

for all x and ¢ >0 . If we let n-+ e« 1in (101), then we obtain (90).

If we apply (90) to the random variables (8€), then we obtain that

E < G(x) < P{** < x/k }

Ke e

(102) P{n; < (xe )k } -

where G(x) is given by (85). If we replace x by x+e in (102) then
we get -

%

o S XK } < G(x+e) + —-l-;;

(103) a(zx) < Pin
" ke“

and hence by (90), (102) and (103)
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1 1

5 L lim inf Gn(x) < lim sup Gn(x) < G(xte

(104)  G(x=e)=- 3
ke n-» = n->o ke

m
St
+

for any x and € >0 and k=1,2,... . et k» e and € +0 in
(104). Since G(x) 1is continuous, we obtain that

{105) 1im Gn(x) = G(x)
n >

for any x where G(x) is glven by (85). This completes the proof of

the theorem. -

' In the above proof 1t has been demonstrated that if ‘gl s 52,. oo En’“‘
are I%Iutually independent and identically distributed random variables for
which E(g} =0 and E(£2} = 1, then the limiting distribution (84)
exists and G(x) does not depend on the distribution function Plg, < x! .
In the particular case where & has the distribution (86) it is easy to
show that G(x) is given by (85) and consequently (84) holds with the
same G(x) for all sequences {En} which satisfy the requirements stated

above.

From the above result i1t follows immediately that if {gfu) , 0 < u < =}
is a Brownian motion process for which E{i(u)} =0 and E{[E(u)]g} = u
for u>0 , then
, . kt Y = 13 - _ \
(106)  1lim P{max &(=%) < x/t} = Jim P{ max £(k) < x/n}= G(x)
n +> « 0zkn n >« 0<ks<n
for all x and t > 0 where G(x) is given by (85). If {g(u) , 0 g u < «}

is a separable Erownian motion process, then it follows from (106) that
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(107) P{ sup £(u) < %k} = G(x)
™ 0gust

for 81 x and t >0 .

Similar invariance properties can be proved for other functiocnals of

the séquence gl, 52,..., £n, .

If we suppose again that El, 62,.. .y En" .. 1s a sequence of mutually
independent and identically distributed random variables for which E{gn} =0
5 ’ ]
] { 1 = 2y 7= 3 : = . T ¥ = ? .
a_ir.d f“_gn 1 and we write h F_,l+ £2+...+ gn for n= 1,2,... and

¢ =.0 , then we have

|
|
I
|
|

nlimg.{max(l‘:ol:lcll:“- siCni) ;Xv/ﬁ'}=
. 22
(108) _ (2Q+l) m
RRRILE AN ERY 82
= T (-D%e(okxtx) = — ] e
. ) TT ,j=O 2J+l

for x >0 . P. Erdds and M. Kac [730 Iproved that the limiting distribution

(108) does not depernid on the distribution of ¢ n and the particular case

(86) yields (108). See also A. Wald [ 766 land Theorem 37.2 .

In the above case P. Erdds and M. Kac [ 730 ] also found the limiting

distributions
: o’
(109) lim}j{z:z + ci S T ;n2x1
n > 0 n
and
. . ol
(110) ]imNEj{]co|+}cll+...+}cni ;n3/“x} .
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In 1947 P. Erdds and M, Kac [731 ] proved that if a(n) denctes the

number c¢f positive partial sums in the sequence C1s Toseees Lo hen

A(n.).. < X} = 2

At < arc sin/x
n T

(111) lim P {

n > o«
for 0 <x <1 . This limiting distribution can be deduced from a result

found in 1940 by P. Lévy [ 292 1.

Further examples for invariant results have been given by A. M. Mark
[748 ] and R. Fortet [734 ] .

!
In 1951 M. D. Donsker [ 7p8 lextended the above results for a large

class of functicnals defined on the sequence of random variables s Cyatees

Cpoeee - Donsker's result can be formulated in the following way:

Let El s Emsesey En" .. be mutually independent and identically

distributed real random variables for which N}gl{lgn} 0O and ﬂE»{gi} = 1.

0 and define

[}

Iet ¢ =

n gl+€

2+...+ gn for n=1,2,... and 20

C[nu] + (nu - [nu])g[nu+l]

/o

(112) £ (u) =

for u 20 . Then the stochastic process {g:(u) s O 2u <=} has
cont:inuous sample functions and the finite dimensional distributions cf

the process {E:(u) , 0 <u< =} converge to the corresponding finite
dimensional distributions of a Brownian motion process {g(u) , O < u < o} ,

that is,
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% * ) _
1im P{En(tl> = Xl) gn(tz) = ng'* sey tn(tk) < Kk

n > <«
(113)

Ple(ty) 2%y, 8(,) £%5,0.0 E(E) 23]
for any O ;=tl < t2 <eas <tk and k =1,2,... . This follows immediately
from (79) because E[nu+l]/ﬁ;ﬂ%>0 as n-+~ forany u>0

111 space

To present Donsker's theorem we shell first define a probability
Wiener [767 1.

(Q B P) whlch was introduced in 1923 by N. Wier

the sample space, be the set of centinuous functions defined
C[o, t] for denoting

et @,
on tﬂe interval We shall use the notation

this Jset of functions.
the class of random events, bte the smallest o¢ - algebra

(0, t]

let B,
which contains the sets
(114) Alu,x) = {f : f(u) £ x and f e C[O,t]}
for all u e [O,t] and x & (=, =) ,

Let us assume that

I'd \ -
P{A(tl, xl)A(tz, X,y ”'A‘tk’ xk)} 4 ,
(115) LB Y
L 2 . t.=-t
l =1 . ._1
ffoeo [ e T+ 404 dy,dy,. . - dy,
A @R (bt ) () T |
: =12, 0
for, 0=ty <ty <ty <...<ty k =1,2,...) and all real’ Xy, Xgyeees X
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By Carathéodory's extension theorem (see Theorem le2 in the Appendix )
we can prove that there i1s a unique probability NLi{A} defined for A ¢ B
which satisfies (115). Let us choose this probability as P in the

probability space (2,B,P) .

Let us define & family of random variables {g(u) , O <u <t} in

thé following wey:
(116) g(w) = g(u 3 w) = £(w

for 0 cu <t vwhenever w= f(u) e @ =C[0, t] . In this case {(&(u)
0 < u 2t} is a Brownian motion process for which the sample functions
are continuous functions of u for every w e 9 .

In the space C[O, t] 1let us define the norm of a function f(u)
(0 xucxt) by
(117) £l = sup [T .

Ozust

We define the distance between two functions f(u) (0 <u <t) and g(u)

<t) by

(0 zu
(118) a(f,e) =|lf-gll = sw [f(W-gw]| .
Ozu<t
With this distance function the space C[0,t] becomes a metric space and
we can define open sets, closed sets, compact sets, separability, completeness

and so on in the same way as in Buclidean spaces.

- A functional Q on C[O,t] 1s a mapping, that is, a function,from
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C[0, t] to the set of real or complex numbers. The value of Q for
f e C[O, t] will be denoted by Q(f) . The functional Q 1is said to
be bounded if there exists a real constant M > O such that IQ(f‘)i <M
for all f ¢ C[O, t] . The functional Q is said to be continuous at

feC[O, t] if for every ¢ > O there exists a 6 > O such that

(119) Q(F) - Qg <«

whenever ||f-g| < § .

Now we can formulate Donsker's theorem in the following way:

|
\
\Theorem 7. Let (2,B ,Nli) the Wiener probabllity space defined above

and let ¢ = {g(u) , O <u <t} be a Brownian motion process defined by

A

% *
(116). For each n = 1,2,... let £, = {gn(u) s O <uz<tl bethe

 stochastic process defined by (112). If Q is a real functional on C[O, %]

and if Q 1s almost everywhere continuous on C[O, t] with respect to

the probability NE: , then

(120) 1m£{Q(EZ) < x} =~13{Q(E) < X}

n -+ «

in every continuity point of the limiting distribution function.

Proof. For any A ¢ B 1let us define
2. (A) =P * A
(121) u, (A) ‘M{fn e A} ,

that is, “n(A) is the probability that En = {gn(u) ,O0<ucx<t} belongs

to A, and
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(122 (A) = P{¢ ¢ A}

u <t} belongs

-
~

that ig, u(A) is the probability that g = {g(u) , ©
to A . Probability (121} is determined by the distribution function of

the random variables {gk} . and probability (122) is determined by P .
N m

We say that the sequence of measures N (n=1,2,...) converges

weakly to the measure p and write un=%~p if

(123) lim [ Q(f)dy, = Jai)du

’

n-—+oeoQ 2

for éll continuous bounded functionals @ on Q .

|

We say that the sequence of measures Hn (n=1,2,...) 1is weakly
campact if every subsequence of {un} contains a weakly convergent sub-

sequence.

We shall prove the theorem In several steps. First, we shall prove
that for any ¢ > O
. *l *'
(124) lim 1im sup P{ sup | gn\u):— gn(v)! >e}=0.
n>0 n» « lu-v|<h
Second, we shall show that for any € > O there is a compact set KE e B

such that

\%

(125) un(Ke) >1l-c¢

for all n=1,2,... . A set KE is said to be compact if every class of
open sets which covers KE contains a finite subclass which is also a

covering of K€ .
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Third, we shall show that the sequence {un} 1s weakly rompact.

Fourth, by (113) we conclude that uné#> p and this easily implies

(1203.

In what follows we shall need the following inequality: Let gl, gz,...,an

be mutually independent random variables for which E{gk} =0 and Fffi =1,
. - = 1.2
Write Fk £l+ £2+...+ gk for k=1,2,..., n . Then
{[C ! > '-f
(126) P{ max ]r 1> e} < -_--7?{
1<k<n 1- ==

el
€

for je > 2vn . This follows from the following inequality which holds for

all € >0 .

P{IC |> 51> ZP{]Z;l{ e,...,lz;y l'<€’ I"k[ €, n—c l;%} =
(127)
7 €
= kzl"]i lgll<€3"'s|ck_ll<es ICKI>E}E{IC '__S__‘é'} .
Since
2
YE{(g - 7, )7} .
, . ~ - n kK Uin-k) . U
(128) Pl ls - = -1 A, 2

€ € €
for k=1,2,...,n, it follows from (127) that

Mn\

(129) Ag{|;n!> %& ;:(1- )P{ max-{ﬁkl >e}

1<k<n

for ¢ > O which proves (126).

Now for each n = 1,2,... and each h > O let us define a.J = VthT/ﬂ

(j =0,1,2,0..). If n>1/h , then aj+2— a, >h . If su (u) - E xr,|>g
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whenever lu—vl < h , then, obviously, there is a j = 0,1,..., [t/h]

e % * :
such thaf, ]& (w - g, (a )| > = or [gn(v)—-gn(aj)|> -g- where a; < u <
and 85 LV Lay4 . Thus by (126) it follows that
| £ [t/n]
P{ sup g (W-g (M>el <2 | P{ sw | &n(u) in(a ) [>
* u=v|<h J=0" a,<uza.
= J==J+3
(130) .
€4 € N‘?{Igrﬁ( Lﬂ%hi”)%}
2(l+ -—)P { sup |F (—)I =} _<__2(1+ H) T
L O<k< <inn B L4

€

for n>1/h and € >8h . If n -+ =, then by (75) the extreme right
|
membe;er in (130) tends to

|

t
: 4(1+ -) ®. 2
. 1 -X"/2
(131) -—-6-&—— e dx .
1— —?}'l' /—— €/8vE
2
Since
© 2 © 2 n
(132) [ e Pax < 6ih [ %2 e/ i
> — — 2 s
e/8vh e e/8h

therefore (131) tends to O as h -~ O . This proves (124).

From (124) we can conclude that

# N
(133) im sw P { sw |g (u)-¢g (] >er=0
h ~0 13> lu-v|<h

for ali e > (Q . For we have
(134) lim max P{ sup |g (u) - £, (v)l > ¢el=0
h >0 1anN™ |u-v|<n ©

for any € >0 and N =1,2,... . On the other hand by (124)
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-

N
[}

% % .
(135) sup F 1 sup [g (u) - g (V)] > e}
Nen<e lu-vigh

is arvitrarily close to C if N is sufficiently large and h > O 1is

sufficiently small. This proves (133).

We can prove (125) by (133). Foreach ¢ >0 and r = 1,2,... let

us choose an hr' »> 0 such that

¥ *
(136) sup [P{ sup |g () - g (V)] > 1 <
-~ n n r’ =
1<ice ™ |u-vigh

Let us define a sequence of closed sets FO, F FZ"" in B in the

19
fOllfOWil‘lg way: F_ = {f:£(0) = 0} and

(137 FI’ = {f : sup |f{u) - £(v)| ;%}
lu=-v|<h
=7
and let
(138) K = rQO F..

If f'eKE , then feFr, for 211 r = 0,l,..., and therefore f(0) = 0O

and

(139) sup sup |f(u) - £(v)] -0 as h~>0.
fek_ |u-v|<h

- Furthermore, ||f||= sup |f(u)] <M < « for all feK_ . This last statement
O<u<t
follows from the ineguality

m

i /._ Y13
(140) P < [£)] + T e - gz,
N =1 " m

which holds for all m = 1,2,... . If f‘ng and m > l/hr , then by (140)
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m
el < -
Accordingly, K€ is closed and KE is a family of uniformly bounded

A
and equicontinuous functions on C{C,t} . Thus by a theorem of C. Arzela

(see A. N. Kolmogorov and S. V. Fomin [102p. 54]) K8 is compact.

Since ﬁn(Fo) =1 for n=1,2,..., and
. (S
(141) , R

for r=1,2,... and n = 1,2,..., it follows that

8

(42) W (K) 21 - rzo[l—unwr)] 21- Igl

f\))_sl(‘)
It
-
H
(W]

for 211 n=1,2,... . This completes the proof of the second statement.

The third statement follows from a general theorem of Yu. V. Prochcrov

[756 ] (see Theorem 3.2 1in the Appendix). According to this theorem

the conditions un(Q) = ] and (125) imply that {un} is weakly compact.

If we assume that (113) is satisfied, then the weak compactness of

{un} implies that {un}=§ u. Now we are going to prove this statement.

For any set A € B denote by A(l) the interior of A and by A<C)

the closure of A , that is, A(l) contains the interior points of A and

A(C) contains the limit points and isolated points of A

By the third statement, every infinite subsequence of {un} contains

a weakly convergent subsequence {p_} . That is there exists a measure

£
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such that u =3 U as k== . We shall show that u = n for every
k
weakly convergent sequence {“p } . Hence it folilows that the whole
'k
sequence {un} 1s weakly convergent and un==> L a n-> o,

T unkf=§'ﬂ' then for every A ¢ B and for every € > 0 we can find
a continuous nonnegative functional Q for which Q(f) = 1 whenever

.
£eal® ang

(143) : E‘(A(C)) > [Q(fidy - e.
]

Hence we have

as)  wal®) 2 fa(e)dn - e = im [Q(f)du, - € > lim sup u_ (A) - ¢
Q ko @ c k » e nk

for any ¢ > 0 . This implies that

(145) Lim sup u, (A) ;K(A(C))
K+ o K

for any A e B . By (145) we can conclude that

(146) EYA(i)) < lim inf unk(A) < lim sup pnk(A) < H(A(c))

k + o k > = =
holds for every A e B .If we replace A by Q@ - A in (145), then we obtain

the first half of (146). The second half is precisely {145).
Now denote hy M the class of sets A ¢ B for which

(147) Ty < um) < 5l

holds, that is,

(148) M= A wa®) cumw 274 ana acm .

fia
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Since for any sequence of sets {AP} we have

(-] o« .‘\ (: . ;.\ [e o] li)
(149) ( Z A_p)(C) - Z AI(f,/ and () AY’)(J e Z A; )
r=1 - r=1 r=1 ~ r=1 -
and
(150) (n A < Aic) and (O Ar)‘i) = 1 Aél) ,
r=1 © r=1 r=i r=1

it follows from (148) that if A,eB and {A r} is a nionotone sequence,

then 1im A e M . Consequently, M 1is a monotone class.
r > o L

ELet A be the minimal algebra walch contains the sets

(151j A(U.i, Upsees Ups S) = {f:(f(ul), f(uz),...,f(uk)) eS and feC{C,t1}

for all u e [O,t] and Borel sets S in the k-dimensional Euclidean space

where k = 1,2,... .
Furthermore, let
(152) A= a s w24 ana ae Ay .
If Ace AO then by (113) it follows that
(153) Lim u (A) = u(A)
n > o«
and B can be characterized as the minimal o-algebra which contains AO .
By (146) it follows that

(154 7 <@ < wale)

if Ae A .
o




VI-255

We can easily see that Ao is an algebra which 1is not empty. Further-
more, AdC: M . Thus M is a o-algebra. (See Theorem le.l in the Appendix).
3

By definition M <B . Since B i1s the minimal c-algebra which contains AO

1t follows that necessarily M =8 .

Thus we proved that
(155) @) < wm < 7))
holds for all A e B .

Let
|

i

i L (s -
(156) B =qa: wad)y = 7a(®)y ana a e By .

Obviously BO is an algebra and it is easy to see that the minimal o-algebra
which contains BO is B . Since by (155) u(a) = u(A) if A ¢ BO , it

follows by Carathéodory's extension theorem (Theorem 1.2  in the Appendix)

that
(157) w(A) = u(h)

for all A e B . Since p does not depend on the particular sequence

) , consequently u =3 u also holds.

My
. ali)y 2 (c) . X s s
If AeBand u(A*’) =u(A*"') , then we say that A is a continuity
set of ﬁ . By (146) and (157) we can conclude that if {un} is weakly

compact, then

il

(158) 1im un(A) u(n)

n - o«

for every continuity set A eB of u .
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Finally, it remains to prove that if Q 1s a functional on C[O,t] ,
if Q 1is messurable with respect to B and if @ is almost everywhere

continuous with respect fo the measure yu, then
U

(159) PLQ(E) < x}=>PQ(8) < x)

as n > o

Let us denote by D the set of discontinuity points of Q . By

assumption w(D) =G ,

For every real x Ilet

(160} E, = {f : Q) < x}

and

» . _ ole) NG
(161) G =ETN@-E)T,

that is, GX is the boundary of Ex . For X <y we have
. (c) (c)

(162) Gxn Gyc Ex nQ ~ Ey) .

Therefore £ ¢ GX(\ Gy implies that

(163) lim inf Q(g) < x and iim sup Q(g) ;y s

g~ F g+ f
that is GX('\Gch . Consequently u(fo'\ Gy) =0 for x <y . Hence it
follows that for an arbitrary sequence of distinct real numbers {Xr} we
havé | |

(164) (LG, ) =TuE ).

r r r
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By (164) we can conclude that the set of real numbers x for which p.(GX) >0
is at most countable. Thus EX is & continuity set of uw for every x
except possibly for countahly many x values. That is 1im un(EX) = u(BE.)

n &+ «
or

(165) Lim P(G(5)) < %} = PLA(E) < x}

n > «

for every x except possibly for countably many x values. This completes
the proof of -thé theorem. For the above proof of this theorem we refer to

L. T. Gikhman and A. V. Skorokhod [735 ], PFurthermore, we refer to M. D.

e it

' Donsker [728 ]; Yu. V. Prochorov [756], A. V. Skorookhod {767 ], |

P. Billingsley [712 ]and K. H. Parthasarathy [ 755].

Now let us demonstrate how we can wse Theorem 7 in proving the particular
results mentiocned earlier,

If we suppose that
(166) Q(f) = sup £(u) ,

Ozu<t
then Q 1is a continuous functional on C[O,t] because
(167} QD) - alg)] < sw [f(w) - gw)] =]|r-g|
O<u<t

and so |Q(f) ~ Qg)| ~ 0 as ||f-g]| >0~ Now by Theorem 7 it follows

that

, *
(168) Plsup £ (u) < x}=>P{ sup £(u) < ¥},
Osust ™ Oguct

Since
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A

“(u i
(169) sup & (u) sup £ (u) < sup £ (u) £ T VAR
Ot O<ust O;_u;tgn L

for every n and &£ hnﬂ’fi#Oas n >« , it follows that

T
(170} Plsup £ (u) < x}=>Plsup £(u) < x} .
Ozust Ozugt

This proves that in Theorem 6 the limiting distribution exists and is
independent of the distribution of € By performing the calculations

for any particular sequence {gk} we can determine the limiting distribution.
The result (108) can be proved in a similar way. If we define
(171) Q(f) = sup {f(W! ,

O<uxt

then Q is a continuous functional on C[O,t] Dbecause

(172) Q(F) - Q)| < sw [fw) - gw)] =|f-gll

Ozus<t

and so [Q(f) - Q(g)| >0 as |[|f-g||+ O . Now by Theorem 7 it follows that
. #
(173) Plsup [g (W] £ x}=>P{ sw [g(w)] £ x}
O<ust ™ Oust
and this implies that
(174) P{sw |g (W] < x1=> P swle(w)| < x}
O<uszt o~ O<us<h
also holds. This proves that the limiting distribution (108) exists and is
independent of the distribution of £ - The limiting distribution can he

determined by considering any particular sequence.

The functionals
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t r
(175} Q) = [ Ir(w)| du ,

s

where r = 1,2,..., are well defined for every f e C[O,t] and continuous
on C[{0,t] . Thus by Theorem 7 it follows that the limiting distribution

: s b ox r t r
(176) lim P{f |g_ (W] du < x} = P{ |e(w)| du < x}

n-e o O “ o
exist8 for r =1,2,... . We can prove that
’ rtl ir 1 31 s
(177) fle (uy]"du and ' |z
\ . L { |
5 Ii n\Hcs;r_k:l k

where r = 1,2,... have also the limiting distribution (176) as n + « .

Finally, let us prove (111). Let Q(f) be the Lebesgue measure of

the set {u: f(u) >0 for O <u <1}, that is

t
(178) Q) = [ & (f(u))du
o]
where
1 for x>0,
- (179) 8(x) =

O for x<0.

Since §&(f(u)) 1is bounded and Borel-measursble on the interval [O0,t] ,

therefore Q(f) 1is defined for all f e C[O,t] . Since
- N . . .. t
180y Qi) -l < [fW) - gw)|au < ¢ |I-gll ,

- it follows that GQ(f) is a continuous functional on C[0,t] . Thus by

Theorem 7 we get
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L & £
(181) Lim P{ fe(g (u))du £ x} = P{ [ s(g(w))au g =} .
n-+e o ’ o
We can easily show that if on the left-hand side of (181) we replace the
Integral by

v t v
(182) o(equ)au o AUDED

4

O

then the right-hand side remains unchanged.

Now let us consider the general case when 51, 52,.”, “t’n"” is a
sequence of mutually independent and identically distributed real random

variables with distribution function P{¢ < x} = F(x) . Let T, =t Eyte.tE

for n=1,2,... and o = O . We are interested in studying the asymptotic

distribution of the random variable

(183) ﬂn = max(ﬁo: Cl’...’ Cn)

as n -+ = .,

Let us intrcduce the following notation

o P{g > 0}
(184) M= J] =L
n=1 n
and
= P{g <0}
(185) M= J @;_l%r_____
n=1

I E{lgn'!} <e and E{g} >0, then M=w and M<o . IfEf|g }<wand
E{En} <0 , then M < » and ﬁ— © , If Ng{gn} exj,sts,g{gn} = (0 and
Vf{gn = O}‘ <1, then both M = ahd .I-VT = o , This follows Irom Coroliary
43.1 .
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First we shall prove two particular results, and then we shall consider

the solution of the general problem.

Theorem 8. If M < «» , then the limiting distribution

(186) lim P{n < x} = W(x)

n->o

exists and it can be obtained either by Theorem 43.13 or by Theorem 43.15.

Proof. By Theorem 43.12 we can state that nn;-.:‘;un where n 1is

©

nonnegative r‘andom variable for which P{n < «} = 1 . Thus it follows that

W(x) = Pln g x} .

|
fIf M=o , then P{lim = o}= 1 and so it is of some interest to
" N o«

find the asymptotic distribution of n, & n-«.

Theorem 9. If M < « , and if there are constants A ad B >0

such that B, -« and

Z A
(187) lim P{ —5— < x} = R(x)

<
n-+>o» n

in every continuity point of the distribution function R(x) , then

(188) 1im P{ —F—— <X} = R(x)
n

also holds in every continuity point of R(x) . Conversely, M < « and

(188) imply (187).

" Proof. Iet

(189) ;l_n = mx(.‘;‘ﬁog "Cls'ﬂy "Cn) .
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If we apply Theorem 8 to the random variables =E15 =Enseees =€ 5e.., then

n**

M < » dmplies that ﬁh::;, n where n 1s a nonnegative random variable

for which AE{E'< w} =1 .

On the other hand n, = max(co, Tyseees cn) has the same distribution

(190) gt = ’naX(cn— B Ty Byseees T” cn)

for n=1,2,... .
| _ .
EIf B, + = , then Hh/Bn=%> 0 , and consequently we have
|

(191) lim P{ Bn;x}=limwlj{ an;x}

In + <« n n->w n

where the existence of one of the limits implies the existence of the other
limit, and the two limiting distributions are equal in every continuity

point.

The above method in the proof has previously been used by the authcr
[763 1,[ 764 ] in the context of queuing theory. See also C. C. Heyde
(737 1.

By the results of Section 44 we know that if (187) exists then R(x)
_is necessarily a stable distribution function (possibly degenerate). In
Section U4 we gave necessary and sufficient conditions for F(x) to belong
-to the doamain of attraction of a nondegenerate stable distribution function

R(x) .
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It remains to consider the case when both M=« and M=« , In
particular, if E{f } exists, then M=« and M=o if and only if

E{g} =0, and Plg =0} <1.

In what follows we shall prove a general theorem which covers the

case M=M=« gpart from a single particular case, and which also contains

some of the results glven in Theorem 9.

In Section 44 we proved that if F(x) belongs to the domain of
attraction of a nondegenerate stable distribution function R(x) , and only

in this case, there exist constant A ~and B, >0 such that lim B =«

| nn >
and E
(192) 1im P{ 5— < x} = R(x) .

n- o n

In the following discussion we consider only such cases in which An =0
(n = 1,22,..;)‘ can be chosen. Let ﬁs suppoée vthat R(x) Lé of typé
S(a,B,¢,C) where O <a<2,~-1<8<1 and ¢>0. If 1<a<?2, then
N@{gn} exists, and the cases ng{gn} >0 and ,E{En} < O are covered by
Theorem 1 and Theorem 2. If 1 <a <2 and A@{gn} = 0 , then we can choose
An=0 o If O <o <1, then we can always choose An=O . If a=1,
then we can choose An =0 only in the case when g =0 . Thus we shall

exclude the case o =1, g #0 .

Accordingly, if we assume that E{En} =0 in the case when 1 <a <2,
end that B = 0 in the case when o = 1., then (192) can be reduced to
, .
(193) lim P{ 5= < x} = R(x) .

n-»> e Bn=
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In (193) we may assume without loss of generality that {Bn} is a non-

decreasing sequence of positive numbers for which 1im Bn = « and that
. n > o«

(194) B = %)

where p(x) (0 < x < «) satisfies the following relaticn
(195) 1am £LX)

for every. w > 0 . (See Problem 86,12+)

In the particular case where E{g } = 0 and E{grgl} = 1 by Theorem 6
we have
0 20(x) ~ 1 for x >0,
(196) lim P{ — < x} = .
: n->w n- 0 for x <O,

where &(x) is the normal distribution function. This result was found
. i
in 1946 by P. Erdos and M. Kac [730 ]. The following thecrem is an extensicn

of Theorem 6 and the proof follows on the same lines as in Theorem 6. (See

alsc C. C. Heyde [ 738 1.)

Theorem 10. Let El, £2 seees En’“' be mutually independent and

identically distributed random variables for which P{g < x} = F(x) . Let

Cn=§l+ Estect &) for n=l,2,...g{§_ ;O'—'-O . If
v ‘.
(1972 : lim P{ 5= < x} = R(x)
n-+- n
exists where R{x) is a nondegenerate stable distribution function and lim Bﬂ-ﬂ @,
. = e w
" then
"
(198) lim P{ 5= < x} = H(x)
n-+® n

also exists and the distribution function H(x) does not depailon F(x).
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Proof. Let
(199) Hn(x) =A§{max(co, Zyseees cn) =<=an}
for n=0,1,2,... and

(200) H (x) =Pmax(z_ , 5 ,e.., 2 ) <B x}
nk A OO nl nk n

for n=0,1,2,... and k = 1,2,... where

(201) n, L k]

for j =0,1,..., k .

First we shall prove that for every e > 0 there exists a positive
constant C such that
(202} H, (xe) - ;;O—L < H (%) < Hy(x)

holds for all n = 0,1,..., k= 1,2,... and x .
Let us denote by v the smallest subscript r =0 s1,25... for which
Tn an » If there is no such r , then v = » , Then we can write that

for any ¢ > O

k ,
(203)  H(x-e) < H (x)+ —z Z Jlver and ¢ < B (x-e) for Ogjsk} o
i=0 Ty SO<Tlg g J

L -n, < <'n, he (s :
If Ny 2T <y, then we have

£
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P{v=1r and L, £ Bri(x-a) for 0 <3 <k} <
: !
2 ng{v =r and Cni+1 -5, Bne-} =
(20kL)
= P{v = r}P{g -z_>Bel <
. [ ni+l r Ti
= D
< ,\?{\’ r} maxnht{cs > Bne}.
l’__\_S;I(‘
7 i = ) {Xem
For if .v=1r and n; sr <n; .y, then ¢ >Bx and z;ni+l < B (x-e) ,
and the events {v = r} and {cn -, an} are independent. Now we

i+l
shall prove that for any € > O there exists a sufficiently large positive

constant C such that

>B e} < L .
n G

ke

(205) max Pl
lss<

)

~1s

holds for 211 n=0,1,... and k = 1,2,... .
Since

(206) lim max P{z_ > B e} =0
n->e0sN™ 5 1

for any N=1,2,..., and since

[ CS BSke
P — [R——
max  Pl{g, > B els max &~ B 7 TE b2
N<s< Negp o °

v

|

(207) .
¢ sk©
< sw Plg-> 5 >1-R(e

Ngg<o ™ By s

l/u)

as N+« , it follows that

(208)  lim sup max P{z > Be}l <1 - R(ex™)

1 > «

wB

Q<sx
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for all ¢ >0 and k = 1,2,... . On the other hand R(x) belongs to

the domain of attrsction of itself, and therefore by (LU, 250)

- C
(209) Lim K[1-R(ek 0] = =
k> = &

holds for O <o < 2 and for every € >0 where O <c, <C . (3ee also

2
(42.201).) If R(x) =d(x) , that is, a = 2 , then (209) trivially holds

with 02 =0 . By (208) and (209) it follows that for every e > O there

is a sufficiehtly large positive constant C so that (205) is satisfied

for all n=0,1,2,... and k= 1,2,... .

By (203), (204) and (205) we obtain the first inequality in (202).

The second inequality in (202) is obvious.

# *
Now let us suppose that gl, 52,..., En,... is a sequence of mutually

independent and identically distributed random variables for which

% % % % %
P{g sx} = R(x) is given by (197). Let T, = &yt &5t £ for

¥
n=1,2,... and o = 0. 1If

* * * *
(210) nk = max(goa El;'-" Ck)

for k =0,1,2,..., then we have

. _ ¥ 1/a
(211) n?i@;an(x) _Ag{nk=; k™ 7k} .

For the random variables S (j = 1,2,...,k) are independent

J J-1
and by (193), (1S4) and (195) we have

A 4 1

: n, n, % % -
(212) lim P{ ™= o 1} = Plej -ty g S x}

L
n->« n
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for j =1,2,..., k . Hence it follows that

~ . 5 ¥ * 1/a .
(213) lim Plg -z, =B Xy for 1<k} —f{c,, sk for 1<j<k}
N > o J J“'l J
holds for all Xy, Xpyeees Xp » This implies (211).
If we let n » » in (202), then by (211) we get
1
(o14) P{nk _k (x-€)} - -—g—a < lim inf H (x) < lim sup H (x) <
ke n - o0 n -> o
L
¥ o
P .
< ;{"k <k " x}.

=

(215) Lim }?{nK ¢ x} = H(x)
K>

exist. If in (214) we let k > » and ¢ > O , then we obtain that

1im H (x) = H(x)

n+ot
in every continuity point of H(x) . Since H(x) is the same for every
F(x) which belongs to the damain of attraction of R(x) , consequently

(198) holds.

*
To prove (215) let us assume that g = £(x) - g(k-1) for k = 1,2,...
where {g£(u) , O 2 u < =) 1is a stochastic process which 1s homogeneous
and has Independent increments, and for which
4
(216) N?{E;(u) < W x} o= R(x)
where R(x) 1is glven by (197). Such a process exists and we shall call

it a stable process.
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_ %
By using the above interpretation of ({ F,k} we can write that

= p{max ) < x.

< k> x} = P{ma.Xf(,])<kj/°‘ "

0gi<k 0Lk

If we assume that the process {g(u) , O < u < =} is separable, which can

be done without loss of generality, then letting k - « in (217) we obtain

that
1
( 218) 1lim PmK <k*x} = P{ sup g(u) < 7
k » o Ozu<l
that 1is,
|
(219) H(x) = P{ sup &(u) £ x} .

™ Ozu<l
To provide a complete soluticn of the problem we need to determine
H(x) in the case when R(x) is a stable distribution function of fype
S(d,B,c,O) where 0 <a <2 ,-1<B8<1 and c >0 . In the above

discussion the case a =1, B8 # 0 has been excluded.
First let us consider some particular cases. If a =2 , then 8 is
immaterial and for c = 1/2 we have

20(x) =1 when x>0,
(220) H(x) =
0 when x <0 .

If O<a<1l and g=1, then R(O) =0 , and consequently M =0

In this case by Theorem 9 we obtain that

(221) H(x) = R(x) .
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Il
s

If C<a<1 and 8 =-1, then R(O)

In this case by Theorem 8 we obtain that

1 for x

|| 1Y

(222) H(x) =
0 for x<0
If 1<a<2 and 8 =-1, then we have

(l _ 1-R(x)

for x>0,

223 Re) = 17R(O)
' O for x < C
where by (42.192)
1
(224) R(O) = 9‘7:— .

This follows from a result of A. V. Skorokhod [761 p. 157]. Skorokhod

provéd that if 1 <a <2 and B = -1, then
{g(t) > x}
(225) P{ sup &(u)> x} =«&_»T_r_

forr x>0 and t >0 . (See formula (56.38).) Putting t =1 in
(225) we get (223).

In 1956 D. A. Darling { 726 ] proved that if o« =1, 8 =0 and C =

that is, if
- (226) R(x) -%4" -:? arc tan x ,
* then
( 227) [ X°aH(x) = =22 [ x°dG(x)
(o] @)

for =~ 9'2« < Re(s) < 1 where

, and consequently M =0 .
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« log(l + &)
(92 = - ¢ l X -
(228) G(x) = expi- ;—f 5 dy }
0 1+y

By (227) we have

dH(x) _ Gxe ™) - a(x™)
dx 2nix

(229)

for x > 0 where the definition of G(s) is extended by analytical
continuation to the complex plane cut along the negative real axis fronm

the origin te infinity. By (229) it follows that

X .
1] 8Y g
7 Q 1ty

dH(x) _ 1 .
dx - x1/200442y3/8

(230)

for x> 0.

It 1s easy te extend the above result of Darling to the case where
R(x) 1s a stable distribution function of type S(«,8,¢,0) where either
O<ae<]1,-1<B<1l,c>0 or 1<a<2,-1<B8<l,c>0. S3ee

C. C. Heyde [728 ] and the author [ 765] .

Theorem 11. let El, E?..., En,... be mutually independent and

identically distributed random variables having a stable distributicn

Jfunction R(x) of type S(o,8,c,0) where either O<a < 1, -1 <8< 1,

C>0 or 1<a<2,-1<B8<1,c>0. UWrite BT EqtE et E

for n=1,2,...,2,=0 and n_= max(;o, Tyseees cn) . Then we have

) n
(231) 1im P {—=2-< ® = H(x)
n-=> " IF;E_

ypere H(x) =0 for x <O and
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vs/a
C
® s cos %%w ® s
(232) [ x°aH(x) = — — [ x"a6(x)
o - Ir(l-s;r(i+ i& 0

for |Re(s)| <o where o 1s a sufficiently small positive number,

ﬁUrthennore

a
L
cos L o 1081+ 52

2 %
exp{ - - = f - 5 dy}
o0 1-2y sin §§-+ y

-~
]
[OV)
[UY)
L
[®]
Prs
d
-
n

%—arc tan(s tan %g

Pan
o
w
=
—
-
it

with -1 <y <1.

Proof. In this case we have -

o ~c|s|*{1+s =1 tan 23
(235)  w(s) = [ eSFaR(x) = e IsT ™ 2

for Re(s) =0 . It is sufficient to prove (232) fur some particular
c > 0 , because the general case can-be obtained from any particular case

by a simple transformation. It will be convenient to assume in the proof

that
(236) ¢ = cos o

where vy 1is defined by (234). In this case by (235) we have
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(237) v(iy) =y _iym
)%

Now by Theorem 1L.3 we can write that

238) ] Be TP = eRilogll-ov(s)])
n=0"

for Re(s) » 0 and lp] <1 . Let

(239) K(s) = Tlog{l-pu(s)]} .

By Theorem 5.1 we have

K(s) = 20800) 4 1 S p 20EepUN] 4

0 2ni yis-iy
(240)
_ ¢ log[l-oy(=iy)]
- hr
for Re(s) > 0 and |p| <1 . If we make the substitution y = e 2 sy
Lym
20

in the first integral and y = e sz 1in the second integral, then we

obtain that for Re(s) > O

r(lmpe >
K(s) = 208U=), 15 log(l-pe ~ ") 5,
2 2ni ‘ 7
e >0 Ll(e) ( -
z(l-iz e
241)
%%
log(l-pe . ) az]
ym
20: )

Lg(E)
z(1l+iz e
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iym
where Ll(e) ={z :z=¢e v/s and e <y < »} and Lz(a) ={z: g =
-
=e 20 y/s and e gy <=} . Denote by Cl(_x—:) the path which varies
from z=e % ¢/s to z = ¢/|s| along the arc |z] = ¢/|s| and from

7 = E/lsl to <« along the real axis. Denote by Cg(e) the path which

varies from z = °% e/s to z = e/|s| along the arc |z| = ¢/|s| and

from z = ¢/|s| to = along the real axis. If we replace Ly(e) by €, (z)

in the first integral and Lz(e) by Cz(e) in the second integral, then

by Cauchy's integral theorem both integrals remain unchanged. If e - 0O

the difference of the two integrals taken along the arcs tends to iy L-log( I-p Vo ,

and thﬁs (241) reduces to

&) = Ly 1 rlog(l-pe™ * )
K(s) = (G + plog(l-0)+ 577 [ [ -

x(1-ixe );

Qo
log(1-pe™® *) s
(2k2) - Tyr—— 1 = (5 + 5-)log(l-p) +

By (238) we have

1/a .
« -5(1-p)™" " , , i/
(243)  (1-p) § Efe My 0 K(0)K((1-0) 1)

n=0 "

for Re(s) 20 and [p| <1, being K(0) = Jog(l-p)
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Since

1/o cos %:T *1og(1- e_(l_p)sax(;-—lo (L-p)
1im [K((1-p)~ %) - K(0)] = 1im = [ ARTE —~ SRR ax
o+ 1 p > 1 0 1-2x sin §-+ x
(244)
", -‘Y—TL [+ o] a a
- o8 S i log(lts™x ) ax
n 2

o) 1—2xsin%—g—+x

for Re(s) > O , we can write that

1/c
» ® -s(1-p)7" " \
(245) lim (1-p) } Efe nyn _ ~L(s)
E p > 1 n=0"
for Re(s) » O where
cos L = -
+
(246) L(s) = “2a [ log(1 i S NP

0 1~2x sin -;)1 + %
paqs
Here we extended the definition of L(s) for Re(s) > O by continuity.

The above result can also be interpreted in the following way. Let
us define a family of random variables {v(p) , O < p < 1} in such a way

that {v(p)} 1is independent of the sequence of random variables {gn} and
(247) Plu(p) =n} = (1-p)o"

for n=0,1,... and O <p <1 . Then by (245) we can write that

Vg _ "ip)
—s(1-0)Y % ) =5[(Ap)v(p) 17 % —H7

(248) 1im Efe VIPly = jim Eie (V)™ 42
p > 1™ p > 17

e-L(s}

for Re(s) >0 . Since
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™ for x>0,

(249) 1im P{{(2-p)v(p) < x} =
p > 1 0 for <0,
and
n
( 250) lim P{ < X} = H(x) ,
o~ 1o =
n->e« n

© l/(". i
(251) [ S5 Y an(y))e™ ax = R
| 00
| _
|
for Re(s) 20 .
ILet us define
o 1/
/s du

I(s) = [ e ¥
0

(252)
Then by (251) we have

for Re(s) 20 .

(253) [ Dy = &)
o
for Re(s) > 0.
We observe that for O < x < « the function I(x) is a distribution
Consequently, for C < x <

function of a positive random variable.
a(x) = [ IS auy)
o Y-

(254)
cari be interpreted as the distribution function of the product of two
I(x)

independent positive random variables having distribution functions
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and H(x) respectively. On the other hand bty (253) we have

_
(255) 6(x) = e =&

for x>0.

Finally the unknown H(x) can be obtained from {254) by Mellin-Stieltjes
transform. Since

(256) : [ aIx) = 1(1-s)r(1+ )
0

for -q < Re(s) < 1 , we obtain that

féxsdH(x) = L V fmxsdG(x)
0 T(1-s)T(1+ -c%) 0

(257)

if s satisfies the inequalities -0 < Re(s) <1 and -0 < Re(s) < a where
¢ isa sufficiently small positive number. This proves (232) in the
particﬁlar case where c¢ 1s given by (236). For an arbitrary c > O the
right-hand side of (257) should be multiplied by [c/cos(y*rr/2m)]s/01 . Thus
wé obtain (232). From (232) H(x) can be obtained hy inversion by using

formulas (41.64) or (41.65).

We note that Theorem 11 is glso valid in the case where a =1, 8 =0
and. ¢ > Q.. This can easily be seen if assume that vy = QO in the proof.

Thus Theorem 11 proves (227) and (228) too.

Theorem 11 yields the distribution H(x) defined by (219) which is

identical with the limiting distribution (158).

We note that if {g(u) , O = u < »} 1is a separable stable process

for which
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(258) /f}a(u):; W%y = R(x)

for u >0 where R(x) is a stable distribution function of type S(a,B8,c,0)

where O<oa<l<ag<2,-1528<1 and ¢>0 or a=1,8=0,c¢>0,

and if we define n(t) = sup g(u) for t > O , then
Ozugt
‘ _ X

4

for ¢ >0 .
If in particular < = cos(ym/2a) , then by (251) we obtain that

|
1 ) o0 © 1/a
(260) fe-t E(e™" (Mgt = [ VY qny)yetar =
0 00

faad

e——L(s)

for Re(s) > O where L(s) is given by (24€). If ¢ > O is arbitrary

and Re(q) > 0 and Re(s) > O , then it follows from (260) that

1/a

® -t ., =sn(t) ¢’ s
(261) qf e E{e }dt = exp{-L( )}
é ~ (q cos _gg)l/&

where L(s) is given by (246). Formula (261) is obvious for positive real

q values. For Re(q) > O {261) follows by analytical continuation.

We can also obtain (261) by a result of G. Baxter and M. D. Donsker [ 7111.

By invérsion {261) determines Ng{n(t) < x} uniquely. Thus we can determine

H(x) 1in this way too.

The problems which we discussed above can be generalized in the following
way: Let 15 Epseves Eppens be mutually Independent and identically

distributed real random variables. Write g = g+ got...t g for n=1,2,...
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and =0 . Let us assume that

%0
(262)  m Pl 2 2 x} = R(x)

where R(x) 1s a nondegenerate stable distribution function, B > C for

n=1,2,...and limB_ = =,
n—)oo‘n

Define

" _ _ %nul
(263) F,n(u) = ""g;l‘

i

for of;u <1 and n=1,2,..., and let ¢ (1) =g _./B  for n=1,2,...

If we assume that {g(u) , 0 < u <1} is a stable stochastic process

for which

1o

(264) Ple(w) £ u”¥x} = R(x)

wheré O<ux<l and O < a <2 1s the characteristic exponent of R(x) ,
then we can easily see that the finite dimensional distribution functions
of the process {gn(_u) s O <u< 1} converge to the corresponding finite
dimensional distributions of the process {&(u) , 0 < u < 1} . Since both
‘ {F,n(u) » Ogus<1t and {g(u) , 0 £ u <1} have indeperdent increments,

it is sufficient to show that

(265) lim Ple (v)-g (u) < x} = P{e(v)-£(u) < x}

n > «

for all O <u<v <1l . This, however, follows easily fram (262) and from

the relation
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B 1
im0 /a
n-+ o« [nv] v

< 1}
Y

<

for O <u~<vel.,
Q be some real functional defined for £y = {gn(u) , 0 <u

Let
and £ ={g(W , 0 <uz< 1} . The problem arises what conditions should

we impose on Q in order that
1mg{Q(§n) <X} = f{Q(E) < x}

n -«

(267)
bé satisfied in every continuity point of P{Q(g) < x} ?

and 1 {g(u) , 0 <u < 1}

sup ()

By Theorem 10 and Theorem 12 we can conclude that if Q is the supremum
|
is a
Ceusgl
hen (267) is satisfied.

functional that is Q(f) =

separable stable process, t
The solution of the general problem was provided in 1955 by A. V. Skorokhod

£759 ],‘[_’760 1,[761 ] , [‘784] . In what follows we shall present Skorokhod's

defined on the

results,
D[GC,1] " the space of real functions f(u)
exist at every point and

Denote by
for which

£(ut0) and f(u-0)

and f(1) = £(1-0) .

interval [0,1]
A(w)

fut0) = flu) , £{O) = £(+0)
the set of continuous, increasing, real functions

Denote by A
for which A(0) =0 and A(1) =1 .

defined on the interval [0,1]
in the space D[0,1] in the following way:

Let us introduce a metric
If f e D[0,1] and g e D[0,1] , then let us define the distance between |
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and g by
(268) d(f,g) = inf{ sup [f(u) - g(A(w))| + sup |Ju-r(W]|} .
red Oszusl o Osusd
We can easily check that d(f,g) defines a metric on D[0,1] , and the

space D[0,1] with the metric (268) is a separable metric space.

By definition the sample functions of the process {g& n(‘u) ,0=<u

belong to the space D[0,1] .

If we suppbse that {g(u) , O < u <1} 1s a separable stable process,
then we can prove that with probabllity one the sample functions of the -
process {g(u) , O < u < 1} belong to the space D[0,1] . By removing a
set of Salple functions having probability C from the sample space we can
achieve that all the sample functions of the process {&(u) , 0 Su <1}

belong to D[0,1] . This can be done without loss of generality.

Let @ be a real functional defined on the space D[0,1] . Write
& = {én(u) ,02ugl}l and £= {€(u) , 0 2u 21} . Skorokhod proved
that if Q is a real functional defined on D[0,1] and if Q is continuous
in the metric (268), then
(269) 1im P{Q(E) <x} = P{Q(E) <x!

n > x

in every continuity point of P{Q(§) < x} . This result is based on the

following theorem.

Theorem 12. Let us suppose that the sample functions of the processes

{€n(u) s 0<u<l} and {g(u) , O <u <1} belong to the space D[0,1]

and that the finite dimensional distributions of the process {En(u) s

O <ugll converge to the corresponding finite dimensional distributicrs
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For each f ¢ D[0,1]

'of the process {g(u) , O <ux< 1} .
{min{|£(t)--f) ]|, [FW)-r(u)|) +

8,(£) = sup
a O<u-ast<ucvsviacl
sup |£(u)-£(1)] .

(270)
+ sup |f(u)-r0)| +
Ozuza l-a<u<l

If for every e > 0O
::O,

(271) ~ lim
ar0 n»=
and 1f Q is a real functional defined on D[0,1] and if Q is continuous

1lim sup/f{Aa(hz;;n) > g}

\
in the metric (269), then

Um P{lg) < x} = P{Q(g) < x}

n > «

(272)

continuity point of P{Q(g) < x} .

>

in every
For the proof of this theorem we refer to I. I, Gikhman and A. V.

" "Skorokhod [735 pp. 469-4787.
If the process {gn(u) s O <u< 1} is defined by (263) and if {g(u)

0 <u < 1} 1is a stable process for which (264) holds and for which the

sample functions bélong to D[0,1], then(271) is satisfied and consequently
(272) holds for any functional Q which is continuous in the metric (268).
This foll‘ows'f‘r-cm a more general result of I, I. Gikhman and A. V. Skorokhod
[735 pp. 478-484]. If we want to find the limiting distribution PlQlg) =x1,

1im E{Q(éh) < x} for any

Il >

then 1t is-sufficient to determine the limit
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particular process {an(u) s O 2 u< 1} which satisfies the requirements.
Thus we may assume that, in particular, the random variables {&;n} are
mitually indeperdent and identically distributed and P{g < x} = R(x)

where R(x) 1is the distribution function given by (262). In this particular
case the limiting distribution (267) has been found for several functionals

Q , and by the above results we can conclude that (267) holds for any sequence

'{En} for which (262) is satisfied.

Now we shall mention a few results of this nature.

|

Ir'r 1950 M. Kac and H, Pollard [ 742 ] gave a method for finding the

1imiting distribution

H'ax(llol, |Cl|’-'°’lcni)
A £ %)

(273) lim P{
in the case when

< x} = +$ar*ctanx.

roj-

(274) Plg,

sup |f(u)| and R(x) of type S(1,0,1,0) .

Thus we can obtain (267) for Q(f)
, Ozu<l

In 1951 K. L. Chung and M. Kac [724 1,[ 725] considered the case when

P{ £, 2%} = R(x; 1s a symetric stable distribution function of type
S(,0,1,0) where 0< o < 2 . They determined the asymptotic distributions
of the following random variables: Vi the number of changes of sign in the

"sequencé T1s Tosevss L and un(a)‘ the nuber of subscripts k = 1,2,..., 1l
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for which |z, | < a where a 1is a positive constant. K. L. Chung and M. Kac

(724 1,[7251 proved that if 1 <a <2 , then

v, 2r(- I b (2)
T3 - }=1lim P { S —~1= G (x)
T T sin — n->w nl"&“ asin — 1- =

(275)  1im P {
n->o nl._

Whére the distribution function G i(x) is defined by (42.178) . 1In the
-5
particular case of o = 2 the asymptotic distribution of v, Was found in

1950 by K. L. Chung [722 1.[723].

If o« =1, then
|

N i/l for x>0,
(276) Um P {—5—— <x}=
n->« Z2y¢logn 10 for x<0,
~
and p
, {1-e for x>0,
“n(a) 2ax
(277) nlimgg]i{ oz n 2 1 =
0 for x <0

If O<a<1l, then

v oxtan &L 1l for x>0,
. 2 . _
(278) nlfnmP‘{ 10g n é an ]‘ =
O for x <0,
and
(279) Plimy (a) <=} =1,

n-+o®
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In 1956 F. Spitzer [ 181 ] proved that if An denotes the number

of positive elements in the sequence Lys Tooeers Ty and if

n
(280) S umE ] Py, >0} =a
no+o k=1M °

exists, then

A
(281) lim P{ =% < x} = F_(x)
n - ca:?~ a

where

E 0] for x20,

|

| . X . -
(282) F (x) = 2L TN J'(JLu-u) %Gu for 0 <x <1

o) K 0
1 for x 21

and for O <a <1, FO(X) =0 for x<O0, FO(X) =1 for x>0,

Fl(x) =0 for x <1 and Fl(x) =1 for x>1.

We mention some more results. In 1949 Feller [ 732 1 determined the

asymptotic distribution of the number of zeros in the sequence Tys C2""’§n
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for the case when the random variables é;n} have a lattice distribution

which belongs to the damain of attraction of a stable distribution function.

In 1954 G. Kallianpur and H. Robbins [ 742 ] studied the asymptotic
743

distribution of

ri
(283) I nz)
k=1 )

in the case when h(x) 1s Riemann integrable on some finite interval (a,b)
and O elsewhere and NI:{ gn < X} belongs to the domain of attraction of a

symmetric stable distribution function.

In 1957 M. Kac [741] demonstrated as a particular case of a samewhat

moré_ géneral result that if Ng{gk < x}

R(x) is a symmetric stable distributicn
function of type S(a,0,c,0) where 1 <o <2 and c¢ >0 and un(S) denotes
the number of partial sums Lys Toseees T belonging to the set S where S
is a bounded and measurable linear set, then the limit
1=
(284) lim n P{u_(S)
mo N

n-—>«

Q|

J}
exists for 1l <a <2 and J =0,1,2,... and the limit

(285) 1im(1log n)Plu (S) =

n->w

ii
.
——

exists for a=1 and J =0,1,2,... . M. Kac gave methematical methods

for finding these limits,

Finally, we shall mention another result of somewhat different nature.

In 1956 D. A. Darling and P. Erdds [727 ] proved that if (£} is &
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sequence of mutually independent and identically distributed random variables

for which P{g_ < x} = ¢(x) , the normal distribution function,and ¢ = £.+ £+
. ~ PN b ] b] n 1 2

ey & for n=1,2,..., then

| - ) | .
lim P {max —= < (2log log n)>/? + 208 108 log o
n-+ l<ksn vk 2(21og log n)
(286) - . x
+ 172 }= expi-e /2Vn }
(2log log n)~ ©
and :
' | Ck:l : 172, log log log n
1im P { max <(2log log n) + = 2 & 75 +
n+e 1<k vk 2{21log log n)
(287)
+ = } = expl-c%/ /7 )

(2log log n) V2

for -~ < x <= , Furthermore, they demonstrated that (283) and (284) also hold
if we assume only that {F,n} is a sequence of mutually independent

2
random variables for which E{£ } =0, E{Ei} =1 and E{]gn|~’} <C <o

for all n=1,2,... .
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b6, Problens

445.1. Let
2
£(x) = =—e* /2
vor
" Determine
w(s) = [ €% £(x)ax .

ug.2. Let f(x) be a stable density function of type S(%,S,l,o)

where -1 <8 <1, that is, f(x) = f(x ; %-, 8,1,0) . Find f(x) for x>0.

46.3. Let F(x) be a distribution function. Prove that

f|x|6d1i‘(x) = §f I -Rx) + P(ex)lax
O G
for 0 <8 <o, e

46,4, Let

4+

=
= |-

P{g < x} = arc tan x .

Fing E(]g]®} for -1<s<1.

Ug,5. Evaluate the integral

«©

I,(s) = [ (e -1+ —S-’-%-) qu.
Q +x° x
" for Re(s) >0 and O<c <2 . _
¢ - - ;" S
. 46.6  The random variable ¢ has a stable distribution of typs v

®

S(a,B8,c,0) where « #1 and ¢ >0 . Find E{EE{G} for -1 <6 <a .

L46.7. The random vardiable £ has a stablie distribution of type
S(a,B5¢,0) where a #1 and ¢ >0, Find P{g > 0} .
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4.8, Tet R(xX) be a stable distribution function of type

S(a,8,c,0)
where elther O <o <1, -1 <8<1,

o o=1,8=0 or 1<ac<2,
-1 <P <1 and ¢ >0 . In this case

© —|s| %148 v tan 2N
o(s) = [ FRx) = e TsT ™ 2

—C0

for Re(s) = O . Determine q)+(s) = T{y(s)} for Re(s) 20

(See V. M.
Zolotarev V[ 341 1.)

46.9.

The randan variable n has a stable distribution of type

S(-’é—, 1,c,0) where c¢ >0

. Prove that n can be represented in the form
n= 02/1;52 where
x 2
P{g < x} = 9(x) =—i: fe"u/zdu .
~ 2T =

46.10. Tet F(x) be a stable distribution function of type S{a,B,c,m)
where 0 <o <2 ,~-1<8<1 and ¢c>0.

Prove (42.201) and (42.202), that
is,

1im x"F(-x) = ¢, and lim x°[1-F(x)] = c,
X > « X > o

where c¢ and ¢,

1 5 are determined by the eguations
C— C (e ¥ c )
B = EL;-]'-_-C—:L and c = ..__1_.-_2____&_:[.
2 1 2l (a)sin 5—

46.11. - Let F(x) be a stable distribution function. Then F(x) is of
type S(a,B,c,m) where O <a <2 ,-1<B<1l,c¢

¢c>0 and -m 1is a real
mmber. Give a procedure of finding «a,B8,c.m
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b6.12. Let Eqs 52 seens En,. .. be mutually indeperdent and identically
distributed random varisbles belonging to the domain of attraction of a non-
degenerate stable distribution function R(x) of type S(a,B,c,m) . Then

there exist constant A’n and Bn > 0 such that

Eto.t - A
1im P{ 1 s——= 2%} =R(&x) .
n->« n

Prove that Bn =n’ p(n) and

~
A ‘g-“—g-logn if e=1,
n _ h(n +%

g = S

n a--l k-—m if o #1

where o(t) and h(t) are defined for 0 <t < « and satisfy the relations

p(ub) _
fae® T
and
3\
14m h(wti - h(t) _ 0.
t > o '&--l
t

46.13 Let El, 62 seens £n, .-+ be mutuaily independent positive random
varisbles with a comon distribution function F(x) . Let us suppose that
[l-F(x)]xa = h(x) where h{(wx)/h{(x) >1 as x+» forany w >0 and

O <a<l. Prove that

El+ €2+. .ot En
- l,11/04

< x} = R(x)
p(n)

where R(x) 1is a stable distribution function of typ~ &fa,1,I'(1l~a)cos 9‘2—71_.0)

if and oniy if



1/a
13m BT o)) o4

n-w (pm)"

b6.14. Let E1, Egseres Epsees be mutually independent positive random
variables with a common distribution function F{x) . Let us suppose that
[1—F(x2xa = h(x) where h(mi()/h(x) ~>1 as x~»» forany w >0 and
l<ac<2. Let E{gn} = a . Prove that
g4t Este v g - na

1im P{
n -~ e nl/ p(n)

< x} = R(x)

<~

where R(x) is a stable distribution function of type S(a,1,TI'(l-a)cos %" 0)
if and only if
1/a
1im RO p(n) oy
n+w (pn)®
46.15. Let E1s Egreers Epseen be mutually independent and identically
distributed random variables for which
= i 2‘J
if j =1,2,... . Find the limiting distribution of (E ot g - An)/Bn
as n + « where An and B y are suitably chosen normalizing constants.

46.16. Let E1> Eosnves Epsees be mutually independent and identically

distributed random variables for which
k,q-1

> k} = (-~
f{gn k} = (~1) (k)

Cif k=1,2,... and O <qg <1 . Find the limiting distribution of . (£1+.-..+

'En— A n)/Bn as n -~ » where .llh and Bn aire suitably chosen normalizing

constants.
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46.17. TLet £, €55..., Eaeee be mutually independent and identiczlly

- [ 4

Find the limiting distribution cof (gl+. L+ o An)/Bn a8 n > « where 'A‘n

and Bn are suitably chosen normalizing constants.

46.18. Let £15 Epsevvs E5e-- be mutually independent ard identically

distributed random variables with distribution function

' 1 - 1—-——-5 for x> e,
i 2x(log x)
F(x) = 1/2e for ~e<x<e,
1 5 for x < ~e .,
31x] (loglx[)”

Find the limiving distribution of (& +...+ & An)/Bq as n - = where An

1
and Bn are sultably chosen normalizing constants.

b6.19. Ilet E1s Enpseens Esenn be mutually independent and identically

distributed random variables with distribution function

l—;l(- for x>1,

F(x) = ,
0 for x < 1.

.

Find the limiting distribution of (& +...+ gn— An)/Bn as n - « ‘where An

1
and Bn are suitably chosen normalizing constants.
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46,20, Let Eis Eopenes Epene bE rutually indeperdent and identically

distributed random varisbles with density functicon

1 ' .
;ié- lgg.éz_l_ fOI': ‘X'Zz 1 R

£(x) = %

0 for x <1,
Find the limiting distribution of (£1+. .t gn- An)/Bn as n + « where ﬁ"n

and Bn are sultably chosen normalizing constants. (See G. Kallianpur and

H. Robbins [ 32 1.)

46,21, Prove (42.181).

46,22, Let £ and v be independent random variables
having the same stable distribution of type S(& ,1,1,0) where
C€«xX< 1, Find HE) = £{§q'1g xY}.
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