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CI-IAP"f'fil v. 

RANDOM WALKS, BAIJ.DT THEORF....MS, 

AND ORDER STNrISTICS 

35. Bemoulli Trials. A sequence of independent and identical 

trials (repeated trials) is called Bernoulli trials if there are two 

possible results (outcomes) for each trial, namely, either a."1 event A 

occurs, or it does not occur. Sometirnes it is convenient to call A 

success and A , fai.lure. Iet P{A} = p and P{A} = q • 
""" ,,.._ 

Then p+q = 1. 

' " 

--~note-by: __ ;~- thenUniberof'occurrences--o.f--A--(or-;-the -nurnber-or-- -- -~------
1 ' 

succe~ses) in the first n trials. Then 

( " ' -l I P{v = k} = (n)pkqn-k 
k

, . 
{""" n 

for k = 0,1,2, .•.• In some particular cases this fom1ula had been lmoi-<rr: 

by Pierre Fermat (1601-1665), Blaise Pascal (1623-1662) and C'bristiaan 

Huygens (1629-1695); however, Jakob Bernoulli (1654-lr(05) was the first 

who systematically studied the mathematical laws gover-ning repeateà trials. 

We sa;y that the random variable v has a Bernoulli distrïoution n 

with parameters n and p where n = 1,2, ••• and O < p < 1. In what 

f ollows we shall mention a few useful f ormulas f or the Bernoulli 

distribution. 

We have 

(2) 
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for j = O,l, ••• , n , which follows from (1). We can write also tha.t 

(3) 
n k ~ · k · 

P{v ~j} = l (.-.L)pJq -J 
""" n - k=" J-1 --J 

for j = 1, 2, ••. , n · , which ca.ri be proved by taking into consideration that 

the event · {vn > j} can occur in the ,following rnutually exclusive ways: 

among the first n trials, the j-th success occurs at the j-th, j+l-st, ••• , 

n-th trial. We caYJ. write also that 

(ll) 1 p . 1 . 
P{v

11 
> j} = n. cr:-

1
·) f u.J- (1-u)n-Jdu 

,.,..,.. J- 0 

for j = 1, 2, ••• , n • We can prove ( 4) in several ways. We can show that 

the integral on the right-hand sicle of (4) can be eX'.;iressed either in the 

fonn (2) or ( 3). We can prove ( 4) also in a probabilistic wa.y by choosiri.g 

a suitable model for Ben1ou11i trials. 

The r-th binornial moment of "n is given by 

n 
(5) = l 

k--0 

for r = 0,1, ••• , n. Obviously Br(n) = 0 if r > n. 

Knowing the binomialmoments of "n we can easily determine the 

power moments and the central moments of "n • Here are a few part.icular 

cases: 

(6) 

(7) 

E{'; } = np , ,_ n 

Var{v } = E{(\> •• np)
2

} = npq 
.........- n ~ r1 : 
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(8) E{(v - np) 3} = npq(q-p) , ,,...,.,. n 

(9) 4, 2 2 2 E{(v - np) j = 3n p q + npq(l-6pq) , 
;i.~ n 

(10) E{(v - np) 5} = npq(q-p)(l-12pq+lünpq) , 
(VV' n 

(11) 6 22 222 <33 E{(v - np) } = npq(l-30pq+l20p q )+5n p q (5-26pq)+l5n-'p q • 
,,.~ n 

. 
By Chebyshev' s inequality (T.heorem 4l,• 3.) we have 

(12) 

a > 0 and s = 1,2, ••••. In particula.r, if s = 1, we get 

(13) P{ 1 v - np 1 > a} < npq < _E_ 
,..,.,,.. n = = 2= 2 a 4a 

f or a > 0 , and if' s = 2 , we get 

(14) P{lv - npl > a} < 3(npq)2+ npq(l-6pq) < 3n2 
IV'- n = = a 4 = 16a 4 

for a > O • 

In 1680 or so Jakob Bemoulli [ 7 ] proved the weak law of large 

m.mbe1"'s which a..c:;serts that 

(15) 

f or any e: > 0 • 

v 
lim P{ l_!l_ - PI < e:} = 1 

IV'-' n 
n -+ "" 

In 1917 F. P. Cantelli [ 13] proved the streng law of large ·numbers. 

which asserts that 
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(16) P{ l:i.m 
~n-+co 

"n - = p} = 1 . n 

In 1733 A. De Moivre [18] (see also P. S. Laplace [39 ]) proved the 

following lirnit theorem: 

(17) 
" - np 

lim P{ n < x} =. ~(x) 
n-+~/npq = 

f or any x where 

(18) 

1 

1 

is thf nonnal d..tstribution function. 

Finally, we would like to mention briefly the development of the 

notion of binanial coefficients. We can define forrnally the b:lnornial 

coefficient c:) for any canplex or real a and for any positive integer 

k as 

(19) ( a) = a(a-1) ••. (a-k+l) 
k k! 

where k! = L2 ••• k, and for any a 

(20) (~) = 1 . 

Accordingly, (~) is a polynornial of degree k • 

The notion of binomial coefficients originates in the notion of 

figurate numbers, as we call them now. We define B,k , the k-th fit:,'UI'ate 
n 
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number of order n , for n > 0 and k > 1 by the following recurrence 

f onnula 

(21) #+l = # + #+l 
n+l n+l n 

where ~ = 1 for k > 1 and F~ = 1 for n .2:. 0 • 

(See L. E. Dickson [19 J II. pp. 1-39.) Here is a table for pk n 

(0 < n <. 6 , 1 < k < 7) • 

~ 1 2 3 4 5 6 7 

0 1 1 1 1 1 1 1 

1 1 2 3 4 5 6 7 

2 1 3 6 10 15 21 28 

3 1 4 10 20 35 56 84 

4 1 5 15 35 70 126 212 

5 1 6 21 56 ~26 252 464 

.6. 1 7 28 81! 212 464 928 

Figurate mmJbers were studied by Nicornachus of Gerasa [46 ] who lived. 

about the close of the first centu..ry. Omar Khayyarn of Nishapur (d. 1213) 

knew them in the eleventh century. (See Ii'. Woepcke [ 68].) In 1303 

· Chu Sh:ih-chieh [ 15] refers to f'igurate numbers as an Óld invention and he 

mentions several surprising relations for f'igurate numbers. (See Y. Mikanii 

[ 44 ~) The figurate mirnbers arranged in the form of· a triangular array 

J J. Needham and Î'• Wang [370 J 
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first appeared jr1 print in 1527 on the ti tle-page of P. Apianus [ 4 ] • 

(See D. E. Smith [58] p. 509.) 

In 1544 M. St}fel [60] showed that in the binomial expansion 

(22) 
n n _k k <1 + x) = I c-- x 

k=O, n 

the coefficients C~ (0 < k < n) can be obtained by the recurrence 

relation 

(23) Je = ck + ck-1 
n+l n n 

1 

wherei c0 = ~ = 1 for n = 0,1,2, •••• He arranged the coefficients 
I n n 

~ (b < k ~ n) in the following triangular array which is lmown now as 

the Pascalrs arithmetic triangle 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 
•. •. 

In 1556 Nicolo Tartaglia [ 64 ] (Part 2. pp. 70, 72) gave this trianguJ_ar 

arra,y as :his own invention. In 1654 Blaise Pascal [47] made many dis

coveries concerning the nurnbers ~ ( 0 . < k < n) • 

The numbers ~ (0 < k < n) à.ppear in the 17-th century in connection 

with combinations. The number of combinations without repeti.tion of n 

objects ;aken k at a time can be expressed as C~ • In 1634 f..~ Hèrj_gone 

[ 31] gave the following fonnula 
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(24) ck = n(n-1) ••• (n-k+l) 
n k! 

for O < k ~ n where k! = 1.2 ••• k for k = 1,2, •••• This formula 

appears also jn 1654 in the treatise of B. Pascal [47 ] . 

As we have seen, the above rnentioned three instances all lead to the 

san1e rnathematical notion, narnely, the notion of binomial coefficients. We 

ca..~ conclude that 

(25) # = (n+k-1) 
n k-1 

f or 1 t1 > 0 and k > 1 , and 

1 

(26) 

f or O<k<n. 
= == 

It should be noted that in those early times no rnathematical notation 

W"'cl.S used. for these numbers. It seems that L. Euler [22 p. 78], [23p. 33] 

was the first who used the notation [~] and later (~) for (19). The 

notation ~) , which is a slight rnodification of Euler's second notation, 

wa.s introduced in 1851 by J. L. Raabe l53 p. 350]. 

Finally, we note that if n , k and n-k are all large, then we can 

use Stirling's formula in finding a good approximation for the binornial 

coefficient 

(27) 
n n! 

(k) = k! (n-k) ! • 

According to StirlL~g's formula we have 
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(28) 
nn 

n ! "' 121fn ( - ) e 

as n + 00 , that is, n! is asyrr~totically equal to the right-hand side 

of (28). If we divide n! by the right-hand side of (28), then the ratio 

tends to 1 as n -~ 00 • This result was found in 1730 by J. Stirling 

[61 p. 135]. It should be noted., however, that preced:lng Stirling, in 

1730 A. De Moivre [ 17 p. 170] discovered tr.tat 

(29) 
- nn 

n' "'C/r1(-) . e 

as n + 00 where C i.s a constant which he found numerically by using the 
i 

asymp~otic 

1 
1 

(30) 

series 

1 1 1 1 
log c = 1 - 12 + 360 - 1260 + m - " . . . 

By the L~spiration of De Moivre his rriend Stirling studied the problem 

and demonstrated that C = /'2; • This fact can easily be deduced rrom 

the product representation of 4/îî which was found in 1655 by ~Wallis 

[66 ] • The unnoticed fact that the series (30) is divergent was pointed 

out by Th. Bayes [ 5 ] . 

As a refinement of (28) we can write that 

(31) 

where 

[ 55 J. 

l/(12n+l) < e < l/12n • 
n 

For the proof of (31) we refer to H. Robbins 

In proving the limit theorem (17) A. De Moivre used formula (28) to 

find a good approx:imation for (l). He found rn.IDJ.erically <P(l), <P(2) and qi (3). 
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36. Classical Problems. It seems the oldest knwon prDblem in the 

theory of probability is the d.ivision problem (the problem of points). 

This problem is of considerable interest, it had a great influence on the 

development of probability theory and it is the predecessor of two other 

important problems, namely, the ruin problem and the problem of the duration 

of plays. In what follows we shall gi ve a survey of the aforementioned 

three problems. 

Thé Division Problem. We can formulate this problem in the following 

general form: 

~o players A and B play a sequence of games. In each game, 
1 

1 

independently of the others, either A wins a point with probability p , 

or R wins a point with probabD.ity q where p+q = 1 • The players 

agr-ee to continue the games until one has won a predetermined number of 

games. However, the match has to stop when A still needs a points and 

B still needs b points to win the series. In what proportion should 

the stakes be divided? 

Denote by PA(a,b) the probability that A wins the series and by 

PB(a,b) the probability that B wins the series. Obviously PA(a,b) + 

+ PB(a,b) = 1 . 

It is evident that in the case of fair sharing the stakes should be 

di vided i.'1 the proportion of 

(1) [1-P.(a,b)] • 
fi 



V-10 

Thus the problem is to find the probability PA(a,b) for a = 0,1,2, .•• 

and b = O, 1, 2, • • • • In the particular case of p = q = ! the f ollowing 

table contains PA ( a, b) for 0 _:5_ a < 6 , and 0 < b < 6 • 

~' 0 1 2 3 4 5 6 

0 ··- 1 1 1 1 1 1 

1 0 
1 3 7 15 31 63 
2 1f ö Tii 32 D4 

2. 0 
1 Lj. 11 26 5'7 120 
1f ö Ib 32 bif 128 

3 0 1 5 lb 42 99 219 
ö Ib 32 b4" 128 256 

4 0 1 6 22 64 163 3{)2 
ïb 32 bif 128 25b 512 

5 0 1 7 29 93 256 631:5 
32 blî 128 25b 512 [ö24 

6 0 1 () 37 130 3öb 02LI 
b4" 128 256 512 P-024 fülIB 

According to O. Ore [ 92] it seems likely that the problem is of 

Arabic origin. He found some particular versions of the aforernentioned 

problem in Italian mathernatical rnanuscripts dating frorn as early as 1380. 

The problem appears for the first time in printed fonn in 1494 in the book 

of Lucas dal Burgo Pacioli [ 94 · p • 197]. In Pacioli' s version p = q = 1/2, 

the players have agreed to play 6 games and a = 1 and b = 3 . 

Pacioli gave the incorrect answer 5:3 which is simply the ratio of the 

mnnber of games already won by the two players. The correct answer is 7 : 1. 
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In 1556 Nicolo Tartaglia [64] (Part I, p. 265.) discussed the probl.ern 

and he too gave a wrong answer, narnely, 2:1 • 

In 1558 Frances_co Peverone [48 p. 40] posed the same problern, with 

the irrelevant rnodifj_catj_on that the players have agreed to play 10 games, 

and gat the wrong answer, 2:12 • 

In 1603 L. Forestani [ 25 ] posed the sarne problern, with the rnodification 

that the. players have agreed to play 8 games, and a = 3 and b = 5 • 

It is interes-ting --t_ó rnention that L. Forestani [ 25] formulated the 

same f roblem for the case of three play ers toa. Three play ers agreéd to 

play U.11 games, but they have to interrupt the match when they have won 

respectively ten, eight and five games. The proper shares of the stakes 

should agaj11 be detennined. 

Tn 1654 Antoine Gombauld chevalier de Méré ( 1607-1684) a distinguished 

philosopher and a praninent figure at the court of Louis XJ:V' called the 

attention of Blaise Pascal (1623-1662) to the division problen1. The 

division problem has been mentioned also in sorne old F-rench books, ar1d 

de Mér-é may have read it sornewhere. 

It seerns that Pascal provided ari incorrect solution for this problern 

and corrmunicated it to Pierre de Fermat (1601-1665). In reply, Fe:rrnat found 

a remarkably elegant solution of the problern. He dete:rrnined PA(a,b) in 

1 the case when p = q = 2 . Fermat reasoned in the following way: If A 

needs a points and B needs b po1nts, then in at most a+b-1 games 
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it can be decided who wins the series. Let us assume that the players 

actually play a+b-1 games rega.-rdless of the possibility that one of thern 

already won the series. Then the number of possible 

and they are equally probable because p =: q = ! . 
series is 2a+b-l 

' 
Player A wins the 

series if and only if he wins at least a games among the a+b-1 games. 

The number of' all those sequences in which A wins exactly k games is 

equal to the nurnber of combinations without repetition of a+b-1 el.ernents 

taken k. at a tiine. If we add these cornbinations for k = a,a+l, ••• ,a+b-1, 

then we obtain the nurnber of favorable cases and PA(a,b) is equal to the 

number of favorable cases di vided by the riurnber of possible cases. Wnat 

Fermat said in words can be expressed by the following mathernatical formula: 

(2) 
_ 1 a+b-1 ,a+b-l 

PA(a,b) - a+b-1 l ' k ) • 
2 k=a ~ 

In Fermat 's formula (2) the binornial coefficient (a+~-l) is interpreted 

as the number of combinations of a+b-1 elernents taken k at a time. 
,,, 

It is not clear whether Fermat was farniliar with Herigone's forrnula for 

(~) [formula (35.24) in the previous section] or whether he enurnerated the 

canbinations in another way. It should be noted that Fermat discovered 

. 6 6 . _k cn+k-1) already J.n 1 3 that the figurate numbers ~~~ = k-l satisfy the relation 

~+l = (n+l)~+l • (See L. E. Dickson [19 ] II. p. 7.) n n Possibly Fermat 

used this recurrence fonnula to find too. This part of the correspondence 

between Pascal and Fermat has unfortunately not been preserved. The above 

infomiation is taken f'rom a letter written by Pascal to Fermat on July 29, 

1654. (See P. Fermat [81 ], B. PascaJ. [ 93 ], and P. R.. Montmort [ 91 ].) 

In this letter Pascal recalls Fe:rmat 's solution. He writes that he adrnires 

Fermat's rrethod of solution, and admits that he h.im.self was wrong. In this 

letter Pascal discloses also that hF::' has f ounà another sol ut ion whicll is 
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short and neat. Pascal explains in examples how to calculate PA ( a, b) if 

a = l, b = 2; a = 1, b = 3; a = 2, b = 3 . Actually, Pascal calculated 

expectations instea.d of probabilitles, but this does not make any essentia.l 

difference. We can express Pascal' s discove1"Y by the following recurrence 

f orrnula 

(3) 

f or a >. 1 and b > 1 where PA(a,O) = 0 for a = 1,2, ... and PA(O,b) = 1 

for b = 1,2, •••• Pascal's formula (3) mak~s it possible to calcul.ate 

quickty P A(a,b) for small values of a and b • 
1 

1 
Pascal' s formula ( 3) can easily be seen to be true for any a > 1 and 

b ~ ... l • If A needs a points and B needs b points, then A can wi..11 

the serles in the following two rnutually exclusi ve wa.vs : A wins the next 

game which has probability ~ and he wins the series which has probability 

PA(a.-1,b) or B wins the next game which has probability ~ and A wins 

the series which has pr'Obability PA (a,b-1) • Then (3) follows by the 

theorem of total probability. 

Pascal introduced the notion of "the value of a point. 11 If A needs 

a points and B needs b points and A wins the next game, then the 

value of the point f or A is 

(4) 

in the case of a unit stake; otherwise, the right-hand side of (4) should 

be multipl~ed by the total number of stakes. Pascal observed that p A ( a. b) 

can also be obtained by the sarne recurrencc fo:rmula a.s PA (a.,b) , ths.t is, 
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(5) pA(a.,b) = ~ pA(a-1,b) + ~ pA(a,b-1) 

f'or a > 2 and b > 2 where pA(a,l) = l/2a for a .:.. 1 and pA(l)b) = 1/2° 

for b ~ 1 . Pascal also observed that pA(a,b) can easily be obtained 

with the aid of the arithmetic triangle. Indeed we have 

(6) ( ' ca+b-2) l PA a,bJ = a-1 -2~~.+_,..b--"'""1 

for a ~- l and b ~ 1 • Obviously, this discovery led Pascal to declare 

that Fennat and himself had found the sarne solution. "The truth is the 

same at Toulouse and at Paris." 

~t seE!lls that in a missing letter Fennat indicated that hls rrethod can 

also be applied in the case of three or more players. Apparently, Pascal 

misunderstood Ferrnat and believed that Ferrnat's solution for two players 

ca.'1 be applied verbatim for three players, which is evidently not what 

F'enna.t meant. Pascal expressed his opposite view in his letter to Fennat 

dated August 24, 1654. (See P. Fennat. [81], B. Pascal [93], a.'1d P. R. Montmort 

[91] pp. 232-244.) In his letter to Pascal, dated September 25, 1654, F'erniat 

brilliant}.y explained that the method of requiring that the players continue 

to play a particula.r nurnber of games even if one of them rnight have already 

won the series, serves only to simplify the rules and to make all the 

possible sequences equally probable, or to state it more intelligibly, 11to 

reduce all the fractions to the same denonri.nator." Perrnat explained how 

lrl.s IIEthod should be applied correctly in the case of three or rnore players. 

Fermat noted that the same result.can be obtained without the artifice 

of the continua.tien of the games after winrling; however, in this case th,• . . 
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possible sequences will not be equaJ.ly probable. He illustrated this 

method for the case of three players, but it can equally be applied also 

for the case of two players. By this rnethod of Fennat we can express the 

probability (2) in the following equivalent fonn 

(7) 

For A can win the series in n+ 1 games where n = a, a+ 1, ••• ,a+b-2. • 

Player A \..r'.i.ns the series in n+l games if he wins a-1 games among the 

f'irst n games which has probability ( n
1

) .!__ and he wins the 
a- 2n n+l-st 

game ~hich has probability 

the p~ba:bilities multiply. 

1 
2· Since the events in question aPe independent, 

If we add the product for eveFJ n = a,a+l, ••. ,a+b-2, 

then we get PA(a,b) • 

It is i.viteresting to note that Ferrnat 's second solution which is given 

by fonnula (7) , and Pascal' s solution which can be obtained by forrnLüas ( 4) 

and (6) show complete agreement. Obviously this agr>eernent prompted Pascal 

to reply to Fermat in his letter of October 27, 1654, "I admire your method 

for the division problem all the more because I understand it very well. 

It is entirely yours, and has nothing jn common with mine, and it reaches 

the same end easily." 

Although Fermat calculated probabilities skillf'Lllly even if the possible 

cases were not equally probable, he did not consider the problem of fL.11ding 

PA(a,b) in the case when p f. q • This generalization has been given 

only af'ter Jakob Bernoullits results concerning repeated trials become 
.•. . . 

widel;y known. It should be mentioned that Jakob Bernoulli [7 J(pp. 107-Jl2) 
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gives demonstrations for fonnulas (2) and (7) both, but he does not make 

a.n...v suggestions for a possible extension to the case of p f q • Possibly 

he worked out these proofs before discovering his celebrated fonnu.la (35.1). 

Pascal and Fennat did not write down explicit formulas for PA(a,b) . 

They explatned only in words how PA (a,b) can be obtained, and illustrated 

their re sul ts by examples. An explicit fonnula for PA ( a, b) was gi ven 

only in 1708 by P. R. Montmort [90 p. 177] in the case of p = q = ~ . 

In 1713 in the second edition of his book P. R. Montmort [91] (pp. 21-+4-246) 

gave two explicit expressions for PA(a,b) in the general case toa. These 

fonnula.s are the counterparts of (2) and (7). In the general case (2) 

becanes 

(8) 

and (7) becanes 

(9) 

( , = a+~-l(a+bk-l)pkqa+b-1-k PA a,bJ l 
k=a 

a+b-2 
P ( b) \ ( n ) a n-a+l 

A a, = l a-1 P q • 
n=a-1 

The proofs of (8) and (9) follow on the sarne lines as the proofs of (2) 

and (7) except that now Bernoulli's formula (35.1) should be used. Fonnula 

(8) was comnunicated to P. R. Montmort by Johann Bernoulli in a letter dated 

March 17', 1710. (See P. R. Montmort [91] pp. 294-295. ) Formula ( 9) seems 

to have been found by Montmort himself. 

Pascal's recurrence formula (3) in the generaJ. case becomes 

(10) 

for a > 1 and b _>._ 1 where PA ( a, O) = O for a ~. l and P~(O,b) = 1 
.H. 
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for b > 1 • For small values of a and b the probability PA(a,b) 

can be calculated quickly by ( 10) . However, the general solution of the 

difference equation (9) can be obtained only by using more advanced 

methods which were developed j11 1773 by P. S. Laplace [ 8Q], ~9] and in 

1775 by J. L. Lagrange [B8] • 
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The Ruin Problern. The first known ruin problern was proposed by 

B. Pascal in 1655 to Pierre de Carcavy for the purpose of transmitting it 

to Christiaan Huygens (1629-1695). The problern is as follows: 

"Two players A and B play a sequence of games with three dice 

and fixed points fourteen and eleven respectively. Each player has twelve 

counters, and receives one counter frcm the other every time his own number 

of points turns up. What are the odds for one player to ruin the other?11 

We can state this problern more generally as follows: 

1 

to players, A and B , play a series of games. In each gan1e 

irldep dently of the others, either A wins a counter frorn B with 

probability p or B wins a counter from A with probability q where 

p > 0 , q > 0 and p+q = l • The series ends if eithe:r A wins a total 

number of a counters from B or B wins a total mmber of b courrters 

frcm A • j If initially A has b counters and B has a counters, then 

the games are continued until one of the two players wins all the counters 

of :his adversary, in other words, until one of the two players is ruined. 

Ienote by P(a,b) the probability that A -w·ins the series, and by 

Q(a,b) the probability that B wins the series. The problern is to find 

the ratio Q(a,b)/P(a,b) • 

In the afonnentioned problern of Pascal the probability of throwing 

14 points with three dice is 15/216 ad the probability of throwing 11 

points with three d:Lce is 27/216, and therefore p/q = 5/9 • Furthennore 

a = b = 12 • 
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The probabilities P(a,b) and Q(a,b) are given by the following 

f ormulas 

(11) P(a,b) = 

and 

(12) Q(a,b) = 

pa(pb _ g_1:.l 
a+b a+b 

p - q 

b 
a+b 

a 
a+b 

We have P(a,b) + Q(a,b) = 1 , and 

(13) Q(a,b) = 
:i?(a,b) 

Pa 
1 - (-) __ 9..:___ 
· a a+b 
'(~) - (p) 

q q 

a 
b 

if p 1- q ' 

if p = q ' 

if p ~ q ' 

if p ::: q 

if p 1- q ' 

if p = q • 

In 1657 C. Hu..vgens [32] found Q(a,b)/P(a,b) in the aförernentioned 

particular case when a = b = 12 and p/q = 5/9 • C. Huygens [32] 

included this problem as the last one in his collection of exercises for 

the reader·. 

About 1680 or so, Jakob Bemoulli [ 7 pp. 67-71], [ 8 , I-II pp. 71-75 

and p. 138] found Q(a.,b)/P(a,b) in the general case. Formula (13) was 

proved only in 1711 by A. De Moivre [ 76 pp. 227-228], [ ??pp. 23-24], 

[78 pp. 44-147], [ 79 pp. 51-54] • A.De Moivrers proof for (13) is a ver'J 

ingenious di.rect proof wh1ch we shall present here in the following simple 

wey. Let us i.magine that in each game A recei ves or pays a certain 
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amount of' money depending on his accumuJ.ated gain. If at the beginrü11g of 

a game A's accumulated gain j_s j counters (j = a-1.s••·,-b+l) and if 

he wins, he receives (q/p)j units of money; if he loses, he pays (q./p)j-l 

units of money. In each game A's expected receipt is 0 becavBe p(q/p)j-
. 1 

q ( q/p) ,J- = 0 for all j • Thus the expected total receipt of A at the 

end of the series is also 0 , that is" 

(14) P(a,b)[l+(~)+ ••• +(~)a-l] - Q(a,b)[(~)+ ••. +(~PJ = O , 

whence 

(15) Q(a,b) = 
P(a,b) 

b a a 
q (p - q ) 

a b b p (p - q ) 

a 
b 

if p ~ q ' 

if p = q 

Tf.ds is :L11 agi--eement wi th ( 13) • I.f we can show that P ( a, b) + Q ( a, b) - 1 , 

then (13) implies both (11) and (12). 

The solution of the ruin problem can also be f ound in the book of 

·p ~ R~ 'Montmort [ 90 p. 178], [ 91 p. 2'77, pp. 295-296, p. 311] • 

In 1780 P. S. Laplace [87 pp. 387-390] proved (11) and (12) by showing 

that the p1'"'0babilities Tij= P(j,a+b-j) (j = 1,2, ••• , a+b-1) satisfy the 

recurrence f ormula 

(16) 

. where TIO = 1 and 1Ta.+b = o Here 1Tj is the probability that A wins 

the series provided that he has j c01.mters in his possession. The event 

of wi ... nning the series under this condition can occur in two mntually 

exelusive ways: he wins the next game in wr..ich case bis capitaJ. increases 

by one counter or he loses the next gam.e 5_n which case lüs c2pJ.tal decreases 
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by one counter. 'l'hus we get ( 16) • 

(17) 

If p = q , then the general solution of (16) is 

îf. = a + Sj 
J 

for j = 0,1, ••• ,a+b • Since îfo = 1 ·and rra+b = o we obtain that 

(18) îf =1-_j_ 
j a+b 

for j = 0,1, ••• , a+b and P(a,b) = 7f = b/(a+b) • a 

(19) 

1 

Tf p '1 q , then the general solution of (16) is 

! 

j 
1T = ~ + S(p) 

j q 

for j = 0,1, ••• , a+b • Since rr0 = 1 and 1Ta+b = O , we obtain that 

(20) 

for j = 0,1, ••• , a+b • Since P(a,b) = 1Ta , we get (11) for p 'I q • 

This canpletes the proof of (11). In a similar way we can prove (12). 

It is interesting to note that as a b~rproduct we obtain that 

P(a,b) + Q(a,b) = 1 • This irnplies that the probability that the series 

never ends is O • 
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The Pr?bl~m of the Duration of Plays. The ruin problem which we 

discussed before leads in a natural way to more general problerns. One 

such problem is to find the probabi1ity that the series end..s in at most 

n games. This problem can be reduced to the problem of finding the 

probability that A wins the series in at most n games, and the 

probability that B wins the series in at most n games. 

Our. objective is to mention the solutions of these problenis. Iet us 

fonnulate the problems p.recisely: 

Two players, A and B , play a series of games. In each game, 

independently of the others, either A wins a counter from B with 

probability p or B wins a counter fran A with probability q where 

p > O , q > 0 and p+q :-:: 1 • The series ends if ei.ther A wins a total 

number of a counters trom B or B wins a total nurnber of b counters 

f"ran A • 

Denote by Pn(a"b) the probability that A "rins the series in at 

most n games. 

Denote by ~(a,b) the probability that B WÎ..JlS the series in at most 

n ga'Tles. 

Denote by p the duration of the games, that is, the number of games 

played until the series ends. Then 

(21) P{p ~ n} = Pn(a,b) + ~(a,b) • 

Obviously 
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(22) lim P (a,b) = P(a,b) 
n n -r oo 

and l:i..rn ~/a,b) = Q(a,b) 
n -r "" 

where the right-hand sides are given by (ll) and (12) respectively. Since 

P(a,b) + Q(a,b) = 1 , it foJlows that 

(23) P{p < 00 } = 1 • 
Nv-

We obtain an interesting variant of the series of games mentioned 

above if we suppose that b = 00 , that is, if we suppose that the series 

ends if A wins a total number of a counters from B regardless of how 

many counters B won f'rom A • In this case we rnay assume that initially 

A :ba.J an unlim..i.ted number of counters, and B has a counters, and the 
1 

series ends if B is ruined. Then B cannot win the series and therefore 

~(a, oo) = 0 and Q(a, oo) = 0 • 

In this case 

(24) 

and 

( 25) P{p <oo}=P(a,oo). 
IV"' 

If P(a, oo) < 1 , then there is a positive probability that the series does 

not end in a finite number of games. Actually, we have 

if p < q ' 
(26) 

if p > q • 

'Ihe:probabilities Pn(a,b) and ~(a,b) are given by the following 

explicit fonnulas: 



V-24 

\ \ n ~ ( n ) l j_ n-i 
l [ l_ (i-a-k(a+b))- l i-k(a+b) _p q + 

. n+a k=u k=l 
i<-= 2 

(27) 

and 

co 00 

Q ( b) = l [- l (. n )- l ( n )] i n-i + 
1'l a, i>(n-b)/2 k=l i-a-k(a+b) k=l i+k(a+b) P q 

(28) 
00 

+ l [ l ( n ) l ( n )] i n-i 

L 
i<(n-b)/2 k=O i-k(a.+b) -: k=O i-a-k(a+b) P q · 

bability ~(a,b) can easily be obtained frorn Pn(a,b) by 

~J1terchanging the roles of A and B • Actually, 

(29) 

We note that if we interchange the order of surmnation in ( 27) , then 

we obtain the following equivalent expresssion: 

(30) 

= ~ k(a+b)+a k(a+b)[ \ 1n) j n-a-j-2k(a+b) + 
l p q l 'J" p q 

k=O . . n-a-2k(a+b) 
J< 2 

+ l (~) qjpn-a-j-2k(a+b)lJ _ I Pk(a+b) qk(a+b)-a • 

j 
n-~-2k(a+b) k=l 

< 2 

. r l (~)pjqn+a-j-2k(a+b) 
. n+a-2k(a+b) 

LJ< 2 

+ l (~)qjpn+a-j-2k(a+b)] 
. n+a-2k(a+b) 
,1< 2 
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P-!'obability ~(a,b) can also be expressed in a sirnila.r way. 

The probability that the series does not end in n games is g:Lven by 

(31) 
~ n 

00 

n _\ i i n-i 
!{p > n} = n-b ~ n+a.[ k==l -

00 
<i+k(a+b)) - k) _

00
(i-a+k(a+bY. .;P q . 

- <1< ---2 2 

Formulas (27), (28), (30), (31) contain only a finite nurnber of terms. 

If k is a sufficiently large positive or negative integer, then the 

corresponding binomial coefficients vanish. 

We note that we use the following de fini tion of the binomial 

coefficient (~) . For any x 

(32) (x) = x(x-1) .•. (x-k+l) 
k kl 

if k = 1,2, ••• ; (~) = 1 and (~) - o if k = -1,-2, ••• 

In 1708 P. R. Montmort [ 90 , p. 184] showed that if a = b -- 3 and 

1 p = q = 2 , then 

(33) 
m 

,!{p < 2m+l} = 1 - <i) 

for m = 0,1,2, •••• 

In 1711 A. De Moivre [76, p. 261] published a practical procedure for 

find.ing P{p > n} in the general case. See also A. De Moivre [77 pp. 113-114], 
NV-

[ 78 p. 173] , [79 p. 203] • A. De Moivre observed that if' we multiply 

, (p+q) n-times wi.th itself in such a wa.v that ai.~er each multiplication 
+. . 

we remove th0;..;e terms (if any) which have the fonns pa J qJ (j = 0,1,2, •.• ) 

. b+· 
and pJ q J (j = 0,1,2, ••• ) , then finally 1,~~ get P{p > n} ,,,.._ 
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Ina letter dated November 15, 1710 and addressed to Johann Bernoulli 

(1667-1748), P. H. Montmort (1678-1719) mentioned that he obtained a general 

solution for the problem of the duration of games, and he also suggested 

the problem for the consideration of bis nephew Niclaus Bernoulli (1687-1759). 

(See [91] pp. 303-307.) In his letter to P. R. Montmort dated Febru2.ry 26, 

1711, N. Bern.oulli gave an explicit expression for P (a,b). (See [91] 
n 

pp. 308-314.) N. Bernoulli obtained exactly fonnula (30) for Pn(a,b) in 

the case when n = a+2m (m = 0,1,2, ••• ). (See [91] p. 310,) Since 

ob1tiously, P, +2m+·I (a,b) = P +2rn(a,b) , N. Bernoulli's formu1a gives a a c. _ a 

compl~te solution of the problem. In his letter to N. Bernoulli datecl 
1 

1 

AprilJlO, 1711, P. R. Montmort replied that he admired N. Bernoulli's 

formula., but he could not understand it. (See [91] pp. 315-323.) No Bernoulli 

in his letter to P. R. Montmort dated November 10, 1711 gave examples for the 

application of his fonnula. (See [91] pp. 323-337.) Afterwards, in his 

letter to N. Bernoulli dated March 1, 1712, P. R. Montmort wrote that he 

found that N. Bernoulli's result and his own result were the sarne except 

1 that P. R. Montmort had considered only the particular case p = q = 2 . 

(See [ 91] pp. 337-347.) 

In 1713 P. R. Montmort [ 9lpp. 268-277] published N. Bernoulli's general 

fonrrula for Pn(a,b) • (See also [91] p. 275, p. 310, p. 324.) 

In 1718 A. De Moivre [77 pp. 122-124] also published N. Bernoulli 's 

general solution and he attributed it to P. R. Montmort and N. Bernoulli. 

A. De Moivre rernarked also that the same solution can be obtained by using 

his owi1 method published in 1711. (See [76 p. 262], [7? pp. 119-122] ,' 
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L78 pp. 179-181], [79 pp. 208-210].) J_n 1738 A. De Moivre [ 78 , pp. 181-

184] , [ 79 pp. 210-213] published this sol ut ion aga:in; however, at th..1.s 

time, as his own result. See his Rernark [ 78 , pp. 181-182], [ 79 . pp. 210-

211] in which he gives a sanewhat questionable explanation for changing 

his attitude. A. De Moi~e. [77 , pp. 122--123], [78 , pp. 182-184], 

[79 , pp. 211-213] expressed in words'how Pn(a,b) and %(a,b) can be 

found. If we transform his words into mathernatical fonnulas, then we 

obtain f ormula ( 30) f or P ( a, b ) and an analogous f onnula f or CJ ( a, b) . n n 
No doubt A. De Moivre must be given the credit for notlcing tha.t these 

fonnulas are valid for any n • The dilemna that both P ( a, b) and 

«,,<a,,) can be obta!ned by two apparently different fo~ might expla!n 

A. De Moivre's argument. Por Pn+l(a,b) = Pn(a,b) if n = a+2m 

(m = 0,1,2, ••• ) and %+1 (a,b) = %(a,b) if n = b+2m (m = 0,1,2, ••• ). 

In 1718 A· De Moivre_ [ 77, pp. 115-119], [ 78, pp. 174-179], [ 79, 

pp. 204-208] published another solution for finding the distribution of p • 

Let us write 

(34) ~{p = n} = Sn(a,b)p(n+a)/2 q(n-a)/2 + Tn(a,b)p(n-b)/2 q(n+b)/2 

wnere the first term on the right-hand side of (34) is the p:robability that 

A wins the series :in exactly n games and the second term on the rig.ht-

hand side of (34) is the probability that B WÏ...Jls the series in exactly 

n games. A. De Moivre [ 77 , pp. 118-119]:7 [ 78 , p. 178], [ 79 , p. 20'7] 

f ound that 
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(35) 
00 00 

S (a b) = l 2j(a+b)+a ( a+2rn ) _ l (2j+l)(a+b)+b ( a+2m ) 
n ' j=O a+2m m-j(a+b) j=O a+2rn m-b-j(a+b) 

if n = a+2rn (n = 0,1, ••• ) and S (a,b) = O if n = a+2rn+l (m = 0,1, ••. ) . n 

We note that i.11 1738 A. De Moivre [ 78 , pp. 190-191], [ 79 ,pp. 219-220] 

eJ,.'Pressed S (a,a) also with the aid of trigonometrie functions. A. De 
n 

Motvre's fonnula is a particular case of the following more general one: 

(36) 

(37) 

(38) 

211 a+~-l( kn )n-1 . ~..an . kn 
S11(a,b) = a+b ~O cos a+b sin a+b sm a+b • 

According1y, we can write that 

[n2a] 

( \ a+m m P a,b) = l S +2rn(a,b)p q n 
0
. a 

m= 

is given either by (35) or by (36). 

Furthermore, 

~(a,b) = 

[n-b] 
2 
\ m b+m 
l Tb+2rn(a,b)p q 

rn=O 

where T (a,b) = S (b,a) • n n 

We note that by ( 34) and ( 36) we obtain that 

(39) P{p > n} 
~ 

n+l 
2- a+b-l ( kn )n . kn a b 

-- ( 4pq) \ cos a:+b sm a+b r (p)2. . ka7T + q 2 . kbn 
a+b l k1T L q sm a+b (P) sJn a+b·] 

k=l 1-2 ;pq cos -+, a D 
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According to the investigations of A. De Moivre, P. R. Montmort, and 

N. Bernoulli we have three expressions for the probabilities Pn(a,b) and 

~(a,b) and hence we have also three expressions for the distri.bution of 

p • These authors did not provide proofs for their results, and did not 

indicate how they obtained their results. 

filgorous proofs fo:r· ( 30) and for ( 37) , where Sn ( a, b) is gi ven by 

(36), were given only in 1776 by J. L. Lagrange [88 , pp. 238-249]. J. L. 

Lagrange· has obtained his results by solving a linear difference equation. 

In 1812 f. S. 1aplace [39, pp. 228-242] proved (37), where Sn(a,b) is 

given by (36), by using the method of generating functions. Actually, P. S. 

La.place considered the problem of finding P (a,b) as early as 1773 and he 
n 

obtained partia1 results in his papers [85 , pp. 11-16], and [86 , pp. 176-

188]. For other proofs we refer to A. M. Ampère [69], R. L. Ellis [\28], 

L. Bachelier 172], L73J, D. Arany [70], J. V. Uspensky [99, pp. 154-158], 

W. Feller LBO, pp. 344-354], K. Jordan [83, pp. 397-420], and E. C. Fieller 

l82J • 

In what follows we shall give simple elementary proofs for the above 

mentioned three formulas for Pn(a,b) and ~(a,b) • The proofs presented 

here are based on the reflection principle and on the method of inclusion 

and exclusion. It is probable that the proofs we shall give in this section 

are closely related to the original methods of A.,De Moi.vre, P. R. Montmort, 

and N. Bernou1li. 

If we suppose that b = 00 , that is, A has an u..Yllimi ted nurnber of 

counters, then the probability that A wins the series in a fini te mnnber 
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of games is P{p < 00 } = 1 whenever p..'.:. q and P{p < 00 } = (p/q)a < 1 
~ - ,-..,.., 

whenever p < q • If p < q , then 1-(p/q)a is the probability that 

the series does not end in a finite nurnber of games. 

If a is finite and b = 00 , then we have 

(40) P{p < n} = 
,,..,._, 

'i' (. n ) i n-i + 
l i-a P q 

. n+a 
i<-= 2 

or L~ another form 

(41) P{p < n} = 
/"'-' 

a (a+2rn) a+m m 
a+2rn m P q 

By ( 41) we can write that 

(42) 

for m = 0, 1, 2, • • • . 

The fonnula ( 40) was found by A. De Moi vre in 1708 and published in 

1711. (See A. De Moivre [76 p. 262], [77 pp. 119-122], [ 78 pp. 179-181], 

[79 pp. 208-210].) 

A. De Moivre did not mention how he obtained his result, but it is 

probable that he essentially used the method of reflection. The second 

fonn, (41) can be obtained fran (40) by simple transfonnations. Fonnula 

(41) was published by A. De Moivre in 1718. (See A. De Moivre [ 77 p. 121], 

[78 p. 181], [ 79 p. 210].) These results of A. De Moi·vre are very 
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significant. As A. De Moivre stated hL~~elf, these solutions led him to 

the solution of the general problern of the duration of plays. (See 

A. De Moivre [78 p. 181], [ 79 p. 210].) In fact P. R. Montrnort and 

N. Bemoulli had preceded A. De Moivre in obtaining an explicit formula 

f or P (a,b) 
n and %Ca,b) • 

Formula (41) was proved only in 17'73 by P. S. La.place [ 86 , pp. 188-

193' .l, [39 , p. 235] and both (~·O) and (41) were proved in 1776 by 

J. L. Lazrange [88 ,pp. 230-238] • 

.An elementary proof for (22) was found in 1887 by D. André [\60] • 

See also J. V. Uspensky [ 99 , pp. 147-153] and the author [63, pp. 2-9]. 

It is interesting to recall A. M. Amp~re 199, p. 9] who connnents 

formula ( 42) as rernarkable for its sirnplicity a11d elegance. 

First we shall prove formulas (40) and (41) for Pn(a, 00 ) • Suppose 

that the players actually play n games regarcUess of wether A has 

already won the series or not. Denote by n the gain of A at the end 
. n 

of the n-th ga.1'le, that is, the total number of counters won by A during 

the n games. Obviously we have 

( 43) P{ n = 2i-n} = (n' i n-i 
rvv- n i ;p q 

for i = 0, 1, ••• , n • · 

and B wins n-i games. 

For n = 2i-n if and onl.y if A n 

'Ihe mnnber of such series is(~) 

has probability piqn-i • 'Ihis irriplies ( 43). 

wins i games 

and each series 
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Now we shall prove that for i = 0,1, ••• , n 

(44) P{p ~-n and n o: 
.-v-- -- n 

{ 

n i n-i . . (i)p q if 2i > n+a , 
21-n} = 

. n i n-i . . 
\i-a)p q if 21 2. n+a • 

If 2i > n+a , then nn = 2i-n ~ a and consequently p < n necessarily 

occurs. Thus P{p < n and n = 2i-n} = P{n = 2i-n} ,.,,.,, -· n ,,..,.,,,. ·D given by (43) . 

proves (44) for 2i > n+a • 
= 

If i < a , then (44) is evidently O It rernains to consider the 

t the . f . the se or;, series o games in case when 2a .".:. 2i 2.. n+a • Denote by c1 

whichl A wins i games, B wins n-i garnes, and A wins at least once 

a co nters frorn B . Denote by R + . the set of the series of games n a-1 

This 

in which A wins n+a-i games and B wins i-a games. There is a one-to-

one correspondence between the series in the two sets c1 arid R + .• n a-1 

For if in each series we change the results of all those games into their 

opposites which follow the game in which A wins a total nurnber of a 

counters from B for the first time, then each series in c1 is rnapped 

in to a series in R + . , and conversely each series in R + . n a-1 n a-1 is 

mapped into a series in c
1 

, and different series correspond to different 

series. Thus the nurnber of series in 

series in R + . which is evidently n a-1 

cl is equal to the nurnber of 

n 
(i-a) Since each series in c

1 

has probability piqn-i , (44) follows for 2a 2_ 2i 2. n+a • 

If we add (44) for i = 0,1, ••• , n , then we get (40). 

We note .that by ( 4LI ) 



V-33 

P{n = 21-n} 
N"- n 

(45) P{p .::_ n and n = 2i-n} = 
""" n 

whence it follows that 

(46) 
a 

P{p < n} = P{n > a} + (E.q) P{n < -a} • 
,,,.,,. Nv< n= 0r- n 

By (44) we have also 

(47) P{p > n and n = 2i-n} = n 

Since ev"idently 

0 

if 2i ~ n+a , 

2i < n+a = 

if 2i < n+a • 

(48) P{p = n} = pP{p > n-1 and n = a-1} 
- - ~l ' 

it follows from ( 4'7) that 

_ a (a+2rn) a+m m 
- a+2rn m P q 

for m = 0,1,2, ••• which is in agreement with (42). If we add (49) for 

m < (n-a)/2 , then ~e obtain (41). 

Finally, we shall prove formulas (27) and (28) for Pn(a,b) a~d 

%Ca,b) respectively, and we shall show that S (a,b) can be expressed 
n 

by (35) or by (36). 
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Denote by An the event that A wins.the series in at most n games, 

and by B the event that B wins the series in at most n games. 
n 

Pn(a,b) = P{A } and CJ (a,b) = P{B } . 
~n l1 rv-n 

Then 

In finding the probabili ties P n ( a, b) and % ( a, b) we rnay assume, id thout 

loss of generality, that the players aétuaJ.ly play n games regardless of 

whether one of them already has won the series. 

We shall show that if we apply repeatedly the same reflection principle 

v..11ich we used in proving (40), then we obtain fonnula (27) for P (a,b) • n 

If the players actually play n games, then it may happen more tha~ 

once. that A's gain reaches a and B's gain reaches b • In this case 

~ can be interpreted as the event that A's gain reaches a before B's 

gain reac:hes b (if at all) in the n games. 

Denote by nn the gain of A at the end of the n-th game. We have 

(50) 
. n i n-i P{n = 21-n} = (.)p q 

""" n l 

for i = 0,1, ••• , n because n = 2i-n if A wins i games and B wins 
n 

n-i games. 

Denote by Un(a,b,i) the number of series of length n in which A 

wins a total number of i games and A's gain. reaches a before B's 

gain reaches b ( if at all) • Then 

(51) . ) i n-i P{A and n = 2i-n} = Un(a,b,1 p q • ,,.,.... n n 
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Nbw we are going to find U (a,b,i) • Denote by C2k (k = 1,2, ••• ) . n 

the set of all these series of length n in which A wins i games a.~d 

A's gain at least k times passes frorn . -b to a • Furthermore, denote 

by c 2k+l (k = 0,1,2, ••• ) the set of all those series of length n in 

which A wins i games, A's gain at least once reaches a and 
. 

subsequently at least k times passes from -b to a • Let N(C.) 
J 

(j == 1,2, ••• ) denote the m.rrnber of series in the set 

method cif inclusion and exclusion we obtain that 

00 

(52) Un(a,b,i) = l (-l)j-l N(C.) . 
j=l J 

If 2i < n+a 
' 

then we have = 

(53) 
N(C2k) - ( r1 \ 

i-k(a+b) 1 

and 

(54) N(C2k+l) = (i-a-~(a+b)). 

If 2i .?_ n+a 
' 

then we have 

(55) 

and 

(56) 

C.; • 
J 

Then by the 

These formulas can be proved by using the method of reflection. We 

shall prove only (53). Formulas (54), (55), (56) can be proved in a 

si.mi.lar wczy. 
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Let 2i < n+a • We shall show that there is a one-to-one correspondence 

between the series in c2k and the series in the set R where _ i-k(a+b) 

Ri-k(a+b) contains all those series in which A wins exactly i-k(a+b) 

games in the n games. The nurnber of series in Ri-k(a.+b) is ev-:i.dently 

Consider a series in C2k and let us w.ai1 k 2k games as follows: 

First, we :rnark the game in which A' s gain first attains -·b • Second, 

we mark the game in which A's gain first attains a afterwards. Third, 

we mark the game L."1 which A's gain first attains -b again a~erwa.rds. 

We continue this process through 2k games. Now sta.rting from the first 

marlced game let us change the results of all the subsequent games into 

their opposi tes. rillen starting fran the second marked game let us agélL"1 

change the results of all the subsequent games into their opposites. 

Continuing this process, finally, starting frorn the 2k-th ma.rked game 

let us change the results of all the subsequent games into their opposites. 

Thus we obtain a series which belongs to Ri-k(a+b) • By this rriapping,to 

evecy series in c2k there corresponds one series in R , and to i-k(a+b) 

different series in c2k there correspond different series in Ri-k(a+b) • 

Conversely, consider a series in Ri-k(a+b) and mark the 2k games 

jn which A's gain first reaches -b , -2b-a, -3b-2a , ••• , -2kb - (2k-l)a. 

Now starting from the first marked game, let us change the results of all 

the subsequent games into their opposites. Then starting from the second 

ma.rked game; let us again change the resu1ts of all the subsequent games 

into their opposites. Continuing this process, final1y, sta.rting from the 

2k-th marked. game let us cr..ange the re sul ts of all the subsequent games 

into their opposites. Thus we obtain a series which belongs to c2k • 
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By this mappingJto every series in Ri-k(a+b) ther.e corresponds one series 

in c2k and to different series in Ri-k(a+b) there correspond different 

series in c2k • 

Accordingly, there is a one-to-one correspondence between the series 

of the two' sets c2k and Ri-k(a+b) .' Thus N(C2k) = N(Ri-k(a+b)) = 

(i-kCa+b)) which 1.v·as to be proved. 

By (52), (53), (54), (55), (56) we obtain that 

00 00 

l Ci-a--~(a+b) )- l (i-kCa+b)) if 2i < n+a , 
k=O k=l 

(57) Un(a,b,i) = 
00 c.o 

l (i+k(~+b))- l (i-a+kCa+b)) 
k=O k==l 

if 2i > n+a • = 

Finally, by (51) we get 

n . . 
(58) ( ) 

\ I ") l n-l Pn a,b = l U ~a,b,1 p q • 
i=O n 

This proves (27). 

If we denote by V (a,b,i) the nurnber of series of length n in n 

which A wins a total nurnber of i games and B's gain reaches b 

before A's gain reaches a (if at all), then 

(59) 
and 

(60) 

P{B d 2 . } V ( b ") i n-i an ri = i-n = a, ,1 p q <vv-n n n 

~1(a,b) 
n . . • 

= l V (a,b,i)piqn-1 • 
i=O n 

If we :LJ.terchange the rol.es of A and B , then we obtain that 
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Vn(a,b,i) = Un(b, a, n-i) and hence by (57) we obta:in that 

00 00 

I (i-a+~(a+b))- l (i+~a+b)) 
k=l k=l 

if 2i > n-b , 

00 00 

I (i-k(~+b)) - l (i-a~k(a+b)) if 2i 2- n-b • 
k=O k=O 

Formulas (60) and (61) prove (28). 

Sin.ce 

(62) P{p > n and n = 2i-n} = P{n = 2i-n}-P{A and n = 2i-n} -,.,... n ,..,. n ._ n n . 
1 

- P{B and n = 2i-n} 

l = 0,1, ••• , n 

".,._, n n 

'by (50), (51), (57), (59), (61) we obtain that f or 

00 00 

(63) \' n \' ( n . ] i n-i 
P{p > n ·and n = 2i-n} = [ l (i+k(a+b))- l i·-a+kia+b)J P q 

""" n k=-oo k=-oo \ 

if n-b < 2i < n+a and 0 otherwise. If we add (63) for i = 0,1,2, ••• , 

then we get (31) • 

The probabilities Pn(a,b) and ~(a,b) can also be obtained by (37) 

and (38) respecti.vely where Sn(a,b) is given either by (35) or by (36) 

and Tn(a,b) = Sn(b,a) • Our next aim is to prove these results. 

In (34) we have obviously 

and 

(65) Tn(a,b)p(n-b)/2q(n+b)/2 = !{p = n and nn = -b} = q!{p > n-1 2nà 

11 1 = -b+l} • n-
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The extreme rlght members of (64) and (65) can be expressed by (63). T'nus 

we get 

j_f n == a+2m (m = 0,1,2, ••• ) and S (a,b) = 0 if n = a+2m+l (m = 0,1,2, ..• ) • 
n· 

Furthermore, Tn(a,b) = Sn(b,a) • Fonnula (66) can easily be expressed in 

the fonn (35). 

Formula (36) for S (a,b) can be obtained fran (66) by using the n 

follor-1ng elementary identity 

1 
! 

(67) 
00 n _ 2n a+b-l kn n k(n-2r)n 
l (r+J"(a+b)) - a+b L (cos a+b) cos a+b 

j=O k=O . 

which holds i.f r < a+b • If we take into consideration that 

and if we put 

(69) w = e2ni/(a+b) = cos ~:b + i sin ~~b 

~ 

in (68), then we obtain (67). TW.s proof for (67) was given in 1834 by 

_Q_. Ramus [54] . (See also E. Netto [45J pp. 19-20.) 
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37. Randcm Walks. Th.e classical problerns of games of chance 

discussed in the preceding section can also be described irna.g:inatively by 

using the following model: 

Suppose that a particle perforrns a random walk on the x-axis. Starting 

at x = 0 the particle takes a sequenée of steps. In each step, independent-

ly of the others, it can move either a unit distance to the right with 

probability p or a unit distance to the left with probability q where 

p > 0 , q > 0 and p+q = 1 • Denote by nn the position of the particle 

at tht ~nd of the n-th step. Iet n0 ~ o . 

hns random walk process has the same stochastic properties as the 

series of garnes considered in the precedir1g section. Let us suppose that 

if A w:ins a game, then the particle moves a unit distaYlce to the 

rig.tit and if B wins a game, then the particle moves a unit distance 

to the left. Then nn can be interpreteà. as the total gaLn of A at the 

end of the n-th game. We have 

(1) 

for i = 0,1, ••• , n. 

P{n = 2i-n} /"'- n (n) i n-i = i p q 

All the results of the preceding section have sirnple interpretations 

in the tenninology of rand.an walks. 

We can interpret P(a,b) as the probability that the particle sooner 

or later rea~hes the point x = a before reaching x = -b (if at all). 

By (36.11) we have 
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(2) P(a,b) = 

a b b 
p (p - q ) 
a+b a+b 

p - q 

b 
a+b 

if p 'I p ' 

if p = q • 

Furthermore, Pn(a,b) can be interpreted as the probability that in 

n steps the particle reaches the point x = a , before reach:ir1g x = -b 

(if at all). If we use the notation (1) , then by (36.27) we can write 

that 

= l 
k=O 

co 

(E.)k(a+b)+a P{n < -2k(a+b)-a} 
q ,,.._., n= 

co 

- l (E.)k(a+b) P{n ~ -2k(a+b)+a} 
k=l q "'"" n -

(3) 
co 

+ l (p)-k(a+b) P{n > 2.k(a+b)+a} 
k=Oq ..,,__n 

co -k(a+b)+a 
- l (E.) P{n > 2k(a+b)-a} • 

k=l q -- n 

If b = co in (2) and in (3) , then we obtain that 

f or p < q , 

(4) 
f or p > q , 

which is in agreement with (36.26) and 

'(5) 
a 

P (a co) = P{n > a} + (E.) P{n < -a} 
n ' tvv n q l'vv.. n= 

which is in agreement with (36.40) and(36.46) respectively. 
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The probability that the n-th step takes the particle to the point 

x = 2i-n and during the first n steps the p.:L"Y't].cle never reaches the 

points x = a. and x = -b is given by 

P{11 = 2i-n and -b < 11 < a for r = 0,1, ••• , n} ·-
IV-. n r 

(6) 
00 • • 

\ n ] l n-i 
l (i-a+k(a+b)) P q 

k= -"" 

for -b < 2i-n < a and 0 otherwise. This follows from (36.63). 

By (6) we can write that 

P{11 = j and -b < ri < a for r = 0,1, ••. , n} = ...,.,. n r 
(7) 

00 -k(a+b) 00 k(a+b)+a 
= I (2.) P{11 = 2k(a+b)+j} - I (E.) P{11 = -2k(a+b)-2a-,j} 

k=-""q ,..,,,. n k=-ooq - n 

for -b < j < a and 0 otherwise. If we add (7) for -b < j < a , then 

we obtain that 

(8) 

(9) 

P{-b < 11 < a for 
r r = 0,1, ••• , n} = 

oo -k(a+b) 
= I (E.) P{2k(a+b)-b < 11 < 2k (a+b)+a} ·-

k= -"" q µ..,., n 

00 k(a+b)+a 
I (E.) P{-2(k+l)(a+b)+b<11 < -2k(a+b)-a} 

k=-ooq """' n 

If b = oo in (6), then we obtain that 

P{11 = 2i-n and 11 < a for r = 0,1, ••• , n} ·-
Nv-. n r 

= [ ( n) _; ( n ) ] j_ n-i 
i i-a P q_ 

for i < (n+a)/2 and O otherwtse. This is ln agreement wi.tb (36.4'7). 

By (9) we can write that 
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~{nn = j and nr < a for r = 0,1, •.. , n} = 

(10) a = p { n__ = j } - (P") P { n = j-2a} 
,,.,. Il q ""'\A·TI 

for j < a and 0 otherwise. If we add ( 10) for j < a , then we obtain 

that 

(11) 
a 

P{n < a for r =O ,1, ••• , n} = P{ n < a} - (E.) P{ n < - a} • 
"""r ,_n q,.._n 

Random walk interpretations of the results of games of chance have 

some lnterest of their ov.in, and probably the classical researchers have 

used some geometrie descriptions to visualize the possibl.e outcomes of a 

sequence of games • In a two-dimensional coordinate system the sequence 

(r, n r) for r = 0 ,1, ••• , n describes the path of the random walk during 

the first n steps or the results of the first n ga11es. If we j oin the 

succes si ve ve:rtices (r, n r) by straight l:i.nes, then we obtain an easi1y 

visualizable space-time dlagram which can be seen on this page. 

Space-Time Diagram of a RaHdom Walk. 
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In fact random walk problems did not originate in the theory of games 

of chance. At the end of the nineteenth century new discoveries L"l physics 

attracted attention to problems which we now call random walk problerr~. 

Lri the beginning of the nineteenth century John Dalton (1766-184Ii) 

revived the atard.c theory, according to which matter (solid, liquid or 

gaseous) consists of a large nurnber of corpuscles • In the nüddle of the 

nineteenth century Rudolph Clausius (1822-1888) had succeeded in explaining 

thermicaJ.· phenomena wi th the aid of the molecular motion of matter. In 

1860 James Clerk :Maxwell (1831-1879) determ.i.ned the probability distribution 

of the velocities of particles (molecules) in perfect gases and found that 

(12) l2Tii v 

/'lf(kT)3 

for 0 < v < 00 is the density function of the velocity of a particle 

(molecule) where m is the mass of the particle (molecule), T is the 

absolute temperature and k = R/N where R is the constant of a perfect 

·gas, and N is Avogadro' s constant. 'Ihe constant k is called Boltzrnann' s 

1 -16 constant and k = l.34xl0 erg/grad. (See J. c. Maxwell CJJO], [111] and 

L. Boltzmann [ lOd.) 

While the molecular motion of matter cannot be observed directly, 

small particles suspended in fluids or float:ir1g in gases perform peculiarly 

rapid and irregular movement which can be observed by a microscope. 

Apparently this phena:nenon was described for the fi:rSt time in 1828 by a 

botanist; Robto.1."t Brown [1. Ol].3 who observed the motion of particles of' pollen 



V-45 

in water. He was surprised by the result and repeated the sarne experiment 

with various kinds of organic and inorgantc particles and in each case 

observed the salJle phenomenon. In the following decades a number of 

unsatisfactory attempts have been made to explain this phenomenon. (See 

D'Arcy W. Thanpson [118] pp. 44-48 and the Notes of R. FÜrth in the book 

of A. Einste:iri [106] pp. 86~119.) D'Ar~y 'l'hornpson mentions that in 1863 

Christian Wi.ener [119] expressed his view that the Brownian movement has 

lts origi11 in the impacts of the molecules of the liquid on the particles. 

(See alsö Siegprund E.xner [107-).) The first discoveries concern.ing the 

cbaracteristic nature of the Brownian iootion were in 1888 by G. Gouy _[109]. 

The p~cise mathematical laws governing Brownian motion were discovered in 
! . 

1905 by A. Einstein [104], [105], and in 1906 by M. Smoluchowsld [114-], bl-15]. 

A. Einstein showed that the probabilj_ty density function of the displacement 

of a particle in a gj_ven direction during a time interval of length t is 

(13) f(x,t) = 

2 x 
e -IIDt 

11.îirDt 

where D is the coefficient of diffusion. If spherical particles of 

constant radius 

(14) 

a are subjected to the Brownian movement, then 

kT 
D =---12iran 

where k = l.34xlo-16 erg/grad is Boltzm.a.n..'1's constant, T is the absolute 

temperature, and n j_s the viscosity of the fluid containing the suspensj_on. 

\J 
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The above mentioned physical phenomena led in a natural way to the 

investigation of mathernatical models for random walksJ The problem of 

random walks was first mentioned in 1905 by K. Pearson [146] • He posed 

the following problem: 

"A man starts frcm a point O and waJ.ks t yards in a straight line; 

he then turns through any angle whatever and walks another t yards in a 

second straight line.. He repeats this process n times • I require the 

probability that after these n stretches he is a distance between r and 

rhir fran bis starting point, 0 ." 

In response to this problem G. J. Bennett found that for n == 3 the 

problem can be solved by elliptic integrals, and Lord Rayleigh (J. W. E_;trutt) 

found an approximate solution for large n values, namely, he showed that 

the probe.bility is 

(15) 

approximately 

r2 
--2 

2r e nt dr • 
nR.2 

(See also Lord Rayleigh [150].) Actually, Lord Rayleigh [149] found this 

result in 1880 when he considered the problem of finding the distribution 

of the resultant amplitude of n isoperiodic vibrations of unit amplitude 

and randan phases. If we denote by Fn(r) the probability tha.t after n 

stretches the distance <r , then by Lord Ha.yleigh's result we have 

r2 

(16) l.im Fn(r/D) = 1 - e 
n _,.. co 

- 12 

f or r > 0 • = In 1906 ~~ [139] ;;;howed that precisely 
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(17) 

where 

(18) 

Q) 

Fn(r) = r 6 [J0 (tx)]nJ1 (rx)dx 

(-l)m(x/2)v+2m 
m! (m+v) ! 

for v = 0,1,2, ••• is the Bessel function of the first kind and order v • 

In 1919 Lord Rayleigh [15Q extended this result to three-dimensional 

random flights. He considered the case where a particle taJ(eS n random 

stretches. In each stretch it moves a distance i in a random direction 

having a. uniform d:i.stribution independently of the other stretches. Denote 

by P (r) the probability that after n stretches the distarice from the n 

starting point is <r • He showed that 

(19) 
dP (r) Q)( • )n . 

n = 2r J smtx sinrx dx 
dr nn 0 n-1 

lf"' . x 

for r > 0 and n > 2 • We note tbat dP n (r) / dr can be expressed by the 

following explicit formula 

(20) 
d.Pn(r) r r 
---=-[h <-+1) +h cE.-1)J dr .ll,2 n-1 i n-1 i 

for r > 0 and n > 2 where = 

(21) l 
00 

sint m 1 
h (x) = - J (--) costxdt = ---
m 'IT 0 t fl(m-1) ! 

for m = 1,2, ••. is the density function of the sum of m mutually 
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independent random variables having a uniform distribution over the interval 

(-1, 1) • 

In 1905 Maryan Smoluchowski [114] ( see also [115 ] , [ 116 ] , [117]) 

investigated randan walk models in studying the Brownian motion phenomenon. 

'I'he studies of the Brownian motioh of small particles suggested 

va.rious mathema.tical models for random walks. A particle may perf orm a 

Brownian motion subjected to no force, or constant ,force, or central force 

and so on. The case of a free particle leads to the model of a·symmetric. 

· ra.ndom\~ralk. The case of particles subjected toa constant force leads to 

the mop.el of an asymmetrie random walk. The case of particles under the 
1 

inf'luence of a central force can be described by an Ucvn model of P. Ehrenfest 

and T. Ehrenfest [103 ] . (See also M. Kac [137 ] . ) One- , two- , and three-

dimensiona.l random walk models appear naturally. Simulating the effect of 

a container we are led to the models of random walks wi th absorbing barriers 

a.'id wlth reflecting barriers. See M. Smoluchowski [ 116], [117], S. 

· · C'nartdra.sekhar D-23 ] , and M. Kac [ 136] . Discrete time models and 

continuous time models have been investigated simultaneously from the 

beginning. In later years various limit theorerns have been discovered for 

random walk processes. In what follows we shall rnention only a few selected 

results. 

One Dimel}:'üonal Random W~. Suppose that a particle performs a 

random wille on the x-axis. Starting at x = 0 the particle takes a 

sequence of steps. In each step, .independently of the others, it can move 

either a unit distance to the right wi.th probability p or a urüt distanee 

to the left with probabili.ty q where p > 0 , q > 0 and p+q = 1 • 
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Denote by P(n,.J) the probability that the n-th step takes the particle 

to po:int x = j where j = O, + 1, ~2, • • • • Usually we say also that 

P(n,j) is the probability tha.t at time n the particle is at x = j . 

Obviously.s we can write that 

(22) P(n,j) = pP(n-1, j-l)+qP(n-1, j+l) 

for n = 1,2, ••• and j = O, +l, +2, ••• where P(O, 0) = 1 and P(O,j) = O 

if j ~ 0 .• The recurrence formula (22) determines P(njj) for n = 1,2, ••• 

and we obtain easily that 

(23) P(n,j) 

n+j. n-j 
n 2 2 

= <n+j) p q 

2 

for j = n, n-2, .•• , -n+2, -n and 0 otherwise. 

Now let us assume that the particle moves :in exactly the same way as 

above except that there are two absorb:ing barriers at the points x = a 

and x = -b , where a. and b are positive integers, and if the particle 

reaches the point x = a or the point x = -b , then it remains forever 

* at tr.iis point. Denote by P (n,j) the probability that at time n the 

position of the particle is x = j • By (6) we have 

(24) 

n+j n-j 
p* (n,j) =-= [ l ( . n ) _ l ( . n ) ]p 2 q-2 

· k n~J + k(a+b) k n~J -a+k(a+b) 

for -b < j < a and j = n, n-2, ••• , -n+2, -n . By applying the j_dentity 

(36.67) we can write also that 

n+j_ n-j_ 

(25) * P (n,j) 2n 2 2 p ,.., 
=- - ':i 

a+b 
a+b-1 k k" k(2a-j)rr, l (cos :b)n(cos ~1îb - cos a+b ; 

k=O a a. 
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for -b < j < a . Obviously, we have 

(26) 
* n-1 * 

P (n,a) = p I P (m,a-1) 
m=O 

and 
* n-1 * 

( 27) P (n,-b) = q I P (m,...;b+l) 
m=O . 

for n = 1,2, •.••• 

* The probabilities P (n,j) (n = 1,2, ••• , j = O, +l, ±_2, ••• ) 

satisfy the recurrence f o:rrnulas 

(28) * * * P (n,j) = pP (n-1, j-1) + qP (n-1, j+l) 

* * * if -b+l < j < a-1 , P (n, a-1) = pP (n-l,a-2) , and P (n, -b+l) = 

* qP (n-1, -b+2) • FtL.vthermore) they satisfy (26) and (27) too. The above 

* recurrence formulas completely detenn:ine P (n,j) for n = 1,2, ••• and 

* j = O, ±_l, +2, ••• if we take into consideration that P (O,O) = 1 and 

* P (O,j) = O for j ~ 0 • 

We deduced formulas (24) and (25) fran the results of P. R. Montmort, 

N. Bernoulli and A. De Moivre. These authors did not provide proofs for 

their results. Proofs were given only in 1776 by J. L. Lagrange [ 88 , pp. 

238-249], in 1812 by P. s. Laplace [39, pp. 225-238], [ 41, pp. 228-242], 

* and in 1844 by R. L. Ellis [128J • All these authors noticed that P (n,,i) 

for -b < j < a can be obtained as the solution of the difference eqûation 

(29) * * * P (n;j) = pP (n-1, j-1) + qP (n-1, j+l) 

for n = 1,2, ••• and * -b < j < a w.i.th the irütial conditions P (O,O) = :: , 
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* * * p (O,j) = 0 for j ~ 0 , a.~d the boundary conditions P (n,a) = P (n, -b) = 0 

for n = 1, 2, • • • • 1rhe above rnentioned authors used various ingenieus 

rnethod.s for solving (29). 
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L1rni t Di~ tribaj;ions. In studying the fluctuations of prices ir1 a 

stock exchange in 1900 L. Bachelier [71 ], [ '72], [73] introduced a 

stochastic process which we call now a Brownian motion process. He also 

showed that the behavior of this process can be determined by using an 

approximating sequence of random walk processes. This procedure gained 

full justification only in the 1950's. (See Section 52 . ) 

In what follows we shall deduce scme 11miting distributions for the 

random walk process {n ; r = 0,1,2, ••• } 
r studied in this section. For 

each n = 1,2, .•• define a family of randan variables {t;n(u) , 0 ~, u < l} 

by thel following formula 

1 

(30) 

where o is a given positive constant. We cari interpret s
11 

(u) as the 

position of a particle at time u if the particle starts at x = O and 

at times u = ~' ~, ••• , ~ it moves a distance o//D to the right or to 

the le~ with probabilities p and q respectively. Let us suppose also 

that p arid q depend on n and let 

(31) 

for n > a. 2 / ,i where a. is a gi ven real number. 

First we shall prove the following limit theorem. 
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Theorern 1. If x > 0 , then 

2a.x 
2 

(32) lirn P{~ (u) ~- x for 0 < u < l} ,.,._,. n (x-a, cr "'(--x-a) = <P -,-e "' cr cr n + oo 

where <P(x) is the normal cüstribution function defined by (35.18). 

P-roof. We can write that 

(33) P{ max ~ (u) ~ x} = P{ max n < a } ,.,._ n - ,,.,... r n 
O<u<l O<r<n 
== == 

where a is the smallest integer greater than x/iï/cr • By (11) it 
i n 

followt that 

(34) 
P a 

}{ rnax ~n(u) < x} = P{n < a } - (__!!) n P{n < -al 
O<u<l /'Ao n n ~ ""' n tl 
== 

Since by (35.17) 

(35) 
n - n(p - a ) n - aliï . 

lirn P{ n n ï1 < x} = lirn P{ n ° < x} = <P (x) 
n + : /~npn~ = n + oo,,,_ {;;. = 

f or any x , and since lirn a //ii = x/cr , and 
n 

(36) 

we obtain (32) by (34). 

n + oo 

2a 
lim c~n) rn = e (J 

n + oo ~ ' 

In a sirrii.lar wey we can prove more ger>.era1 linlit theorems. F'irst, 

however, let ~.:s prove a useful auxlliary theorem. 
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Lerrma 1. Let p.(n) ~ O for j = O, +l, +2, ••. and n = 1,2, ••• , 
----,J - - -- -

and suppose that lim pj (n) = p. ex.ists for j = 0, + 1, ±_2,.. . • Fl.irther-
n + oo J ----

rno~ let us ~uppose · that 

00 00 

(37) . l pj(n) = l p. = 1 
J= -oo j= -oo J 

f or n = 1,2, ••• . If 1cj1 < M f or j = o, +l, ±_2, ••• , then 

00 00 

(38) lim l c .p. (n) = . I cjpj . 
n -+ oo j= -00 J J J=-= 

1 
1 

[28 J · jProof. This lamna is a discrete version of a result of E. Helly 

and, áctually, .i t can be deduced from his result. 

We shall pr-ove that for any e: > 0 there exists an N = N(e) such 

that 

(39) 
00 00 

1 l c .p.- l c .p. (n) 1 < e: 
j = -oo J J j = -<X> J J 

whenever n > N • This fellows fran the follovv:ing inequalities 

00 
00 

(4o) 

1 l c .p.- l c .p. (n) 1 < M . l 1 P.- P. (n) 1 = 
j = JXJ J J J = - 00 J J J = -oo J J 

00 

= 2M l [pj- p.(n)f ~ 2M l IP·- p.(n)I + 2M l p. 
j= - 00 J 1j1 <ffi J J 1 Jl> m J 

where m is any positive integer. Here the equality between the second 

and third expressions fellows from (37). First, let us choose m so 

large that the last member be < e:/2 • Sir1ce for any m 
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(41) lim 2M l IP.- P. (n) 1 = 0 , 
n-+ 00 ljl<m J J 

we can find an N such that 

( 112) 2M l IP·- p.(n) 1 

1j1 <m J J 
< .::.. 

2 

if n > N • Hence (39) follows, whtch proves (38). 

Theorem 2. If x > 0 and y > 0 , then 

(43) limJ'.J-y < ç;n(u) < x for 0 < u ::._ l} = Fa/cr(~ , ;) 
n -+ oo 

where 

(h4) 

(45) 

00 

F (x,y) = I e-2ka(x+y)[~(2k(x+y)+x-a)-~(2k(x+y)-y-a)J 
a 

k= - ro 

- e2 0( x I e2l!"..a(x+y) [ ~(-2k(x+y)-x-a)-~(-2(k+ 1) (x+y)+;y-a)] • 
k= - CX> 

Proof. We can write that 

.~{-y < ç;n(u) < x for 0 ~ u < l} = P{-b < n < a for r = 0,1, .•. ,n} 
"_ _ ""' n r n 

wh.ere an is the smallest integer greater than xlÏi/cr and bn ts the 

smallest integer greater than ylri./cr • If in (8) we put a = a , b = b , 
n n 

p = Pn , q = ~1 a.."ld let n -+ 00 
, then we obtain Ut3) • In ( 8) we can 

interchange the limit and surnmation. If~:O and if in Lemma 1 we choose 

c. = 1, o, --1 depending on j , then we get ( 43) fol." ot.-= O. 
J 
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We note that in the particula.r case of a = 0 (45) reduces to 

00 

(46) F0(x,y) == l (-l)k[q,(k(x+y)+x)-qi(k(x+y)-y)] • 
k~-= - 00 

If, in particular, p = q = ~, then by using (36.67) we can write that 

'· 

(47) P{-b < n < a for 2 a+b 
r = 0,1, ••• , n} = ~b \ 

. kan 
1 +(-l)k kTr n+l_ sina+b 

[ 2 J (cos +b ) ' . 
IV'..' r a+ ~o a . KIT 

In this case if we use (47) instead of (8) in (45), then we obtain that 

00 (2j+l)2'IT2 

(48) = ~ l _l __ e 2(x+y)2 
1î j=O 2j+l 

for x > 0 and y > 0 . 

sin(2j+l)·rrx 
2(x+y) 

Finally
1 

we nore that the process { ~n ( u), O < u < l} has independent 

increments and by (35.17) we have 

(49) 

sin -1-b a. 

for O < u < t < 1 • Since obviously lim E{ ~n ( u)} = cfü , lirn Var{~ (u)} = 
~ n n -+ oo n -+ oo 

a2u and ljJn Cov{~ (u), ~ (t)} = a2mi~(u,t) ,..,,..__ n · n f or O 5- u · 2.. 1 and O 2_ t .:::.. 1 , 
n -+ oc 

we can conclude that for O < t 1 < t 2 < • • • < tk < 1 , the randan variables 

distribution 
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(. 
t tl, tl, ••• , tl 1 

(50) N 
t.2 2 tl, t2, ••. , t2 

' 
a . 

\ tk tl, t2, ••• , tk 

If a stochastic process {i;(t), O· < t < 00 } has the property that 

for arry k = 1,2, ••• and 0 < tl < t2 < ••• < tk < 00 the random variables 

ç;(t
1
), ç;.(t2), •.. , .;(tk) have a k-cllinensional nonnal distribution, then 

we say that 

~{ç;(t~} = at 

and b < t , 
1= 
! 

process. 

{?.;(t), 0 .:::_ t < .00 } is a Gaussia.n process. If, in particular; 

for t ~ 0 and Cov{ç;(u), ç;(t)} = a2min(u, t) for 0:;, u 
~ 

then we sczy that {t,;(t), 0 < t < 00}·is a Brownian motion 

If {.;(t), 0 :5:. t < 00 } is a separable Brownian motion process, then we 

can prove that 

(51) P{-y < ç;(u) 2_ x for 0 < u < l} = lirn P{-y < .;n(u) 2_ x for 0 < u :5:. l.} -
~ n+oo 

- .., ex y) 
- l.'a/a a' cr 

for x > 0 and y > 0 where the right-hand side is gi ven by ( 44) • Hence 

· it follows irrmed:tately that 

(52) P{-y :5:. .;(u) ,.,..,.. - < x 
= for O .:::. u :5:. t} = F (~, L) 

- -- alf. alt alt 
a 

for any t > o, x > O and y > O . 
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Randan Walks in Euclidean Spaces. In 1919 Lord Rayleigh [150J 

studied random flights in one, two, and three dJrnensions. T'ne one-

dirnensional case discussed in th.i..s section can be extended in a natural 

way to random wallm in multidirnensional periodic lattices. The first 

extensi ve study of such random walks was gi ven in 1921 by G. P6lya Q.l.J.8]. 

Here we shall consider only symnetric random waJJrn. Let us suppose 

that a p~icle perf onns a random walk in an r-d:imensional Euclidean 

space. Starting from the origin in each step the particle moves a ur1-ï t . 

di.sta.rce in one of the 2r directions parallel to the coordinate axes .. 

We subpose that the successive displacements are independent and each of 
1 

the 21.., directions has the same probability. 

The probability that the n-th step takes the particle to the point 

(53) 

where the summation is extended over all nonnegative integers j 1 , j 2, ... , 

jr' kl' k2, ••• , kr satisfying the conditions ji- ki = xi for 

i = 1,2, •.• , r • For the munber of possible paths is (2r)n . If we 

denote by ji the nurnber of steps taken in the positive direction 

parallel to the i-th coordinate axis, and by ki the number of steps 

taken in the negative direction parallel to the i-th coorcli..'1ate axis, then 

a path is favorable if it satisfles the requirements ji- ki = xi for 

i = 1,2, ..• , r. The number of suchpaths is given by the sum in (53). 
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(51-t) 

If r = 1 , then (53) reduces to 

P (x) 
n 

for x = n, n-2," .. , -n+2, -n . If r = 2, then (53) reduces to 

(55) 

for x+y = 0 (mod. 2) and lx+yl < n , lx-yj < n • 

pemote by the vector ,..!In (r) = ( nn (1), ••• , nn (r)) the position of tr1e 

partiLr11e at tr1e n-th step. The characteristic function of n (r) =· 
""Il 

(nn(l), ••• , n (r)) is given by 
_1 n 

(56) 
it

1
n (l)+ ••• +it n (r) 

E{e n r n } 

cost
1
+ ••. + cost n 

= ( . r) 
r 

Hence by inversion we obtain that 

1 21T 21T cost1+ ..• + costr n -it1x1- ... -i\"xr 
(57) Pn(x1 , ... ,xr) = -- f .... J ( . ) e dt1 ... dt 

(21T )r 0 0 r r 

Ln the particular case whën x1 . = x2 = • • • = xr = O , let us wri te 

(58) ~(r) = Pn(O, 0, •.• , .0) , 

that is, ~ (r) is the probability that j_n an r-cli..mensional symnetric 



V-60 

random walk the particle returriJ3 to the origin at the n-th step. By (53) 

we have 

(59) 

and ~+1(r) = 0. Let us write also. %(r) = 1 . 

In particular, 

(60) 2m l 
Q2tn(l) = ( m) 

2
2m ' 

and ah elementary inequality (see Problem40.J') shows that 

1 

(61) 1 2rn 1 1 
--- < ( m) -2iii < -r--jcrrrt ~)1T 2 vmrr 

for m = 1,2, ... • Accordingly 

(62) lim Q2m(l)/iii; = 1 • 
m -+ co 

If r = 2 , then we obtain that 

(63) 

and thus 

(64) lim ~(2)mrr = 1 • 
m + co 

By using Stirling's fonnula, 



V-61 

where l/(12n+l) < en < l/12n , (H. Robbins [ 55 ]) , we can prove that 

r+l r 

(66) %n(r)<2 2(4~m)2 

f or m= 1,2, ••• • For we have 

(67) 

H - . h t '/. i . 1 • 1 tt . . t . . f ere we u.sea t a m. Jl .J 2 .••• Jr· a ,a.i.ns i s :may..imurn J_ · 

for all s and t . By applying (61) and (65) we obtain (66) for 

m=l,2, •••• 

" . Following G. Polya IJ.48] we can prove that 

r 

( r 2 
(68) Q2m(r) "' 2 4111Il) 

as m + "" • By ( 57) we have 

(69) 1 ·2TI 2TI cost1+ ••• +costr 2m 
Q.., ( r) = J ••• J ( ) dt1 ••• dt • 

ê.ITl ( 2TI l O 0 r r 

Since the integrand in (69) is a periodj_c functj_on in each va.riable with 

period 2TI we can replace the:domain of integration in (69) by 

D - { (t: t ) • 1T . 31T f . -- 1 2 } - ~l, ••• , r . - 2 < tk < -2 or K - ' , ••• , r without ch.á.nging 
. 

the value of the integraL Thus we c2..n write that 
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(70) 

(71) 

r 
r2 2 cost1+ ••• +cost 2m 

m Q (r) = _-1!!.__ f · · · J ( r) dt
1 

••• dtr • 
2rn (2n)r: D r 

We observe tha.t in the domain D the function 

cost1+ ••• + costr 

r 

equals 1 if t 1 = t 2 = ••. = tr = O or if t 1 = t 2 = ..• = tr = ~ and 

< 1 othèrwise. Let D1 (e::) = {(tl' ••• , tr): -e: < tk < e: , k = 1, ••• , r} 

and D2 (e:) == {(t1 , ••• , tr): -E < tk -1f < E , k = 1, ••• , r} for some 

small t: > 0 . Then if i = 1 or i = 2 , we can write that 

ul .L + ~. ," 
r- r 1 cos-- ·r. • • cos - i::::m =-2 cost1+ ••• +cost 2m t:vm urn , r;;;· 

f f r J J vm lill m • • • (- r ) dtl" •• dtr = • • • • (---·-r- --)du1 •.• dur 
Di (€) -t:lrTÏ -dm 

(72) 

00 
Cl) -----

"' f···J e 
r 

as m+"'. 

* Denote by D (t:) the set of all those points of D which do not 

* In the closed set D (ë.) the function (71) 

has a max:imurn p < 1 and theref ore 

(73) 

If we add .(72) for i = 1.:)2, and (73) and divide the sum by r (2n) , then 
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we obtain (68) which was to be proved. 

Let us denote by An (n = 1,2, ••• ) the event that the particle 

returns to the initia]_ position at the n-th step. In the r&"'ldom waJJ{ 

process discussed above, and in many other random walk processes a return 

to the initial position is a recurrent· event, that is, if the particle 

returns to the initial position, then the future stoc:r...astic behavior of 

the proc~ss is independent of the past and is the sam.e as the stochastic 

behavior of the wl:iole process. Brie fly we can say that af'ter each return 

to th~ initia.l position the process starts anew independently of the past. 

In tJs case the events A1, A2, ... , An,··· satisfy the following property: 
1 

If k
1 

and m are positive integers, and 1 .::. n1 < n2 < ••• < Y\: then 

('74) P{A An+ ••• A + } = P{A }P{A ••• An } • 
,..,.._ m 1 • n1 m. nk ""'"' m ""'" n1 K 

As far as the theory of recuITent events is concemed we refer to W. Feller 

[24 ]. 

Denote by v the number of events occurring in the sequence A1, A
2

, ••• , 

An'... • Then v is a discrete random variable taking on nonnegative 

integers (possibly 00 ) • We are interested in studying the distr:i.bution 

of v • 

Let P = P{v ~ l} , that is P is the probability that at least one ,.,._ -
event occu1•s in the sequence Al' A2, ••• , An'... • We can wrtte that 

(75) p = •. ~{Al+ A2+ ••• + An+u.} = P{Al}+P{A,A2}+ ••• +P{Al ••• A lA }+ ••• · • 
·~ ,..,.. rv-- ~. A;... n- n 
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Let M = E{ -...; } , that is M is the expectation of the nurnberr of ,.,._ 

events occurring in the sequence A1, A2, ••. , An,··· • We can write that 

(76) 

* Denote by A 

00 

M = \' P{A } • l ,_, n 
n=l 

the event that infinitely many events occur in the 

' * . 
sequence A1 , A2 , ••• , An, ••• , that is, A = { v = 00}. We can write that 

00 00 

(77) * A = Il I A. ' 
n="l i:::n l 

and br .the continuity theorem for probabilities we can state tha.t 

( '"'8) 1 
1 ' * P{A} = lim P{ IA.} . 

N'.- ,.,_.. • l 
n-+ ro i=n 

Theorem 3. Let A1 , ~, ..• , An, • • • be a sequence of events satis fyin_g_ 

thè condition 

(79) P{A A + .•. A . } = P{A }P{A ••• A } 
,._ -1rl m n1 -in+l)c - m _ n1 r1c 

and m > l . Then we have = 

(80) 

where M is given by (76) and the right-hand side of (80) should be taken 

1 if M = 00 
• Furthermore, we have 

M = co ' 

(81) 
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Proof. By using (79) we can prove that 

P{A.+ A.+1+ ••• } = P{A.}+P{A.+1+ A.+2+ ••• }-P{A.A.+1+A.A.+2+ ••• } = 
,.,_ l l ,..,_, l ,.._ l l Nv-. ll ll 

(82) 
= P{A.}+P{A.+1+ A.+2+ ••• }-P{A.}P{A1+ A2+ ••• } 

/"'"'- l"""' l l ,.,.,._ l,_ 

for i = 1,2, •••• In proving (82) we need the relation 

(83) P{A.A.+1 ••• A.+k 1A.+k} = P{A.}P{A1 ••• A_ 1A} 
,.__ l J. .J.. l - l IV,. l /W' --k-· --k 

for k = 2,3)... . We shall prove (83) here for k = 2 • For k == 3,~, ... 

we can prove (83) sirnilarly. If we use (79), then we can v..,Tite that 

l' {A1I.+1A.+2} = P{A.A;+2} -P{A.A.+,Aj+2} ::-: 
l l. """- l ..... ,..,.,.. ll..L. 

(84) 
~ P{A;}P{A~}-P{A.}P{A1A2 } = P{A.}P{A1A2} , 

N;- ..._.,.,.. C:. MA l,.,.,.. fV- l,._.., 

which proves (83) for k = 2 • By (83) we get 

P{A.A.+1+ A.A.+2+ ••• } = P{A.A.+l+ A.A.+1A.+2+ ••• } = 
""- ll ll tv._ ll ll l 

(85) 
= P{A.A.+1}+ P{A.A.+1A.+2} + ••• = P{A1}P{A1}+ P{A.}P{A1A2} + 

,.,..,.11 tvv-ll l ,_,..,.... ,..,._l,..,_. 

w:b..ich we used in ( 82) • Accordingly ( 82) is indeed true. 

(86) 

If we add (82) for i = 1,2, ••• , n, then we obtain that 

n co 

P = (1-P) l P{A.} + P{ l A.} • 
i=f'~ 1 ,.,.. i=n+l 1 

First, let M < 00 • Tnen 

= 
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co co 

(87) 

Thus it follows from (86) that 

(88) 
co 

P = (1-P) l P{A_.} = (1-P)M 
• 1,.,.... l i= 

* and from (78) that P{A } = O • This proves (80) and (81) in this case. 
;v.... 

If M = co , then P < 1 is impossible, because in this case the right 

hand side of (86) would tend to ""' as n+ ''° which is obviously false. 'Il1us 

if M = co , then necessarily P = 1 • Ftnthennore, by ( 86) i t follows 

that 

co 

(89) 

for every n = 1,2,. ,. • • * Consequently by (78) we get P{A } = 1 • This 
"""-

cornpletes the proof of the theorem. 

Bt Theorem 3 we have P{v < co} = 1 if M < 00 and P{v = 00 } = 1 if 
,..,._ ,;v.,.. 

M = "" • Now let us determine the distribution of v if M < "" • 

Theorem 4. If A1, A2, ••• , A
11

, • • • satisfy. (]9) ·'-and M < 00 , then 

(90) P{ v = k} = __ rJ<=~-
,.,_ (1-tM)k+l 

for k = 0,1,2, •••• 

· Proof. We shall prove tbat 
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(91) 
. M k 
P{ v > k} = (-! ) ,._ = l+M 

for k = 0,1,2, •••• Hence (90) follows because P{v = k} = P{\.1 2,.k} -P{\J2._k+l} 
~ M- - """"' -

for k = 0,1,2, •••• If k = 0 , then (91) is trivially trti.e. If k = l , 

then (91) is precisely (80) • For any k = 1,2, ••• we have 

(92) P{v > k} = [P{v ~ l}]k • ,,.,.... =· ""'-

We shall" prove (92) only for k = 2 • The general case can be proved sirnilarly. 

By (79) it follows that 

(93) P{A
1 

••• A 1A A +l· •• A......J... 1A + } = P{A
1 

•• ~A 
1
A } P{A

1 
••• A 

1
A } 

tw. m- m m m•n- m n ,..,.. m- m 1v1.-.. n- n 

for m = 1,2, ••• and n = 1,2, •••• If we add (93) for m = 1,2, ••• and 

n = 1,2, •.• , then we get 

(94) P{v > 2} = P{v > l}P{v > l} = = = 

which is (92) for k = 2 • Since by (80) P{v 2.. l} = M/(l+M) , therefore 
tv-. -

(92) implies (91). 

Finally, let us consider the problem of finding the distribution of 

vn , the nurnber of events occurring among A1, A2, ••• , An , in the case 

when A1, A2, ••• , An,. • • satisfies ( 79). Let us define the random variables 

•k (k = 1,2, ••• ) in the following wa:y: Tk = n if and only if the k-th 

event which occurs in the sequence is A • Let •o = 0 • If the sequenee n 

A1, A2,.", An' ••• satisfies (79), then it follows that Tk- •k-l 

(k = 1, 2, ••• ) is a sequence of mutually independent a.'l.d identieally 
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distributed random variables taking on positive integers (possibly 00 ) • 

Let 

for j = 1,2,3:··· • 

If we know the probabilities {fj} , then the distribution of v
11 

can easiJ_y be obtained. For we have 

(96) P{v < k} = P{T > n} 
r- n ,.,,,_ k 

whenever n > 1 and k ::_ 0 , and Tk is the surn of k mutually independent 

and identically distributed randcm vari.ables.hav1ng the distribution (95). 

Thus the problem cf finding the distribution of v can be reduced to the 
n 

problem of finding the distribution { f.} • This is gi ven by the following 
J 

theorem. Let us introduce the notation 

(97) u = P{A } 
n NV> n 

for n = 1,2, ••• and ~ = 1 . Let 

(98) 
CX> 

U(z) = l unzn 
n=O 

for l z 1 < 1 • Obv:l.ously 

(99) f = P{A1 ••. A 1A} n.,,.,.. n-n 

for n = 1,2, •••• Let 
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(100) F(z) 
00 

=- l f zn 
, 11 n=.J.. 

for 1 zl < 1 • 

'I'heore.'TI 5. If 1 z 1 < 1 , then we have 

(101) F(z) 1 = 1 _, __ . 

U(z) 

Pröof. Since obviously 

n 
(102) P{A } ,,..,.... n = l P{A

1 
••• A. 

1
A.A } 

j=l""" J- J n 

for n = 1,2, ••• , it follows frorn (79) t.hat 

(103) 
n 

u = l f .u . 
n j=l J n-,1 

for n = 1,2, •••• If we multiply (103) by zn and add for n = 1,2, •.• , 

then we get 

(104) U(z)-1 = F(z)U(z) 

for lzl < 1 and this proves (101). 'Ihe definition of F(z) for lzl ~- 1 

can be extended by continuity. 

Now let us return to the random walk processes studied previously 

and let us gi ve a few examples for .the use of the above theon:ms. 

I 

B'irst we shall prove an jnteresting theorem due to G. Polya [148]. 
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Theorem 6. In one- and two-d..in1ensional syrrmetric random walks the 

particle sooner or later returns to its initial pösition with probability 

l • In three- and higher dimensional random waJks, howevE;_r4 this proba-

· bili ty J.s less than 1 . 

· P:t'Oof. A return to the origin is a recurrent event in each case. 
by ' 

If we denote A the event that the particle returns to the origin at 
'' n 

the n-th step, then we can appJ.y Theorems 3, 4 and 5 to the sequence 

U~) . For an r-dimensional syrrrnetric random walk (r = 1,2, .•. ) denote 

by Qn (r) tbe probability that the particle returns to the orig,in at the 

n-th step. A return cannot occur at the 2rn+l -st step. By (67) we have 

(105) 

a.s m + co. Thus 

(106) L ~(r) { 

= co if r = 1,2, 

< co if r > 3 , 

and 1I'heorem 6 follows from ( 80) • If r = 1 or r = 2 , then the part iele 

infinitely orten returns to its initial position with probability 1 . If 

r ?_ 3 , the:n this probability is O • 

returns 
If we want to find the probability that the particle precisely k 

A 

times (k = 0,1,2, ••• ) · · ·3:'· to the origin in an r-dii."Ilensional syrrmetric 

random walk where r > 3 , then we should detennine the sum 

(107) Q(r) = l ~(r) 
n=O 

where ~/r) is defined b:y (58) and can be expressed by (57). If r "" 3 , 
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then by (57) it follows that 

(108) 

In 1939 · G~ N. Watson [153] found that 

(109) 

where 

(llO) 

Q(3) = ~ (18+1212-l0/3-7/6)K
2
((2-/3)(/3-/2)) 

31f 

K(k) 

is the complete elliptic integral of' the second ldnd. Nurnerically, 

(111) Q(3) = 1.51638 60591 •••• 

We can al1.alyse in a similar wa:y various random walks on Euclidean 

syrrnnetric lattices. First let us consider a two-dirnensional syrrmetric 

random walk on a triangular lattice. Suppose that starting at the origi."1 

(O, 0) a particle takes a series of steps on the plane. In each step 

the pai."'ticle moves according to one of the following six vectors 

(112) 

1tlith probability 1/6 • Suppose that the successive displacements are 

independent. Denote by (nn(l) , nn(2)) the position of the partic:.le at 

the n-·th step. Now we have 
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(113) 

f or real t- and t 2 values. 
..L 

Hence it follows tha.t 

1hr 

(114) P{n (l)=O, nn(2)=0} 
M. n 

_ /3 13. 4ir , t 1/3 t 2 n 
- --2- J J (2cos - 2- cos -2 + cost2) dt1dt'J • 

lfrrr 3n 0 0 - c.. 

In a s:imilar way as we proved ( 6'7), it follows that 

(115) 
. 3/2 

lim nP{n (1) = o, n (2) = O} = ~ • ,.,.,., n n oir n -+ co 

Since the integrand in (114) is periodic with periods t
1 

= 4ir//3 and 

t 2 = 411 , we can replace the domain of integration in (114) by 

(116) D = { ( t t ) · - ~ < t < 3ir -ir < t
2 

< 3n} 
l' 2 . /3 = l= /3 ' 

without changing the value of the integral. In this dornain the function 

(117) 
1

2 tl/3 t2 1 - cos --- cos - +cost 3 2 2 2 

equals 1 if t 1 = t 2 = 0 or if t 1 = 2n and t 2 = 2ir and it is < 1 
13 

otherwise .~ Iet e: be a sufficiently small positive munber and define 

D
1

(E) ={(tl' t
2
): lt11 < e:, lt21 < d and D2(e:) = {(t1 , t 2): lt1- ~I < E, 

* lt
2
- 2'1TI < e:}o Denote by D (E) the set of all those pod.nts of D 

* wh:tch do not belong to D1(e:) or D2(E:) • Lri the closed set D (s) the 

f'unction ( 117) ha.s a ITir.:1.Ximum p < l • 
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If we take into consideration that for i = 1 and i = 2 

2 tl/3 t2 
n J J (- cos -'J- cos - + 

D.(E) 3 ~ 2 
l 

(118) 2 2 
2 2 ul u2 

1 u2 Evfl e:fr1 ul u2 n "" Joo - ·2- - -3 
- cos -)ndu du "' J J (1- - - ---) du du "' J e du1du2 = 3 12 2n 3n 12 

n -e: fr1-e: rn -00 -co 

as n -+ 00 , and 

2 tl/3" t2 
J J (- cos -- cos - + * 3 2 2 

D (e:) 

as n-+ ro , then we obtain (115). Since a return to the origin is a 

recurrent event, it follows ~rom Theorem 3 that the particle infin.itely 

orten returns to its irll.tial position with probability 1. 

Now let us consider some three-dimensional random walks which were 

analyzed in 1956 by E. W. Montroll [144]. 

First, let us suppose that starting frcm the origin in a. three-

dimensional Euclidean space a particle takes a sequence of steps and in 

each·step it moves in accordance with one of the eight vectors (2:_1, +l, +l) 

with probability 1/8 • Let us suppose that the successive displacements 

are independent. Denote by n (3) = (n (1), n (2), nn(3)) ,.,...n n n the pcsition 

of the part.iele at the n-th step. Now we have 
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(120) 
it1n (l)+it2n (2)+it3n (3) n 

E{e n n n }= ( t t t ) 
h.N cos 1 cos 2 cos 3 

In this case 

whence we obtain that 

(122)1 

· PI{ n (3) = O} = 
- ,...n ,..,._ 

O if n = ~m+l . 

Here we used the notation 0 = (0, O, O) • By (61) it follows that 
Nv<-

(123) 

as m-+ 00 • Since a return to the origin is a recurrent event, it follows 

fran Theorem 3 that with probability 1 the particle returns to the origin 

only fi.11itely many times. To find the probability distribution of the 

number of r~tui"DS to the origin we shouid detennine the sum 

00 ~ 21T 21T 2'1f ~ 
( 12~) '\ pr (3) = 0} = __ L - J r ·J J.. dt dt dt 

- · l - \Dn ""' 3 J 1-cost cost cost 1 2 3 • 
n=O ( 21T) · 0 0 0 1 ' 2 3 

G.; N~ Watson [153] showed that the right-hand side of (124) can be 
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expressed as 

(125) = 1.39320 39297 ••. 

Second, let us ·suppose that sta.rting fran the origin in a three-

d:trne:ri..sional Euclidean space a particle· takes a sequence of steps and in 

each step it moves il1 accordance with one of the twelve vectors: (+l, ~:l, 0) , 

( + 1, O, :1-1) , (0, + 1, + 1) with probability 1/12 • Let us suppose that 

the successive displacements are independent. Denote by n (3) == (n (1), -n n 

nn(2)r nn(3)) the position of the particle at the n-th step. Now we have 

1 

! 
(126) 

it
1
n (l)+it2n (2)+it n (3) 1 n n 3n } ( n E{e = - cost

1
cost,..,+ cost-

1
cost1+ cost.>cost

3
) 

""' 3n c.: ~ ~ 

f'or> real t 1, t 2, t
3 

• In this case 

(127) P{n (3) = 0} """" ,,_n ......-.-

Ina similar wcy as we proved (67), it follows that 

(128) 

Obviously, 

First, in (127) we can replace the danain of integration by 

(129) ·n· = {(tlL t•2' t3).• - .:;. < t < 2::. k - 1 2 ?} ~ ~ = k = 2 ' - - , ~.) 
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without changing the value of the integral. In this d.omam the integrand 

ir1 ( 127) equals l if t = t = t = 0 or if t = t = t = Tr and 1 2 3 1 2 3 

has absolute value <l otherrwise. For a sufficiently s!11é'.J.l positive e: 

let U:3 define D1 (e:) = {(t.1, t 2, t 3): ltkl < e: for k = 1, 2, 3} ar1d 

* ' D2 (e:) = {(t1 , t 2, t
3
): Jtk-1TI < e: for, k = 1, 2, 3} . Let D (e:J the 

set of all those points of D which do not belong to D1 ( e:) or D
2 

( e: ) • 

If n = 2m a."'1.d i = l or i = 2 , then 

-e:lrrï 

.2<ui+u~+u~) 
3 

* as m -r 00 • The integral over the domain D (e:) tends to 0 as m -r 00 • 

'Ihus by (130) we obtain (128). 

Accordingly, with probability l , the particle returns to the origin 

only a finite number of times. To find the distribution of the number of 

returns to the origin we should determine the sum 

\ P{n (3) = 0} = 
l ,,.. .... n """' n=O 

(131) 
·dtldt2dt3 

·~1~~~~~ ""'""--~~ -- . 
1- ~ (cost1cost?+cost1cost~+cost~cost3 ) 

.) '- j ,:. -
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G. N. Watso~ [15~ showed that the right-hand side of (131) can be 

ex:pressed as 

(132) 

Further Rèsults for One-Dimensional Random Walks. A particle perforrns 

a random walk on the x-axis. It starts at x=O and in each step independently 

of the others, it moves a imit distance to the right with probability p or a 

unit distance to the left with probability q where p>O, q>O, and p+q=l. Denote by 

nn thf position of' the partièle at the n-th ·step (n=l,2, ••• ) and let n
0 

'-:: O . 

Denot~ by T.k the time when the particle returns to the initial position 
1 

for the k-th t:ime (k = 1, 2, ••• ) and let To= O • 

'lbe differences Tk- Tk-l (k = 1, 2, ••• )forma sequence of mutual.ly 

independent and identically distributed random variables taking on positive 

integers (possibly 00 ) • Let 

for j = 1,2, •••• Obviously, f2rn+l = 0 for m = 0,1, •••• Now we shall 

prove that 

(134) 

for m = 1,2, ••• , and 

(135) 

f = ~ (2m--2) ( )m 
2m m m-1 pq 

I r2m = i-lp-ql • 
ITFl 
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Let 

(136) 

u = P{n = 0} for n = 0,1,2, •••• We have n /Vw n 

( 1) 2m mm -2r m u = ( )p q = \-4pq) 
2m m m 

for m = 0,1,2, ••• and u2m+l = 0 for m = 0,1,2, •••• Furthermore, 

00 00 

(137) U(z) l n l (2m) mm 2m 1 = u z = p q z = 
n=O n m==O m À 2 l-4pqz 

f or 1 zl < 1 . 

I.et 
1 

1 co 
! 

l f .zj (138) F(z) = 
j=l J 

for ! z 1 :;. 1 . Since a return to the origin is a recurrent event, we 

obta:ir1 by Theon~n 5 that 

(139) (1) 00 -

1 2 m-1 2 2 m F(z) = 1- np- == l--11-4pqz = l (-1) (4pqz ) 
U~z; m=l m 

for lzl < 1 and by continuity (139) holds for lzl < 1 too. Hence 

(140) f = (-l)rn-1(~)(4 )m=.?..c2m-2)( .)m 2m m pq m m-1 pq 

if m == 1,2, ..• , and f2rn+l = 0 if m = 0,1,2, •••. Furtherrnore, we have 

(141) 
00 

l f. = F(l) = l-11-4pq = 1-jp-q! . 
j=l J 
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Accordingly, if p = q , then { f.} is a proper distribution. If 
J 

p -1 q , then { f j } is defecti ve. The r-ecurrence time may be 00 wi th 

probability !P-ql . If p = q , then the expected recurrence time 

ao 

(142) I jr. = °' • 
j=l J . 

For in this case f2rn ~ 2/nm312 , or more precisely, 

1 1 <2rnf <- -
2rn /(m-lh 

for m = 2,3, •.•• 

We note that 

(144) 

for m = k" k+l, •••• This can be obtained fran the generating function 

(145) 
co . 2m k A 2k l P{Tk = 2m}z = [F(z)] = (1- l-l~pqz ) 

m=l-

by Lagrange' s expansion. If we take into consideration that for 1 z 1 < 1 

the equation 

(146). 
2 r1 

w ·- 2w + Llpqz.::: = 0 

has exactly one root w = F(z) in the un..i.t circle lwl ~ 1 , and we fonn 

the L:i.grange expansion of [F(z) ]k for k = 1,2, ••• , then we obtain (144). 
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In the particular case when p = q " we obtain easily from (144) that 

(147) 

. ' 1) 2[l-4> x- 2 J :i.f x > 0 
' Tk 

lim _!{2 ~ x} = 
k ~"" k 0 if x.::.. 0 

' 

where 4>(x) is the norrnal clistributioh f\mction: defined by (35.18) • 

Now denote by v (n = 1, 2, .•• ) the mtrnber of returns to the origin n 

in the first n steps and let v
0 

= 0 • Ev:i.dently we have { \) < k} = n 

. {-rk > n} for n ~ 0 and k > O • 'l'hus 

(148) P{v < k} = P{Tk > n} 
M.., n ""' .• 

for n > 0 and k > O • The probability on the right-hand side of (148) 

can be obtained bJ (144) and thus the distribution of vn is detennined 

by (148). 

If, in particular, p = q , then we obtain that 

(149) 1 
2m-r 2 

for m = 1,2,,. •• ' and obviously ~(v2m+l = r} =!{v2m = r} • In this case 

the expectation of v~ is given by 

(150) E{v } - ( n \ n+l l 
,.,,_ n - [~J} /1 -

for n = 0,1,2, •••• For 
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m 2. 1 m . \- ~\ = I c ~) ~ = I c-1)J . j = 
j=l J 2c.J j=l ' J 

(151) 

for m = 1,2, ... which proves (150). 

Accordingly, we have the following interesting identity 

(152) 

for m = 1,2, •••• 

(153) 

If p = q , then by (150) it follows that 

r;;;; 
E{ v } '"' I .'::.!.:. 

""""' n 7f 

as n + c.o , and by (147) and (148) we can prove that 

(154) 
v 

lirn P { 22 < x} 
n+;;- rn= 

For by (148) we have 

(155) 

= {2<P(x)-lfor x > O, 

o fo:r x < o . 

for any n > 0 and k >: O • Iet x > 0 and choose n and l{ suc:h that -- -

n "' k2x as k ->- c.o. Then k "' ./n/x as n + c.o • If we choose n and k 

in such a way, then by (155) we obtain that 
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(156) lim P{\in :s 1 = lim p{ Tk < .L} = 2 ~(x) - 1 
n~ tvv. Ji k~ ...... k2 - 2 

x 

for x > o. This proves (154) for x > o. The case of x ~ 0 is trivial. 

Finally, denote by 6 the number of positive elements in the sequence n 

111' ~' '1 and let 60 = o. If 1 then we have ... ' p = q = 2' 

(157) ~j-1~ (n-j\ 1 
P(6 = j} = j ~ 
~ n j;l] [~;_j]/ 2n 

0 -1 for 0 ,:S j :S n where ( 0) = (_1) = 1. More generally, if 0 < p < 1, then 

we have P(6 = O} = a (p) for n = 0,1,2, ••• , and ,,,_. n n 

(158) P{ 6 = j} 
rv.. n = P a. 1 (q) J-

a .(p) 
n-J 

f or j = 1,2, ••• ,n where 

[n-1] 
2 

(2m) 
m 

(159) a (p) = 1 - p 6 ~E92 
n m=O m m+l 

f or n = 1,2, ••• and 0 < p < 1 and ao(p) = 1. 

In what follows we Sha.11 prove (158). Write P(6 = O} = a (p). Then 
'W-. n n 

ao(p) = 1 for 0 < p < 1 and by (10) we have 

(160) a (p) = P('T) < 1 for 0 < r < n} = P(il < l} - .E. P(T] < -1} 
n ~ r - ,.,..,. ·n q ,__ n 

for n = 1,2,.... • Thus 

[:g_] 

a {p) = (1 - .P.) ~ (~) pj qn-j +E.( n \ p[~] 
n q j=O J . q~~]~ 

(161) 

for n = 1,2, ••• and (161) can also be expressed in the form of (159). 

Furthermore, we have 
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(162) P{6 = n} = p a 1(q} 
Nv- n n-

for n = 1,2, ••• which follows from the relations 

P{6 = n} = P{~1 = 1 and ~- - ~l ~ 0 for l ,:::; i ,:::; n} = ,,...,_ n ,..,.,,. J. 

(163) 

By Theorem 22ol we have 

(164) P{6 = j} = P{6. = j} P{6 . = O} 
,.,,,_ n ~ J ,,,... n- J 

for 0,:::; j ,:::; n and this implies (158). 
1 

If p = q = °2' then (161) reduces to 

1 
( n ) 

1 ~[n; 
1

~ a (-) - - -
n 2 - [~] 2n - rn;l] 

(165) 
1 

and as a particular case of (158) we obtain (157). 

If 1 then we have p = q = °2' 
6 2 (166) lim p(-fl < x} = - are sin JX 

n-tco""" n - :re 

for 0 ,:5 x ,:5 1. (See P, ErdÖs and M. Kac [170], and E. s. Andersen [158].) 

We can prove (166) in the following way. By (61) artd (165) we have the inequa-

lities 

(167) < P{6 = O} < Vr;-
""' n n:rc 

for n = 1,2,o•• • Thus by (157) we get 

1 1 
(168) :rcj(j+l)(n+2-j) < !_{ 6n = j} < :rcJ(j=.l)(n-j) 
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f or 1 < j < n. 

If 0 < a < (3 < 1, then 

(169) lim 
n-too 

1 

na::.;~9:1(3 ,/(j+l)(n+2-j) = 

and this implies that 

lim 
n-too 

(170) 
~ 1 ~ dx 

lim P{a < -1! < f3} - j n-too,.,... - n - = :rr Jx(l-x) 
a 

1 

J(j-1) (n- j) 
na:=.;j~nf3 

f3 dx 

= J ,jX(l-x) 
a 

= g_(arc sin Jf3 - are sin Ja) 
:rr 

for 0 < a < (3 < 1. Since (170) holds for all 0 < a < (3 < 1, it follows 

that (166) holds for all 0 ::; x ::; 1. 

In the references of this chapter many ether results can be found for the 

random walk processes discussed in this chapter and for various generalized 

random walk processes. 
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38. Ba1lot Theorerns. In this section we shall study var·ious problems 

connected with the fluctuations of election returns. Throughout this 

section we asswne that two candidates A and B run in an election and 

candidate A scores a votes, and candidate B scores b votes. We 

assume that all the possible ca:b) voting records are equally probable. 

The first ballet theorern was formulated in 1887 by J • Bertrand. [16 3J • 

He foi.mq the following result: 

· ·llièörem 1. If a > b , then the probability that througtiout the 

· · èöuntbg ·the nUrnber of · votes · registered for A is always greater than the 
1 

.... ·- - .l. ·- .. . . . . . 

· ·nt.iniJ:;Je~·or vötes regj.stered for B is given by 

(1) ( , _ a-b 
P a,b; - a+b • 

. Proef. Denote by N ( a, b) the rnmlber of voting records satj_sfying 

the requL~ents in Theorern 1. Then 

(2) P(a,b) = N(aLb) 
ca+b) 

a -

J. Bertrand noticed that for a > b the function N(a,b) satisfies the 

following recurrence fom.ula 

(3) N(a,b) = N(a-1,b) + N(a,b-1) 

where obviously N(a,O) = 1 for a > 1 and N(a,b) = O for b = a. • 

We can determine N(a,b) f'or a .::.: b by (3). The follcvv:Lng té.:.ble 
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contains N(a,b) for a < 6 and b -~ 4 • 

N(a,b) 

":j 4 6 b' 0 1 2 3 5 .___: 

1 . 
0 1 - 1 l l 1 1 1 

1 - 0 l 2 3 ~· 5 

2 1 0 2 5 9 14 - -

3 ·- - - 0 5 14 28 

4 - - - ... 0 14 42 

We can easily- prove that 

for a. > b • Hence ( 1) follows irrmecliately. 

Yct~ly, J. Bertrand did not prove forrn:ula (4); however he indicated 

that probably there is a direct proof for (1). He was right. In the 
, 

same year D. Andre [160] provided a direct proof for (1). He reasoned 

as fellows: 

EveFJ voting record can be described by a sequence of a letters A 

and b letters B if A stEnds for a vote for A and B stands f or 

a vote for B • The number of such voting records is ca+b) • 
a 



V-8'7 

D. André showed that the mnnber of unfavorable voting records is 

(5) 2(a+b-l) 
a . 

Thus jJ; follows that 

(6) N(a,b) 

which implies ( l) • 

1ro prove (5) let us observe that the set of unfavorable votü1g records 

is thf union of two disj oint classes: " The first class contains all those 

vot~ records which start with a B • The second class contains all those 
! 

vcting records which start with an A and at least once the nurnber of 

letters B is equal to the nurnber of letters A , if we count the letters 

:from the let't • 

'I'here is a one-to-one correspondence between the voting records in 

these two classes. r.Ihis can be seen as follows: If a voting record 

belongs to the second class, then counting the letters fran tpe left, there 

is a shortest subsequence which contains an equal nurnber of letters A and 

B • The last letter in this shortest sequence is necessa.rily B • In 

this shortest sequence let us remove all the letters except the last B and 

put them at the end of the record in the same order. Tnen we obtain a 

voting record. which belongs to the first class. 

Conversely, if a voting record belongs to the first class, then 

count:L.-rg letters from the right, there is a shortest subsequence which 
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contai..ris one more letters· A than B • The first letter in this shortest 

sequence is necessarily A • Let us remove all the letters in this 

shortest sequence and put them at the beginning of the. record in the same 

order. Then we obtain a voting record which belongs to the second class. 

It is easy to see that this mapping is one-to-one, and therefore 

both classes contain the same number of voting records. The first class 

evldently contains voting records. Thus the total number of 

unfavorable voting reco:fds is a+b-1 . 
2( a ) wlnch proves (5). 

f t should be added that Theorern 1 can also be deduced from a result 

of ctul·iation of plays which was found in 1708 by A. De Moivre [76 p. 262], i . 
and in a different form in 1718 also by A. De Moivre [ 77p. 121]. 

De M:oivre did not give proofs of his results. Proofs for De Moivre's 

resl._üts were given only in 1773 by P. S. Laplace [86 pp. 188-193] and 

in 1776 by J. L. Lagrange [ 88 pp. 230-238]. 

This result is the following: Suppose th8.t two players A ar1d B 

play a sequence of games. In each game, independently of the others, 

either A wins a cpin from B with probability p or B wins a 

coj.n fran A with probability q where p > 0 , q > 0 and p+q = 1 . 

Suppose that A has an initial capital of a-b coins, and B has an 

unlimited number of coins. De Moivre found tbat the probability that A 

will be ruined at the (a+b )-th game is 

( ...,,) a-b ca+b) a, b 
a+b a q P • 
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(See fonnula (36.42).) The probability that in the a+b games A loses 

a games and B loses b games is 

(8) (a+b) ~b a q • 

'Ihe conditional probability that A w:!-11 be ruined at the (a+b)-th gmne, 

gi ven that in the ( a+b) games A loses a games apd B los es b games, 

is accordingly (a-b )/(a+b) • 

If we consider the (a+b) games in reverse order, and a loss for 

A corresponds to a vote for A , and a loss f or B corresponds to a 

vete for B , then we can see irrmediateiy that (a-b)/(a+b) is the 

probability t:r...at A is leading throughout the counting of the a+b votes. 

We c&"'l use the same reflection principle in proving (1) a.s we 'Used in 

Section 36 in pr'Oving ( 36. 42) • Equi valently, we can prove ( 1) by using a 

random walk interpretation. 

Suppose that a particle perfornJS a random walk on the x-axis. It 

starts at x ~ 0 and moves a steps to right and b ,steps to the left 

in random order. Each step consists of a unit distar1ce displacement. If 

every path has the sar.ne probability, then the probability t:r...at the particle 

never returns to the point x = O is given by 

For the total number of possible paths is 

(a-b)/(a+b) f or a > b • = 

ca+b) • rrhe number of 
a 

paths i..'1. w'hich the particle never returns to the point x = 0 is 



V-90 

(9) 

which can be obtained by using the method of refl.ection. If a step to 

the Pight corresponds to a vote for A and ,.ov step to the left 

corresponds to a vote for B , then it follows that (a-b)/(a+b) is 

the probability that ca.ndidate A leads throughout the counting. 

For other proofs of (1) we refer to J .• Aebly [155J, D. Mirirri.anoff [181], 
/, 

A~ Aeppli [157J, P. Erdos m:i:.d I. Kaplansky [l 7J;J, and H. D. Grossman [173]. 

~he following result is an easy consequence of Theorem 1. 

· 'Thèórem ~· If a .,?>_ b , then the probability that throughout the 

ööU:ö.tirtg the nurnber of votes registered for A is greater than or e~al 

"tó the rtu.rr1bèr óf votes registeréd · f?r B is gi ven by 

) a+l.-b 
(10) Q(a,b = a+l - • 

Pröof. We have the obvious relation 

(11) 
a+l 

P(a+l,b) = a+l+b Q(a,b) • 

For if we add one more vote for A to the a+b votes, then the probability 

that A leads throughout the counting is P(a+l,b) = (a+l-b)/(a+l+b) • 

Since A leads throughout the counting if and .only if the first vote is 

for A , .and even if we disrega.rd tbis vote, he never loses throughout 

the counting~ Thus we obtain (11), whence (10) fellows. Conversely:; (10) 

implies (1) too. 
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If we interpret the process of cou..nting as a random walk, then 

Q(a,b) is the probability that the particle never reaches the point 

x = -1 • By using the reflection principle we obtain easily that the 

, . (a+b) - (a+b) If di "d b t nurnber of favorable patns is a a+ 1 • we vi e this y _,he 

number of possible paths, ca:b) ' then we obtain (10). 

'l'he proof of Theorem 2 can be d.educed from a combinatorial result 

which was found in 1879 by W. A. 11Jhitworth [198. See also W" A. Whitworth 

li 971, Chapter V, and P ~ A. MacMahon [179-1) [ 18q. 
1 -

1 / F 1887 E. Barbier [161] generalized Theorem 1 in the following 

way: 

·próbabiJJ_ty !J?.at ·thróughout ·the coun~_:!.ng ·the ·number öf ·votes ·regï,_stereà 

· f or A is always greater than µ times the nurnber of votes registered 

· · for B is gi ven by 

(1.2) ( a-µb 
P a,b;µ) = a+b , 

and the probabilj_ty that the number of votes registered for A is always 

at least µ times the nurnber of votes registered for B is gi ven by 

(13) ( _ a+l-µb 
Q a,b;µ) - a+l 

· ·Pröof'. Since we have the obvious relation 
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(14) a+l 
P(a+l, b;µ) = a+l+b Q(a,b;µ) , 

it is sufficient to prove one of the two formulas (12) and (13). 

Let us prove ( 12) • First, more generally, we suppose that µ is a 

nonnegative real number, and then we consider the particular case when 

µ is a nonnegative integer. 

Denote by N(a,b;µ) the number of voting records which satisfy the 

requirements that throughout the count.ing the number of votes .registered 

f or ~ is always greater than the number of votes registered f or- B • 

If '> bµ , then we have 

(15) N(a,b;µ) = N(a-1, b;µ) + N(a,b-1;µ) 

-wnere otrvtously N(a,O;µ) = l for a > 1 and N(a,b;µ) = O for a = [bµ] • 

The equation (15) is obvious, it reflects only the fact that the last vote 

counted may be either a vote for A or a vote for B • We ca~ 

obtain N(a,b;µ) recursively frc:m (15) if take into consideration the 

boundary conditions N(a,O;µ) = 1 for a > 1 , and N([bµ], b;µ) = O 

for b > 1 • The following table contains N(a,b;2) for a < 8 and 

b < 4 • = 



N(a,b;2) 

~ 0 1 2 3 l! 5 6 7 8 r 1 

~· 

0 - 1. 1 1 1 1 1 1 1 
-

1 - - 0 1 2 3 4 5 6 

2 - - - - 0 3 7 [12 18 
. 

3 - - - - - - 0 12 30 

4 - - - - - - - - 0 

The general solution of the difference equation ( 15) which sati.sfies 

theboundary conditions N(a,O;µ) = 1 for a > 1 is given by 

(16) 

(j = 1,2, .•• ) 

(17) 

b 
( . ) -· '\' ( ) ( a+b-1-j N a,b,µ - l C. µ b . ) 

j=O J -J 

(See Ch. Jordan [33 J p. 607.) The constants C _, ( µ) 
J 

are determined by the boundar~ conditions 

N( [rµJ r·µ) = ~ C. (µ )([rµJ+~-l-j) = 0 
' , .l J r-J 

J==O 

for r = 1,2,... • Thus we obtain that 

(18) 
b (a+bb-~-j) 

P(a,b;µ) = l C (µ) -J 
j=O j (a+b) 

a 

b (~) 
= -~ l C.(11) _...._J _ 

a+b j=O J (a+b-1) 
j 

for a > bµ where c
0

(µ) == 1 and Cj(µ) (j = 1,2, ••• ) are detemLi.ned 

by (17). 
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If,, in pa.rticular; µ is a nonnegative integer, then by (17) we 

obtai.n that Cj(µ) = -µ for j ~ 1,2, ••• > and in this case (18) reduces 

to (12). 

In the general case c1(µ) = -[µ] , c2(µ) = -[2µ](1-2[µ]+[2µ])/2 , 

and so on. 

The first proof for (12) was given only in 1924 by A. Aeppli [157]. 

Other proofs for (12) were given in 1947 by A. Dvoretzky and '.lh· Motz.Vin 

[166], in 1950 by !-1~ D. Grössman [17 5J, 

5n 1961 by S •· · G ~ Mohamty and T. V. Narayana [183], and in 1960 by the 

author [l 91]. 

'Iheorem 3 is a particular case of the corollacy of Lemma 20.1 This 

can be seen as fo11ows: 

Let us suppose that a box contains a cards ma.rked by O ·and b 

cards :ma.rked by µ+l • We draw all the a+b cards from the box without 

replacement. Suppose that all the possible outcomes are equally probable. 

Then P(a,b;µ) can be interpreted as the probability that for every 

r = 1,2, ••• :1 a+b the surn of the first r numbers drawn is less than r , 

and Q(a,b;µ) , as the probability that .for every r = 1,2, ••• , a+b the 

sum of' the f"'.i.rst r numbers drawn is less than or equal to r • :For if 

among the first r drawings there are a. zeros and B (µ+l)'s , then r r 

a. 0 + (3. (µ+l) < a. + B holds if and only if a > B µ and a. 0 + s (µ+l) r r r r · r r r r 

< a + f3 holds jf and only if a. > B µ • Thus by Lemna 20.1 we obtain that 
= r r r= r 

(19) ( ) = ~,_ b(µ+l) 
P a,b;µ - a+b 
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lf. a > bµ and µ is a nonnegative integer. Formula (13) follows 

:immediately frorn (12). 

The problerns discussed above can be considered as particular cases 

of the follow"ing more general problerns: 

As previously, let us suppose that in a ballot candidate A scores 

a votes and candidate B scores b votes and that all the possible 

ca+b) 
a voting records are equally proba.ble. Denote by ex and 8 the r r 

111..imber of votes registered for A and B respecti vely among the first 

r votes record:ed. Denote by . P . ( a, b; µ) the probabili ty that the 
. J 

inequality ex > µ8 holds for precisely j subscripts r = 1,2, ••• , a+b r r 

and by Q.i (a,b ;µ) the probability that the inequality cxr ,?.., llBr holds 

for pr~cisely j subscripts r = 1,2, ••• , a+b • Here µ is a non..negative 

real nurr.ber. 

It has sane :i.mportance to find the probabilities 

(20) Pj(a,b;µ) = ~{cxr > µBr for j subscripts r = 1,2, ••• , a+b} 

and 

( 21) Qj (a,b ;µ) = !.for > µBr for j subscripts r = 1,2, ••• , a+b} 

for j = 0,1, ••• , a+b • 

If we denote by N. ( a, b; µ) the number of voting rf~cords satisfying . . J 

the condition cxr > i1Br for precisely ,j subscripts r =- 1,2, •.• , a+b , 

then 

(22) 



V-96 

and if M. ( a, b; µ ) denotes the mtrnber of voting records satisfying the 
J 

condition ar> µSr for precisely j subscripts r = 1,2, ••• , a+b , 

then 

(23) 
M.(a,b;µ) 

Qj(a,b;µ) = ~a~ 
a 

We shall determine the probability distributions {Pj (a,b ;µ)} and 

{ Qj ( a, b; µ)} in two particular cases when ei ther µ is a po si ti ve integer 

or i1 = a/b • 

The follow'.J..Ylg theorem was found in 1964 by the author [194]. 

· Leorein 4. If µ is a nonneg;:tti ve integer, then we have 

(24) Pj(a,b;µ) = l 
O<s< +j= = µ J. 

(j) (a+b-j) 
s b-s ( . ) . · +b P0 a+s-J,b-s;µ P.(j-s,s;µJ 

(a ) J 
a 

· for j = 0,1, ••• , a+b where 

(25) 1 l l (sµ+s+ 1) (a+b-sµ-s-1) 
(a+b) +b-l [s(µ+l)+l] s b-s 

a O<s< _a __ 
== µ+l 

(26) 

for a > µb ànd Pa+b(a,b;µ) = O for a < µb • 
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Proof. Define the randc:m variables v (r = 1,2, ••• , a+b) in 
r 

the following way: vr = 0 if the r-th vote is cast for A and \) ::: (µ+l) 
r 

if the r-th vote is cast for B . Set N = v1+ ••• + v for r = 1,2, ••• , a+b r r 

and N0 = O • Now vl' v 2,"., va+b are interchangeable random variables 

taking on nonnegative integers and satisfying the condition v
1
+ v

2
+ .•• 

+ va+b = b(µ+l) • We have 

(27) 

f or 

c:.:~s) 

P{N. = s(µ+l)} 
IV<r l 

ri) (a+b-i) 
1.s b-s 

ra+b) 
, a 

r
. = 0,1,~· •• , min(i,b) and P{N. = j} = 0 otherwise. 

- l 

. f we use the above rotation then we can write that 

Pj(a,b;µ) =,!{Nr < r for j subscripts r = 1,2, ••• , a+b} 

f or j = O, 1, ••• , a+b • and r = a. + S f or r r 

r = 1,2, ••• , a+b , it follows that the inequality a.r > µSr holds i.f and 

only if Nr < r • This proves (28). 

By Theorem 22.1 we can conclude that the probability that N < r 
r 

for j subscripts r = 1,2, ••• , a+b is the same as the probability that 

the first maximal element in the sequence r-N (r = 0,1, ••• , a+b) is r 

j-Nj • Accordingly, it follows that 

(29) 

Pj(a,b;µ) = !{r·-Nr < j-Nj for O < r < j 

b 
- l P{N. = s(µ+l)}P{N.- N < 

s=o ""' J "" J r 

and r-N < j-N. for j < r < a+b} r= J = = 

j-r .for 0 < r<jjNj = s(µ+l)} ~ 
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By using the representation (28) we can write (29) in the following 

equivalent form: 

b 
(30) PJ.(a,b;µ) = l P{N. = s(µ+l)}P.(j-s,s;µ)P 0(a+s-j,b-s;µ) 

s=O"""' J J 

where j = 0,1, ••• , a+b • By (27) this proves (34). 

If j = a+b in (28) and if we take into consideration that 

Na+b = b(µ+l) , then by Lemma 20.2 it follows that 

(31) 

Pa+b(a,b;µ) = !{Nr < r for r = 1,2, ••• , a+blNa+b = b(µ+l)} = 

{

l - b(µ+l) 
= a+b 

0 

if bµ < a , 

if bµ > a • 

(We note that P0(0,0;µ) = 1.) This proves (26). Obviously Pa+b(a,b;µ) = 

P (a, b, µ ) defjned by ( 12) • Accordingly, in forrrrula ( 2 4 J we can wri te 

Fj (j-s,s;µ) = (j-sµ-s)/j if s(µ+l) < j and Pj(j-s,s;µ) = O if 

s(i1+l) > j . 

It remains to find P0(a,b,;µ) • By Theorem 20.2 and by (28) it 

fellows that 

(32) 

P0(a,b;µ) = P{r-N ~ O for r = 1,2, ••• , a+b} -
Ar- r -

a+b 1 = 1 ". l - P{N = .t-1} --
t=l ,Q, ,_ Si. 

, 
= 1 - l -:r ~l)-'-l P{N~, +l)+l = s(µ+l)} • 

a+b-1 8 1. µ · /'/'<- " 'µ O<s< __ "_ 
= = µ+1 
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Finally, (27) Md (28) prove (25). I.11 formula (24) we can express 

P
0

(a+s-j, b-s; µ) by (25). 

By (24) we obtain the followi.rig relation for Nj(a,b; µ) defined 

by (22): 

(33) N.(a,b;µ) = 
J 

l . N0 (a+s--j, b-s)Nj(j-s,s) • 

O<s< _j_ = µ+l 

In sorne particular cases fonnula (24) in 'l'heorem 4 can be sjlTlplified. 

The following theorem contains some particular cases of ( 2Ii) • 
1 

(34) 

1 

beoréril 5. Let µ be a positive integer. lf a > µb+l , tben 
! 

· for j = 0,1, ••• , a+b-1 , and Pa+b(a,b;µ) = (a-bµ)/(a+b) • 

If a = µb+l , then 

(35) 

f or j = 1, 2, ••• , a+b • 

If a = µb , then 

(36) = 
1 
__ l_ y 1 (sµ+s)(a+b-sµ-s-1) 

Po(a,b;µ) (a+b) ~a+b-2 s s-1 b-s 
a O<s< --

== µ+l 
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and 

) ( ) 1 \' 1 (sµ+s)(a+b-s]l-s-2) (37 P" a,b ;µ - -- l --.--..... 
• J - ca+b) a+b J" 1 s(b-s) s-1 b-s-1 

a O<s< - -
= = µ+l 

for j = 1,2, .•• , a+b-1. 

Proof. If we apply 'Iheorem 26.1 to the random variables v1 , v
2

, ••• , 

v a+b 311:d if we use ( 27) then ( 34) , ( 35) , ( 36) and ( 37) follow 1mrnecüately. 

Formulas (34) and (35) were proved in 1963 by the author ll93J, and. 

form1*a (36) in 1964 a.lso by the author [194]. 

1 

Jfow let us determine the probabili ties Qj ( a, b; µ ) f or j = 0, 1, •. , a+!) . 

We can determi.ne Q}a,b;µ) in a similar way as Pj(a,b;µ) • See the 

author' s note in [l 9~J The details can be found in [ 6 3] 

(38) 

f or 

(39) 

~1heorém 6. If µ is a nonnegative integer, then we have 

Qj(a,b;µ) = l 
O<s< i_ 
== µ+l 

j = 0,1, ••• , a+b where 

( ) b 1 l , 1 (sµ+s-l)(a+b-sµ-s) % a,b;µ - a+b - (a+b) 
2 

a+b \µs+s-1) s b-s 
a -<S< -µ+l = = µ+l 

for a < bµ and %(a.,b;µ) = 0 for a > bµ , (%(0,0;µ) =' 1) ,_~d 
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(40) 1 
Qa+b(a,b;µ) = l- (a+b) 

a 

\' (a+l-bµ) rsµ+s-1 (a+b-sµ-s·-1) 
l (a+b-sµ-s+ 1) \ s ) b-s ' 

2 a+b 
- <S< -µ+l = = µ+l 

for a .?:_ bµ and Qa+b (a,b; µ) = 0 for a < bµ • 

Proof. Define the random vai~iables v1 , v2, ••• , va+b in exactly 

the same was as in the proof of '11.heorem 4. Then we have 

(41) 

f or 

(142) 

P{N. = s(µ+l)} = 
Nv 1 

f < i < a+b and 

(i) (a+b-i) 
s b-s 

(a+b) 
a 

1 
P{Ni = s(µ+l), Nk = t(µ+l)} = ,,,,_. 

f or 1 < i < k < a+b • = = = 

By using this notation we can write that 

(43) Qj(a,b;µ) = !{Nr < r for j subscripts r = 1,2, ••• , a+b} 

for j = 0,1, ••• , a+b • Since N = S (µ+l) r r and r = ·a + S f or r r 

r = 1,2, ••• , a+b , it follows that the inequality ar> µSr holds if 

and only if Nr < r• • This proves ( 4 3) • 

By 11.heorem 22.1 we can conclude that the probability that N < r r =, 

for j subscripts r = 1,2, ••• , a+b is the same a~ the probability that 

the last maxi.'11al element in the sequence r-Nr (r = 0,1, .•• , a+b) is 

j-Nj Accordingly, it fbllows that 
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QJ. (a,b, ,·µ) = P{r-N ~ j-N. for 0 -~ r ~ j and r-N < j-N. for j<r<a+b} = ""' r - J · - -- r J 

(44) 
b 

= I P{N.= s(µ+l)}P{N.- N · ~ j-J'.' for 0 < r < jlNJ. = s(µ+l)} • 
s=Ö J ,,.. J r -

• P{r-j < N - N. for j < r ~ a+blNJ. = s(µ+l)} • 
""' r J 

' 

By using the representation ( 43) we caJ1 write (1~4) in the following equivalent 

form 

b 
(45) QJ.(a,b;l-l) = I P{N. = s(µ+l)}Q.(j-s,s;~1)Q0(a+s-j,b-s;µ) s=OMr J J 

where j = 0,1, .•• , a+b • · By (41) this proves (38). 

If we prove (39) and ( 40), then Qj (a,b ; µ) is completely detennined 

by (38). 

(46) 

f or 

(47) 

If j = a+b in (43), then by Theorem 20.1 it follows that 

Q +b(a.,b;µ) = P{N ~ r for r = 1,2, ••• , a+b} ·-a !'t... r -

a+b-1 1 .. = 1- l (a+-~bµ) P{N = t+l} 
~=l îa+b-t) - t 

a 2:_ bµ and Qa+b(a,b;µ) = O for a < bµ • By (41) this proves (39). 

If j = 0 in ( 43), then by Tneorem 26.4 it follows that 

CL(a,b; µ) = P{N > r for r = 1,2, ••• , a+b} = v Nv r 

a+b 
P{N l .} - ; l P{N 0 d 1·1 • } "' " > :.. T.i=ï"Y 1 = an ~i = 1 • 

Nv l. i=2 ' . ~ 

I f a. ~ bµ , then obvi.ously Q
0

(a,b ; µ) = O • By ( 42) this proves ( 40). 
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By (38) we obtain the following relation for Mj (a,b; µ) defined 

by (23): 

(48) M. (a,b ;µ) = 
J 

l M0(a+s-j, b-s)M.(j-s,s) 
. J 

O<s< µ~l 

' 
ln some parti.cular cases fonnula (38) in Theorem 6 can be simplified. 

The following theorem contai.ris some pa.-rticular cases of ( 38) • 

· Thèörem 7. ~t µ be a posi ti ve intege:iz.. If a ~ µb , then 

Qj(a,b;µ) = O for j ~ a'.'""bµ ,. 

(49) 

for a-·bi1 < j < a+b , and 

(50) 
_ a+l-bµ 

Qa+b(a,b;µ) - a+l ' 

rr a = bµ-1 ' then 

(51) 

· · for .î = 0,1, ••• , a+b-1 and Qa+b (a,b ;µ) = O • 

·Próof. If we apply Theorem 26.3 to the random variables v1,v2, ••• !va+b 

and if we use (41), then (49) and (51) follow immediately. By ïheorem 26.3 

we obtain that 
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) 1 \' (a+l-bµ) (sµ+s)(a+b-s1.1·-s) 
(52) Qa+b(a,b;µ = l- (a+b) 

2 
l îä+b-sµ-s+l) s b-s 

a - <s<b µ+l = = 

for a ~- µb • On the other hand by (13) Qa+b (a~b;µ) = Q(a,b ;µ) = 

(a+l-bµ)/(a+l) which is an interesting identity. 

For the proofs of (49), (50) and (51) we also refer to O. Engelberg 

Cl.67] and the author [193], [63 ] . 

fö.~ally, we shall consider the problem of finding the clistri.bution 

{Pj(a,b;µ)} in the case when µ = a/b • Obvlously Pa+b(a,b;µ) := O • If 

we Jmow {Pj(a,b;µ)} , then {Qj(a,b;µ)} can be obtai.ned irm1ediately by 

using the following relation 

(53) 

which holds for j = O,l, ••• , a+b and µ = a/b 

Tne identity (53) follows sirnply by syrrmetry. For if µ = a/b , then 

we can interpret Pj(a,b;u) 

for exactly j subscripts 

also as the probability that ar < asyl"o holds 

r = 1,2, ••• , a+b • Accordingly, if Q.(a,b;µ) 
J 

(where u = a/b) denotes the probability that the inequality ar ~- af3/b 
holds for exactly j subscripts r = 1,2, ••• , a+b, then we have Qj(a,b;µ) = 

P +b . (a,b ;µ) whenever µ = a/b -. a -J 

In the particular case when a and- b are relatively prime integers 

a.>'ld µ = a/b the problem has a simple solution which was found in 1954 

by _H. _D. Grossman [177J . His result is the follm'fÏ.....ng: 
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Theorem 8. If a and b are relatively prime pósitivè intègers, 

and µ = a/b , _!;hen 

(54) 

· for j == 0,1, ••• , a+b-1 • 

Pröof. We shall prove that Q.(a,b;µ) = l/(a+b) for j = 1,2_,. ••• a+b 
--- J ~ 

which is equivalent to (54). In proving this statement we shall use 

Lemma 26.2 • Since (a,b) = 1 , we can choose two positive integers p 

and ~ such that ap-bq = 1 • Define the random variables y 1 , y 2, ••• , y a+b 

as rJ11ows: y r = q if the r-th vote is cast for A , and y r = -p if 

the r-th vote is cast for B. T.hen y1 , y2, ••• , Ya+b are interchan.geab1e 

random variables taking on integers only and satisfying the condition 

y1+ ••• + y a+b = 1 • Now a.r > as~ holds if and only if ar > P~\/q , or 

equi valently, y 1 + ••• + y r > 0 • Accordingly 

(55) Q.(a,b;µ) = P{y1+ ••• + y > 0 for j subscripts r = 1,2, •.• , a+b}. 
J M.. r 

By Lemma 26.2 j_t follows that Q.(a,b;µ) = l/(a+b) for j = 1,2, ••• , a+b • 
J 

Thi s completes the proof of ( 54). (See also the author [192], [ 6 3 ] . ) 

If µ = a/b and a and b are not relatively prime, then it is 

more complicated to find {Pj (a,b;µ)} • The degree of difficulty increases accordi 

to the magnitude of (a,b) • 

Let us mention briefly the historical background f or finding 

Pj (a,b;p) in the case when µ = a/b • In 1950 H. D. Grossman [l?EJ 
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published a conjecture concerning P
0

(a"b;µ) • Grossmar1's formula was 

proved in 1954 by M. T. L. Bizley [164] • In the same paper Bizley found 

also P a+b-l (a,b ;µ) • In 1966 IVI. T ~ L. Bizley [165J made a conjecture 

concerning the gneral form of P j ( a, b; µ) for j = 0, 1, ••• , a+b • ( See 

also the author [63 ].) Bizley's formula for Pj(a,b;µ) was proved in 

1969 by the author [19 5-l • 

In what fellows we suppose that 

(56) 
i 

wherel m and n 
i 

the probabilities 

(57) 

m 
µ - -

n 

are relatively prime positive integers and we sha.11 find 

pj (km, Jm; µ) 

fOX' k = 1,2,3, •••• 

'Ihroughout the rema.ining of this section we asswne that m and. n 

are fixed relatively prime positive integers and k varies through the 

set of positive integers. 

let us write 

(58) 
N. (km, Jm ; µ) 

p. (km, 1m , µ) = J km + Jm 
J ( . ) 

km 

for j = 0,1, ••• " a+b , and k = 1,2)9", and let N0 (0,0;µ) = 1 • 
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· Theorem 9. If µ = rn/n where m and n are relàti vely E_rime 

· posi ti ve integer·s, then we have 

(59) Nj(km,kn;µ) = l . N0 (sm,sn;µ)N(k-s)(m+n)-l((k-s)m,(k-s)n;µ) 
O<s<k - .L = m+n 

for j = 0,1, ••• , k(m+n)-1 Here N ·(O O·u) = 1 0 ' ,. 

Proof. Let us define the randc:m variables ç:r (r = 1,2, ••• , k(m+n)) 

in the following wa;y: Let çr = n if the r-th vote is cast for A and 

ç:r = -m if the r-th vote is cast for B • The random variables ç:r 

(r = 1,2, ••• , k(m+n)) are interchangeable and their surn is 0 • Let 

r;r = ç:1+ ••• + ~r for r = 1,2, ••• , k(m+n) arid i;;0 = O • By using this 

notation we can write that 

(60) P.(km,kn;µ) = P{1; > 0 for j subscripts r = 1,2, ••• , k(m+n)} 
J ,.._. r 

for j = 0,1, ••• , k(m+n) • Evidently P.(lan,kn;µ) = 0 if j = k(m+-n) • 
J 

By 'I'heorem 22.l we can conclude that the probability that 1; > 0 
r 

holds for exactly j subscripts r = 1,2, ••• , k(m+n) is the saine as 

the probabillty tha.t the first ma.ximal element in the sequence 1',;r 

(r = û,l, ••• , k(m+n)) is r;j • Accordingly, it fellows that 

for j = 0,1, ••• , k(m+n) • If j = k(mrn) , then (61) is 0 .• 

For j = 0,1, & u, k(m+n)-1 we can write that 



V-108 

(62) P. (km,kn;µ) = P{ç. ~O for O <i < k(m+n)-j and ç. < O for k(m+n)-j < 
J ~ l- l 

i < k(m+n)} • 

If j = 0 , then (62) is precisely (61). If 0 < j < k(rn+n) and in (61) 

we replace the randcm variables i;l'".' i;j, ç;j+1 , ••• , sk(rn+n) by 

sk(m+n)+l-j'""•' sk(m+n)' sl' ••• , sk(rn+n)-j respectively, then Pj{krn,kn;µ) . 
rerna.:ins unchanged, and the right-band side becomes (62). T'n..i.s proves (62) 

for j = 0,1, ••• , k(m+n)-1 • 

If j = 0,1, ••• , k(m+n)-1 arid the event on the right-hand side of 

(62) occurs, then there is an i (0 _:_ i < k(m+n)-j) such that z;:
1 

= O • 

Denote by r the largest such i ~ Then necessarily r = (m+n)s where 

O < s < (km+kn-j)/(m+n) and furthermore çi < O for s(rn+n) < i < k(m+n) • 

Accor-dingly, 

(63) 

P. (krn,lm;µ) = 
J 

l . ,IU;i 2_ 0 for 0 <i< s(m+n), çs(m+n) = o, 1,;1 < 0 
O<s<k- ...L. = m+n 

for s(m+n) < i < k(m+n)} 

• P{ç. <O for s(m+n) <i<k(m+n)lç ( +) == O} 
"-- i smn 

for j = O,l, ••• , k(m+n)-1 • By using the representation (60) we can 

write (63) in the following equivalent form: 

(64) 

P/km,kn;µ) = I .!{çs(m+n) = O}·P0 (sm,sn;µ) • 
O<s<k- _ _J__ 
= m+n 

• P(k-s)(m+n)-l((k-s)m,(k-s)n;µ) 
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for j =0,1, ••• , k(m+n)-1 where P0(ü,O;µ) = 1. In (64) 

(sm+sn)((k-s)mt(k-s)n) 
P{ç ( ) = O} = sm (k-s)m 

",._ s m+n ckm+kn) 
km 

(65) ' 

and if we multiply (64) by (~kn) and if we use the notation (58), 

then we obta:i.n that 

(66) N. (km,kn;µ) = 
.J 

I . N0 (sm,sn;µ)N(k-s) (m+n)-l ( (k-s)m, (k-s)n;p) 
O<s<k- _J_ 
= m+l 

for j = 0,1" •• , k(m+n)-1 where N0 (0,0;µ) ==" l 9 'Tiüs completes the 

proorlor Theorem 9. 
1 

1 

For fixed positive integers m and n let us i.ntroduce the abbreviation 

(67) 

for k = 1, 2, • • • • The generating function 

(68) C(z) 
"" km+kn zk 

= l ( km ) k(m+n) 
k=l 

· t · f 1z1 < p -- mm nn./(m+n)m+n is convergen i 

Theorem 10. If µ = m/n where m and n are relatively prime 

· f>ositive integers, and k = 1,2, ••• , then we :t1ave 

(69) p j (km,kn;µ) = ~kn l . u s vk-s 
( km ) O<s<k·- _J_ 

= m+n 
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for j = 0,1, ••• , k(m+n)-1 and Pk(m+n)(km,kn;µ) = 0 • Here Uk (k = 0,1, ••• ) 

are given by the generati.ng f'Urictiöns 

(70) 
00 

k C(z) 
U(z) = I U z = e · 

k--0 k 

and 

(71) V(z) 

· Wh.tch ·are convergent for 1 z 1 < p • 

Proof. For f'ixed m and n let us introduce the notation 

( '7'2 \ ~ - J 

for k = 1,2, ••• and let u0 = N0(0,0;µ) = 1 • Furthermore, let 

(73) Vk = Nk(m+n)-1 (km,kn;µ) 

for k = 1,2, •••• Then (59) can be expressed as 

(74) N.(km,kn;µ) = l usvk-s J . 
O<s<k- _J_ = m+n 

for j = 0,1, ••• , k(m+n)-1 • 

If we add (74) for j = 0,1, ••• , k(m+n)-1 , then on the lef~-ha.nd 

km+kn side we get the total number of voting records, ( km ) = k(m+n)Ck , and 

theref ore 

(75) (k-s)U V 
' S k-·S 
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for k = 1,2, •••• If j = 0 in (74), then we get 

k-1 
(76) u = I u v 

k _,_ .. ("\ s k-s 
"'.)-\..) 

f or k = 1,2, •••• 

(77) 
and 

(78) 

If we forrn the generating functions of (75) and (76), then we obtain that 

C'(z) = U(z)V'(z) 

U(z)-1 = U(z)V(z) 

for 1 z 1 < p • The generating functions are convergent f'or 1 z 1 < p because 

evidently Uk _:::_kCk and Vk < Ck for k = 1,2, •••• By (77) and (78) 

U'(z) = U'(z)V(z) + U(z)V'(z) = U'(z)V(z) + C'(z) , that is, C'(z) = 

= D' (z)[l-V(z)] • Hence U(z)C' (z) = U' (z)U(z) • [1-V(z)] = U' (z) , that 

is, 

(79) U' (z) = C' (z)U(z) 

for 1z1 < p and by definition U( 0) = 1 • The solution of this differential 

equation is given by 

(80) U(z) = eC(z) 

for lzl ~ p • Consequently, by (78) 

(81) 

f or 

If we div:tde (74·) by 

-C("") V(z) = 1-e '"' 

lmi+kn . 
( km ) , then we obta.Lri. P. (km,kn;µ) 

. J 
f or 



V-112 

j = O,l, ••• , k(m+n)-1 • This canpletes the proof of the theorem. · 

Our next aim is to find explicit f'om1ulas for Uk (k = 0,1,2, ••• ) 

and Vk (k = 1,2, ••• ) • 1I'l1en Pj(km,kn;µ) can be calculated explicitly 

for j = 0,1, ••• , k(m+n)-1 by (69). 

If we form the power series expan8ions of (70) and (71), then we 

obtain at once that 

(82) 

and 

( 83) v = k 

. +. + +1 - 1 ci1 "i2 1 1 1 2 ••• -k- 1 L2 ••• 
I c-1) · , · , 

• +2 • + +1 r-l 1 11 • 12 • • • o 1 1 1 2 • • • .n.J_k = { -

for k = 1,2,.~ •• 

These formulas have the disadvantage that if 1{ increases, the 

number of terms in the sums increases trernendously. 

In what follows we shall gi ve another method of finding Uk and 

V k for k = 1, 2, • • • • 'Ehis method can be applied equally for small and 

large k V'"a.lues. 

Theorem ll. If 1 z 1 < p , then we have 

(84) 

éi..Yld 
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(85) 

where 

(86) 

f ór any 

2Tiri/n 
e: = e 
r 

a • 

n l/ -1 
V(z) = 1- rr [y(~ z n)] 

r r=l 

(r = 1,2, ••• , n) ar·e the n-th roots of unity a."1d 

00 ( R. [ (z) ]a = 1 + l Hm+n)+a:J az 
Y · i~l n i(m+n)+a 

!I. 

Proof. Let us consider the equation 

(87) 1 - vf+ zwrn+n = 0 

· and denote by w = y ( z) that root of this equation for which y ( O) = 1 • 

If lzl ~~ p , then we can expand [y(z)]a into the power series (86). 

(See L!-ElQer [ 21] and G. P61ya [50 ].) Prom (86) it follows that 

(88) 

and 

( 89) 

-
logy (z) = lim [ Y (z) ~a -1 = Ï (i(mn1 +n)) zi 

a + 0 i=l j, (m+n) 
. R. . 

n 1/ l logy (e: z n) 
r r=l 

00 

km+kn zk 
= l ( km ) k(rn+n) = C(z) 

k=l 

f'or 1 z 1 < P • Accordingly, 

(90) 
n 

C(z) = l logy(~rzl/n) 
r=l 

for lzl < P in fonnulas (70) and (71). Hence (84) and (85) follow. 

Tnis completes the proof. 
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Note. By (86) it follows that 

(91) 
n l/ 00 krn+lm+ ~ k . 

S (z)::: l [y(E: z n)]a:: n + I ( n) _a._z __ 
et r= 1 r 1-c--= 1 l:m km+l:m+ ~ 

n 

for any a and 1 z 1 < p • If we apply Waring' s fonnula, then we obtain 

irrmediately that 

(92) 
r1 a. l/n 
Il [y(E Z )] = 

r=l r 

where i. = 0,1,2, •••• (See Problem 40.4.) 
r 

The generating ftmctions U(z) and V(z) can ea..sily be obtained 

frcm (92) by putting a. = 1 and a. = -1 in it. 

Exarnples. If n == 1 , then U(z) = y(z) and V(z) = 1-[y(z)]-l 

and by ( 86) we obtai.n that 

(93) rk(m+l)+l) 1 
uk= \ k k(m+l)+l 

(94) V = (k(m+l)-1) _ 1 . 
k k k(m+l)-1 

for k = 1,2, ••• ~ 
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1 1 1 1 -1 

If n = 2, then U(z) = y(z2)y(-z2-) and V(z) :: l·-[y(z2)y(-z2 )] 

and by (86) or by (92) we obta.i..~ that 

(95) 
2k (-l)i ~ i(m+2)+ ! ~(2k-i)(m+2)+ ~ 

uk = iio [i(m+2)+ l][ (21<:-i) (m+2)+ l] ( i ) < 2k-i ) 

and 

(96) 
V = ~k (-l)i+l (~ i(m~2)- !)(~(2k-i)(~r+2)- ~) 
k i~ fi(m+2)-1][(2k-i)(m+2)-l] i 2k-i 

f or k = 1,2, •••• 

\ 

~ese formulas make it possible to find Pj(km,kn;µ) for j = 0,1, ••• , 
1 

k(mti1)-l if µ = rn/n and either n = 1 or n = 2 , and m is an oàd 

integer. 

Finally, we mention bri.efly a result concern:irig the asymptotic hehavior 

of P/km,lm;µ) as k -+ 00 
• Let us denote by Llk(m,n) the munber of 

subscripts r = 1,2, ••• , k(m+n) for which a.r > mf3/n if candidate A 

receives a = km votes and candidate B receives b = lm votes. If 

0 < x < 1 , then we have 

(97) 
Llk(m,n) 

l:im !_ { k(m+n) < x} = x • 
k -+ 00 

For the proof of this result we refer to [195] • 
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39. Order Statistics. '11:1.e objective of this secti.on is to discuss 

various approaches for the sol.utions of two main problems in the theory 

of order statistics. 

The first problem is as follows: We have m independent observations 

x
1

, x
2

, ... , xm on a random variable ~ . The distribution fw1c:ti.on 

P{ ç; ~ x} is unknown. It is to be decided whether or not the observations 
NV--

xl' x
2

,._.., xm are compatible with the hypothesis that P{ç: 2. x} = F(x) 

where F(x) is a specified distribution function. 

~uch problems arose in the middle of the Dinete:eilth century in 
1 

i 
conne~tion with the normal distribution function 

1 

(1) 

The norrnal distribution has appeared in severaJ_ instances in the them·y 

of probability and achieved somé kind of general recognitiono First in 

1733 A. De Moivre [18] showed that the nom1al distribution is a good 

approx:imation for the Bemm(lli distribution. In 1782 ~. S. L~pl:a'.:.e 

[3?] demonstrated the usefulness of the normal distribution in the 

theory of probability. In 1812 !'· S. Laplace [ 39] showed that under 

suitable normalization the sums of mutually independent aYJ.d identic:ally 

distributed synmetric random var:i.ables taking on i.nteger va.lues hq.ve a 

l:imi ting normal distribution. In 1809 C. F. Gauss [ 2'7 J demonstrated that 

the distribution of errors of observation is norrnal if we assurne that 
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the arithmetic mean of the observations is the most probable result. 

(See also W. F. Bessel [lO ] , R. L. Ellis [ 20], A. Cauchy [ 14], 

M~· W. Croftol!. [16 ] , a-ri.d G. P~lya [52 ] . ) It should be noted that in 

1808 R. Adrain [ 3 ] gave an obviously inadequate explanation for the 

appearance of the normal distribution in the theory of errors of . 
observation. 'Illus the priority of R. Adrain over C. F. Gauss which 

C. Abbe [ 1 ] claims is unjustified. In 1846 A. Quetelet [312J analysed 

various statistical data and illustrated, for example, that the 

distribution of chest measurements of 5,738 Scotch soldiers and the dist-

ribution of heig.hts of 100,000 French conscripts fit the no:rrnal distribution. 

In 188ll F'. Galton [ 26] cornpared the distribution of several physical 

characteristics of a group of people with a normal d.istribution and found 

good agreement. 111ere were, however, examples for asyrrmetric distributions 

which of course did not fit a normal distribution. In 1895 K. Pearson 

~05] classified asyrrmetric distributions and introduced six basic types 

which would fit many non-normal distributions. In 1903 J. C. Kapte1m [34 ] 

expressed his view that the normal distribution is exceptional and most of 

the observations have an asynmetric distribution. 

These scientists used. the method of mornents in fitting distributions 

to empirical observations. First, they chose a suitable type of 

distribution w:hich depends on a few parameters, and then they determined 

the unknown parameters by requiring that the same number of moments of' 

the' tcyp-c::il:i.etieal distribution and of the observations be equal as the 

number of unknown parameters. The proble..m arises naturally to measure 
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the accuracy cf this approxim:i.tion. To answer tri.is problem in 1900 

!_{. Pearson [306] invented the method of x2 winch provided a solution 

for discrete distributions. For continuous distributicns the rr..ethod 

of x2 depends on the wa:y in which the observations have been grouped. 

This defect necessi tated the :i.ntrodu.ct~on of sane general measure for 

th~,-c:li.~crepancy between the empirical ·· observations and the . hypotb.etical 

di.stribution. 

To introduce a measure betweer. the ernpirical observat.ions and the hypo-

thetical c:üstribution it is convenient to define the so-caJ.led 
•· 1 

~~'cal distribution function. If we have m observations 

x
1

; :X
2

, ... , xm , that :i.s, a sample of size m , then let us deflne 

as the number of observat:i.ons ~ x di vided by m . The f'unction 

def:thed for -oo < x < 00 is the ernpirical distribution functJ.on of the 

};"' (x) 
m 

sample Cx1 , x2, ... , xm) . If F(x) is the theoretical '(h.ypothetical) 

distribution function, then for exarnple 

00 

(2) am = m f [Fm(x) - F(x)J
2dx 

-"" 

can be considered as an adequate measure of the discrepancy between F (x) m 

and . F(x) . The smaller a , the better the agreement. m 

The distance ( 2) was :introduced in 1928 by H. _gramé'r [224] f'or 

F(x) = iti(x) and in 1931 by R. v. Mises [299pp. 316-335] for- eny F(x) . 

We can use am defined by (2) in testing the hypothesis that P{t,: ~ x} = F(x) 
""""' -

where F(x) is a specified distribution function. Khot-1i.ng the somple 
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determine F (x) for every x and we can calculate a. by (2) . If m m 
a is small, then we accept the hypothesis that :i?U; ~ x} = F(x) and m -""'"- -

if a. is large, then we reject the hypothesis that P{t;, ~ x} = F(x) . n ~ 

How small or how large should a. be? n 

To answer the last question we shÓuld determine what kind of 

values would we obtain if the hypothesis PH < x} = F(x) would be ,,..,..,_ 

Cl. -m 

correct. - Knowing this we cari canpare the actually calculated a - value 
m 

with the expected 

1 

a. -m values and make a àecision a.ccordingly. 

tus we can proceed in the following way: Let us suppose that 

P{t;, <,x} = F(x) where F(x) is the specified distribution function. Let 

us suppose that we make m independent observations on the random 

variable t;, . Then we obta:Ln a sample (i:;,1, i:;, 2,.", t;,m) where i:;, 1 , 1;2,. ··:1 

t;, are mutually independent random val"'iables having the sarne distribution 
m 

function F(x) . In this case F (x) , the ernpirical distribution 
m 

function, is a random variable for every x . By definition F (x) m is 

equal to the nurnber of variables i:;,1, i:;, 2, ••• , t;,m less than or equal to 

x div:Lded by m . We obtain easily that 

(3) 

for k = 0,1, .•. ,m and for every x. Then a. defined by (2) is also m 

a random variatle. Knowing F(x) , we can determine the distribution 

of a and we can determine the expectation, the variance and the h.i.gher 
m 

manents of a. if they ey.fst. If we have this information, then we C8.r1 
m 
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make probability statements about the magnitude of a • Thus for some E: m 

va.lues (possibly for every E: ) where 0 < E < 1 we can find an am = am(E:) 

such that 

(4) 

'Ihen a.m will be < é\ri with probabilîty 1-E: 

probability E: . 

and a. will be > a with m m 

For any possible E: (0 < c: <l) we can design a test in the follow-lng 

wa..v: We observe If a.m 2_ am , then we accept the hypothesls that 

P{t; < F} ,.,._ = F(x) , and if a.m > '1n , then we reject the hypothesis that 

P{ ç; ~- lx} = F(x) . If we perform the test on the level i:: .• then if the 
""-' 

hypothesis is correct we accept the hypothesis with probabil.ity 1-c: and 

reject it with probability s • The largest c: for whi.ch we accept the 

hypothesis can be used as a measure of degree of the goodness of fit. 

Although even for a s:i.rnple F(x) it is complicated to find the 

d.istribution of a.m , the moments of a.m can usually be determined easily. 

Knowing the expectation, the variance, or the r.J.gher moments of am , we 

can find lower bounds for the probability P{a .::._ x} by using Chebyshev 1 s 
Nv- rn -

inequality. 'Ihus we can find good upper estimates for ~ = am(E:) which 

can be used in the above mentioned test. 

Let us consider some examples. If F(x) = IP (x) , the nonnal 

d.istribution function defined by (1), then we have 

(5) E{a } 
rvv-- m =-1 
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(H. Cramér:, [224~, and 

(6) 2 2 2/3 1 1 . 6 4/3 
Varfo } = - + - - -- - - (~ + - - --) 

fV.A/'- m 3 TI TI m 3 TI TI 

(R. v. Mises [299], [301]). 

If 

(7) 

then we have 

( 8) 

and 

(9) 

F(x) ={: 

1 
E{a } = r 

rv.,.., m o 

(R. v. Mises [30JJ). 

f or x < 0 ' 

f or 0 < x < 1 
' = = 

f or x > 1 ' 

If we want to apply the test described above, then for each F(x) we 

should determine either exactly or at least approximately the distribution 

In 1933 ~- N. Kolmogorov [283-] introduced another distance 

(10) ó = sup 1 F (x) - F(x)I m m -.oo<x<ro 

which has many advantages over a m 



V-122 

First we mention that in 1933 V. Glivenk~ [259J proved that if 

~l' ~ 2 , .•. , ~m, .•• is an infiriite sequence of nrutually independent and 

identically distributed ranàom variables with distribution fu"'lction F(x.) 

and Fm(x) is the empirical distribution function of the sample 

(~1 , ~ 2 , ... ~m) , then 

(11) P{lL~ o = O} = 1 
Nv. m ' 

ffi+co 

and this result guarantees that F(x) can be estimated arbitrarily closely 

by F '(x) if m is large enough. 
m 

1 

1 

Kplmogorov noticed that if F(x) is a continuous distribution function, 

and th~ elements of the sample (~l' ~ 2 , ••• , f;m) are nrutually independeEt 

randan varia.bles having the same distribution function F(x) , then the 

distribution of the random variable cS does not depend on F(x) • 'l'he m . 

random variable cS is a so-called distribution-free statistic. m 

In 1933 A. N. Kolmogorov [283] proved that if F(x) is a continuous 

d:i.stribution function, then 

(12) lim P{ /iTI cS < z} = K(z) 
AM ffi = 

m -+<x> 

where 

00 

(13) K(z) = 
j= -00 

for z > O and K(z) = O for z ~ O • 

If z > 0 , then we can write also that 
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&~ K(z) = ~ l e 
c.Z • 0 J= 

• 

We have 

(15) 
00 ( ) 00 (-l)j-1 

M = f zrdK(z) - rr r/2 l ~ 
r 

0 
-

2
r/2 . 

J=l 

f or r = . 1, 2, . . • . In particular, M1 = /; log2//2 and M2 = 7f 
2 /12 . 

For other proofs of (12) we refer to W. Feller [254], J". L. Doob [246] . ·------ ' 
1 

M. D. \Donsker [24 5J , and N. V. Smirnov [328] . 

1 

1 

In 1939 N. V. Smimov [327], [33QJ publlshed a table for the 

distribution function K(z) . Here we reproduce a few values of K(z). 

z K(z) z K(z) z K(z) 
====== ============ I======= ===========- ======= ~============ 
0.5 0.036 055 1.2 o.887 750 1.9 0.998 536 

o.6 0.135 718 1.3 0.931 908 2.0 0.999 329 

0.7 0.288 765 1.4 0.960 318 2.1 0.999 705 

0.8 0.455 857 1.5 0.977 782 2.2 0.999 874 

0.9 0.607 270 1.6 0.988 048 2.3 0.999 949 

1.0 0.730 000 1. 7 0.993 823 2.4 0.999 980 

1.1 0.822 282 L8 0.996 932 2.5 0.999 992 

In 1956 P. Schmid [322], L?23l determined the limiting d:i,stribution 

of /riî óm as m ->- 00 for an a.rbitrary F(x) • If F'(x) has discontinuities, 

then the limit:hJgdistribution of lriï ó as m-+ 00 depends on the positi.ons m 

of the d.iscontinuity points of F(x) and on the magnitudes of the 
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correspondirig jurnps. 

In hls paper of 1933 A. N. Kolrnogorov [283] deduced a system of 

recurrence formulas which makes it possible to finà the distribution of 

8 for finite m values whenever F(x) is a continuous distribution 
m 

fw1ction. By using these rec.urrence fonnulas in 1952 Z. W. Birnbaum [20!.8 

tabulted the probabilities P{ó < k/m} where k = 1!2, •.. ,m for m < lCO ,.,.,,. m 

and k < _15. (See also F. J. Massey L296].) 

Fora continuous distribution fw1ction F(x) and for m ~ 1,2, •.. 

the 4stribution of óm was foundk-n 1957 by J. H. B. Kempennan [27'Zl, 

in 19~8 by J .. Blac1anan [210], in 1962 by M. Depatx [243], and H. Carnal. [212], 

tn 1968 by ~~~panechnikov [253], and J. Durbin [!248], and in 1971 by§J].st~~S'· 

S. G. Mohanty [302], Z. Govindarajulu, R. Alter and L. E. Br~ [267-J) and 

K. Sarkadi [320]. By the result of V. A. Epanechnikov [253] for a 

continuous distribution fw1ction F(x) we have 

m-1 

k.+,-k. 
(

Q ' l L l ..., - a J 
ki ki+l 

(16) P{ó < z} = m! 
IVo/"V m = 

l (-l)rn-v-1 l 
v=O O=k <k1< ••• <k <k +l=in -o \) \) 

\) 

II 
i=O (k. Ll - k.)! 

1-. l 

ki+l-ki<2mz 

where ak = min{[ (k-mz)/m]+, l} and Sk = min{[ (k+mz)/m]+, l} . Obvioü.sly 

P{ó < z} = 0 if z < l/~n a..~d P{ó < z} = 1 if z > 1 • ,.,,,.. m= """"'m= = 

If we know the distribution function of ó , then we can use the m 

same method as before for testing the hypothesis that P{~ < x} = F(x) 

for 0 < E < l such that P{ó ~ d } = l-€ . 
"""'m- m 

in 1955 by V.S~ Korolyuk [286], in 1956 1)y L"C" ChéU'lg [216], 
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Tnen let us calculate the actual value of o for the specified m 

clistribution function F(x) by (10). If' öm < dm , then we accept the 

hypothesis that P{ ~ -~ x} = F(x) on the level s and if ó > d , then 
"""' -- m m 

we reject the hypothesis on the sa"Tle level. The largest s for which 

we accept the hypothesis can be considered as the measure of degree of 

the goodness of fit. 

If F(x) is a continuous distribution function and if m is large, 

then we can replace the probability P{ ö ~ z} by the approximate value ,,,.,._ m --

K(lriï z) and in this way we can find d = d ( s) approximately. m m 

Next we shall mention briefly a method of fin.ding the lirniting 

distribution (12). If F(x) i.s a continuous distribution :(unction, then 

the di2tribution of om defined by (10) does not depend on F(x) • 

'I'herefore in fincüng the distribution of ó we may assume without loss m 

of generality that 

O f or x < O , 

(17) F(x) = x for 0 ~ x ~- 1 , 

1 for x > 1 . 

Then F (x) = 0 for x ~ 0 , F (x) = l for x ~ 1 and F (x) for m -· m - m 

0 < x ~ 1 can be obtained in the following way: Let us choose m points 

at randan in the interval (0,1) in such a way that each point independently 

of the others has a uniform distributlon over the interval (O,l). Denote 

the number of random points in the interval (O,x] f or 0 < x < 1 . = = 

Then Fm(x) = vm(x)/m for O -~ x _:_ 1 , and we can write that 



V-126 

(18) 
v (x) 

ó = max m - x 
m 09(9 m 

Here {v (t) , 0 ~ t ~ l} is a stochastic process with interchangeable m - - ~· 

increments. If o = t 0 < t 1< .•. <tk < tk+l = 1 and O = jo ~ j 1::_ ••• < 

jk < jk+l = m , then we have 

(19) 

If we write 

(20) 
"m(t) - mt 

n (t) = 
m lrÏÏ 

for O ~ t ~ 1, then by (19) we can easily prove that for O < t 1 < t
2 

< ••• < 

tk < 1, the random variables n Ct~), n (t2), ••• , n (tk) have a m ...L.. m m 

k-dimensional l~niting normal c1istribution 

0 tl(l-tl), tl(l-t2), ••. , tl(l-tk) 

N( 0 tl Cl-t2)' t2(1-t2)'. "' t2(1-tk) 
(21) 

' • 

0 tl(l-tk), t2(1-tk), ••• ,tk(l-tk) 

as m + 00 • 

If a stochastic process {n(t) , O ~ t ~ l} has the property that 

for any k = 1,2, •.• and 0 < t 1 < t 2 < ••• < tk < 1 the rand01n variables 

n ( t 1) , n ( t 2) , ••. , n ( tk) have a k-dimensional normaJ. dis tribution, then 

we sey that {n(t) , O < t < l} is a Gaussian process. Let us suppose 
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that {n(t) , 0 ~- t 5_ l} is a Gaussian process for which n(t1),n(t2), •.• ,n(tk) 

have a k-climensional normal distribution defined by (21) whenever k = 1,2, .•. 

Then E{n(t)} = O for O ~ t ~ 1 and 
""" - -

Cov{n(u) , n(t)} = min(u,t)-ut for O ~ u < 1 and O < t < 1 • 
/V""' 

Accordingly we can conclude, that'if m + ~, then the ·ri.Ylite dimensional 

distributions of the process {n (t) , o ~ t < l} m - = converge to the 

corresponding finite dirnensional distributions of the process {n(t) , 

0 < t < l} • = = 

iince evidently 

· P{/ID om < z} 
,..,...,... 

(22) = P{ rnax In (t)I .~ z} 
rvv- O<t<l m 

== 
f or every z , we expect that 

(23) lim P{liü ó < z} = P{ sup ln(t)I ~ z} 
~,.,.., m = "'- O<t<l 

where { n ( t) , O < t < 1} is a separable Gaussian process for which 

E{n(t)} = 0 and Cov{r,(u) , n(t)} = min(u,t)-ut for 0 < u < 1 a."ld. 
~ 

O < t < 1 • 'Ihls is indeed true. The above method was suggested in 1949 

by J. L. Doob [246] and was justified in 1952 by M. D. Donsker [245]. 

Accordingly, we have 

(24) P{ sup ln(t)I < z} = K(z) 
Nv- O<t<l 

== 
where K(z) is given by (13) or by (14). 

We note that the process {n(t) , 0 ~. t < 1 } can be represented in 

the f ollowing way 
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(25) 
t n(t) = (l-t)s(~1 . ) 
-"C 

where {t:(t) , 0 < t < 00 } is a. Brownian motion process for which 

E{s(t)} = 0 and Cov{s(u) , s(t)} = ~.in(u,t) for 0 ~- u < 00 and 

0;;, t < 00 • T.hus we.can write down also that 

(26) ~{ 1s(u)1 ~ (l+u)z for 0 ~ u < 00 }= K(z) 

where {s(u) , 0 -~ u < 00
} is a sepa,.~le Brownian motion process for which 

E{ç;(u)} = O and Cov{s(u) , ç;(t)} = min(u,t) f or 0 < u < 00 and O ~ t ~ 00 

1 

Î1e left hand side of ( 26) for z > 0 can be obtained by sol ving the 

diffuJicn e~uation (heat equation) 

(27) 
2 

ar(t,x) = 1 LfCtA 
at 2 ax2 

for t > 0 and lxl ~ (l+t)z with the boUiîdary conditions f(t,x) -+ 0 

if x + +(l+t)z and f(t,x) -+ 0 if t + 0 and x 1 O , and further 
z 

f f(t,x)dx -+ 1 if t -+ O • Then we obtain 
-z 

(28) 
(l+t)z 

K(z) = l:im f f(t,x)dx 
t-+oo -(l+t)z 

for z > 0 • T.his method was actually used by A. N. KoL11ogorov G283] in 

finding K ( z) . See also A. N. Kolmogorov [3 5] , [36 ] . 

More general statistics than on have been considered by G. M. Maniya 

[293], T.W. JIJ1derson and D. A. Darling [201] , and A. Rtnyi [31Lfl. '11hese 

authors considered various particular cases of the following statistic 
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(29) ê (h) = 
m sup IF' (x) - F(x) !h(F(x)) m 

-co<x<co 

where h( u) for 0 _-:_ u ~- 1 is sc:me preassi.gned weight function. If 

h(u) := 1 , then (29).reduces to Kolmogorov's statistic (10). 

If F(x) is a continuous distribution function, then the distribution 

of 8 (h) does not depend on F(x) , that is, ê (h) is a distribution-m m 

free statistic. In this case the limiting distribution of rm 0 (h) as m 

m + '"' has been detennined in several pa.rticular cases. In 19~9 G. M. Maniya 

[2931 and in 1952 IJ.1. W. Anderson and D. A. Darling [2Q]J found the limiting 

distribution of lffi o (h) in the case when h(u) = 1 for a < u < S and 
m 

h(u) = O for 0 ~ u < a. and 8 < u ~ 1 where O < a: < S ~ 1 • In the 

case when h(u) = l//u(l-u) for 0 < a < u < B < 1 and h(u) = 0 other-= :::. 

wise, T. W. Anderson and D. A. Darling [20JJ fmmd the La.place-Stieltjes 

transform of the l:imiting distribution of rm ó (h) as m + co • In 1953 . m 
A. Ré'nyi [314] found the limiting distribution of Tmo (h) in the case 

m 

when h(u) = u for O < a. ~ u < S < 1 and h(u) = 0 otherwise. 

We can also generalize Kolmogorov's test in several other ways. First 

let us i.ntroduce two statistics 

(30) ê+ = sup [F (x) - F(x)] m m 
-CO<X<OO 

and 

( 31) o- = sup [F(x) - F (x)] • 
m -CD<X<<D m 

Obviously we have 

/ 
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(32) 
+ -ó = max( ó , o ) • rn m rn 

If F~r/x) is the ernpirical distribution function of a sample 

(ç;,1, ç;,
2

, ... , Ç,rn) where ç;,1 , ~ 2 , ... , Ç,rn are rnutually independent random 
. + -

variables having the same distribution function F(x) , then om and órn , 

defined by ( 30) and ( 31) respecti vely, 'will be random variables. If we 

know the distributions of these random variables, then we can desJgn various 

tests for checldng the hypothesis that ,_!.{ ç;, ~ x} = F(x) where F(x) is a 

specified distributton function. 

1 

~ 
1 

of ~ 0rd ' 
(ê+ 

rn' 
ó-) 

rn 

F'(x) is a cont:inuous distribution function, then the distributions 

+ -(o ~ ó ) do not depend on F'(x) , that :i.s, m rn 

are distribution-free statistics" 

Let us suppose that F(x) is a continuous distribution fur1ction. 

1hen obviously ó~ and ó~ have the sarne distribution for every m = 1,2, •.•. 

In 1939 N. V. Smimov [328J proved that 

(33) lirn P{ /ri1 o + < z} 
"""" rn = 

ffi+<'O t -2z2 
= 1-e for z > O , 

0 f or z < O . 

As a generalization of Kolrnogorov's lirniting distribution (12) we obta.ln 

that for x > O and y > 0 

(34) 

where 

lim !{ lrÏÏ ó~ _::_ x , hiï ê~ < y} = K(x,y) 
IIl-+<X> 



V-131 

00 

(35) K(x,y) -· l 
k= -"' 

or in another form 

(36) v ( ) /2TI'." OOI 
h x y = -, ' x+y . 

J=l 

.2 2 
1 'Tr 

-~-·-

e 2(x+y)2 sin2 jTix • 
x+y 

(See J .. fi. Döob [246] and the author !334].) Obviorn:.ly K(x,x) = K(x) 

defined by (13) or by (14). 
1 

1 

'Jjhe joint distribution of 
r 

+ cm and ê~ for m = 1,2, •.. has been 

detenn.ined in 1968 by .J. Durbin [248] • 

Sjmtlarly to (29) we can introduee the statistics 

(37) [B~(x) - F(x)]h(F(x)) 

and 

(38) ó-(h) = sup [F(x) - F (x)]h(F(x)) m m -oo<x«:o 

where h(u) for O 5.. u. . .5. 1 is some preassigned weight functi.on. Let S (h) = 
m 

max ( S: ( h) , l>; ( h) ) • 
+ It can ea..sily be seen that both óm(h) and ê~(h) are distribution -

free statistics, that is, if F(x) is a continuous distribution function, 

then the distributions of ó!(h) , o~(g) a~d for arzy 

h(u) and g(u) do not depend on F(x) • Obviously o!(h) and ê~(g) 

have the same·distribution if h(u) = g(l-u) f or O < u < l • 
~ = 
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In the case where F(x) is a. continuous distribution ftL'1Ction a.nd h(u) = 1 

for ex -~ u < 8 (0 < ex < 8 < 1) and h(u) = Q otherwise, the limiting 

d . t .b t" f 112 ~+(h) d 112 ~ (h) f d . 194q is ri u ions o m urn . an rn urn as m + 00 were oun. in _ 

by G. M. Maniya [293]. These results have been generalized by I. I. Gi.Jcbman 

[ 4-31 ] . n1 the case where F(x) is a contiruous distribution function and 

h(u) = 0 for a. 2. u < 8 (0 ~ a < 8 ~ 1) and h(u) = 1 otherwise, the 

lirniting distribution of m112 o + (h) as m + 00 was found in 1952 by Kh. L. Berl;yand 
m 

and I. D. Kvit_ [ '-1-08] . In the case vmere h(u) = u for o: 5-_ u < 8 

(O < a. < S ~ 1) and h(u) = 0 otherwi.se tt.ie l:imiting distribution of 

m1/ 2 o + ( ) as m + 00 was found in 1953 by A. R.épyi [314] . See also m ~-

S. Malm list [292] who considered sane more examp1es of this nature. 'Ihe joint 

distribution of ö + (h) and o- (g) was f ound in 1971 by G. P. Steek [ 4-59 J m m 

for arbitrary functions h(u) and g(u) • See also S. G. Mohantv [302], [ l.f..49 l, 

K. Sar kadi [320] and E. J. G. pj_tman [ 448 ] • 
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Now let us consider another statistic wt.iich was .j_ntroduced in 1939 

by N. :.J. · Smirnov [328] • Let ( t; 1 , ç;2, ••• , ç;m) be a sample of m mu.tualiy 

L1dep~dent and identically distributed random va.riables with distribution 

1 * * * function F(x) . Denote by 1;1 , ç; 2, ••• , t;m the elernents of the sample 

a.rranged in increasing order of magnitude. Let F~(x) be the empir-ical 

distribution function of the sample ( ç;1 , ç; 2,"., ç;m) • For any real a 

* define crm(a) as the number of integers k = 1,2, ••. ,rn for which 

(39) k-1 < F(c-*) + a < k 
rn = "'k' rn = rn 

It is easy to see that if F(x) is a contir1uous. distribution function, 

* then the distribution of crm(a) does not depend on F(x) • Furthermore, 

* it follows by symnetry that crm(a) * and crm(-a.) have the same distri.bution. 

Obviously,we have 

(40) + a - a * P{o < -} = P{o < -,-} = P{a (a) ~ O} ,.,,._m rn ,.,_rn rn ,.,.,..m 

and 
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(41) P{ê < a} 
,_,._ m m 

. * * = P{cr (a) + o (-a) = 0} 
,.,._ m m 

for a > O • 

N. V. &nimov [328] proved that if F(x) is a continuous distribution 

function, then 

(42) 

(2z+w) 2 

2 

for z > O al'ld w > O , a.vid 

* r.::: * ~ r l:im P{a (z vm) + cr (-z vm) .::_ w vm} = 
fVlto. m m 

ffi-?oo 

00 

(43) [2(j+l)z+wJ2 
(-l)'j dj j - 2 ) = 1-2 l ----. '--1 -"':" (w e 

j=O J. ctwJ 

f or z > 0 and w > 0 • If we put w ::: 0 in the right-hand si de of ( 1+ 3) 

then we obtain K(z) given by (13). 

At the beginning of this section we dealt with the statistic a.m 

defined by (2). We observed that the distribution of a.m depends on 

F(x) • To el:iminate this d.i.sadvantage, in 1936 N.V. Smimov [325], [~261 

introduced the following modification of a.m 

00 

(44) w; = m f [Fm(x) - F(x)J2g(F(x))dF(x) 
-00 

where g(u) for 0 < u < 1 is some preassigned weight function. 
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It can easily be seen that i,f F(x) is a continuous distribution 

2 function, then the distribution of wm does not depend on F(x) • If 

we can determine the distr'ibution of ( 4Lt), then we can replace the statistic 

2 a m by w in the test described after formula (2). • m 
that 

Now let us suppose F (x) is the ·ernpirical distribution function 
A m 

of the sample (i;l' i;2, ••• , ~m) where ç;l' i;2 , ••• , ç;m are mutually 

independent &~d identically distributed random variables with distribution 

funetion F(x) • 'lhen w2 5.s a random variable and our objective is to 
m 

find the lirniting distribution of w2 in the case when F(x) m 

continuous distribution function. 

Let us introduce the notation 

(45) 

and 

( 46) 

for Re(s) > O • = 

H(z) 
'J 

= lirn P{ut < z} 
""" m= 

IJl:+<X> 

00 

~(s) = f e-szdH(z) 
0 

is a 

In the particular case when g(u) = 1 for 0 < u ~ 1 , N. V. Smimov 

[325-1, [ 32G proved that 

00 

C4'n f e-szdH(z) 
0 

1 
= (sinh 12S)- 2 

l2i 

for Re ( s) > 0 . If we introduce the stochast ic process { n ( t) , 0 5:_ t ~ 1 } 

defined after formula (23) and if we use a result of M. D. Donsi'êr [245] , 
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then we can conclude that in this case 

(48) 
1 

H(z) = P{ f [n(t)J2dt < z} 
,,.,..,.. 0 

The stochastic process {n(t) , O .:s.. t ~ l} - - can be represented in the 

f ollowing way 

ClO 

(49) n(t) = /2. ". ~ sin krrt 
L. k k1T 

k=l 

wher-e ~l' s2' •.• , sk' ••• are mutually independent random variables having 

the same nom.al distribution function ~(x) defined by (1). In ( 49) the 

right-hand side converges aJmost everywhere and represents a ranàom variable. 

By (48) and (49) we obtain that 

(50) 

2 
00 sk 

H(z) = P{ l ---,..., .:s_ z} 
IVV- k=l k21Tc. -

a..'1.d thus 

ClO 00 

(51) J e-szdH(z) = rr 

0 k=l 

where we used that 

(52) Sin 1TZ 

TrZ 

ClO 2 
= II (1- ~) 

k=l k2 

for any z • By inversion N. V. Smirnov [326] found that 
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00 

(53) H(z) = 1- .?_ l 
'IT k=l 

2 zx 
2k'IT -2 
f e dx 

( 2k·-l )'IT ,/ - x s iru: 

for z > O , and T. W. Anderson and D. A. Darling [201] proved that 

(54) 

f or z > 0 where 

(55) 
. TI[I (z)-I (z)] 

K 'z) = -v v v' 2sin V'IT 

for v ~ O, ±_l, +2, .•• and 

(56) I (z) 
v 

for v tl- -1, -2, •.. and I (z) = I (z) for v = -1, -2, ••.. The v -v 

function I ( z) is called the modified Bessel ftmction of the fir·st J:...ind 
v 

of order v . The paper of T. W. Anderson. and D. A. Darling !201J contains 

a table for the l:imiting distribution H(z) • 

· N. V ~ Siilirnov 1326] also showed that if g( u) has a continuous 

derivative for O < u < 1 and we define H(z) again by (45), then 

(57) 
00 00 

~(s) = f e-szdH(z) = IT (l+ 2s)-l/2 
0 k=l Àk 

for Re(s) ~ O where 0 < Àl < ).2 < ••• < >.k < ••• are the proper values 

of the :Lntegral equation 
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(58) 

f or 

(59) 

l 
f(x) = ÀJ k(x,y)f(y)dy 

0 

0 < x < 1 wher~ = = 

[

/g(x)g(y) x(l-y) . 

l<(x,y) = 

/g(x)g(y) y(l-x) 

for O ~ x ~ y ~- 1 , 

f or O < y ::_ x < 1 • 

By inversion he obtained that 

À2k 
zx 

00 - 2-
(60) H(z) 1 l J 

e dx = 1- -- -
1T k=l À2k-l /-D(x) 

x 

for z > 0 where D(s) is the FredhoJm determinant of the kern.el k(x,y) 

defined by ( 59) • 

We have 

(61) 

f or a.11 s • 

00 

D(s) = II 
k=l 

s (1- -) 
Àk 

It should be noted that if we write y(x) = f(x)//g(x) , then the 

integral equation (58) is equivalent to the second order differential 

equation 

(62) 
d2 
~ + Àg(x)y = O 
dx 

with the bound<:l.rY conditior.LS y(O) = y(l) = 0 • (See also R. v. Mises [300] 
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and [ 301 pp. 1~82-490].) 

Finally, we note that :in 1949 M. Kac [276J introduced a statistic 

f or the canparison of an empiriaJ. and a theoretical distribution function 

in the case of random sample sizes. See also the author [327] and 

J ~ L. Allen and J. A. Beekman [l 98J, [ 199. 
to 

Now we tu...Y>fl\l.the discussion of the second main problem of order 

statistics. 

'f"ie second problem is as follows: We have m independent observations 

xJ, •.• , x on a random variable i; • The distribution function 
.:J m 

P{~ < x} = F(x) is unlmown. Also we have n independent observations 
MIV 

on a random variable n • The distribution funct.!.on 

P{n ~ x} = G(x) is unknown. The two sets of observations are also 
N'- -

i.ndependent. It is to be decided whether or not the observations 

Xp x2, .•• , xm and yl' y2, ••• , yn are canpatible with the hy-pothesis 

that F(x) = G(x) . 

If we want to solve this problem jn a mathematical way, it is convenient 

to introduce the empirical distribution functions of the samples 

Let us define F (x) as the 
m 

number of observations x1 , x2, ••• , xm less than or equal to x di v:Lded 

by m , and Gn(x) as the number of observations yl' y2, ... , yn less than 

or equal to x di vided by n • Next we introduce a measure for the 

di.screpancy of the two ern:pirical distribution fu.viction"c;. Iri 1939 
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· ·N~ V~ Sm:i.mov i327J suggested the following measure 

If o is sm.all, then it is reasonable to accept the hypothesis that m,n 

F(x) = G(x) • If ö is large, then it is justified to reject the m,n 

hypothesis that F(x) = G(x) • However, it remains to be decided that 

f or how small ö should we accept the hypothesis and f or how large m,n 

o should we reject the hypothesis. To give an adequate a.nswer to the 
m;1n . 

last question let us proceed in the following way: 

Let us suppose that P{t; ~ x} = F(x) 
""' -

where F(x) is a given 

distribution function and let U3 make m independent observations on the 

random va.riable t; Then we obtai.ri a sample (t;l' i; 2 , ••• , t;m) where 

i;1 , t; 2 , ..• , t;m are mutually independent random variables ha ving the san1e 

distribution function P(x) • Let us suppose also that P{n ~ x} = G(x) 
IV'A -

where G(x) j_s a given distribution flmction and let us make n independent 

observations on the random variable n • Then we obtain a sample 

var1ables ha.ving the sa11e distribution function G(x) • In this case F (x) m J 

the empirical distribution function of the sample (t;l' 1;2' ••• ' sm) ")and 

Gn ( x) ) the empirie al d:Ls tribution function of the sample ( n 1 , n 2, ••. , nn)) 

are rax1dcm varia.bles f'or everry x By definition F (x) is equal to the 
m 

number of- varia.bles ~ 1 ~ t; 2, .•• , t;m less than or equal to x divided by 

m and G
11 

(x) is equal to the number of va.riables n 
1

, n 2, •.• , n n less 

than or equal ·to x divided by n • Let us suppose also that the tvm 
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samples and (n ... , n2, ••• ~ n) 
.i. • n are independent. llien 

{Fm(x)} and· {Gn(x)} ~-re j.ndependent and 6 defined by (63) 1s a _ m,n 

randan variable whose distribution is canpletely detenn.ined by F(x) and 

G(x) • 

In principle we can determine the 'distribution of 6 in the case m,n 

when P(x) = G(x) is a given distribution function, or when it belongs to 

a class of distribution functions. If we know the distribution of 6 m,n 
in the case when F(x) = G(x) , then we can decide tha.t an actually calcu-

lated va.lue o.f o is compatible with th..i.s distribution_ or not and we m,n 

can rrmh--e our decision accordingly. 

~. V. Smirnov [327] noticed that if F(x) = G(x) is a continuous 

distribution function, then the di.stribution of ê does not depenä on m,n 
F(x) = G(x) • This observation makes it possible to give a simple method 

for i:;esting the hypothesis that ~ and n have the same continuous 

distribution fu.~ction. If we know the distribution of ê , then f or m,n 

SO..'Tie s values (Q < E < 1) we can find a d = d (E) such that m,n m,n 

(64) P{ 6 ~ d } = 1-E • 
Nv\ m,n - m,n 

Then for a."ly poss:i.ble E we can design a test in the following way: 

We observe ö If ê ~ d , then we accept the hypothesis that m,n m,n - m,n _ 

~ and n have the same _ continuous distribution function, and if o > d , 
m,n m..,n 

then we reject the hypothesis. If we perform the test on the level E , 
then if the hypothesis is corTect we accept it with probability 1-E and 

reject it with probability ~ . 



• 
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Tnere are several other possible statistics which have the same 

property as (63), namely, if F'(x) = G(x) is a continuous distribut:ton 

function, then the distribution of the statistic does not depend on 

F(x) = G(x) • In what follows we shall consider exclusively such statistics 

and our airn is to find the distributions of such statistics in the case 

when F(x) = G(x) is a continuous distribution f'tmction. If we know this 

distribution, then we can use the test rnentioned above in checking the 

.. hypothesis that ~ and n have the same continuous distribution function. 

1jn 1939 N~ V. Smimov [327] proved that if F(x) _ G(x) is a 
1 

contiriuous distribution function, then 
i 

(65) 11m P { /~ o < z} = K ( z) 
m + ~ /in n rn,n = 
n .-+co 

where K(z) is defined by (13) or by (14). 

If rn and .n are large, then we can use the approxima.tion P{o < 
"""' m,n = 

d } K(d /iiiil) rn,n ~ rn,n/m+n in (64). If rn and n are small then it is 

convenient to know the exact distribution of 0 rn,n 

In the particular case when n = rn , we obtain easily that 

(66) P{ 0 ~ ~ } = - 12m I (-l)k(rn+k~(l(',.+l)) 
~ rn,rn - rn ( ) k _ 

m 

for c = 0,1, •.. , m • This result can easily be deduced from classical 

results for random waJJrn as have been shown by B. V. Gnedenko and V. S. 

Kórolyuk [263]. (See forrnula (37.6).) The probabilities (66) have been 



tabulated by F. J • Massey [297] for m < 40 and c < 15 • 

MatheméJ.tical methods for finding the d1stribution of ó where m,n 
m = 1,2, .•. and n = 1,2, ... have been given by V. S. Korolyuk [286], (fcr n::r.:n:rp), 

_ G.P2- Steek[~ 55)) _ -
J. H. B. Kemperrnan l2'77J, J. Bladanan L210], M. Depaix [24 3J, S~G. Mohanty -::-

-- /\--
[302J, K~ Sarkadi [320] Obviously, ó and ó have the same ...__ __ . m,n n,m 

distribution. and E.J"4G. Pi·t;man [448] •J 
"'-"~~~~~~--~----~~/ 

If we introduce the following two statistics 

(67) ó+ = sup [F (x) - G (x)] m,n -oo<x<oo rn n 

and 

( 68) 0 - [Gn(x) - Fm(x)] = sup m,n 
...oo<x<oo 

which are also distribution-free statistics, then ó m,n can also be 

expressed as follows: 

(69) + ó = max( o , ó- ) • 
m,n m,n m,n 

This is equivalent to (63). 

If F(x) :: G(x) is a cont1nuous distribution function, then o + 
, m,n 

and ó- have the sarne distribution. The asyrnptotic distribution of m,n 

ó + has been found by N. V. · Smirnov [3271 who showed that m,n 

(70) 

f or z ~ 0 . 

2 -2z = J.-e 
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B. V. Gnedenko and V. S. Korolyuk [26 3J found that 

(71) 

2m 
+ C (m+lt~) 

P{ ó < ..:... } = 1- ~· '"' 
N~ ffi_,ffi = ffi c2:) 

for c = 0,1, ••. , m. For any m == 1,4, •.• and n = 1,2, ••• the distribution 

of o+ has been determ.ined by V. S. Korolyuk [286], and G._~teck [33~. m,n 

For · x > O and y > O we b.ave 

(72) l:im P{ !ffiii·- tS + < x lrrrrï~ o- < y} = K(x,y) 
~lm+n mn= '/m+n mn= 

m+oo ' ' ' 
n -+ "" 

where K(x,y) ls given by (35) or by (36). 

If n = m , then have 

(73) 

- b 1 \ re 2m ) 0m,m < m} = (2m) ~ L m+k(a+b) 

2rn 
(m+a+k(a+b))] = 

m 

2
2rn+l a+b 

\ ( kTI )2m . 2 kTia 
2m l cos a+b Slll a+b 

(a+b) ( m1
) k=O 

for a = 1,2, ••• , m and b = 1,2, ••• , m. (See B.V. Gnedenko and 

E. L. Rvacheva [2661, and the author [3341.) 

For any m = 1,2, ••• and n == 1,2, ••• the joint distribution of 

o+ and óm- n ha-s been deterrained by J. H. B. Kemp.erman [277J, m,n , 

G. P. Steek [332]~ ~}fohan:ty(302 ], K. Sarkad:!: [3201, and~· 

J:_itm~[44g]. J. Blackma.n [21o]considered the joint distribution 
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of c + and ó in the case w'hen n is an integral multiple of m • m,n m,n 

In 1969 I. Vincze [34-8] determined the distributions and the asymtotj_c 

distributions of ó+ and ó in the case when F(x) = G(x) is m-,n m,m 

arbi tra.r'J . 

The liirLtt theorems (65) and (72) can easily be proved by using the 

method of J. J.i. Doob [246J • Since the distributions of ó ó + rn,n ' m,m ~ 

and ,ç · do not depend on F(x) ::: G(x) if this is a continuous m,n 
distribution flmction, therefore in finding the àlstributions of these 

randan varia.bles we may assume without loss of' generality that 

0 if x < 0 ' 

(74) F(x) _ G(x) - x if 0 < x ~- 1 ' 

1 lf x > 1 . 

* If we suppose that · {nm ( t) , O < t ~ 1 } and { nn ( t) , 0 < t < l} 

are independent stochastic processes def'ined in the sarne way as (20) 

except that in the second process m is replaced by n , then we cari 

write that 

* 
ö+ 

n (t) n (t) 
(75) = rnax [ _!!!._ - _Il __ -] 

m,n O<t<l rm rn == = 
and 

* n (t) i-nn(t) 
( 76) ê - m ~ = max L j m,n 

O<t~. rn frÏÏ 
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Now let us suppose that m + 00 and n +ooin such a wa:y that n/m + p 

where p is a positive real mnnber. Then the finite d:imensional 

distributions of the process {nm(t) , 0 ~ t < l} converge to the 

corresponding finite.dimensional distributions of a process {n(t) , 

0 < t < l} = = and the finite d:irnensional distributions of the process . 
* } {nn(t) , 0 < t ~ 1 converge to the corresponding finite dimensional 

distributions of a process { n * ( t) , O < t ~ 1} where { n ( t) , O < t _::. l} 

* a..'îd { n ( t) , 0 < t ::. l} are independent Gauss:ian processes for wlüch 

. . * . * * E{n(t)}. = E{n (t)} = O and Cov{n(u) , n(t)} = Cov{n (u) , n (t)} = 
~.: ,.,._ ~ ~ 

1 • 

= min(lu, t)-ut for 0 < u < 1 and 0 < t < 1 • If we suppose that 

. 1 * 
{n(t)~ O < t ~ l} and {n (t), O ~- t < l} are separable stochastic 

processes, then by a theorem of M. D. Donsker [24-5] we can conclude tha.t 

(77) ~!{~ 0!,n ~ x ' /:ri 0~,n ~ y} = 
n+oo 

* P{ sup c'P n(t)-n (t)] ~ x 
,.;- O~t.0. /1 +p -

* , sup [n (t)-yp n(t2._J -~ y} 

O<t<l /1+u -== .i.: 

for x > 0 and y > 0 . The process 

(78) 
* { vP n(t)-n (t) 

ll+p ' 
O<t<l} = = . 

is obviously a Gaussian process and it is easy to see that for any p > O 

it has the same finite diiïlensional distributions as the process {n(t) , 

0 < t < 1 3- . Accordingly we can conclude that if m + "" and n + 00 .i.::1 

such a wey that n/m + p where p :is a positlve real number, trien 
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(79) llill'. P{/rnn ê+ < x ~ ê"- < y} -- K(x y) 
+ ' Il m+ m+nnn m,n = - ,, .,,,,., m n m,n = 

~ 

for x > 0 and y > O where 

(80) K(x,y) = P{-y < n(t) < x for O < t < l} . ,,..,., 

In the particular case when n = m the probability on the left-hand 

stde of (79) cal'l be obtained explicitly by (73). If we put a = xlmi2 

and ,b = y../rn/2 in (73) and let m-+ 00 , then we obtain K(x,y) given t . . 
by c15) or by (36). This cornpletes the proof of (72) in the case when 

1 

n/m ~ p and p is a positive real number. Actually (72) is true even 

if n/m does not tend to a ljmit as m-+ 00 and n + "' ·)(__f ~-~ z 

y = z in (72), then we obtain (65). @e Problem 40.11.)) 
------------·--__) 

and 

We note that if we use the representation (25), then by (80) it follows 

that 

( 81) P{-(l+u)y < ç;(u) ~ (l+u)x for 0 ~ u < "'} = K(x,y) ,..,.,, 

for x > 0 and y > 0 where {ç;(u) , 0 ~ u < 00 } is a sepa.rable Brownian 

motion process for which E{ ç; ( u)} = 0 and Cov{ ç; ( u) , Ç, ( t) } = rnir;.( u, t) ,.,._ ,.__ 

f or 0 < u < 00 and O < t < 00 • 

In a.ualogy with (37) and (38) we can intoroduce the 

sta.tistics 

and 
s- (h.) m,n 

= sup [Fm(x) ~ Gn(x)] h(Gn(x)) 
-OO<X<OO 

= sup 
-a:><X"-<I> 

where h(u) for :0 ~ u ~ 1 is some preassigned weigh·tï func·tj_o.n. 
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Rrrthermore, let ó (h) = ma.x:(o+ (h), ó- (h)) . If F(x) = G(x) is a 
m,n m,n m,n 

continuous distribution function then ó+ (h), ö- (h) , and o (h) are 
m,n m,n m,n 

distribution-free statistics ,, 

-1-

In 1950 I. D. Kvit [ l~l ] foun:l the asymptotic distributions of ó · (h) m,n 
and o'- (h) in the case where h(u) == 1. for a < u < (3 

m,n 
(O<a.<(3~1) 

and h(u) = 0 otherwise. J.n 1952 E. L. Rvacheva [ 454] determined the 

distributiops of ó+ (h) and ó (h) in the case where n = m and either m,n m,n 

h(u) = 1 for ~ ~.u < S and h(u) = 0 otherv..'ise, or h(u) = 0 for 

a < u < i and h(u) = 1 otherwise (0 < a < a :5_ l) • She has also found 

the asymftotic distributions of these statistics as m + 00 • Also in 1952 
1 

I. I. Gikl'î~ [ 431 ] found as a parti.cular case of a somewbat more genera]_ 

result the limit of the jo:L"lt distribution of ó+ (h)m1/ 2 n1l 2 /(m+n)112 and 
m,n . 

o- (h)m112 n112;(m+n)1/ 2 as m + 00 and n + 00 in the case where h(u) = 1 
m,n 

for a < u < (3 and h(u) = 0 otherwise (0 < a < B ~l). 

For a.ny h(u) and g(u) the joint distribution of o+ (h) and ö- (g) 
m,n m,n 

can be obtained by the results of G. P. Steek [332] , S.G. Moban~ [302] , 

K. Sarkadi [320] , and E.J .G. Pitrnan [ 448] . 

In 1939 N. V. &nirnov [327] :introduced also a more general. statistfo tha.n 

Let ç;1 , ç;
2

, ... , ç;m be rrutually indepenient random variables 

ravi.YJg the same distribution function F(x) . Let n1 , n
2

, ... , nn be rrutually 
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independent random variables having the same distribution function G(x) • 

~note by Fm(x) the empirical distribution fu.nction of the sample 

ai1d denote by G (x) n the empirical distribution 

* * * function of the sample Denote by nl' n2 , ••• , n n 

the random variables nl' n2, ••• , nn .arranged in :i.ncreasing order of 

magnitude. 

Now·let us introduce the statistic cr (a) for any real a defined m,n 

as the munber of subscripts r = 1,2, ... , n for which 

(82) 

If we suppose that F(x) and G(x) are two identical continuous 

distribution functions, ai1d the two samples (t;l' ç;2,"., t;rn) and 

(nl' 1 2, .•. , nn) are independent, then we can easily see tha.t the 

distribution of the random vari.able cr (a) does not depend on F(x) _ G(x) • m,n 

We have the ob'vious relations 

(83) P{ó+ < a} = P{ó- < ~} = P{cr (a) = 0} 
tv.. m,n = n rv-. m,n = n /VI- m,n 

for a > O and = 

(84) P{ó < .§..} = P{cr (a) + cr (-a) ~ 0} 
,.,._ m,n = n M. m,n rn,n 

for a > O • 

N. V. Srnimov [327] proved that if m + 00 and n + 00 1n such a way 
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t hat n/m -+ p where p is a positive real number, then 

(85) lim P{o (z /Im+~}n 
,.,,., m,n 

ffi'+CO 
~00 

< w /ITil } = 1-e = I rn+iî 

2 (2z+w) 
2 

for z > 0 and w > 0 • The l:irniting distribution (85) is identical == = 

with (42). 

N. V ~ SrtJirnov [327] also proved that if m -+ 00 and n -+ 00 in such a 

wcy that n/m -+ p where p is a positive real nurriber, then 

(86) 

lim P{cr (z jZm+n)n) + a (-z /(~n)n ) 
,..,.,,.. m,n m m,n 

Ifr1-00 
~ 

"" (-l)j dj .i 
- i-2 I ---. ,- --. cw e 

j=O J' d~ 

[2(j+l)z+wJ2 

2 ) 

rrrm- } = r m+n 

for z > O and w > O • The limiting distribution (86) is identical 
= 

with (43). 

We can introduce an analogue of the statistic (44) in the following 

wa:y 

(87) 
00 

2 mF (x)+nG (x) rriP (x)+nG (x) 
2 nm f [F (x)-G (x)] ( m n )d(· m n ) wmn = m+iï m n g m+n m+n 

-ex> 

where g(u) for 0 < u < 1 is some preassigned weig.ht function. 

If we suppose that F(x) and G(x) a:...-.e two identical continuous 

distribution f'unctions, then we. can easily: see that the distributi.onof 



the random variable 
2 

CJJ does not depend on F(x) - G(x) , that is, m,n 

w 2 is a distribution-free statistic. 
m,n 

The statistic (87) in the case when g(u) = 1 for 0 .::_ u ~ 1 was 

proposed in 1951 by E~ 1. Iehmann [290]. In 1952 M. Rosenblatt [318] 

proved that if g( u) = 1 for 0 < u < 1 , then 

(88) lim P{,/ < z} = H(z) 
:m+oo tw-. m,n = 
n-roo 

whe!'Ej H(z) is given by (53). (See also M. Fisz [256].) In his pr·oof 

· M~ Rdsènblatt 1318] assumed that n/m + p where p is a positive real 

number. For g(u) = 1 the ex:pectation and the variance of ,_/ has rn,n 

been found by T. W • .Anderson [200], In 1957 D. A. Darling [237J 

mentioned that if m + 00 and n ->- 00 - in such a way that n o < a < - < b < oo, =m= 

then for a general g(u) the statistic 

dis tribution as ( 1~-4) whenever m + 00 • 

w2 has the same limiting m,n 

Distribution-free statistics analogues to (63) and (87) can be 

introduced for the canparison of more than two samples. In this respect 

we refer to V. Ozols [304], 1. C. Chang and M. Fisz [217-J, [21~, 

J. I. Gikrnan [25~, J. Kiefer [28q, [281], M. Fisz [255], [257J, and 

H. T. David [24-1]. 

In what follows we shall study several statistics in detail. These --

statistics can be used for the canparison of a theoretical and an 
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empirical dis tributj_on function or for the comparison of two e:rr:pirical 

dJstribution functions. Our aim is to fj_nd the exact distributions of 

these statistics for finite samples. 

The Canparison of a Theoretical and an F1npirical Distribution 

Fünction. Let i;1 , i; 2,.", i;m be mutually independent randan varia.bles 

hav-:ing a canmon distribution function P{ç; ~ x} = F(x) (r = 1,2, ••• , m) • 
"""' r -

Let Fm(x) be the empirical distribution function of the sa"'!lPle 

(ç;l' i;
2

, ••• , S-n) , that is, F~(x) is defined as the number of va.riables 

l2, .•. , i;m less than or equal to x divided. by m. 

1 * * * Penote by i;1 , i; 2, ••• , i;m the random variables i; 1 ' i; 2 ' • • • ' t;m 

* arranged in increasing order of magnitude. The random variable Ç,_,... is 
.L 

called the r~th order statistic of the sample (~1 , ç2, ... , Çm) • 

First we shall consider such statistics which depend on the derivations 

(89) * * o (r) = F (ç; ) - F(ç; ) m m r r 

for r = 1,2, ••• , m. 

If F(x) is a continuous distribution function, then we can easily 

see that the joint distribution of the random variables o (r) m (r = 1,2, .•. , m) 

does not depend on F(x) • In this case in find.L-ig the distribution of 

any rand.an variable depenmng on the dev:iations o (r) (r = 1,2, ..• , m) , m 

we may assume without loss of generality that F(x) is the distribution 

function of a random variable which has a uniform distri.bution over the 
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interval (0,1) , that is, F(x) is given by (17). * * Tl F( ~- ) - ~ .1en ""r sr 

* for r = 1,2, ..• , rn, and Frn(ç;r) = r/rn for r = 1,2, ••• , rn with 

probability one. In this particular case, (89) can be expressed in the 

follow:ing equivalent form 

(90) 

for r = 1,2, ••• , rn. 

o (r) 
rn 

r * = m - ç;r 

First, let us consider the statistic 

(91) 1 

1 

i 

+ ó ::-: 
m 

sup 
-=<x<co 

whictl was introduced in 1939 by N. V. Smimov 1328]. 

can write that 

(92) 

where ê (r) m 

+ ' ) ê = max. ê tr 
m l<r2_rn m 

is given by ( 89) . 

Equivalently we 

If F(x) is a continuous distribution function, then the distribution 

of ê + does not depend on F(x) and in finding the distribution of o + m rn 

we rr.iay assume without loss of generality that F(x) is given by (17). 

Then we can replace êrn(r) in (92) by (90). Fora continuous F(x) the 

distribution of ó: was found in 1944 by N. V. Smimov [329]. Th.i.s 

distribution is given by the next two theorems. 

Theorem 1. If F(x) is a continuous distribution function_,_ then 
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(93) + k P{ cS , < -} 
~ m=m 

1-
~k ~ ( _m ) rJ.)j+k(l- J_)m-j-k 

- l m-J J+k 'rn m 
j=l 

for k = 1, 2, •• , , m • 

Pröof. Suppose that F(x) is given by (17). 
' 

Denote by v 
r 

(r = 1,,2, ••• , m) the number of variables sl' ç;
2

, ••• , ç;m falling in 

. cr-1 r] the interval m , - ~ and define N = v,+ v2+ •.. + v m r _,_ r for r = 1,2, •.• , m 

(94) 

.for r = 1,2, ••• , m and N = m m . 

Since in this case o (r) =E. - E* < ~ if and only ·r N r m . m ·r· m · 1 r-k < ' 

proviàed that r = k, k+l, ••• , m , by (92) we call. write that 

(95) P{ó+ < k} = P{ rnax 
,,_ m m """' 

l.:::,r~ 

N 
(2 _ r-1) < ~} 
m m =m 

Accord:ingly, 

(96) 
+ k rn-k k . 

P{o < -} :: P{ max (N - r) < k}= 1- l -. P{N. = j+k} 
,.,.,, m m rw lsr.sn r j=l m-J Nv.. J 

f or k = 1, 2, ••• , m • For in this case v 1, v 2, ••• , v m are interchangeab±e 

randc:m variables taking on nonnegative integers only, and the last equality 

follows fran Theorem 20.1. Since cS+ has a contlnuous distribution 
rn 

function, this proves (93). 

By using the following auxiliary theorem we call. find the canplete 
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distribution of o + rn • 

Lemma 1. let us suppose that n randorn12oints are distributed 

inde:12endently and uniformly on the interval (O,t) • Let x(u) 

( 0 ~ u < t) 9e c times the mnnber of points in the interval ( 0, u] 

wh~ c is a positive constant. }hm 

f 1- ~c f or 

(97) P{x(u) < u for 0 < u < t} = = (_o ,,..,_ 
f or 

· ·Broof. If 

1 

nc ~ t , then (97) is evidently true. - . 

0 < nc < t 
' = = 

nc ~ t . 

Let nc < t . 
= 

Deno,e by vr (r = 1,2, ... , n) the mmber of random points in the 

interval ((r-l)c, re] • Set Nr = v1+ .•• + vr for r = 1~2, ... , n • 

Now v1, v2, ••• , vn are interchangeable randan variables taking on 

nonnegati ve integers. We have Nn < n , and 

(98) Z{Nn = j} = <jH~c)j (1- ~c)n-j 

for j = 0,1, •.• , n. 2 Thus ~{Nn} = n c/t • By (20.8) it follows that 

P{x(u)<u for O<u.::_t}=P{N <1~ for r=l,2,.c.,lill-,.,,..,.. ,..,.,. r 

(99) Nn + N = E{ [1- -] } = E{l- -11} = 1- nc 
,...,._. n No-- n t 

for 0 ~ nc < t which was to be proved. 

We note that (97) can also be expressed as follows 

(100) Nx(u) < u 
f\lv. 

( 1- x.LlJ.. 
for O < u < t} =) t 

•O 
l 

for 0 < x(t) < t , 

for x(t) > t . 
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Lerrrna 1 can easily be proved also by mathematical induction on n • 

See the author [ 62 ] • 

Theórem 2. lf F(x) is a continuous distribution function, then 

(101) 
. + 
P{ë < X} 

,..,.,.. m = = 1- l r:ix (~)(j_ - x)j(l+x- j)rrr-j 
. rn-J+mx J m m 

mx~.::!ll 

f or 0 < x < l . 

· ·rroof. 
that P(x) 

= 

We shall determi..ne the probability P{c: > x} • Suppose 
+ """ m 

is given by (17). If ó > x , then for some u (0 < u < 1) m 
the empirical dtstribution function F (u) intersects the line u+x m 
(0 < u < 1) . Suppose that the last intersection occurs at u = v • 

Then 

1

1 F (v) = j for some j (mx ~ j ~ m) and v = (j-mx)/m • In this 
m m - -

case there are j elements of the sample in the interval (O,v] and 
1 

m-j elements in the jnterval (v ,1] • This event has probabiJity 

(102) 

Furthermore, if the last intersection occurs at u = v , then Fm(u) < u+x 

for v < u < l or F (u) - F (v) < u-v for v < u < 1 . Since F (1) -= = m m = = = m 
- F (v) = 1-(v+x) , by Lemna 1 the latter event has probability m 

(103) 

Thus by (102) and (103) 

(104) 

x 
1-v • 

where v = (j-mx)/m and II1"'C < j < m • 
= Fonnula (101) follows f'rom (104). 

In the particular case when x = k/m , formula (101) reduces to (93). 

See also N~ V~ Smirnov[329J, A. Wald and .J. Wolfowitz [349], 
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Z. W. Bimbaurn and F. H. 'ringey [209], B. L. van der Waerdel}_ [34 3] , 

A. P. Dempste:iz. [242], M~ass [250J, and the author [33~, [339]. 

Let us consider two more statistics depending on the deviations 

ó (1), ó (2), .•• , óm. (m) defined by (92). m m 

* Denote by ym the number of nonnegative elements arnong om(r) 

(r = 1,2, ••• , m) . 

* Define pm as the largest r for which é (r) (r = ·1,2; •• ~ ~ m) 
m 

att~s its l!k'lXimum. 

~f we assurne th.at F(x) is a continuous distribution function, then 

* * the di.stributions of the random variables y · arid p do not depend · on m m 

* * F(x) , and consequently in fi.11ding the distributions of y and. p we 
rn rn 

may assume without loss of generality that F(x) is given by (17). 

·'Iheörem 3. · If F(x) · is a èorttinuous distribution function, then 

(105) Pf *=·}= i ~ ic.m_)·C~)i-1(1- i)m-i 
,..,.,..·Ym J m 

1
;

1
1 i-1 m m' 

f or j = 1, 2, ••• , m • 

Pröof. Let US suppose that F(x) is given by (17), and let US use 

the same notation as in the proof of Theorem 1. Since óm(r) > O if and 

* r * only if ç;r < m , that is, Nr > r , therefore y m is equal to the rn.mJber 

of subscripts r = 1,2, ••• , m for which Nr >r. Now Nm= m and by 

(26.6) we obtain that 
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r ! '( 1., P{N. = i-1} for j - 1,2, ••• , m-1 ) 
i=l 1 m-1;,..,,, l 

(106) * P{y = j} = 
tvv m m-1 

1- I *- P{N. = i-1} 
1- l i=l 

for j = m • 

Hence by (94) we get (105). 

The distribution of * ym was found in 1958 by P. Cheng [221]. 

also the author [3 3 8] • 

See 

Theorém 4. If F(x) is a continuous distribution functio~ then 

* * P{p = ;} = P{y = J"} ,..,.., m'"' ,.,._m (1071 

1 

·for !j = 1, 2, ••• , m · where the ri.ght-hand side of ( 107) is gi ven by ( 105) • 

Proof. Let us suppose again that F(x) is given by (17) and let 

us use the same notation as in the proof of Theorern 1. The random 

* variable ym is equal to the nurnber of subscripts r = 1,2, ... , m for 

* which om(r) > O , that is, Nr- r.::_ O , and pm is the largest sub-

script r = 1,2, .•. , m for which Nr- r attains its maxirrmm. By 

Theorem 22.1 the position of the last maximum in the sequence N - r r 

(r = 0,1, ..• , m) has the same distribution as the number of nonnegative 

elernents in the sequence Nr- r (r = 1,2, .•• , m) • This proves (107). 

We note that the randan varia.bles o ( r) ( r = 1, 2, ••• , rn) are m 

continuous, and with probability 1 there is only a single maximum in 

the sequence 5 (r) (r = 1,2, .•. , m) • 
m 

~. * The distrJ.bution of p was found in 1958 by Z. W. Bimbaum ar1d 
m 

R. Pyke [20~. See also the author [338]. 
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We mention briefly two more theorems. 

Theorem 5. If F(x) is a continuous distribution f'u.riction.2 then 

· thé randan variable 

* 
(108) 

Pm + 
-- 0 m m 

haS a Urtifórm distribution over the interval (0.1) , that is, 

* /0 if x < 0 
Pm } x 

, 
(109) p; + if 0 < «r} ... 0 < x < 1 '· m m = -"'-. 

l1 ' ,,..,.., 
if x > 1 . 

This theorem was found in 1958 by Z. W. Birnbaum and Jh_)?_yke [208]. 

For other proofs see M. Dwass [249], N. H. Kuiper [2891 and the author 

[338]. Theorern 5 r.!an easily be pröved by using Lemna 1. 

Theorem 6. Let F(x) be a continuous distribution flmction, and 

let 

(110) * o + < x and p = k} 
m=m m 

for k = 1,2, ••• , m ànd áll x • If x < 0 , then Gk(x) = O • If 

* x > k , then Gk(x) = P{p = k} is given _,SL(107). If 0 < x < k > _then 
= - N°"' m 

.dGk(x) m ( ) ( )m-k-1 [x] . . 
dx = (k) k-x rn-x [kxk-1_ l (~)jJ-l(x-j)k-J] 

- ~ j~ J @. 

(111) 

J~bability (110) was found in 1958 by Z. W. Birnbaurn and R. fyke [208]. 

See also reference [338]. Fonnula (111) can also be proved by using 

Lerrma l . 
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k3 a generalization of (91) let us introduce the following statistic 

(112) 

for O < a < 13 <l and 
~-= 

(113) 

+ ê (a,13,y) = m 3Up [Fm(u) - yF(u)] 
cx.::_F(u)~ 

y > l . Furthermore, let us define 

Fm(u) -- yF(u) 
= sup [- F( ) ] 

a.::_F(u)~ . u -

f or O < ex < S < 1 and y ?_ 1 • 

It is easy to see that if F(x) is a continuous distribution fuviction, 

+ then the distributions of ê (a,13,y) 
1 m 

F(x) 1. 'l'hus if we want to find the distributions of 

do not depend on 

_+( Q \ o a,µ,y) 
rn and 

+ 1 . 

flm (ct,13,y) in this case, then we may assume without loss of generality 

that F(x) is given by (17). In this particular case let F (x) = x (x) m m 

for O < x ~ 1 • Here · { xrn(u) , O .::_ u < 1 } is a stochastic process 

wh.i..ch has :interchangeable incrernents. The incrernents are non.YJ.egative j_ntegra.1 

multiple of l/m and Xm(l) = 1 • In this case 

(114) P{ó+(a,13,y) > x} = P{ sup [x (u) - yu] > x} 
tv.... m tvv- a < u.::.13 m 

and 

for x > O • 

We note that 

(116) 

f or 0 ~ j < m 
= 

é'.J1d 0 < u < 1 = = , and 

(r:1)uj (1-u)m--j 
J 
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(117) P{x (u) = j 
,.,..... m m ' 

k m! J
0 

k-J· m-k (v) - } - u (v-u) (1-v) -Xrn - m - j!(k--j)!(m-k)! 

Theorem 7. If F(x) is a.continuous distribution function_, then 

.F{.Sm+_(a,S,y) > x} = 1" P{v (S) = k} + 
"_ • ~ ''m. m k>rn(x+Sy) 

(118) 

+ . l l [rn(x+Sy~-~]Ph (j-rn.x) = j_ X (S) = ~} 
( + ")<-1 k ( +o) m(x+SyJ-J-·m m m' m m m x. cty ;;..,.~ r_:.gr1 x µy 

· for x > 0 , and · if, in particular, S = 1 , the:Q__ for x _:_ 0 

P{o+(a,l,v, J' > x} = \ [rn(x+y)-m]P{x (j·-mx) = j J 
...,.,. m l . m(x+y )-j 'm rny- m 

m(x+ay)~<rn tv,,., ' 

(119) 

t"or x > O . = 

Pröóf. If O < et < S < 1 a.vid y >l and x .:._ O , then (118) can 

be obtained by (114). In (114) 

!{ sup [xm(u)-yu] > x} = ,!{xm(S)-yS > x} + 
a2_~ 

(120) 

+ l l (~=;)P{xm(y) = YY + x , ~/B) = yz + x} • 
a.~<z.:03 ,.,.,... 

To prove (120) we observe that the event on the left-tJ.8Jld side of 

( 120) can occur in two rnutually exclusi ve ways : ei ther x m (S )-y 8 > .x 

01• x ( f3)- yS ~x and x (u)-yu. > x for sorne us[a, S] • The first m ~ m 

event has probabili.ty P{x ( S)- yS > x} • To find the probability of . ,,,..... m 
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the second event let us suppose that sup{u : Xm(u)-yu > x and 

a < u < S} = y • Then necessarily xm(y)-yy = x and Xm(u)-yu .:_ x 

fop y < u < S , or equivalently Xm(u)-">Sn(y) < y(u-y) for y ~ u :;, S . 

If we suppose that Xm es) = yZ + x < y!3 + x and appl:/ Lerrrna 1 to 

[x (u) - x (y)]/y where y < u < S , then we obtain that m m 

for y 2- z a~d 0 if y > z . If we multiply (121) by ~{xm(y) = yy+x , 

xm(S) = yz+x} and add for all possible y and z satisfying the inequa.lities 
• 1 

a 5:.. IY ~, z < B , then we get the probability of the second event. 'rhi.s 

1 pro,_,-es (120). In (120) ~{Xm(y) = yy+x , Xm(S) = yz+x} = O exeept if 

y = (j-rnx.)/my anà z = (k-mx)/m where 0 < j < k ~ m • T'nuc.· we 

obtain (118). If B = 1 , then (118) reduces to (119) because Xrn(l) = l. • 

(122) 

f or 

Theörélil 8. If F'(x) is a c.ontinuous distribution function, then _ 

k ' = - J + m 

v l [m(x+y)S-~]P{ ( j ) = j °Xm(S) = ~.} 
m(x+~)a~~n(x+y)S m(x+y)S-J,.,,,.. Xm m(x+y) m ' m 

x > O , and j_f, in particular, !3 = l , then for x > 0 = 

(123) -~{µm+(a.,l,y) > x} = ~ [m(x+y )-m]P{x ( j ·) = <i } 
"_ . m(x+y )-j · ·m m(x+y) m m(x+y a~~m -. 

for x > O . 
= 
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Proof. Now ( 122) can be obtained by ( 115) for 0 < o, < s < 1 and 

y > 1 and x ~ 0 • If we compare (114) and (115), then we can conclude 

that if L""l ( 118) we replace x by 0 , and then we replace y by y+x > 

ther. we obta.ln (122). If S = 1 in (122) and if we take into 

considera.tion that ~(S) = 1 , then.we obtain (123). 

The probabilities occurr:L'îg in fo1~rrulas (118), (119), (122) and (123) 

a..~ determined by ( 116) and ( 117) • 

We note tri.at if a. = 0 and x = 0 , then (123) furtl1er reduces to 

c124) 

where y ?-.. 1 • For by Lemna 1 

(125) P{µ+(O,l,y) > 0} = P{ sup [xm(u)-yu] > O} ~ l/y 
MA. m """ O<u<l 

== 
whenever y .::, 1 • 

In various particular cases several authors detennined the distributions 

of o:(a.,$,y) and µ:(l'.l,S,y) • The distribution for o:(0,1,1) was found 

by N, V._ Srrûrnov [329] and by Z. W. Birnbaum and F. H. Tinge;'l_ [209], f'or 

o~(a,1,1) by N. V. S:mirnov [33JJ, and for a:(0,1,y) by A. P. Dempster 

[242], and M. Dwass [25QI. Tne distribution for µ:(o,s, O) was found 

by L. C. ~ [2151, and for ~(a ,1,1) by G. Ishi~ [275J, and N. V._ 

Sm:trnov [331J. The probability (124) was found by H. E. Daniel~ [2351, 

H. Robbiri..s [317J, L. C. Chang_ [215-1,.,.and D. d. Chapman [220]. Theorem 7 

and 'lheorem 8 were found by the author 1336]. 
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* Next we shall detennine the distribu.tion of the statistic crm(a) 

defined by (39) • Actually, we sha11 consider some slig_ht modificati.ons 

* of crm(a) 

First, for arzy real a let cr (a) denote the Dumber of inte:rseetions . m 
a· 

of F(x) with Fm(x) + m _for - 00 < ·x ~"" • In other words, crm(a) = k 

if the set 

(126) S = {x : F(x) = F (x)+ a and -cc .:::_ x ~ 00 } 
a m m - --

is the union of k separated intervals or points. 

Second, for any real a let Tm(a) denote the number of jumps of 

F (x) + ~ over F(x) for -"" < x < 00 • In other words, Tn
1
(a) = k j_f m m 

ar1d only if 

(127) * ) a ' ·· , * ( *) -a 
F (~ - 0 + -- < F(~ ) ~, Fm t;r + -m r m. r m 

holds for precisely k subscript r = 1, 2, ••• , m • 

* Third, for any real a let •m(a) denote the number of subscripts 

r = l,2s•••, m for which 

(128) a+r 
< --= m • 

It is easy to see that i.f F(x) is a continuous distribution 

function, th.en the distributions of the statistics crm(a) , Tm(a) and 

* Tm(a) do not depend on F(x) • 

In tlü.s case we have •m(a) = crm(a) if a t O and T (0) = cr (Q)-1 • m m 
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These relations can be seen immed.iately if we take into consideration 

that if F(x) is a continuous distribution function, then the inter-

sections and the jumps (i.f any) alternate as x varies from ....en to 

00 " 

* Furthermore, we have P{L (a) ""'·• (a)} = 1 for any a. For if 
""' m m 

F(x) is a continuous distribution function, then F(t;* - O) = r-l and r m 

F ( ~r*) = r f or r = 1, 2, ••• , m wi th probabili ty one and the event -m 

:B'(~;) = a+~-! has probability zero for r = 1,2, ••• , m and for any a . 

By the above substitutions (127) becomes (128). 

' defined by ( 39) • 

". 
__ .In what fellows we assurne that F(x) is a continuous distribution 

. f'unction and we shall determine the distribution of the random variable 

om(a) • It follows by synmetry that om(a) - a'"ld crm(-a) have the same 

distribution. If we 1m.ow the distribution of crm(a) , the distributions 

* and -r ( a) can be obtained irmnediately by the above relations. 
m 

The distribution of o (a) for O < a < m has been given without 
m 

proof by D. A. Darling [23~ and for a = 0,1,2, ••• , m it has been given by 

W. Nef [303-l. Sorne generalizations have been g-1.ven by the author !341J. 

Theorem 9. If F(x) is a continuous distribution function and 

a > 0 , then we have 

(129) 

P{ () k} (a+k) \ ffi! c.-..L")j-k-1( ")m-j 
-- <1n a > • = mm k~ ~-a (j--k) ! (m-j) ! a;.-J . m-a-J . ":'·=·'. 

m! 
- ·-.=.-..--"-

(m-k) !mk 

(a+k) 
m 

m 

= 

, m! (a+j )j-k-l(m-a-j )~~-
l (j-k)!(m-j)! . 

m-a<j5-,m 
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f or 0 < k < m-a • == = 

Proof. Let us assrnne that F(x) is given by (17). For 0 < u < m 
= = 

denote by v (u) the mnnber of variables r,1 , ç;'), ••• , ç; falling in the m "- m 

interval (O, u/m]_ • 'Ihen F (x) = v (mx)/m for O < x < 1 and cr (a) m m = = m 

can be interpreted as the munber of clistinct points in the set 

(130) Sa = {x : vm (mx) = rn.x-a ax1d O < x < l} > 

or equivaJ"ently, as the nu"Tber of integers j == 0,1, ••• , m for which 

v (a+j) = j • Accordingly, we have m 

(131) Pfo (a) = k} = P{v (a+j) = j for k values j = O,l, ••• ,m}. 
rvv m rvv- m 

Here {vm(u~ , O :~"_ u ~ m} __ is a stochastic process with interchangeable 

increments for whicb 

(132) 

for 0 ~ i < m and 0 ~ u < m , and 

(133) 

for 0 < i _::_ j < m and 0 < u < t < m • Furthermore, f or 0 < t < m 

and 0 < r < m we have = = 
--

(134) P{ v ( u) < u for O < 
~ m {

1- r if 

u < tlvm(t) = r} = 
0 

t 
if 

which follows frc:m Lerrma 1. 

If · o < . k ~- m-ä , then we ca.rl write. that 
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P{o (a) > k} = 
,.,.. m 

(135) 
== I P{v (a+j) = j} P{v (a+i) = i for k values 

k.sj <m-a ,..,.. m fW'. m 

i = 0,1, •• ~,j-ljvm(a+j) = j} -

= I P{v (a+j) = j} P{v (i) == i for k values 
k< .< ,,,.,... m ,.,,,,. m 

;;;J.Sn-a 

· i = 1,2, ••• ,jlv (a+j) = j}. m 

For the event er (a) > k occurs if and only :i.f v (a+i) = i for more m m 

~ k values i = 0,1, ••• , m • This event can occur in several 

mutually exclusive ways: the (k+l)st largest i = 0,1, ••• , m for 

which vm(a+i) = i is i = j where k < j ~ m-a • 'llie last equality 

:in (135) follows by symnetFJ. 

Let us :ir~roduce the notation 

(136) 

for 1 < k < s ~ m • Obviously qk ( s) is independent of m whenever 

s ::. m JBy using this notation in (135) we can write that 

,}{vm(i) = i for k values i = 1,2, .•. ,jlvm(a+j) = j} -

(137) i 
= 2 qk(s)P{v (s) = slv. (a+j) = j}. 

s=k """ m 1n 

For the event { vm (i) = i for k va.lues :i. = 1,2, ••. _,j} can occu.r in 

such a way th..qt v ( s) = s for some s m 

exa.ctly k values i = 1,2, .•. , j . 

(k < s < j) and v (i) == i f'or . rn 
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If we put (137) into (135), then we obtain that 

(138) 

f or 0 ~ k < m-a . 

that 

( 139) 

It remaJns only to find qk(s) for l < k < s • We shall prove 

s!k 
qk(s) = k 

( k)' 
'"+l s- .s 

for 1 ~ k < s . If' we put ( 139) in to ( 138) and use Abel' s identL ty 

(140) 
j s-k+l ( +· ')j-s 

k \' S a J-S = 
skk (s-·k)!(j-s)! 

then we obtain the first expression in (129). IJ:'he second. expression 

in (129) follows again by Abel's identity 

(141) 
m 

(a+k) l 
j=k 

( + . )j-. k-1 ( . )m-j m-k a J m-a-J m 
(j-k) ! (m-j) ! = ..,...(m--k..-) ! • 

The probabilities qk(s) for 1 < k 5- s cgri be obtained by the 

following r~cur~~nce relations: 

(142) 

for 2 ~ k < s and 

(143) qJ_(s} " 1 ·- \ P{v - (j)=jjv (s) ~ s}q
1
(j) 

1 ~ """ m in 
~J<S 

for s > l . 
= 

Iet us introduce the following notation 
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(144) 

for 1 ~. k ;,. s . Then by using (133) we can express (142) and (143) 

in the follow:Lng equivalent forITs: 

(145) 

for 2 < k < s = ::;'":: 

(146) 

1 

and 

Q ( ) ss \ Q , . \ (s-. ...i.<;j..:...)s_-_j 
i s - sr - l i 'J rTs-j) i 

l~<s 

. 1 

for s > 1 • From (145) and (146) we can find Qk(s) for 

by using generating functions. 

1 < k < s :-..: = 

It will be convenient to deri ve first the generating functi.ons 

which we need in solving (145) and (146). 

By using Rouchè's theorem we can prove that if lzl < l/e , then 

the equati.on 

(147) -w we = z 

has a single root w = p ( z) in the circle 1w1 < 1 , and by Lagrange' s 

expansion we obtain.that 

(148) 

and 

l 
j=k+l 

(a+j)j-k-1 j 
(j-k) ! z , 
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(149) 
ap(z)[ ( )]k 00 

( +')j-k . 
~--pZ ;-::.)~ ZJ 

1-p(z) · :_, (j-k)! 
j-K 

for lzl < l/e, k = 0,1,2, •.• and for any a. In particular, we have 

(150) p(z) 
1-p (z) = zp' (z) 

= ~ -_jjzj 
l . , 

·-1 J. J- . 

for lzl < l/e . We note tha.t p(z) + 1 if z + l/e • 

The equati.on (147) has been in.vestigated first by L. Euler [21 J. 

' (S ee also G. PolY:a [ 50 ] • ) 

If we fonn the generating function of (146), then by (150) we obtain 

that 

(151) : · ) S p (z) [ ~ ( ) SJ 
s~l Qlts z = i-p(~) 1- s;l Ql s z 

and hence 

CXl 

(152) l Q1 (s )z8 = p (z) 
s=l 

for 1 z! <l/e . By (145) we obtain that 

00 CXl 

(153) l Qk(s)z8 
= ( l Q

1
(s)z8 )k = [p(z)]k 

s=k s=l ·-

for lzl < l/e and k = 1,2, ••.• Thus (139) foJ.lows from (144) and 

(148). This completes the proof of Theorern 9. 

· NOTE. If we form the coefficient of zm in the product of 
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eap(z)[p(z)]k and ebp(z) , then by (148) we obtain that 

(154) m (a+j )~-k-l(b+m-j )m-j-1 """ (a+b+k) (a+1r~~k~·~ 
ca+k)b jrk (j-k) ! Cm-j)' m-k,J' 

f Or Ü .::. k 5_ ffi and f Or éll10T a and b • 

If we form the coefficient of zm in the product of eap(z)[p(z)]k 

and ebp(z)/[l-p(z)] , then by (148) and (149) we obtain Abel's identity 

(155) 
m ( j-k-1 m-j 

(a+k) ), - a+j) (j-k) ~~~~J? = 
J=K i 

1 

roJ 0 :_ k ~:'.S.. m and for any 
! - -

a and b • 

m-k (a+b+m) 
(rn-k) ! ·-

Tne COIJ\,"Jëi.rison of Two Empirical Distribution Functions. Let 

i;l' .;2, ••• , l;m be mutually independent randan variableshaving a 

conmon distribution function _!{l;r < x} = F(x) (r = 1,2, ••• , m) • 

Denote by F (x) the empirical distribution function of the sample m 

( l; l' l; 2, . " , l;m) . Let r1 l' n 2, ••• , nn be also mutually independent 

random variables having a camnon distribution function P{n :_ x} = G(x) ,,,... r -

(r = 1,2, •.• , n) • Denote by Gn(x) the empirical d..i"stribution fu.YJ:•::!tion 

of the sample (n1, n2, ••• , nn) • Let us suppose also that 

and Cn1, n2, •.• , nn) are independent. 

(ç;l' 1;2,_ •• , l; ) . m 

* * * Denote by n1, n2, ••• , nn the random variables arranged in increasing 

order of rnagnit~. 

For the purpose of testing the hypothesis that F(x) - G(x) we ca.1. 

introduce several statistics depending on the deviations 
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(156) * * F (n ) - G (n - O) m r n r (r = 1,2, ••• , n) . 

Let 

(157) 

which is in agreement with (67). 

Denote by ym n(a) the number of subscripts r = 1,2, ••• , n for 
' 

wh1ch 

a 
n 

a. is a real number. 

Denote by p the smal.lest r = 1,2, ••• : n for which m,n 

attains its maximum. 

For any real number a let us define a (a) as the number of m,n 

subscripts r = 1,2, ••• , n for which 

(160) * * a * G ( n - 0) < F ( n ) + -- < Gn( nr) • n r = m r n 

If we suppose that F(x) and G(x) are two identical continuous 

distribution functions, then we can easily see t:r1at the distributions 

+ 
of 6m,n , Ym,~(a) , ' and cr ra) do not depend on F(x) :: G(x) m,n ' m~n' · 

A . l + ccorcling. y 6 , m,n Y (a) ' and cr (a) áre distribution-m,n ' m,n ' m,n 
free statistics. In what follows ·we shall determine the distributions 
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of' these statistics in the case when F(x) and G(x) are two identical 

continUous distribution functions and n = mp where p is a positive 

integer. 

To fïnd the distributions of the above statistics let us jntroduce 

the follrn<Dr..g notation. 

For r = 1,2, ••• , n+l let us defi.ne vr as p times the number of 

* * variaoles ç;1 , t,: 2, ••• , ç;m falliJ1g in the interval (nr-l' nr] where 

* * ri
0 

= - 00 and nn+l= 00 
• Here p is a positive constant. 

If F(x) and G(x) are two identical continuous distribution 

functions, then v1 , v2 , ••• , vn+l are interchangeable random variables 

taking on nonnegative integral multip1es of p. If we set Nr::: v1+ v2+ ••• 

+ v r for r = 1, 2, ••• , n+ 1 , then we have Nn+ 1 = mp ·, 

(161) 

f or 1 < i < n 
=== = 

(162) 

P{N. = sp} 
"""· l 

and O<s_::_m, 

P{N. 
Nv l 

ei +s-1) cj+~-1) 
( s+t )p} = ___;8;;,_-~-

(i +,j+s+t-1) 
s+t 

for 1 -~ l < i+j < n and O ~ s ~ s+t < m , and 
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!{Ni = sp , Ni +j = (s+t )p !Ni+j+k = (s+t+u)p} = 

(163) 
c1 +:-1) cj+~-1) ck+~-1> 

= ----------ci+j+k+s+t+u-1) 
s+t+u 

for 1 < i < i+j < i +j+k < n and O 2. s ~- s+t ~ s+t+u < m • 

By using the above notation we can w-.c-i te that 

(164) * F Cri ) m r 

N 
r 

mp 

f or r = 1,2, .•. , n , and obviously 

(165) r = -n and r-1 
11 

for r = 1,2, ••• , n with probability one. 

Thus we obtain easily that 

(166) o+ = max rNr - r-1) 
m n 'mp n 

' l<r<n ==== 

The variable y (a) is equal to the number of subscripts r = 1,2, ••• , n m,n 
for wh.i..ch 

.N 
(167) _E.< r-a 

mp n ' 
the variable is the smallest r = 1,2, ••• , n for whi.ch 

(168) Nr r-1 ----mp n 

attains its maximum, and finally, the varlable 0 (a) is equal to m,n 
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the number of subscripts r = 1,2, ••• , n for which 

(169) r-1 < Nr + a < r 
n =mp n n 

In the particular case when n = mp and p is a posi ti ve integer• 

we can detennine the distributions of the above statistics by using the 

combinatorial methods developed in Section 20, and in Section 26. For 

if P. is a positive integer, then vl' v2, •• o, vn+l are interchangeable 

random variables taking on nonnegative ii.ntegers only. 

' 
I The · distri.butiort of If, in particular, n =mp , then by 

c1J6) it follows that 
1 

(170) 1 ó+ 
m,n - n rr.ax 

l<r<n = == 

(N - r+l) • 
r 

Theörem·10. If n,:: mp· where p is a positive integ~g__ 

c ~ 0,1, .•. , n; then 

Pfó+ < ~} = 1 ~ 
,_ • m,n = n 

(171) 
1 

cm+n) 
'm 

è+l 
è+lI n+c+l-sp 
-- .:SS.:9TI p --

and, in particular, 

(172) 

for c = 0,1, ••• , m. 

,sp+s-c-l)(m+n+c-sp-s) 
l. s m-s , 



V-174 

Proof. If n = rnp , then by (170) 

(173) P{ö+ -~ 2-} = P{N < r+c for r = 1,2, ••• , n+l} . 
N- m,n - n ,,.,. r 

If we take into consideration that in this case Nn+l = mp = n , then 

by Theorem 20.1 or by Theorem 26.6 we obtain that 

(174) 
n 

P. {ó+. c} - 1 \ c+l PIN . i 
/'IV' m,n < n - - j~l n+ 1-j ,.,_ l j = J+C1 

for: c = 0,1, ••• , n. By (161) we obtain (J.71). If, in part5.cular, 

p ~ 1 " then (171) reduces to (172). 
1 

! 

The result (171) can also be interpreted in the following way: Let 

us eombine the two samples 

where now n = mp , and let us arrange the m+n variables in increasing 

order of magnitude. Let us define X· = p if the i-th ordered variable 
l 

in the canbined sample belongs to (~l' ~2, .•. , sm) and X· = -1 if 
l 

the i-th ordered variable in the canbined sample belongs to Cnp n2, ••• , nn) • 

Now let us suppose that a pa.rticle perforrns a one-dimensional raDdom 

walk on the x-ax:i.s. 'lli.e pai:>ticle starts at x = 0 and takes m+n steps. 

At the i-th step it moves either p unit di.stance to the right if 

x1 = p or a unit distance to the le~ if xi = -1 • 

Nowall the cm+n) paths are equally probable arld the event m 
. + . c 

{ö < -} can be interpreted as the event that the particle never reaches mn=n 
' 

the point x = c+l du.ring the rrtl-n steps. 
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If n = rn then by using the above interpretation we can easily 

find (1'72) directly by using the rnethod of reflection. 

'Ihe distribution of the ra'1dcm variable ó + for n = rn was f ou.rid rn,n 

in 1951 by B. V. Gnedenko and V. S. Korolyuk f26 3] , and for n = mp 

where p is a positive integer in 1955 by V. S. Korolyuk [286] • See 

a.lso the author [3 3 5] • 

If we suppose that c = [nx] where O < x < 1 and n = mp , then 

by (171) we obtain that 

lim P{ó+ < ~} = P{ó+ < x} = 
~ t.... m,n = n ,,.,... m = 

(175) 

which is L"l agreement with (101). 

If we suppose that c = [zl2IDJ where O < z < 00 , then by (172) we 

obtain. that 

(176) 
r;; + -2z2 

l:i.m P{l ~ ó < z} ::: 1 - e 
:rn+a>,.,.,.. 2 rn,m = 

which is a particular case of (70). 

If we suppose that c = [z/p(p+l)rn ] where 0 < z < 00 j then by 

(171) we obtain that 
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(177) 

limP{~o+ < z} = 
rr~ rw- p rn,mp = 

1 - 2u(l-u) 
z f e = l - -.- 31" 1/2 du = 

& O (1-u) \1 

which is another pa.rticular case of (70). 

2 
2 ., - z ..1..-e 

We can prove (176) and (177) easily if we use Stirli.Ylg's formula 

(35.28) or A. De Moivre's approximation of the Bernoulli distribution. · 

Triè distributiort of y (a) m,n Let n = mp where p is a 

positive integer. In this case y (a) - y ([a]) mn -- mn f or any real a 
' , 

where [a] is the greatest integer < a • :F'urthermore, in tbis case 

and n-y (-a) have the sa.nie distribution for a = O, +l, +2, ••• , m,n - __ 

that is, 

(178) Ph (a) = j} = P{y (-a) = n-j} ,.,,....., m,n ,_ m,n 

holds f or j = 0, 1, ••• , n and a = O, + 1, ±?, . . . . This f ol1ows from 

( 167) and f'rorn the following relations 

N 
P{ y (a) = j} = P{ 2:. < r-a for j subscripts r = 1,2, ••• , n} = 

,..,...,._ m,n -... mp n 

= P{ ,.._ 
N -N 

n+ l · r > n.-r+8:_ for j 
mp n 

subscripts r == 1,2, .... , n} = 

(179) N s+a-1 P{ s . 
f or j subscripts 1,2, ••• , n} = -> s = = ,..,,.. mp n 

N s+a P{ s 
fOI' n-j subscripts 1,2, ••• , n} = - < ,.--- c.:: -- --._, 

{Vv i;np 
.. n 

= P{y (-a) = n-j} 
J'V" msn 
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for j = 0,1, ••• , n and a = O, +l, +2, •••• 

We note. that by (166) and (179) we can conclude also that 

(180) P{y (a) = O} = P{o+ ;::._ a} 
,..,... m,n """ m,n - n 

for a = 0 ,1, ••• , n and for all m. and n • 

If, in part;icuJ.ar, n = mp then by (167) it follows that r. (a) .n,n 

is equal to the number of sub scripts r = 1, 2, ••• , n for which 

(181) 

1 

1 Now let us 
! 

N <r-a. r 

find the distribution of y (a) mn , 
wtienever n = rrr;> and p is a positive integer. 

for a = 0,1, ••. , n 

Theörem ll. Let n = mp \\rhere p is a positive jnteger. We have 

(182) P{y (0) = j} = _1_ 
,..,.... m,n n+l 

for j = O, 1, 2, ••• , n • If a = 1, 2, ••• , n , then 

1 t a+l 
(183) !{Ym,n(a) = 0} = 1- en+n) l n+a+l-sp 

m a+l -· - <s<m p == 

(sp+s-a-l)(m+n+a-sp-s) 
s m-s 
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1 
P{y (a) = j} = + 

/..,_ rn,n cm n) 
(184) m 

[11-1] 

Y c1- ~p) 
s=O J 

[n-j-a] 

. c î _a_ cj+s-1) ca+tp+t-1) cm+n-j-s-a-tp-t) _ 
t=O a+tp s t m-s-t 

[n-j-a-1] 

_ î a~ i _ ,j+s-1) ,a+tp+t) cm+n-.j-s-a.-tp-t-1) J 
t=O a+~+tp s t m-s-t 

for j = 1,2, ••• , n-a. 

If, in_particular, p = 1 , the12 (183) reduces to 

(185) P{y (a) =·0} = 1 -
r..... rn,m 

·ror a = 1,2, •.• , m, and (184) becomes 

(186) 
m-a . . 1 ~ 

P{ y (a) = J} = -- l 
,.,... m,m (2m) i=j 

rn 

a (~i)(2rn-2~) 
(i+l)(rn-i) i ml-a-1 

for a = 1, 2, ••• , m-1 and j = 1, 2 ~ ••• , rn-a • 

Proof. If n = mp , then by (181) 

(187) P{y (a) = j} = P{N < r--a for j subscripts r = 1,2, ••• , n} 
"""' m,n ,.,.,,. r 

for ,i = 0,1,2, ••• , n and a = 0,1,2, •.. , n. 

If a = 0 2nd we take into consideration that Nn+l = n , then by 
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(26.5) we obtain (182). 

If a = 1,2,,. •. , n and j =O , then (180) holds and (183) follows 

fran (171), and (185) f1'.'an (172). 

If a = 1,2, ••• , n and j = 1,2, ••• , n, then by (26.52) we obtain 

that 

.P{y (a) = j} = i (1- 4.)[ Ï ("a.·) P{N. = t, N.- N. == i-j-a} -
,,..... m,n t=O J i=j+a. i-J tv'-. J i J 

(188) 

1 

n 
- \ ~~~ P{N. = .t. N N = i-J·-a-1}] 

i=J~a+1r J)""' J • i- j 
! 

and the probabili ties on the right-n..and side of ( 188) can be obta:i.ned 'by 

(161) and (162). T'his proves (134). If, in particular, p = 1 , then 

(184) reduces to (186). Pormula (186) can be proved directly by using 

the random walk interpretation mentioned after Theorem 10. 

The distribution of the randcm variable y ( 0) for n = m was 
m,n 

found in 1952 by B~ V~ Griédenko and V. S. Mihalevich [26L~] and for n = mp 

where p is a posi ti ve integer also in 1952 by B. V. Gnedenko and V, E?_._ 

Mihalévich L26 5J . See also the author (3 3 5J • 

The di.stribution of the randcm variable y (a) in the particular 
m,n 

case of n = m was found in 1952 by V. S. Mihalevich [298J. For n = mp 

where p is a postiive integer the distr·ibution of ym n (a) was fmmd 

' 
in 1969 by the author[ 339]. 

We note that if 0 ~ x ~ 1 and y > O , then we have 
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(189) lim P{y (y / Il!l ) ,~ nx} = ,_ m,n ~ m+n 
l1f+CO n+oo 

2 

l ( ) - 2(1~u) 
y J u-x e 1 - - ------1~- du • 

& x [u(l-u)]3 2 

In the pa.rticular case when n = m , the distribution of ym m(a) is 
' 

given by (185) and (186) and we can,easily show that in this case (189) 

is true. On the other hand, we can show that the limiting distribution 

(189) does not depend on the manner in which m + 00 and n + 00 • Thus 

it follows tri.at (189) is valid in the general case too. 

Gikhman [ 431 1 and I. Vincze l 3461. 
See I" I. 

Thè distribution of p Let n = mp where p is a posi ti ve m,n 

integer. 'Enen by (168) it follows that p is the srrallest r = 1,2, ••. _,n m,n 

for which 

(190) 

attains i ts maximum. 

N-r r 

In what follows we shall determine the joint distribution of cS + m,n 

and p • m,n 

Theorem 12. Let n = mp where p is a positive integer. If 

k = 0,1, •.• , n, j = 1,2, ••• , n-k+l and j+k = tp+l whe~ t = 0,1,2>···, 

théri we hàve 
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pr,t+ k 
1.vn1 rl = -n, 

,._. ' ' 
(191) 

• rrm+n-j-t)
L' m-t 

l _k-:1 __ (sp+s-2)(m+n-j-t-sp-s+l)] 
~ n+2-J-sp s m-t-s 2<sp<n+l-j 

where a (p) = 3 lf p == 1 and a (p) = 2 !f. p > 1 • 

· If, · iri. particûlar, p = 1 , then we have 

) + k } = k(k+l) c1-~+2j-2) c2m+2-2j-k, / (2m) 
(l92 !{ 0m,m = m ' Pm,m = j (k+2j-2) (mt2-j) j-1 m+ 1-j J I' m 

and j = 1,2, ••• , m+l-k, and 

(193) P{o+ = 0 p = l} - l 
Nv · m,m ' mm - rn+l • 

Proof. We can wri te that 

P.{~+ k 
u p = j} = 

NV m,n - n !I m,n 

(194) 
= P{N - r{-1 < N .- J·+1 = k for 1 < r < J0 and N - r+l < N .- J·+1 

"""r J = - r =J 

for j ~ r ~ n} = P{N .- N > j-r for 1 .::.. r < j and N. = j+k-1} • - ~ ,..,,;.J r ,J 

By '.11.heorem 26. 4 the first factor on the right-hand side of ( 19L~) is 

!{N1 = k} if j = 1 and 

(195) 
j-1 

P{Nl > 1 , N. = j+k-1} - I ~i:l ... )~{N.l = 0 ' Ni = i , N. :::: j+k-1} 
,._ - J i=-=2 J 
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if j = 2, •.• ! n+ 1-k , and 0 if j > n+ 1-k • 

We note that if k = l , then (195) reduces to 

(196) 

which follows from (26.6) • 

If we take into consideration that Nn+l = n , then by (26.37) we 
that 

obt~{the second factor on the right-hand side of (194) is 

n-j k+l . 
1 - l +l .. P{N.+.- N. = i+l!N. = j+k-1} 

i=l n -J-l,.,,,. J i J J 

f or j = 1,2, ••• , n+l-k. 

We can easily see that (194) is 0 unless k = 0,1,2, ••• , n, 

j = 1,2, .•. , n+l-k and j+k = tp+l wil.ere t = 0,1,2, •••• If we use 

(161), (162), and (163), then by (191+), (195) and (196) we obta:in (191). 

We note that if, in particular, k = 1 and j = 2, 3, ••• , n where 

j = tp and t = 0,1,2, ••• , then 

(198) 

P{ó+ l 
"""" m,n = n ' p = j} m,n 

1 
= ...,....,(j--1-:-) 

cJ+~-2) 

(m+n) 
m 

• [(m+n-j-t) _ l 2 (sp+s-2)(m+n-j-t-sp-s+l)] 
m-t 2 +J . n+2-j-sp s m-t-s <spsi .. -J 

This result can be obta:ined by (196). 
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If, in particula.r, k = 0 and j = 1 , then we have 

P{ö+ = 0 p = l} = ,.,.,. m,n :'I m,n 

(199) 

= 1 (sp+s-2)(m+n-sp-s\] 
n+l-sp s ' m-s ' • 

Fonrrulas (192) and (193) can be proved. directly by using the rand.om 

walk :interpretation mentioned a~er Theorem 10. 

The joint distribution of the random variables o+ and p , m,n m,n 

in tlb particular case of n = m was found in 1957 by !,__ Vincze_ [344], [3'1-'.1]. 

Theo . 12 was found in 1969 by the author [3 39]. 

Now we shall find the asymptotic distributions of the random 

variables + 
éi and p in the case when n = mp and p -+ 00 • m,n m,n 

T.heorem 13. If n = mp , then 

(200) 
p ' -

lim P{ m,n < x} = x 
N- 11 = 

p~ 

· · for o < x < 1 · and 
= === 

(201) lim P{o+ < x ,,,,..,.. m n = 
~ ' 

Pm n 
-:.:.:..2.:..: < y} = 

' n = 

[m(x+y)] 
l [Gk(my)-Gk(k--rnx)] 

k=l -

~-. · ·ror O < x < x+y < 1 where Gk(x) is defined in 'rheorem 6. 

Pröof. Wi.:t.~1out loss of generality we rnay assurne that F(x) ::: G(x) 

is given by (74), that is, it is the distribution function of a random 

variable whi.ch has a uniform distribution over the L"'lterval (0, 1) • 
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Since by a. theorem of V. Gliven.icc:: [259J it follows that 

(202) P{l:i.m sup IG (x)-G(x)I = 0} = 1, /\/" n . n+-eo -oo<x<0 

we can conclude that if n = mp , then 

(203) 

where 

( 201-t) 

i 

+ r * ó=max( i::) 
m ·m "'r 

1.:::_r<m 

i 
defiried by (90) and (92). Furthermore, 

(205) 

where 

(206) 

N 
. Pm n * 

P{lllII ~- = p } =-= 1 
p+<"' P m 

* pm is defined after formula (104). 

Since by (170) 

+ l ó = - [N - p + 11 , m,n n p m,n - · 
m,n 

i t fellows that 

(207) 

Accordingly, "J!e have 

* 
(208) 

Pm n Pm + 
lim P{ ~ < x} = P{ 6 < x} ,.,._ n = rn m =, 
p+oo Nv 
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aYJ.d the right-hand side is gi ven by Theorem 5. 1his proves ( 200) • 

By (203) and (207) we have 

(209) lim P{ó+ ~ x ,.,. m,n -
~ 

+ ê < yl m = , 

. 
and the right-h:md side can be obtained by Theorem 6. Thus we get (201). 

We note that if we do not make the assumption that n = mp , then 

(200) and (201) hold unchangeably whenever n -+ "° • 

IFinally, we note that I. Vincze [344] proved. that 

1 

(210) 

2 
u 

2 - ~--::T 
U c..V\J..-V J -. ---372 e dudv 

[ v(l-v)]3 

for O < x and O .::_ y < 1 , a11d 

(211) 

for x > 0 where 

(212) W (z) -· k,m 

z 
e - 2· zk Ja; -t m- ~ -k t m- ~ +k 
·--- e t (l+ -) dt z 

r(rn+ l _ k) 0 
2 

1 
is the Whittaker function defined for Re(m-k+ ~) > O • (See ~.:...1:_ 

Whitt~ [ 67].) 

~:1he distribution of cr (a) • I.f n = mp , where p is a positive m,n 
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integer, then a (a) can be interpreted as the number of subscripts 
__ m,n 

r = 1~2, ••• , n for wr.d.ch 

(213) N :-: r - [a] -1 r 

whr->re rLa] • . • t ~ is the greatest in eger 2_ a • 'lliis fellows from ( 169) • 

Th.us if n = mp , then we have 

(214) P{cr (a) = k} = P{cr . ([a]) = k} 
,,,... m,n N- m,n 

for all a and k = O, 1, ••• , m • 

Furthermore s we have also 

( ~-1i:-: \ c__ _) i Pfo (a) ::: k} = P{cr (-[a+l]) = k} 
,.,., m,n ,,._ m,n 

for all a and k = 0, 1, ••• , m • For Nn+ 1 = mp and thu.s 

P{cr (a) = k} = P{N = r-[a]-1 for k subscripts r = 1,2, ••• , n} ... ,.,.... m,n ,...,.,,. r 

(216) 

= ,!'{Nn+l- Nr = n+l-r+[a] for k subscripts r = 1,2, ••• , n} = 

= P{N. = i+[a] for k subscripts i = 1,2, ••• , n} 
""' ]. 

which proves (215). 

Accorclingly, if n =mp and if we know the distribution of a (a) 
m~n 

for a = 0,1,2, ••• , then by (214) and (215) we can fi11d the distribution 

of cr n(a) for all a • Obviously, cr (a) = 0 if a > n • If m, m,n = 

a = 0,1, ••. , n, then a (a) is a discrete random variable with possible m,n · 
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values k = 0,1, .•• , [(rnp-a)/p] • Thus it is sufficient to deterrnine the 

distribution of a (a) for a :o 0"1, ••• , n . 
· m,n 

TI1eorem 14~ If n = mp where p is a positive integer and 

a = 0,1, ••. , mp , thert we have 

k 
Pfo (a) < k}=l- _ _.._P_ 

tvw m,n = (1np+m) 
m 

\' k(p+l)+a+l 
l "(m-j) (p+ lJ+a+ 1 

a . k - <J<m-p = 

( jp+~-a--1) ( (m-j) (p: l)+a+ 1- = 
J ID-J-k ) 

(217) 

k(mp+m) 
P m-k 

=- 1- ----+ 
(rnp+m) 

k 
p l k(p+l)+a+l 

(mp-tm) (m-j) (p+ l)+a+ l 
m O< . -. a 

,jp+j-a-l)((m-j)(p+l)+a+l\ 
~ j m-·j-k J 

m ~~p 

· for 0 < k < (mp-a) /p • If, in particular:, a = 0 , then _J_217) reduces to 

(218) BHcr (0) ~ k} ,.,._ m,n -

k+l(rnp+m ) 
p m-k-1 :: 1- -

(mp+m) 
m 

f or 0 < k < rn • 

Proof. We shall deterrnine the probability 

(219) pk(m,a) = P{cr (a) > k} -. m,n 

for O < k < (mp-a)/p and a = 0,1, ••• , mp • By (216) we have 

(220) pk(m,a) =~{Ni = i+a for more than k subscripts i = 1,2, ••• , mp} • 

.As we shall see pk(m,a) can be expressed by the following probabilities: 

(221) 
1 

qk(s) = ,!{Ni = i for k subscrj_pts i = 1,2_, ••• , sp 1 N
8
P = sp} 

for 1 < k < s < m and = == 
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(222) rk(s,a) = P{N. = i+a for at least k subscripts i = 1,2, ••• , 
,.,... l 

sp-a-1 IN == SD} sp-a ... 

for O < k < (sp-a)/p .~. (mp-a)/p Obviously, r
0

(s,a) = 1 for 

O < a < sp < mp • 

We shall need the following resul t: If 0 ~ r .:_ ,j < n+ l and 

P{N. = r} > O , then 
""' J 

(223) P{N. < i. for i = 1,2, ••• , j IN. = r} = 1 - ~ • 
""" l J .J 

Thisj
1

resul t follows 

indu tion. 

from I.emm".1. 20. 2 • It can easily be proved by mathematical 

Now we can wTite that 

(224) P (m a) - \ a+l P'N = 
k ,c - l (m-s )p+a+ 1 - l sp-a 

k+ ~ <s<m p = 

for O < k < (mp-a)/p and a = 0,1, ••• , n • For the event {N. = i+a 
l 

for more tha.n k subscripts i = 1,2, ••• , n} can occur in such a way 

tha.t for some s where a+kp < sp .5.. mp we have N = sp , further -· sp-a 

N. = i +a for at least k subscripts i = 1,2, ••• , sp-a.-1 and N
1
. < i +a f or 

l 

sp - a < i < n • By using (223) and the fa.et that Nn+l = n , we obtain 

that 

(225) P{N. < i+afor sp-a< i .5.. n!N = sp} = a+l 
,.,._ .1. - sp-a n-sp+a+ 1 

for a < sp < mp • Hence (224) follows. 
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Furthennore, we have 

(226) 

for 1 5_ k < (sp-a)/p and a = 0,1, ••• , sp • 

It follows imnediately from the de fini tion of qk ( s) that 

(227) qk(s) = l P{N = uplN = sp}q1(u)qk 1Cs-u) 
~u<s up sp .-

for 2 < k < s and = = 

(228) q1 (s) = 1- l P{N = uplN = sp}q1(u) 
l<u<s ""- up sp 
== 

f or s > 1 • = 

In the above fonnulas we have 

(229) 
(up+u-l)((s-u)(p+l)-a-1) 

P{N = uplN = sp} = __ u ____ ._s-=---u_ 
""" up sp-a (sp+s-a-1) 

s 

which follows from (162). 

Accordingly, the problem of finding pk(m,a) can be reduced to the 

problem of find.ing rk(s,a) for (a+kp)/p < s ::._m, qk(s) f'or• k < s < m = = 

and q
1 

(s) for 1 < s -~- m • Tnese probabilities can be determined by 

(224), (226), (227) and (228). 
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It will be convenient to use the following notation. Let 

(230) 

(231) 

and 

( 232) (c) - (sp+s-1) ( \ Q. "' - qk SJ • - K S . 

It is easy to see that Qk(s) and I\c(s,a) are independent of m 

whenever l < s < m • = = 

By using the above notation, equa.tions (224), (226), (227) end (228) 

can also be expressed in the f ollowing wey 

(233) Pk(m,a) - \ T.::""":)+l «m--s)(p+l)+a)Rk(s:ia) 
l \m-s p+a+ 1 m-s 

k+ a <s<m 
p = 

for 0 < k < (mp-a)/p and a = 0,1, ••• , mp , 

(234) 

for l _~k < (sp-a)/p and a = 0,1, ••• , sp , 

(235) 

f or 2 < k < s and = = 

(236) c<s-u)(p+l)-1,Q ( ) 
s-u j 1 u 

for s :_ l . 
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To obtain Pk(rn,a) for 0 ~ k < (rnp-a)/p we should determine fj_rst 

Qk(s) for 1 ~ k ~ s and then I\:(s,a) for 1 < k < (sp-a)/p where 

1 < s ~- rn • We shall detennine these quantities by using generating 

f'unctions. 

First we shall derive sorne generating f'.unctions wr.d.ch we shall need 

in what follows. 

By ·using Rouché's theorern we can prove that if lzl < pp/(p+l)p+l , 

then the equation 

1 

, )1 
\237 1 

! 

o+l 
1 - w +zw'" = 0 

:r..as a single root w = y(z) in the cirele lw - ll < l/p and if' g(w) 

is a regular f'unction of w in this circle, then by lagrange's expansion 

we obtam that 

(238) 
co r r-1 , . ) ( )rp+r 

g(y(z)) = g(l) + l ~ [d g (l+x l+x ] • 
r=l r · dxr-l x=O 

It fellows immediately from (238) that 

(239) 
co r r )(r+l)(p+l.) 

g(y(z))y'(z) == l ~' [d g(l+x)(l+~ ] 
r--0 · dx x=O 

" 

If k is a nonnegative integer and a is any real or complex number, 

then by (238) we obtain that 

(240) 



V-192 

and by ( 239) we obtai..n that 

(241) [y(z)]a[y(z)-l]ky'(z) = Î ((r+l~~~+l)+a)zr 
r=k 

for lzl < pp/(p+l)p+l " 

We note further that 

(242) 

1 

and l~nce 
1 

(243) 

i 
! 

[ . )la ro r 
logv(z) = lim - y(z ·=-=-3=. = \' (rp+r) z 

' - a ll r rp+r ' a+u r=. 

CXl 

_J?.[y(z)-1] = 2zyè ())= z dlogy(z) = \' (rp+rr-l)zr 
l-p[y(z)-1] y z P dz l r=l 

:f'or lzl < pp/(p+l)p+l • If z + pp/(p+l)p+l , then y(z) + (p+l)/p • 

Now let us find Qk ( s) for 1 < k < s • If we form the generating 

function of ( 236) , then we obtain that 
00 

l (sp+s-l)zs 
°" s s=l 3 

I Q1(s)z = °" = p[y(z)-1] 
s=l l+ l (sp+s-l)zs 

s=l s 

(244) 

for lzl < pp/(p+l)p+l • Fonnula (244) fellows from (243). If we form the 

generating function of ( 235) , then we obtain tb..at 

CXl CXl 

\ s \ sk k k (245) l Qk(s)z = ( l Q1(s)z ) = p [y(z)-1] 
s=k s=l 

for k = 1,2, ••• , and l zl < pp /(p+l)p+l • Tnus by (240) we get 
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(246) 

f or 1 < k < s ~ = = 

Next we shall prove that 

RK(s,a) = kpk I 1 cCs-j)~p+l))(jp+~-a-1) = 
~ (s-j) S-J-k J 

a. <J·<s-k p = 
(247) 

for l 2_k < (sp-a)/p • 

(248) 

If we form the generating funetion of (234), then we obtain that 

l I\:(s,a)z
8 

= 

k+ a <S 
p 

CX> 

( l ~(u)zu)( l 
u=k · a . 

- <J p 

for 1 zl <pp /(p+l)p+l The fi.rst express:lon for Rk(s ,a) ir1 (247) 

fellows fran (246) and (248). 

If we take into consj_deration that by (241) 

(249) ( jp+j-a-1, j = 
• I Z 
J 

[y(z)]-a-p-2y'(z) l 
j=O 

for 1 zl < pp /(p+l)p+l , then it follows from (248) that 
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'\' s k , -a-p-2 ) -1<: ) 
l l\(s,a)z = p [y(zJ] · · [y(z -lJ yv(z -

k+ a <s 
p 

(250) co - ( I Qk(u)zu)( I (jp+~-a-l)zj) 
u-k O<-l< a 

.;:;= p 

f or !zl <pp/(p+l)p+l • If we use (2~1) and (246), and form the coefficient 

of z3 in (250), then we obtain the second expression for Pk(s,a) in 

(247). 

We note that by definition 

1 

(251)/ 
1 
1 

f or 

(252) 

R (s a) = (sp+s-a-1) 
0 ' <• ""' 

0 < a < sp • 

Finally, we ar-e in a position to prove that 

pk(m,a) =pk \ k(p+l)+a+l (Jp+.1-a-l)((m-j)~p+l)+a+l) __ 
l (m-j) (p+ l)+a+ 1 J m--J-k 

a . k - <l<ffip .'.;)= 

_ k(mp+m) k '\' k(p+l)+a+l (jp+~-a-l)((m-j)(~+l)+a+l) 
- P m-k -p l tm-j)(p+l)+a+l J m-J-k 

O<i< a 
==1=p 

for O < k < (mp-a)/p • = . 

Let us form the generating function of (233). 'Ilien we obtain that 

co 

(253) l Pk(m,a)zm == ( l R,,(s,a)zs)( I -;~+l+l (sp+s+a)zs) 
.r.. s=O ,_,p a s 

k+ a <m k+ a <s 
p p 

for lzl <pp/(p+l)p+l • Here by (245) and (21t8) 
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(254) l I\:(s,a)z8 = pk[y(z)-l]k I 
k+ a <S §:_ <i p p u 

(jp+~-a-1) zj 
J 

for k = 1,2, •••• If k = 0 , then (254) is trivially true. Furthennore, 

by (21.!0) we have 

00 00 

(255) \ a+l (sp+s+a)zs = 1 + \' a+l (sp+s+a)zs = [y(z)]a+l • 
s~ sp+a+l s s~l s s-1 

~1.hus by (253), (254) a~d (255) we get 

(256) \ m k a+l k \ 
l Pk(m,a)z = p [y(z) J [ y(z)-1] l 

k+ a a . 
-~ -~ p p 

for !zl <pp/(p+l)p+l • If we make use of (240) and form the coefficient 

of zm in (256), then we obtain the first expression for Pk(m,a) in 

(252). 

(257) 

If in (256) we write 

l 
a <j 
p 

which follows from (249), then we can obtain the second expression for 

By (252) ax1d (230) we obtain Jfom n (a) 5" k} = 1-pk(m,a) f'or 
' o < k < (rnp-a)/p 8nd a = 0,1, ••• , mp • Tb.is completes the proo.f' 

of Theorem 14. 
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In the pa.rticular case when n = m , the distribution of cr (a) 
m,m 

was found in 1952 by V. S. Mihalévich [298] •. He showed that if 

a = 0, 1, ••• , m , then 

(258) P{cr (a) ~ k} = P{o+ < k+a} = 1 -
Nv m,m - ""'" m,m - m 

( 2m \ 
m+k+a+l 1 

(2m) 
m 

for k = 0,1,2, •.. , m-a • The distribution of er (a) for n == rnp 
. m,n 

where p is a positive integer was found in 1970 by the author [340]. 

Á 
reorem 12_. If a > O 

= and n = mp , then 

= 1 _ (a+k)m! 

mm 

( . ,j ( ·+ )m-j-k-1 \ J-a; m-J a = lim P{cr (ap) < k} 
p-+a>,.,.__ m>n = 

(259) 
1 _ -~ + (a+k)m! 

k m (m-k) !m m 

l · j!(m-j-k)! 
a<j..:::_m-k 

(j-a)j (m-j+a)1n-j-k~l 

5 ! (m-j-k) ! 

· for 0 < k < m-a • If, in pa...~icular, a = O , then (259) reduces to 

(260) lim P{cr ( 0) < k} = 1 - ___ m_! __,..k_+=-l 
n4<x> rv.... m,mp = 
1:'. . (m-k-1) !m 

· ·ror 0 < k < m • 
= 

Proof. Since 

(261) P{cr (ap) ~ k} = P{a ([ap]) ~ k} 
,_ m,n - """" m,n -

if n= mp , a > O and k = 0,1,2, ••• , the limit relations can be obtained 

inmediately f'rom (217) and (218) if we replace a by [ap] a..vid let p 'r·"" 

~ jBy (217) we can easily deterrnine the limitlng d:l..stribution of 

as p -+ 00 when a is ?- nonnegative real number. 

0m,mp(a;p) 
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Note. By us-ïng Theoreml5 we can provide a new proof :for T.heorem 9. 

In 'Iheorem 9 the random variable arn(a) denotes the number of intersections 

of F(x) = G(x) with; F (x) + a for -co < x < 00 • More precisely, rn rn 

S = {x : G(x) = F (x) + a and -co < x < oo } a rn rn = = is a (a) = k if the set rn . 

the ur~ton of k separated intervals or points. Since by a theorern of . 
· V. Glivenko [259] we have 

(262) P{lim sup jG (x) - G(x) 1 = 0} ·- 1 , ..,.. n 
r~ -oo<x<oo 

we er eonclude that 

1 
i 

(263) A_!'{am(a) < ld = Jim P{a (ap) ~ k} 
". ,.,.. mmp -

p-+<x> ' 

for 0 < k < m-a and 0 < a < m • This proves ( 129) for a > 0 • If 

a = 0 , then we have 

(264) P{a (0) ~ k} = lirn P{a (a) < k-1} 
,.,... rn - a-?Q- rn = 

for l < k < m • · · For if we suppose that a > O and let 
= = 

a + O in s a' 
then we obta.in every interval or point in s0 except one wW.ch contains 

x = 00 Formula. (264) implies that 

(265) P{arn(O) ~ k} = 1 - __ m_! __ k 
""" (m-k) !m 

for 1 < k < m • Thls proves (129) for a = O • = = 

Finally, we shall determine the a.symptoU.c dis tribution of 

cr (ylrnp(p+ Jj) in the case when m + 00 • m,mp 
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(266) 

Theorern 16 • If x > 0 _?nd y ;;:.-= 0 , then 

lim P{a (y/rnp(p+ 1)) < x /rrip/(p+ 1) } = ,.,,,, m,mp -- . In+°" . 

= l - e 

2 (x+2y) 
2 

·ror·any p = 1,2, ... . 

Proof. Now 

(267} P{cr (a) ~ k} = P{a ([a]) < k} 
1 ,...... m,mp - """ m,mp = 

is gj.jven explici tly by ( 217) • If in the first forrmlia on the right-ha'îd 

side of (217) we put a :: [y v'mp(p+l) ] and k = [x v'mp/(p+l)], j == mu 

and let m -7 00 , then we obtain that 

(268) l:i.m P{o (a) ~ k} = 1 - (x+y) 
m+<t>,..,,.... m,mp - l21T' 

- ~(x+y)2 + Y21 
1 2 1-u u J 

J e du 
O (l-u)3/2 ul/2 

for x ~- O and y > 0 • If we evaluate the integral on the right-harid 

side of (268), then we obta.iiL (266) which was to be proved. 

' 
Theorem 16 is a pa.rticular case of a limit theorem of N. V. S..rrd.rnov 

[327J. According to the result of Smirnov, (266) is valid for any non-

negative real p. Smirnov's result is given by formula (85) in tnis section. 
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40. Problems 

40 .1. Two players, A and B , play a series of games. In each game, 

independently of the others> either A wins a counter f:"com B with 

probability p or B. wins a counter from A with probability q where 

p > O , q > 0 and p + q = 1 • The series ends if either A wins a total 

nurnber of a counters from B , or B wins a total number of b counters 

from A • Denote by p (a,b) the probability that A wins the series :in 
n 

exactly n games. Determine the generating function of the sequence {p
11

(a,b) , 

n = 1,2,".}. (See P. S. Laplace [ 39 p. 228].) 

40.2. Two players, A and B , play a serles of games. In each game , 

independently of the others, either A wins a counter from B with 

probability p , or B wins a counter from A with probability q where 

p > 0 , q > 0 a."ld p + q = 1 . The series ends if A v.r:ins a total number 

of a counters from B • Denote by p the duration of the garnes. Determine 

the generating function of p (See .!'· S. La.place [ 39 p. 229].) 

40.3. Prove that 

f'or n = 1,2, •••. 

40.4. Let 

n k 
sk = l w. 
- i=l l 
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f or k = o, 1, . . . and a0 = 1 émd 

a = l w. w •••• w. 
K 1 . . . ll 12 1.k <1{1

2
< ••• <~n _ 

for k = 1,2, ... , n. ·Prove that 

for k ~ 1,2, .•. , n. 

40 f 5. Let !;l' !; 2, •.• , <m be mutually independent real random variables 

ha.v-·mg ~he same distribution function F(x) • Denote by Fm(x) the empirical 

distribution function of the sample (~l' t: 2 P •• , t;m) , that is, Fm(x) is 

equal to the nu.rnber of variables < x divided by m • Prove that if F(x) 

is a continuous distribution function, then 

+ 
ö = 
m 

sup [F (x) - F(x)] m -oo<x<oo 

have the same d1stribution function. 

and ö = m sup [F(x) - F (x)] m ....c:o<x<co 

40.6. let (~1 , t;2, ••• ,t;m) and (n1, n2, ••• , nn) be i..~dependent 

sequences of rrrutually independent real random variables with distribution 

functions lt'(x) and G(x) respectively. Denote by Fm(x) and Gn(x) the 

en:pirical distribution functions of the samples (~1 , ç; 2, ••. , t;m) and 

Cn1, n2, ••• , nn) respectively. Prove that if F(x) aDd G(x) are 

identical. continuous distribution functions, then 
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sup 
-oo<x<oo 

[F (x) - G (x)] and m n 

have the sara::; distribution function. 

sup 
-oo<x<oo 

40. 7. fünd. the distribution and the moments of the random vai-•iables 

* * * ~l' ~2 , ... , ~m in the solution of Problém 40.5 in the case where F(x) = x 

f or O < x < 1 . = = 

40. 8. Find the distribution and the moments of the random varia.bles 

N in the solution of Problem 40.6. r1 

I..et ~l' ; 2, ... , ~m be nru.tually :independent real random varia.bles 

havi....ng the same d.istribution function F(x) • Denote by It1 (x) the empirical 
m 

distribution fu.'1ction of the sampl.e (~l' ç;2, ••• , sm) 

d.istribution f'unction of 

Detennine the j oini:; 

ö+ = sup[F (x) - F(x)J and ö·- = 
m m m -oo<x<oo 

sup [F(x) - Fm(x)] 
-oo<x<oo 

in the case where F(x) is a continuous distribution f'unction. (See K. Sarkadi_ 

[320 ], S. G! Mohanty [ 302 ], G. D. Steek [4-59 ], and E. J. G. Pitman. [448 ]. ) 

40.10. I.Bt ~l' ~2 , ••• , ~m' n1, n2, ••• , nn be real random varia.bles. 

Denote by F m (x) the · ernpirical distirbution function of the sample 

(~1 , ; 2, ••• , ;m) and by Gn(x) the empirical distribution function of the 

sample (nl' n2, ••• , nn) • Detennine the joint distribution function of 

sup [Fm{x) - Gn (x)] ançi oin,n = sup 
-oo<x<oo -oo<x<oo 
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in the case where .;
1

, .;
2

} · · ·, .; , n1 , 71 2 , ..• , n are mutually independent m n 

random v2..riables having the same continuou.s distribution function. 

40.11. Prove that (39.79) holdSif m-+ 00 and n-+ 00 in an arbitrary 

way. 

40.12. Let .;1, .;2, •.• , .;m' nl' n2, •.• , nn be mutually independent 

random variables having the sarne continuous distribution function. Denote by 
· function 

~(x) the empirica.l distrlbutio~of the sample (ç;l' .;2, ••• , ~) and by 

Gn (x) the empit'ical distribution function of the sample ( ri1 , n2, •.. , nn) . 

De fine 

+ ó (a,B) = sup [F (x) - G (x)] 
m,n a<G (x).:03 m n 

-n -

f or 0 < a < S .S.. 1 • F.ll1d the asymptotic distribution of o+ (O,a.) , 
m,n 

o!,n (a, B) , ö~,n (B,l) as m -+ 00 and n -+ "" • (See E. L. Rvacheva [4-54 ] . ) 

40.13. Consider Problem 40.12 and determine the limit 

. + 
lim P{ó (a,B) ~ 0} """' m n -m -+ oo , 

n .+ CIO 

for 0 < a < B < 1 • (See B. V. Gnedenko [ 260 ] and I. I. Gikhman [ 431 J.) 

40.14. Iet .;1 , .;2" ... , .;m be mutually independent random variables 

ha.ving the same continuous distribution function F(x) • Denote by Fm(x) 

the empirical distribution function of the sample (.;l, ç;2,~ .. ,.; ) • ·. . . m 

De fine 
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where 0 ~ a < f3 ~ 1 • Find the limiting distribution of /iil ó + ( a ~ f3) as 
m 

m +ai • (See G. M. Maniya [ 293 ]. ) 

40.15. · Under the assumptions of Problem 40.14 let 

+ F (x) - F(x) 
µm(a,!3) = sup [ m F( \ ] 

a<F(x)~ X; 

f or 0 < a < B < 1 . - + Find the limiting distribution of lm µ (a,l) as 
m 

m + oo • (See A. Répyt [ 314 ]. ) 
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