CHAPTER V.,

RANDOM WALKS, BALLOT THEOREMS,
AND ORDER STATISTICS

35. Bernoulli Trials. A sequence of independent and identical

trials (repeated trials) is called Bertoulli trials if there are two
possible results (outcomes) for each trial, namely, either an event A
occurs, or it does not occur. Sometimes it is convenient to call A
success and A , failure. Iet P{A} =p and P{A} =g . Then ptq = 1.
I%)emEéMT)yM\?ﬁ - fh_? number 61‘7)66@»5?1?6?6?7*1(’”(&’: “the number of

i N

succeéses) in the first n trials. Then
2y = = n k n-k

for k =0,1,2,... . In some particular cases this formula had been known
by Pierre Fermat (1601-1665), Blaise Pascal (1623-1662) and Christia8n
Huygens (1629-1695); however, Jakob Bernoulli (1654-1705) was the first

who systematically studied the mathematical laws governing repeated trials.

We say that the random variable v, has a Bernoulli distriobution
with parameters n and p where n=1,2,... and O <p <1 ., In what
follows we shall mention a few useful formulas for the Bernoulli

distribution.

We have

I
(2) Plo, 2 31 = 1 (o™
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0,1,c0., nn , which follows from (1). We can write also that

for J

(3) Plo, 29} = | (el

for j=1,2,..., n-, which can be proved by taking into consideration that
the event . {vn > j} can occur in the following mutually exclusive ways:
among the first n trials, the j~th success occurs at the j-th, j+l-st,...,

n-th trial. We can write also that

p s 3
() Plv_> 3t =n (*5 [ J7ra-wJau
- o~ = J-1 0 ‘

for j=1,2,..., n . We can prove (4) in several ways. We can show that
the integral on the right-hand side of (4) can be exprésse'd either in the
form (2) or {(3). We can prove (4) also in a probabilistic way by choosing

a sultable model for Bernoulli trials.

The r—~th binomial moment of vh 1s given by

’ = T vl’l ' k - i/ I’
(5) B.(n) = E{( )} = k—go ()Ply, =k} = ()p

for r=0,1,..., n . Obviously Br(n) =0 if r>n.

Knowing the binomial moments of v, We can easily determine the

power moments and the central moments of \)nv . Here are a few particular

cases:
(6) Elvl =np,
(7) | Var{v } = E{(v -~ np)z} = npq ,



(8) B{(v - np)3§ = npq(q-p) ,

(9) Ellv - mp)™" = 3n%p%g%+ npq(1-6pq) >

(10) - Elly - np)”} = npa(a-~p) (1-12pq+10mpq) ,

(11) El(v, - )%} = npq(1-30pq+120p°q )+5n°p q° (5-26pa)+15n°p g .

By Chebyshev's inequality (Theorem#4l.3,) we have

» _ E{(v,_~ np)°®}
(12) N?{Ivn— np| > al < ———:'"2'5-—

a

for aTy a>0 and s =1,2,... . .In particular, if s =1, we get

3 ] — M<
(13) Ng{lvn np| > a} < eI

a

for a>0, and if s =2 , we get

2 : 2
(14) P(lv - mp| 2 a} < 3(npg) "+ ipq(i-6pq) <3

a - 16511l

for a>0.

In 1680 or so Jakob Bernoulli [7 ] proved the weak law of large

nunbers which asserts that

1}
=

AY
(15) lim P{|=* - p| < e}

n > o«

for any « > 0O .

In 1917 F. P. Cantelli [ 13 ] proved the strong law of large numbers

which asserts that



| v,
- (16) P{lim —~=p}=1,

rMn+m

In 1733 A. De Moivre [18] (see also P. S. Laplace [39]) proved the

following limit theorem:

. \)n— np
(17) . lim P{
’ n-> «© npq

< x} = o(x)

for any x where
2

u
X o —
(18) o(x) = £ [ e 2 qu

Von
is th? normal distribution function.

Finally, we would like to mention briefly the development of the
notion of bilnamial coefficients. We can define formally the binomial
coefficient (;) for any ccmpl_ex or real a and for any positive integer

kK as

(&) = a(a=1)...(a=k+l)

(19) K kT

where k! = 1.2...k, and for any a

(20) ’ | (g) =1.

Accordingly, (i) is a polynomial of degree k .

The notion of binomial coefficients originates in the notion of

P

figurate numbers, as we call them now. We define ’r; s the k-th figurate



number of order n, for n> 0 and k > 1 by the following recurrence

formula

n+l n+l

(21) 1;,]g{+l Fk + Fﬁﬂ'

;
where Flo{?l for k21 and F =1 for n20.

(See L., E. Dickson [19 1 II. pp. 1-39.) Here is a table for Fﬁ

(Ozns<6b,1xsk<T).

! | K 1] 2] 3 s s 6 | 7
0 1] 1) 1 {1 |1 A

1 1) 273 |4 |5 6 | 7

2 1| 3| 6 |10 |15 | 21 | 28

3 1| 4|10 |20 |35 |56 | 84

4 1| 5|15 |35 {70 |16 |212

5 1| 6 | 21 |56 hos |50 |uen
6.0 1| 7|28 |8 pi2 |ues {928

Figurate nmumbers were studied by Nicomachus of Gerasa [46 ] who lived

about the close of the first century. Omar Khayyam of Nishapur (a. 1213)

knew them in the eleventh century.‘ (See F. Woepcke [68].) In 1303

‘Chu Shih-chieh [ 15] refers to figurate numbers as an old invention and he

mentions several surprising relations for figurate mmbers. (See Y. Mikami

{44 ]/([) The figurate numbers arrvanged in the form of a triangular array

/ J. Needham snd L. Weng [370]
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first appeared in print in 1527 on the title-page of P. Apianus [4 ] .
(See D. E. Smith [58 ] p. 509.)

In 1544 M, Stifel [60 ] showed that in the binomial expansion

n

(22) 1+ = ] o
: k=0,
the coefficients Cﬁ (0 £ k £n) can be obtained by the recurrence
relation
.. = ‘k "l
(23) Gt = % * O
where| Cg = CE =1 for n=0,1,2,... . He arranged the coefficients

Cﬁ (0 <k <n) in the following triangular array which is known now as
the Pascal's arithmetic triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

. .. . . o . . *

In 1556 Nicolo Tartaglia [64 ] (Part 2. pp. 70, 72) gave this triangular

array as his cwn invention. In 1654 Blaise Pascal [47 ] made many dis-

coveries concerning the numbers Cllfl (O<kz<n).

The numbers C]g (0 £ k 2 n) appear in the 17-th century in comection
with combinations. The number of combinations without repetition of n

objects taken k at a time can be expressed as ck

. In 1634 P, Hérigone

[ 31] gave the following formula



, k _ n(n=1)...(n=k+l)
(2h) Ch = k!

for O<k<n where k! =1.2...k for k=1,2,... . This formula

appears also in 1654 in the treatise of B. Pascal [&7 1.

As we have seen, the above mentiocned three instances all lead to the
same mathematic&l notion, namely, the hotion of binomial coefficients. We

can conclude that

(25) n = ('k—l )

v
o
»

2

1
for #1 >0 and k
[ ' .,
| 5]
(26) = g
for Cztksgn.
Tt should be noted that in those early times no mathematical notation
was used for these nunbers. It seems that L. Fuler [22 p.781, [23p. 33]
was the first who used the notation [%] and later (f{a—) for (19). The

notation (il) , which is a slight modification of Euler's second notation,

was introduced in 1851 by J. L. Raabe [53 p. 350].

Finally, we note that if n , k and n-k are all large, then we can
use Stirling's formula in finding a good approximation for the binomial
coefficient

) n, _ n!
(27) (k) - k! zn—kj ! e

According to Stirling's formula we have



(28) n! v~ /2m (g)n

as n -+« , that is, n! 1s asymptotically equal to the right-hand side
of (28). If we divide n! by the right-hand side of (28), then the ratio
tends to 1 as n - « ., This result was found in 1730 by J. Stirliﬁg
[61 p. 135]. It should be noted, however, that preceding Stirling, in

1730 A. De Moivre [ 17 p. 170] discovered that

(29) - nt vC /A @)

as n->o where C 1is a constant which he found numerically by using the

l

asympFotic series

(30) log C =1 - 5= + = 1,1

Y% "o T80 0 -

By the inspilration of De Moivre his friend Stirling studied the problem
and demonstrated that C = 7§F . This fact can easily be deduced from
the product representation of U4/r which was found in 1655 by J. Wallis
[66 1. The umoticed fact that the series (30) is divergent was pointed

out by Th. Bayes [ 5 1.
As a refinement of (28) we can write that

2]
(31) - nt = /3 (-§>ne n

where 1/(12n+l) < en < 1/12n . For the proof of (31) we refer to H. Robbins

(55 1.

In proving the limit theorem (17) A. De Moivre used formula (28) to

find a good approximation for (1). He found numerically &(1), @(2) and &(3).



36. Classical Problems. It seems the oldest knwon problem in the

theory of probability is the division problem (the problem of points).

This problem is of considerable interest, it had a great influence on the
development of probability theory and it is the prédecessor of two other
important problems, namely, the ruin problem and the problem of the duration
of plays. In what follows we shall give a survey of the aforementioned

three problems.

" ‘The Division Problem. We can formulate this problem in the following

~general form:

*wo players A and B play a sequence of games. In each game,-
indepéndently of the others, either A wins a point with probebility p ,
or B wins a point with probability q where p+g =1 . The players
agreé to continue the games until one has won a predetermined number of
gﬁmes? However, the match has to stop when A still needs a points and

B still needs b points to win the series. In what proportion should

- the stakes be divided?

Denote by PA(a,b) the probability that A wins the series and by
PB(a,b) the probability that B wins the series. Obviously PA(a,b) +

+ PB(a,b) =1.

It is evident that in the case of fair sharing the stakes should be

divided in the proportion of

(1) P (a,b) : Ppla,b) = P (a,b) : [1-P,(a,b)] .
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Thus the problem is to find the probability PA(a,b) for a =0,1,2,...

O

and b =0,1,2,... . In the particular case of p=q = the following

table contains PA(a,b) for ©as<b,and 0<b<6.

.PA(a,b)
° 0 1 2 3 ] 5 6
0 - 1 1 1 1 1 1
11 o | £ 13 7T {1 [ 3L |83
2 ) 8 | 36 30 [0
5 o 1 ] 11 [ 26 [ 57 [120
; ~ T ] 16 | 32 6L | 128
; 5 1 5 16 | 42 99 [219
5 | 76 32 | 80 |128 |256
n | o 1L | & |22 |88 [163 |38
116 | P B 128 |256 {512
5 o | X [T 29 | 93 256 [638
32 64 |[128 |256 {512 f[O2h
p o 1 8 37 1130 386 [L02h
64 {128 256 |512 [O2L pOL8

ccording to 0. Ore [92 ] it seems likely that the problem is of
Arabic origin., He found some particular versions of the aforementioned
| problem in Italian mathematical manuscripts dating from as early as 1380.
The problem appears for the first time in printed form in 1494 in the bock

of Lucas dal Burgo Pacioli [94 p. 197]. In Pacioli's version p =g = 1/2,

the players have agreed to play 6 games and a=1 and b =3 .

Pacioli gave the incorrect answer 5:3 which is simply the ratic of the

number of games' already won by the two players. The correct answer is 7:1.
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In 1556 Nicolo Tartaglia [64 ] (Part I, p. 265.) discussed the problem

and he too gave a wrong answer, namely, 2:1 .

In 1558 Francesco Peverone [#8 p. 40] posed the same problem, with

the irrelevant modification that the players have agreed to play 10 games,

and got the wrong answer, 2:12 .

In 1603 L. Forestani [ 25 ] posed the same problem, with the modification

that the players have agreed to play 8 games, and a=3 and b =5,

It is interesting to mention that L. Forestani [ 25] formulated the
same problem for the case of three i)layers toq. Three players agreed to
play il games, but they have to interrupt the match when they have woh
respectively ten, eight and five games. The proper shares of the stakes

should again be determined.

Tn 1654 Antoine Gambauld chevalier de Mére (1607-1684) a distinguished

philosopher and a praminent figure at the court of Louls XIV called the

attention of Blaise Pascal (1623-1662) to the division problem. The

division problem has been mentioned also in some old French books, and

ra .
de MErd may have read it somewhere.

Tt seems that Pascal provided an incorrect solution for this problem

and communicated it to Pierre de Fermat (1601-1665). In reply, Fermat found

a remarkably elegant solution of the problem. He determined PA(a,b) in
the case when p =q = %— . Fermat reasoned in the following way: If A

needs a points and B needs b points, then in at most ath-1 games
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it can be decidéd who wins the series. Let us assume that the players

actuglly play atb-1 games regardless of the possibility that one of them

already won the series. Then the number of possible series is 2a+b—l s
and they are equally probable because p =q = %— . Player A wins the

series if and only if he wins at least a games among the atb-1 games.

The number of all those sequences in which A wins exactly k games is
equal to the number of combinations without repetition of a+b—1 elements
taken k. at a time. If we add these combinations for k = a,atl,...,atb-1,
then we cbtain the number of favorable cases and PA(a,b) is equal‘ to the
nunber of favorable cases divided by the number of possible cases. What

Fermat said in words can be expressed by the following mathematical formula:

a+b—1,a+b—1
L« ) .

k=a ¥

1

-~
k8]
g

PA(a,b) =

In Fermat's formila (2) the binomial coefficient (**0°

) is interpreted
as the number of combinations of atb-1 elements taken k at a time.
It is not clear whether Fermat was famillar with Hé/rigone's formula for

(1;) [formuia (35.2L4) in the previous section] or whether he enumerated the

combinations in another way.' It should bz noted that Fermat discovered

already in 1636 that the figurate numbers Fﬁ = (ng(_']'_l

ka'l = (n+1)1?)‘1f]_’_l . (See L. E. Dickson [19 ] II. p. 7.) Possibly Fermat

) satisfy the relation

used this recurrence formula to find (E) too. This part of the correspondence
between Pascal and Fermat has unfortunately not been preserved. The above
information is taken from a letter written by Pascal to Fermat on July 29,

- 1654, (See P, Fermat [ 81 1, B. Pascal [ 9% 1, and P. R. Montmort [ 91 1.)

In this letter Pascal recalls Fermat's soluticn. He writes that he admires
Fermat's method of solution, and admits that he himself was wrong, In this

letter Pascal discloses. also that he has found ancther solution which is
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short and neat. Pascal explains in examples how to calculate PA(a,b) if
a=1, bi =2; a=1l,b=3; a=2,b=3. Actually, Pascal calculated

expectations iristea.d of probabilities, but this does not make any essential
difference. We can express Pascal's discovery by the following recurrence |

formula

(3) P,(2,b) = % B,(a-1,b) + 3 P,(a,b-1)

N

for 221 and bx1 where P,(a,0) =0 for a=1,2,... and P,(0,0) =1
for b=1,2,... . Pascal's formula (3) makes it possible to calculate

quickﬁy P A’(a,b) for small values of a and b .
|

Pascal's formula (3) can easily be seen to be true for any a > 1 and

-

b>1. If A needs a points and B needs b points, then A can win
fhe series in the following two mutually exclusive ways: A wins the next

game which has probability %- and he wins the series which has probability
P A(a—-l,b) or B wins the next game which has probability !2'- and A wins
the series which has probabiliﬁy PA(a,b-l) "« Then (3) follows by the

theorem of total probabilivy.

Pascal introduced the notion of "the value of a point." If A needs
a points and B needs b points and A wins the next game, then the

value of the point for A is
W p,(a,b) = P,(a-1,b) ~ P,(a,b)

in the case of a unit stake; otherwise, the right-hand side of () should
be multiplied by the total number of stakes. Pascal observed that p p(a.b)

can also be obtained by the same recurrence formula as PA(;a,b) , that is,
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roj b

(5) pA(a,b) = = pA(a-l,b) + -]leA(a,,b-l)

for a>2 and b > 2 vwhere pA(a,l) =1/2% for a 21 and pA(l,b) = 1/2b
for b > 1. Pascal also observed that pA(a,b) can easily be obtained

with the aid of the arithmetic triangle., Indeed we have

N atb-2,- ,l
(6) pplasb) = (547 S8+

for a>21 and b > 1. Obviously, this discovery led Pascal to declare
that Fermat and himself had found the same solution. "The truth is the

same at Toulouse and at Paris.,"

t seems that in a missing letter Fermat indicated that his method can
also be applied in the case of three or more players. Apparently, Pascal
misunderstood Fermat and believed that Fermat's solu‘cion for two players
can be applied verbatim for three players, which is evidently not what
Fermat meant. Pascal expréssed his cpposite view in his letter to Fermat

dated August 24, 1654. (See P. Fermat [81], B. Pascal [93], and P. R. Montmort

[©1] pp. 232-244.) In his letter to Pascal, dated September 25, 1654, Fermat
brilliantly explained that the method of requiring that the players continue
to play a particular number of games even if one of them might have already
won the series, serves only to simplify the rulés and to make all the
possible sequences equally probable, or to state it more intelligibly, "to
reduce all the fractions to the same denominator." Fermat explained how

his method should be applied correctly in the case of three or more players.

Fermat noted that the same result can be obtained without the artifice

of the continuation of the games after winning; however, in this case the
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possible sequences will not be equally probable. He i1llustrated this
method for the case of three players, but it can equally be applied alsc
for the case of two players. By this method of Fermat we can express the

probability (2) in the following equivalent form

a+‘§-2 n 1
(7) P (asb) = ( o ) hreres ml
A neoq a=l’ ontl

For A can win the series in nt+l games where n = a, atl,...,atb-2 .
Player A wins the series in ntl games if he wins a-1 games among the
first n games which has probability (aill) 12“?1- and he wins the nti-st

game \;Jhich has probability 22'- . Since the events in question are Independent,

|
the probabilities multiply. If we add the product for every n = a,atl,...,atb-2,

then we get PA(a,b) .

It is interesting to note that Fermat's second solution which is given
by formula (7;, and Pascal's solufion which can be obtained by formulas (4)
and (6) show complete agreement. Obviously this agreement prompted Pascal
to reply to Fermat in his letter Aof October 27, 1654, "I admire your method
for the division problem alll the more because I understand it very well.
It is entirely yours, and has nothing in common with mine, and it reaches

the same end easily."

Although Fermat calculated probabilities skillfully even if the possible
cases were not equally probable, he did not consider the problem of finding
PA(a,b) in the case when p # q . This generalization has been given
only after Jakob Bernoullifs results concerning repeated trials become

widely known. It should be mentioned that Jakob Bernoulli [ J{pp. 107-172)
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gives demonstrations for formulas (2) and (7) both, but he does not make
any suggestions for a possible extension to the case of p # q . Possibly

he worked out these proofs before discovering his celebrated formula (35.1).

Pascal and Fermat did not write down explicit for'mulas for PA(a,b) .
They explained only in words how PA(a,b) can be obtained, and illustrated
their resﬁlts by examples. An explicit formula for PA(a,b) was given
only in 1708 by P. R. Montmort [90 p. 177] in the case of p = q = %— .
In 1713 in the second edition of his book P. R. Montmort [91] (pp. 244-246)

gave two explicit expressions for PA(a,b) in the general case too. These

forinulas are the counterparts of (2) and (7).' In the general case (2)

becomes
atb-1 .
. atb~1, k atb--1-
(8) Pylap) = [ (Tt K
_ k=a
and (7) becanes
at+b~2 "
_ n ., an-atl

The proofs of (8) and (9) follow on the same lines as the proofs of (2)
and (7) except that now Bernoulli's formula (35.1) should be used. Formula

(8) was communicated to P. R. Montmort by Johann Bernoulli in a letter dated

March 17, 1710. (See P. R. Montmort [91] pp. 294-295.) Formula (9) seems

to have been found by Montmort himself.
Pascal's recurrence formula (3) in the general case becomes
(10) P,(a,b) = pP,(a-1,b) + qP,(a,b-1)

for a>21 and b2 1 where P

A(a,O) =0 for a>1l and Pq(o,b) =1
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for b > 1. For small values of a and b the probability PA(a,b)
can be calculated quickly by (10). However, the general solution of the
difference equation (9) can be obtained only by using more advanced

methods which were developed in 1773 by P. S. Laplace [ 8§, [39] and in

1775 by J. L. Lagrange B8] .
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The Ruin Problem. The first known ruin problem was proposed by

B. Pascal in 1655 to Pierre de Carcavy for the purpose of transmitting it

to Christiaan Huygens (1629-1695). The problem is as follows:

"Two players A and B play a sequence of gemes with three dice
and fixed points fourteen and eleven respectively. EBEach player has twelve
counters, and receives one counter from the other every time his own number

of points turns up. What are the odds for one player to ruin the other?"

We can state this problem more generally as follows:

i

o players, A and B , play a series of games. In each game
Independently of the others, either A wins a counter from B with
probability p or B wins a counter from A with probebility o where
p>0 ; q>0 and ptq =1 . The series erds if either A wins a total
numper of a counters from B or B wins a total number of b counters
from A ._YIf initially A has b counters and B has a counters, then
the games are continued until one of the two players wins all the cournters

of his adversary, in other words, until one of the two players is ruined.

Denote by P(a,b) the probability that A wins the series, and by
Q(a,b)‘ the probability that B wins the series. The problem is to find

the ratio Q(a,b)/P(a,b) .

In the aformentioned problem of Pascal the probability of throWing
14 points with three dice 1s 15/216 ad the probability of throwing 11
points with three dice is 27/216, and therefore p/a = 5/9 . Furthermore

a=b=12.
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The probabilities P(a,b) and Q(a,b) are given by the following

formulas
a, b b
pai;; (al:kf) if p#aq,
, P -9
(11) P(a,b) =
b ) _
Py if p=aq,
and
b
a (qa_ pa) if ?é
atb_ _ato P7a,
. a4 -DP
(12) Q(a,b) = a _
We have P{a,b) + Q(a,b) =1 , and
a
1- & _
<§> - (%)
(13) Yaub) -
Fla,b) g if p=q.

In 1657 C. Huygens [32] found Q(a,b)/P(a,b) 1in the aforementioned
particular case when a =b =12 and p/q =5/9 . C. Huygens [32]
included this problem as the last one in his collection of exercises for

the reader-.

About 1680 or so, Jakob Bernoulli [ 7 pp. 67-713, [ 8 , I-II pp. T1-75

and p. 138] found Q(a,b)/P(a,b) in the general case. Formula (13) was

proved only in 1711 by A. De Moivre [ 76 pp. 227-228], [ 77 pp. 23-241,
(78 pp. 44-471, [ 79 pp. 51-54] . A.De Moivre's proof for (13) is a very
ingenious direct proof which we shall present here in the following simple

way. lLet us imagine that in each game A receives or pays a certain
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amount of money depending on his accumulated gain., If at the begirning of
a game A's accumulated gain is J counters (j = a-1,...,-b+l) and if
he wins, he receives (q/p)j units of money; if he loses, he pays (q,/p)j_l
units of money. In each game A's expected receipt is O because p(q/p)j—
a(e/p)d ™ =0 forall j . Thus the expected total receipt of A at the

end of the series is also O , that is,

+ gt. 9-.. a-1 —- 'E Eb =
(1) _P(a_.,b)[l-(p)+...+(p) ] Q(a,b)[kq)"'n-‘i'(q)] 0,

whence

(15) ' e

b, a a
1 g (-qg7) if pAq,

if p=gq.

o'|®

Trhis is in agreement with (13). If we can show that P(a,b) + Q(a,b) =1 ,

then (13) implies both (11) and (12).

The solution of the ruin problem can also be found in the book of

"P~.‘W‘A'F‘{."‘A"Montmort {90 p. 1781, [ 91 p. 277, pp. 295-296, p. 3111 .

In 1780 P. S. Laplace [ 87 pp. 387-390] proved (11) and (12) by showing

that the probabilities Ty = P(j,atb-j) (J = 1,2,..., atb-1) satisfy the

recurrence formula

(16) ’ m = p1rj_1+ qTrJ._!_l

_where “O =1 and Tt = O . Here ﬁj i1s the probabilify that A wins
the series provided that he has J counters in his possession. The event
of winning the series under this condition can occur in two mituall

exclusive ways: he wins the next game In which case his cagpital increases.

by one counter or he loses the next game in which case his capital decreases
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by one counter. Thus we get (16).

If p=q , then the general solution of (16) is

(an . To= ot g

for j=0,1,...,atb . Since Ty = 1 rand Tt - 0 we obtain that
=1 -

(18) . " 1 i

for j =0,1,..., atb and P(a,b) = m, = b/(atb) .

|
i )

ff p # Q@ , then the general solution of (16) is
|

: J
= I
(19) my=at B(q)
for j=0,1,..., atb . Since Ty = 1 and Toth = 0 , we obtain that
(E)J _ (B)a-'-b_
(20) T, =2 pon
1 - (=
(q)

for j =0,1,..., atb . Since P(a,b) = T we get (11) for p # q .

This campletes the proof of (11). In a similar way we can prove {12).

It is interesting to note that as a byproduct we cobtain that
P(a,b) + Q(a,b) = 1 . This implies that the probability that the series

never ends is 0O .
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The Problem of the Duration of Plays. The ruin problem which we

discussed before leads in a natural way to more general problems. One
such problem is to find the probability that the series ends in at most
n games. This problem can be reduced to the problem of findingvthe
probability that A wins the series in at most n games, and the

probability that - B wins the series in at most n games.

Our. objective is to mention the solutions of these problems. Iet us

formulste the problems precisely:

Two playefs, A and B, play a serles of games., In each game,
independently of the others, either A wins a counter from B with
probability p or B wins a counter from A with probability q where
p>0,a>0 ad ptg =1 . The series ends if eithér A wins a total
number of a counters from. B or B wins a toﬁal mmber of b counters

from A .

Denote by Pn(asb) the probability that A wins the series in at

most n games.

Denote by Qn(a,b) the probability that B wins the series in at most

n games.

Dencte by p the duration of the games, that is, the number cf games

played until the series ends. Then

(21) | Plp <} = Pn(a,b) +q (a,b) .

Obviously
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(22) Llim Pn(a,b) = P(a,b) and 1lim Qn(a,b) = Qa,b)

n > <« n = <

where the right-hand sides are given by (11) and (12) respecﬁively. Since

P(a,b) + Q(a,b) = 1 , it follows that
(23) | Plp <} =1.

We obtain an interesting variant of the series of games mentioned
ahove if we suppose that b = «» , that is, if we suppose that the series
_ends if -A wins a total number of a counters from B regardiess of how
many counters B won from A . In this case we may assume that initially
A ha.l( an unlimited number of counters, and B has a counters, and the

series ends if B is ruined. Then B cannot win the series and therefore

qa, =) =0 and Qa, =) =0.

In this case
(24) Ploxn} =P (g, =) .
and
(25) Plp <=} = P(a, =) .

Ir F(a, ») < 1 , then there is a positive probability that the series does

not end in a finite number of games. Actually, we have

Dy
(2, ) {(a) woecas
Pla, s ) =
(26) ’ 1 if p2gq.

The probabilities Pn(a,b) and Qn(a,b) are given by the following

explicit formulas:
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5 < p in-1
P (a,b) = | g+a [ kzo(i_a_ﬁ(a+b))- k£1 Codlawy) o #
=5
(27) o n @© . .
~ 4.1 ned
+ . nza [ kzo(i+k(a+b))_ kzl (i—a?k(a+b))Jp d
Ry
and
_ o ° in-i
Q.n(a,b) - il(n—b)/2 [ kzl(i‘_a_rﬁ(aﬁ_b))_ kZl (i+k_12a+b))]p Cl +
(28)
- o i n-i

+

i<(n§-b)/2['kz Geiclaro))= | L oak(arn) ) 00

bability Qn(a,b) can easily be obtained from Pn(a,b) by

interchanging the roles of A and B . Actually,
-
(29) Q,(a,b) =P (a,d)(a/p)" .

We note that if we interchange the order of summation in (27), then

we obtain the following equivalent expresbssion:

v _k(atb)+a k(a+ ¢ a0k (At
P (ap) = ] p (atb)ta k(atb) ) (?) plgn-a-i=2k(ato)
k=0 . n-a-2k(atb)

J=
(30) ; 2
. — _v- , 1 © / —
+ 2 (1:1) qul'l a~]J 2k(a+b)J _ k_z_lpl«:(:.-ﬁb) qk\a+b) a
j< n-a—2l2c(a+b)

i nta~j-2k(a+b i nta—j-2k{at+b
y (?)paq j-2k(atb) | ) (?)qap a~j-2k(at+b)

i< n+a—§k(a+b) j< n+a-§k(qﬂ )
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Probability Qn(a,b) can also be expressed in a similar way.
The probability that the series does not end in n games is given by

/ ] A °° n - i nﬂ-l
(31) Lte>np = ) ; z_ m(j.+k(a+b)) - k=X- (1—a+k(a-ib))3p .

Formulas (27), (28), (30), (31) contain only a finite number of terms.
If k is a sufficiently large positive or negative integer, then the

corresponding binomial coefficients vanish,

We note that we use the following definition of the binomial

coefficient (E) . For any x

, Xy _ X(xX=1)...(x~k+1)

i

if k=1,2,... ; (g)il and (ﬁ) 0 if Kk = -1,-2,... .

In 1708 F. R. Montmort [ 90 , p. 184] showed that if a =b =3 and

, then

o)

H
Q
r\)l =

3.
(33) P{D < 2mtl}l = 1 - (E)

for m=0,1,2,... .

In 1711 A. De Moivre [76, p. 261] published a practical procedure for

finding P{p > n} in the general case. See also A. De Moivre [77 pp. 113-114],
[78 p. 1731 , [79 p. 2031 . A. De Moivre observed that if we multiply

(p+q) n-times with itself in such a way that after each multiplication:

we remove those terms (if any) which have the forms pa'l'J qJ (j =0,1,2,...)
I Y (5= 5....) . fhen fin © oo 5
and p’ q (J =0,1,2,0¢0) , then finally we get Ple > n}
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In a letter dated November 15, 1710 and addressed to Johann Bernoulli
(1667-1748), P. R. Montmort (1678-1719) mentioned that he obtained a general
solution for the problem of the duration of games, and he also suggested
the problem for the consideration of his nephew Niclaus Bernoulli (1687-1759).
(See [91] pp. 303-307.) In his letter to P. R. Montmort dated Februszry 26,
1711, N, Bernoulll gave an explicit expression for Pﬁ(a,b). (See [91]
pp. 308-314.) N. Bernoulli obtained exactly formula (3C) for Pn(a,b) in
the case when n = at2m (m = 0,1,2,...). (See [91] p. 310,) Since
obviously, Pa+2m+l(a’b) = Pa+2m(a,b) , N. Bernoulli's formula gives a .
c.ompl?te solution of the problem. In his letter to N. Bernoulll dated
Apr'ill 10, 1711, P. R. Montmort replied that he admired N. Bernoulli's
formula, but he could not understand it. (See [91] pp. 315-323.) N. Bernoulli
in his letter to P. R. Montmort dated November 10, 1711 gave examples for the
application of his formula. (See [91] pp. 323-337.) Afterwards, in his
letter to N. Bernoulli dated March 1, 1712, P. R. Montmort wrote that he

found that N. Bernoulli's result and his own result were the same except

1

that P. R. Montmort had considered only the particular case p =g = 5 .

(See [ 917 pp. 337-347.)

In 1713 P. R. Montmort [ 91 pp. 268-277] published N. Bernoulli's general

- formula for Pn(a,b) . (See also [91] p. 275, p. 310, p. 324.)

In 1718 A. De Moivre [77pp. 122-124] also published N. Bernoulli's
general solution and he attributed it to 'P, R. Montmort and N. Bermoulli,
A. De Moivre remarked also that the same solution can be obtained by using

his own method published in 1711. (See [76 p. 2621, [77 pp. 119-122]
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[78 pp. 179~1811, [79 pp. 208-210].) In 1738 A. De Moivre [ 78, pp. 181~

1847, [79 pp. 210-213] published this sclution again; however, at this
time, as his own result. See his Remark [ 78 , pp. 161-182], [ 79 . pp. 210~

211] in which he glves a somewhat questionable explanation for changing

his attitude. A. De Moivre [77 , pp. 122-123], [78 , pp. 182-1847,

79 , pp. 211-213] expressed in words' how Pn(a,b) and Qn(a,b) can be
found. If we transform his words into mathematical formulas, then we
obtain formula (30) for Pn(a,b) and an analogous formula for Qn(a,b

No doubt 'A. De Moivre must be gi\}en the credit for noticing that these
formulas are valid for any n . The dilemma that both P n(a,b) and

Qn(a, ) can be obtained by two apparently different formulas might explain
A.. De Moivre's argument. For Pn+l(a,b) = Pn(a,b) if n = a+tZm

(m = 0,1,2,...) and Q.(a,b) =Q(a,b) if n=btm (m=0,1,2,...).

In 1718 A. De Moivre [ 77, pp. 115-1191, [ 78, pp. 174-1791, [ 79,

pp. 204-208] published another solution for finding the distribution of o .

Iet us write

(n+a)/2 q(rJL--a)/Z (n-b)/2 q(n+b)/2

(3%)  Plp =n} =8 (a,b)p + T, (a,b)p

where the first term on the right-hand side of (34) is the probability that
A wins the serdies in eXactly n games and the second term on the right-
hand side of (34) is the probability that B wins the series in exactly

n games. A. De Moivre [ 77 , pp. 118-119], [ 78 , p. 1781, [ 79, p. 207]

found that
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_ % 2j(atb)ta , atom v (2341) (atb)+b a+2m
(35) Sn(a,b) = jzo a+2.m (m.-j (a+b)) - jzo a+2n,l ( b-'J (a+b))

if n=atm {(n=0,1,...) and Sn(a,b) =0 if n=at2mtl (m = 0,1,...) .

_ Furthermore, Tn(a,b)' = Sn(b,a_) .

We note that in 1738 A. De Moivre [ 78 , pp. 190-191], [ 79 ,pp. 219~220]

expressed Sp(a,a) also with the aid of trigonometric functions. A, De

Moivre's formula is a particular case of the following more general one:

R o8 el e el kam . ke
(36) -8 (a b) = e kzo cos sin - sin 3= .

i
i
i

Accordingly, we can write that
n-ga
=

(37) P, (a,b) = mz_o S +om(@50)P

atm rn

where Sn(a,b) is given either by (35) or by (36).

Furthermore,
n-p
(38)  Q(a,b) = f (2,0)8" g pHm
Glasb) = L Tponla,bp
m=0
where Tn(a,b) = Sn(b,a) .
We note that by (34) and (36) we obtain that
n+l
—_ kr \n_. knu a b
2 ath-1 (cos =) sin —— = _ =
, (4pg) atb atb ,py2 _._ kKar ay2 kbw
(39) P{p > n} = v e [(2)° sin =5t (p) sin =

k=1 1-2 /pq cos =5
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According to the investigations of A, De Moivre, P. R. Mortmort, and
N. Bernoulli we have three expressions for the probabilities Pn(a,b) and
Qn(a,b) and hence we have also three expressions for the distribution of
p . These authors did not provide proofs for their results, and did not

indicate how they obtained their results.

Rigorous proofs for (30) and for k37), where Sn(a,b) is given by

(36), were given only in 1776 by J. L. Lagrange [88 , pp. 238-249]. J. L.

Lagrange has obtained his results by solving a linear difference equation.

In 1812 P. S. Laplace [39, pp. 228-242] proved (37), where Sn(a,b) is

given by (36), by using the method of generating functions. Actualiy, P, S,
Laplace considered the problem of finding Pn(a,b) as early as 1773 and he
obtained partial results in his papers [85 , pp. 11-16], and [86 , pp. 176-

188]. For other proofs we refer to A. M. Amﬁbre ©9], R. L. Ellis DZS],

L. Bachelier [72], [73], D. Arany [70], J. V. Uspensky [©9, pp. 154~158],

W. Feller [80, pp. 344-354], K. Jordan [83, pp. 397-420], and E. C. Fiéller
B2] . |

In what follows we shall give simple elementary proofs for the above
mentioned three formulas for Pn(a,b) and Qn(a,b) . The proofs presented
here are based on the reflection principle and on the method of inclusion
and exclusion. It is probable that the proofs we shall give in this section
are closely related to the original methods of A..De Moivre, P. R. Montmort,

and N. Bernoulli.

If we suppose that b =« , that is, A has an unlimited number of

counters, then the probability that A wins the series in a finite number
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of games is P{p <=} =1 whenever p2>gq and P{p < =} = (/q)® < 1
whenever p<q . If p<q , then l--(p/q')a is the probability that

the series does not end in a finite mumber of games.

If a 1is finite and b = » , then we have

(40) Ploxnt= ] (wd T+ ] Hpd,
i 1< e 1> Dfa
= 2 : 2
or in another form
&2
: ‘ ; g a 'é+2m atin m
(41) ,vli{p <nt = m-z-O atom ( D R
By (413 we can write that
; — _ . a atlm,_atm m
(42) Blp = at2m} = 0 (0 707

for m=0,1,2,... .

The formula (40) was found by A. De Moivre in 1708 and published in
1711. (See A. De Moivre [76 p. 262], [77 pp. 119-122], [78 pp. 179-181],

(79 pp. 208-210].)

A, De Moivre did not mention how he obtained his result, but it is
probable that he essentially used the method of reflection. The second
form, (41) can be cbtained from (40) by simple transformations. Formula

(41) was published by A. De Moivre in 1718. (See A. De Moivre [ 77 p. 121],

[78 p. 1811, [ 79 p. 210].) These results of A. De Moivre are very
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significant. As A. De Moivre stated himself, these solutions led him to
the sclution of the general problem of the duration of plays. (See

A. De Moivre [78 p. 181], [ 79 p. 210].) In fact P. R. Montmort and

N. Bernoulli had preceded A. De Moivre in obtaining an explicit formula

for Pn(a,b) and Qn(a,b) .

Formula (41) was proved only in 1773 by P. S. Laplace [ 86 , pp. 188-

193 1, [39 , p. 235] and both (40) and (41) were proved in 1776 by

-J. L. Lagrange [88,pp. 230-238].

An elementary proof for (22) was found in 1887 by D. André [i6G] .

See also J. V. Uspensky [ 99 , pp. 147-153] and the author (63, pp. 2-9].

It is interesting to recall A, M. Ampére B9, p. 9] who comments

formula (42) as remarkable for its simplicity and elegance.

First we shall prove formulas (40) and (41) for P n(a, @) . Suppose
that the players actually play n games regardless' of wether A has
already won the series or not. Denote by N, the gain of A at the end
of the n-th game, that is, the total number of counters won by A during

the n games. Obviously we have

(43) Pln, = 2in} = (Dpd™

for 1=0,1,..., n. For n, = 2i-n 1if and only if A wins 1 games
and B wins n-i games. The mmber of such seriesis (?) and each seriles

has probability p g  — . This implies (L3).
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Now we shall prove that for i =0,1,..., n

A (r-l])piqn—l if 21 > nta ,
(44) Plpsn and n, = 2i-n} =
~ n,in-i

(j_ppra — if 21

iIa

nta .

If 21 > nta , then n, = 2i-n > a and consequently p < n necessarily
occurs., Thus Plo sn and n = 2in} = P{n = 2i-n} given by (43) . This

proves (44) for 2i > nta .

If | i<a, then (44) is evidently O . It remains to consider the
case when‘ 2a < 21 < nta . Denote by C1 the set oghsgries of games in
which| A wins 1 games, B wins n-i games, and A wins at least once
a counters from B . Denote by Rn+a—i the set of the series of games
in Which A wins nta~-l games and B wins 1-a games. There 1s a one~to-
one correspondence between the seriés in the two sets Cl and Rn ta-i

For if in each serles we change the results of all those games into their

opposites which follow the game in which A wins a total number of a

counters from B for the first time, then each series in Cl is mapped
into a series in Rn+a—i , and cornversely each series in Rn+a—-i is

mapped into a series in Cl , and different series correspond to different

series. Thus the number of series in Cl is equal to the number of

which is evidently ( n

series in R i-—a) . Since each series in C

nta-i 1

has probability p g - , (44) follows for 2a < 2i < nt+a .
If we add (44) for 1 =0,1,..., n , then we get (L0).

We note that by (4b)
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P{n = 2i-nj ' if 21 > nta
mn == I

(L5) Plp 2 n and n, = 2i-n}

a .
(%) P{n = 2i-2a-n} if 2i znta,

whence it follows that

' v a - . .
(46)  Plognl=Pingzal+ (B Pln < -ab .

By (44) we have also

T - (SPWd"™ if 21 s,

|

(47) P{p >n and n = 2i-n} =

i . 0 if 2i < nta .
Since -evidently
(48) P{p =n} = pP{p > n=-1 and nn—l = a-1} ,

it follows from (47) that

+2m= +2m— +m
a l) _ (a 2m l)]pa m qm _

(49) P{p = atom} = [(a+mr1 el =

a (a+2m) atm m
atZzm " m q
for m=0,1,2,... which is in agreement with (42). If we add (49) for

m < (n-a)/2 , then we obtain (41).,

Finally, we shall prove formulas (27) and (28) for Pn(a,b) and
Qn(a,b) respectively, and we shall show that Sp(a,b) can be expressed

by (35) or by (36).
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Denote by A the event that A wins the series in at most n games,

and by B_ the event that B wins the series in at most n games. Then
n .

{ - = .
Pn\a,b) = P{A} and Qn(a,b) NIj{Bn; .

In finding the probabilities Pp(a,b) and Qn(a,b) we may assume, without
loss of generality, that the players ad¢tually play n games regardliess of

whether cne of them already has won the series.

We shall show that if we apply repeatedly the same reflection principle

which we used in proving (40}, then we cbtain formula (27) for Pn(a,b) .

If the players actually play n games, then it may happen more than
once. that A's gain reaches a and B's gain reaches b . In this case
An can be interpreted as the event that A's gain reaches a before B's

gain reaches b (if at all) in the n games.
Denote by U “the gain of A at the end of the n-th game. We have

(50) Ng{nn = 2i-n} = (gl)piqn—i

for 1i=0,1,..., n Dbecause n, = 2i-n if A wins 1 games and B wins

n-i games.

Denote by Un(a,b,i) the number of series of length n in which A
wins a total number of i gemes and A's gain reaches a before B's

gain reaches b (if at all). Then

Y

3

. .y 1 n-1
(51) N?{An and n, = 2i-n} = Un(a,b,l)plq .
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Now we are.going to find Un(a,b,i) . Denote by C,, (k = 1,2,...)
the set of all these series of lergth n in which A wins 1 games and
A's gain at lesst k times passes from -b to a . Furthermore, denote

by C (k = 0,1,2,...) the set of all those series of length n in

2k+1
which A wins 1 games, A's gain at least once reaches a and
subsequently at least k times passes' from -b to a . Let N(CJ.)
(j = 1,2,...) denote the number of series in the set C, . Then by the
J

method of inclusion and exclusion we obtain that
(52) U = 1 cnitae)

z n\a’ ,l . l =d. j .

J=L1 .

If 2i < nta , then we have

(53) c.y=( B

’ N(Cy) = (ye(arn)’
and

(5) N(Coes1) = (ioie(arn))-

If 21 > nta , then we have

(55) M) = Gioatie(aro))
and
(56) N(Co41) = (in(atn)) -

These formulas can be proved by using the method of reflection. We
shall prove only (53). Formulas (54), (55), (56) can be proved in a

similar way.
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Let 21 ¢ nta . We shall show that there is a one-to-one correspondence

ok and the serdes in the set Ri-k(a+b)

contains all those series in which A wins exactly i-k(atb)

between the series In C where

Ri k(atb)

games In the n games. The number of series in R,

i-k(atb) is evidently

n

NGBy _y(atp)) = Gox(atp)) -

Consider a series in C?_k and let us mark 2k games as follows:
First, we mark the game in which A's gain first attains -b . Second,
we mark .the game in which A's gain first attains a afterwards. Third,
we mark the game in which A's gain first attains -b again afterwards. |
We continue this process through 2k games. Now starting from the first
‘mariced game let us change the results of all the subsequent games into
their opposites. Then starting fram the second marked game let us agaj_n
change the results of all the subsequent games into their opposites.
Continuing this process, finally, starting from the 2k~th marked game
let us change the results of all the subsequent games into their opposites.
ThuS we obtain a series which belongs to Ri—k( a+b) By this mapping,to

every series in C2k there corresponds one serles in Ri and to

“k(a+b) ?
different series in C2k there cor*respond. different series in Ri—k (atb) °*
Conversely, consider a series in Ri—k( atb)

in which A's gain first reaches -b , -2b-a , -3b-22 ,..., =2kb - (2k-1)a .

and mark the 2k games

Now starting from the first marked game, let us change the results of all
the subsequent games Into their opposites. Then starting from the second
“marked game; let us again change the results of ali the subsequent games
into their opposites. Continuing this process, finally, starting from the
2k-—'th marked game let us change the results of all the subseguent games

into their opposites. Thus we cbtain a series which belongs to CZk .
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By this mapping}to every series in Ri there corresponds one series

~k(atb)

in C2k and to different series in Ri

ies 1 C .
series In C,

—k(atb) there correspond different

Accordingly, there is a one-to-one correspondence between the series

of the two'sets C, and Ri—k(a+b) .. Thus N(Cgk) = N(Ri—k(a+b)) =
n e
(i—k(a+b)> which was to be proved.

By -(52), (53), (SM), (55), (56) we obtain that

[}

- n n . .
kzo(i-a~-k(a+b))' kgl(i-k(aﬂo)) f 2 g nta,
(57} Uy(a,b,i) = {

if 21

v

n v n
Zo(i+k(a+b))_ kZl(i-a+k(a+b)) nta .

Finally, by (51) we get
| - T in-1
(58) P (a,b) = ] U (a,b,1)pq .
i=0

This proves (27).

If we denote by Vh(a,b,i) the number of series of length n in
which A wins a total number of i games and B's gain reaches b

before A's gain reaches a (if at all), then

(59) P(B_ and n_ = 2i-n} =V (a,b,1)p'q""
and _ 0 o
() Qa0) = 1V (ap,0p'a" "

' : i=0

If we interchange the roles of A and B , then we obtaln that
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Vn(a,b,i) = U (b, a, n-1) and hence by (57) we obtain that

T oo

yzl(l-a+k(a%b)) Z (l+K(d+b)) if 24 znb,
(61) V (a,b,i) = © ©
b ik(atb)’ T L Mask(atp)! TRSH S0P -

k=0

Formulas (60) and (61) prove (28).
Since

Y : = 3 = = { et} = - —
(62) Ng{p >n and N, 2i-n} N?{nn 21 n}NE{An and n, 2i-n}

e

|
L - P{Bn and n = 2i-n}

for =0,1,..., n , by (50), (51), (57), (59), (61) we obtain that

p . .- - . - s n =
(63) Plo>n and n = 2i-n} = [k=2_m(i+k(a+b))— k=z— (; a+k(a+b))]

1n1

if n-b < 21 < nta and O otherwise. If we add (63) for i = 0,1,2,...

then we get (31).

The probabilities Pn(a,b) and Qn(a,b) can also be obtained by (37)
and (38) respectively where Sn(a,b) is given either by (35) or by (36)

and Tn(a,b) = Sn(b,a) . Our next aim is to prove these results.

In (34) we have obviously
(64) S (a,b)p(m"’l)/2 (n- a)/‘ P{p-"n and n al} =pP{p > n+-1 and n_ .= a-1}
n n o n-1

and

(n—b)/2q(n+b)/2 = P

(65) Tn(a,b)p Plp=n and nh = -b} % qP{p > n-1 end
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The extreme right members of (64) and (65) can be expressed by (63). Thus

we get

oo

, _ a+2m-1 v at+om-1
(66) Splasp) = k=z_m(m+k(aﬁb))" ) (p-bHic(atb))

k= =

if n=atm (m=0,1,2,...) and Snﬁa,b) =0 if n=gat2ntl (m=0,1,2,...) .
Furthermcre, Tn(a,b) = Sn(b,a) . Formmula (66) can easily be expressed in

the form (35).

Formula (36) for Sn(a,b) can be obtained fram (66) by using. the

folloﬁing elementary identity
|

|
kn k(n=2r)n

. f n _
1) Lo Ceratarn)) =5\ L) (008 335 o8 T

which holds if r < atb . If we take into consideration that

atb-1 atb-1
(68} Z (l+wk)nw—kr==‘z (wk/2+ w-k/Z)nmk(n—2r)/2

k=0 k=0

and if we - put
(69) o = e27r:l'./(a‘l'b) - am_ Lo s 2m

in (68), tﬁen wé‘obtain (67). This proof for (67) was given in 1834 by

C. Ramus [54] . (See also E. Netto [45] pp. 19-20.)
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37. Random Walks. The classical problems of games of chance

discussed in the preceding section can also be described imaginatively by

using the following model:

-

Suppose that a‘particle performs a random walk on the x-axis. Starting
at x =0 the particle takes a sequence of steps. In each step, independent-
ly of the others, it can move either a unit distance to the right with
probabllity p or a unit distance to the left with probability q where
p>0,q>0 and ptgq =1 . Denote by n, the position of the particle

at the end of the n-th step. Let ng =0 .

This random walk process has the same stochastic properties as the
series of games considered in the preceding section. Let us suppose that
if A wins a game, then the particle moves a unit distance to the
right and if B wins a game, then the particle.moves a unit distance
to the left. Then n_ can be interpreted as the total gain of A at the

end of the n-th game. We have

s _ myini
(1) : Nli{”n = 2i-n} = ({)p'q

for 1 =0,1,..., n.

All the results of the preceding section have simple interpretations

in the temminology of randam walks.

We can interpret P(a,b) as the probability that the particle sooner
or later reaches the point x = a before reaching x = -b (if at all).

By (36.11) we have
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b

(20 _ Oy

atb atb
- q

(2) Pla,p) = §
5%5 ift p=gqg.
\

Furthennore,-Pn(a,b) can be interpreted as the probability that in

n steps the particle reaches the point x = a , before reaching x = -b

(if at all). If we use the notation (1) , then by (36.27) we can write

that

< -2k(a'+b)—a}

jo]

) (gok(a+b)+a P(n

P _(a,b) = Ny
n k=0 4

I - kzl (gok(a+b);€{nn < -2k(atb)+al

(3)
£ 7 ®7ED) b op(atn)a)
=0 2 ~

~k(atb)+a
P{nn > 2k(atb)-a} .

Dy
(q)

fie~18

k=1

If b=« in (2) and in (3) , then we obtain that

a
& for p<q,

P(a’m) =
for p2q,

(4) ,
_ 1
which is in agreement with (36.26) and

S o a
'(5) By(a,) = Pln > al + (2) Pln < -a}

which is in agreement with (36.40) and (36.46) respectively
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The probability that the n-th step takes the particle to the point
x = 2i-n and during the first n steps the particle never reaches the

pcints x=a and x = -b 1is given by

Ng{nn =2i-n and -b <n, <a for r=0,l,..., n} =

(6)

x® . .
1 n—-1i

«© n ’ n
[k_gw(i+k(a+b)) - k=z_m(i-a+k(a+b))]p q

for b < 2i-n < a and O otherwise. This follows from (36.63).

By (6) we can write that

Ng{nn =J and -b<n,<a for r=0,1,..., n} =
(7)

© ~k(atb) o k(atb)+a

= I & - aGo - 1@ P(n, = ~2k(a+b)-2a-}

for -b < j <a and O otherwise., If we add (7) for -b < j < a , then

we obtain that

P{-b < n,<a for r=0,l,..., n} =
Ao

(8) ,
@ -k(atb)- |
= 7 ® P{2k(a+b)-b < n_ < 2k (a+b)+a} -
k= = 4 - n
w© k(ath)+a
- I & P{-2(k+1) (a+b)+ b <n_< -2k(a+b)-a} .
ke —o 4 P n
If b= 1in (6), then we obtaln that
Ng{nn = 2i-n and N, <@ for r=0,1,..., n} =
(9)

[ - (e

for i < (nta)/2 and O otherwise. This is in agreement with (36.47).

By (9) we can write that
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AE{nn j and n,<a for r=0,l,...,n}=

(10)

. o s on
"lf{’nn =j} - (a) Ali{_rin = j-2al

for j <a and O otherwise. If we add (10) for J < a , then we obtain

that

a
(11) Pfn,<a for r=0,1,...,n} =Pn <a} - (%) Pln, < - a} .

Random walk interpretations of the fesults of games of chance have
some interest of their own, and probably the claSsical researchers have
used same geometric descriptions to visualize the possible outcames of a
sequence}of games. In a two-dimensional coordinate system the sequence
(r, nr) for r = d,l,..., n describes the path of the random walk during
the first n steps or the results of the first n games. If we join the
successive vertices (r, nr) by straight lines, then we obtain an easily

visualizable space-time diagram which can be seen on this page.

Space-Time Dlagram of a Raudom Walk.
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In fact random walk problems did not originate in the theory of games
of chance. At the end of the nineteenth century new discoveries in physics

attracted attention to protlems which we now call random walk problems.

In the beginning of the nineteenth century John Dalton (1766-1844)
revived the atomic theory, according to which matter (Solid, liquid or
gaseous) consists of a large number of corpuscles. In the middle of the

nineteenth century Rudolph Clausius (1822-1888) had succeeded in explaining

thermical phenomena with the aid of the molecular motion of matter. In

1860 James Clerk Maxwell (1831-1879) determined the probability distribution

of the|velocities of particles (molecules) in perfect gases and found that

| 2

(12) £(v) = e Sy,
| /A KT)?

for 0 <v<w is the density function of the velocity of a particle
(molecule) where m 1is the mass of the particle (molecule), T is the
absolute temperature and k = R/N where R 1is the constant of a perfect
gas, and N 1s Avogadro's constant. The constant k 1is called Boltzmarn's

1

constant and k = 1.34x10° 6 erg/grad. (See J. C, Maxwell [10], [111] and

L. Boltzmann [104d.)

While the melecular motion of matter camnot be observed directly,
small particles suspended in fluids or floating in gases perform pecullariy
rapid and irregular movement which can be observed by a microscope.
Apparently this phenomenon was described for the first time in 1828 by a

botanist, Robert Brown [101], who observed the motion of particles of pollen




V-45

in water. He was surprised by the result and repeated the same experiment
with various kinds of organic and inorganic particles and in each case
observed the same phenomenon. In the foll'owing decades a number of
unsatisfactory attempts have been made ‘bo explain this phenomenon. (See

'D'Arc¢y W. Thompson [118] pp. 44-48 and the Notes of R. Flirth in the book

of ‘A, Einstein [106] pp. 86-119.) D'Arcy Thompson mentions that in 1863

Christian Wiener [119] expressed his view that the Brownian movement has

1ts origin in the impacts of the molecules of the liquid on the particles.

(See also Siegmund Exner [1071.) The first discoveries concerning the

characteristic nature of the Brownian motion were in 1888 by G. Gouy [109].

The precise mathematical laws governing Brownian motion were discovered in
! _

1905 by A. Einstein [104], [105], and in 1906 by M. Smoluchowski (114}, 0157.
A. Einstein showed that the probability density function of the displacement

of a particle in a given direction during a time interval of length t is

(13) | - Plxt) = S

where D 1is the coefficient of diffusion. If spherical particles of

constant radius a are subjected to the Brownian movement, then

kT

(14) D= 12man

16

where k = 1.3Ux10 efg/grad ~is Boltzmamn's constant, T 1is the absolute

'temper*ature, and n is the viscosity of the fluid containing the suspension.

N
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The above mentioned physical phenomena led in a natural way to the
investigation of mathematical models for random walks J The problem of
random walks was first mentioned in 1905 by K,Pearson [146] . He posed

the following problem:

A man starts fran a point O and walks & yards m a straight line;
he then turns through any angle whateveiﬂ and walks another & yards in a
second straight line. He repeats this process n times. I require the
probabilii:y that after these n stretches he is a distance between r and

r+dr from his starting point, O ."

In résponse to this problem G. J. Bennett found that for n = 3 the

problem can be solved by elliptic integrals, and Lord Rayleigh (J. W. Strutt)
found an approximate solution for large n values, namely, he showed that
the probability is approximately

(15) Lo M g,

(See also Lord Rayleigh [150].) Actually, Lord Rayleigh [149] found this

result in 1880 when he considered the problem of finding the distribution
of the resultant amplitude of n 1soperiodic vibrations of unit amplitude
and random phases., If we denote by Fn(r) the probability that after n

stretches the distance <r , then by Lord Rayleigh's result we have
‘ 2

(16) 1im Fn<r/ﬁ) =1-¢
n > o .

zoml ]

for r >0 . In1906 J. C. Kluyver [139] showed that precisely
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>

(a7 R (r) =r é [3,(2x) 17 (rx)dx
where
27 . . o m v+2m
_1 ~ive+ixsine .. _ (-1)"(x/2)
(18) J\)(X) = E‘;é e ds = mzo COR :

v

for v =0,1,2,... is the Bessel function of the first kind and brder Vo,

In 1919 Lord Rayleigh [15Q extended this result to three-dimensional

random flights. He considered the case where a particle takes n random
stretches. In each stretch it moves a distance £ in a random direction
having s uniform distribution independently of the other stretches. Denote
by Pn(r) the probability that after n stretches the distance from the
‘starting point is <r . He showed that

_ _dPn(r)

(19) _2r ® (sinex)sinrx
dr mt 0 Xn-l

ax

for r>0 and nx 2. Wenote that dP (r)/dr can be expressed by the

following explicit formula

dPn(r) r r r
(20) & T2 [h_,G+1) +h _;(F-1]
for >0 and n > 2 where
. X
| 1 sint @ 1 g 3m m-1
(21) hm(x) = -w-f ( T ) costxdt = ——— )} (1) () (m-x=23)" -
0 Mm-1)1 =0 J

for m= 1,2,... is the density function of the sum of m mubuslly
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independent random variables having a uniform distribution over the interval

(-13 1) .

In 1905 Maryan Smoluchowski [11#] (see also [115 1], [1161], [1171)

investigated randomn walk models in studying the Brownian motion phenomenon.

The studies of the Brownian motioh of small particles suggested
various mathematical models for random walks. A particle may perform a
Brownian motion subjected to no force, or constant force, or central force
and so on. The case of a free particle leads to the model of a symmetric:
“random| walk. The case of particles subjected to a constant force leads to

the moflel of an asymmetric random walk. The case of particles under the

inf‘lu.ehce of a central force can be described by an wn model of P. Ehrenfest

and T. Fhrenfest [103 ] . (See also M. Kac [137 ].) One- , two- , and three-

dimensional random walk models appear naturally. Simulating the effect of
a container we are led to the meodels of random walks with absorbing barriers

and with reflecting barriers. See M. Smoluchowski [116], [1171], S.

" ‘Chandrasekhar [123 ] , and M. Kac [ 136] . Discrete time models and

continuous time models have been investigated simultaneously from the
beginning. In later years various limit theorems have been discovered for
‘random walk processes. In what follows we shall mention only a few selected

results.

One Dimensional Random Walks. Suppose that a particle performs a -

random walk on the x-axis. Starting at x =0 the particle takes a
-.sequence of steps. In each step,.independently of the others, it can .move
either a unit distance to the right with probability p or a unit distance

to the left with probability q where p>0,q>0 and ptg=1.
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Denote bj P(ri,j) the probability that the n-th step takes the particle
to point x =j where j =0, +1, +2,... . Usually we say also that
P(n,j) dis the probability that at time n the particle is at x=J .

Obviously, we can write that
(22) ) P(n,j) = pP(n-1, J=1)+qP(n-1, J+L)

for n=1,2,,..and j=0, +1, +2,... where P(0, 0) =1 and P(0,J) =0
if j # 0 . The recurrence formula (22) determines P(n,j) for n=1,2,...
and we obtaln easily that
ot noj
.y _ s N 2 2
P(n,j) = (Eiifj'_) D q
2

for j=n, n-2,..., -nt2, -n and 0 otherwise.

Now let us assume that the particle moves in exactly the same way as

above except that there are two absorbing barriers at the points x = a

and x =-b , where a and Db are positive integers, and if the particle

reaches the point x = a or the point x = -b , then it remains forever
% o

at this point. Denote by P (n,j) the probability that at time n the

position of the particle is x = j . By (6) we have

ntj n-j
. n n 2 2
(@8) P (n,g) =[] (. ) =1 (s Ylp © a”
‘ k E%l.+ k(atb) k ggi--a+k(a+b)

for b <j<a and j=n, n-2,..., -n+2, -n . By applying the identity

(36.67) we can write also that

nt] n-j A
: 2 2 atb~-1 . .
¥ — 2np g kv \n . kjm k(2a-3 )7,
(25) P n,3) = L (eos o) (cos gy = cos =)



for -b < j <a. Cobviously, we have

* n=1 4
(26) . P (n,a) =p ) P (m,a-1)
m=0
and
4 % n-1
(27)' P (n,”b) =q Z P (m:;b+l)
m=0

for n=1,2,0e. &

%
The probabilities P (n,j) (n=1,2,..., J =0, 1, +2,...)

satisfy the recurrence formulas

* % #
(28) ! P (n,J) = pP (n-1, j-1) + qP (n-1, j+1)
| - -
’ * % *
if =b+l < j <a-l, P (n, a-1) = pP (n-1, a~2) , and P (n, -b+l)

"
gP (-1, -b+2) . Furthermore they satisfy (26) and (27) too. The above
. .
recurrence formulas completely determine P (n,j) for n = 1,2,... and
*
J =0, #1, £2,... if we take into consideration that P (0,0) =1 and

*
P(0,j) =0 for j#0.

We deduced formulas (24) and (25) from the results of P. R. Montmert,
N. Bernoulli and A. De Moivre. These authcrs did not provide proofs for

their results. Proofs were giveﬁ only in 1776 by J. L. Lagrange [ 88 , pp.

238-2491, in 1812 by P. S. Laplace [39, pp. 225-238], [ 41 , pp. 228-2427,

%

and in 1844 by R. L. Ellis [128] . A1l these authors noticed that P (n,J)

for -b < J < a can be obtained as the solution of the difference equaticn
L * . %

(29) P (n,J) = pP (n-1, j-1) + P (n-1, j+1)

- "
for n=1,2,... and -b < j < a with the initial conditions P (0,0) = 1 ,
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% ) ' A K *
P (0,j) =0 for j # O , and the boundary conditions P (n,a) =P (n, -b) =0
for n=1,2,... . The above mentioned authors used various ingenious

methods for solving (29).



Limit Distributions. In studying the fluctuations of prdices in a

stock exchange in 1900 L. Bachelier [71 ], [ 721, £73] introduced a

stochastic process which we call now a Brownian motion process. He also
showed that the behavior of this process can be determined by using an
approximating sequence of random walk processes. This procedure gained

full justification only in the 1950's. " (See Section 52 .)

In what follows we shall deduce same limiting distributions for the
random walk process {nr s r=0,1,2,...} studied in this section. For.

each n = 1,2,... define a family of randam variables {gn(u.) ,0zu <1} .

by thel following formula

. on
(30) | g (w) = —=2ud
A

where o 1is a given positive constant. We can interpret gn(u) as the

position of a particle at time u if the particle starts at x =0 and

2

at times u = %, Greees % it moves a distance o/Yn to the 'right or to
the left with probabilities p and g respectively. Let us suppose also

that p and q depend on n and let

O

1
and Q=q, =5~

1
(31) p=p, =35t
no2 - Sm 20

3

for n > a2/02 where a is a given real number,

First we shall prove the following limit theorem.



V=53

(32) lj‘mwlj{gn(u) <x for O<ugsl} @(—}-{—3\-(3 1

n > «©

“where ¢(x) 1is the normal distribution function defined by (35.18).

Proof., We can write that

(33) P{maxg (W) <x} =P{max n_ <a}
C T 0wl P “ozrsn T 1

where a  1s the smallest integer greater than x/n/c . By (11) it

followf that

p_a
(34) P{max g (u) £ x} = P{ <al- () Pern < o
O<u<l ~'n " q,~ - in s

Since by (35.17)

3]

n,- np,- ) n - 2L
(35)  1im P{ o’ <x} = lmP{ =T < x} = 0(x)

n->e npnqn n-+ Vn o

for any x , and since 1lim an//ﬁ = x/o , and

n = «
2a
. . P —_
- (36) 1im (—-rl)‘[ﬁ =e 7 |
n-> «

we obtain (32) by (34).

In a similar way we can prove more general limit theorems. First,

however, left us prove a useful auxiliary theorem.
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ILemma 1. Let p.(n);O for j =0, #1, +2,... and n = 1,2,...,

and suppose that = 1im Py (n) = pJ exists for j =0, +1, +2,... . Further-

n +r «

more, let us suppose that

(37)

“for n=1,2,... . If |cJ.|<M for j

(38)

and,

that

(39)

&~
Py
o]

A N
~18
o]
]
[~}

i
O
-+
[ ad

|+
N

w

.
S
0}
s

o

Jim c.p.(n) = 5 C.D. «
n - o J=z_°o Jd J.J_m

l

|

.

" iProof. This lema is a discrete version of a result of E. Helly [28]

actually, it can be deduced from his result.

We shall prove that for any ¢ > O there exists an N = N(g¢) such

'j;z_mcjpj_ J'=Z_wcjpj (n)l <€

whenever n > N ., This follows from the following inequalities

(40)

| 1 eppy- Z Cp(n)|<M Z |p—p(n)|
j= j=-w?

= 21 I [py- p; (n)] p.- p.(n)| +2M D,

where m 1is any positive integer. Here the equality between the second

and third expressions follows from (37). First, lef us choose m 50

large that the last member be < ¢/2 . Since for any m
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(41) lim 24} |pJ.- p.(n)| =0,
' n -+ « |J <m J

we can find an N such that

(42) et p.~ p,(n)| < =

FIEE

if n > N . Hence (39) follows, which proves (38).

Theorem 2. If x>0 and y > O, then

(43) nlfn;g{ y2g, W) sx for Ogugll Forala » o)
 ‘where|
i
F (xy) = ] =K EHY Dp g (o (et ) b3 ) =0 (ke (scty Yoy ]
k= o
(L4)

- e2XX E 2K (XY ) [ 4 (_on (by ) mxm)=0 (=2 (lc1) (347 ) 4y-a) ] .
k= =« |

Proof. We can write that
(45) £(—y < En(u) <x for O<ugl}=Pl-b < n,<a for r=0,1,...,n}

where a. 1is the smallest integer greater than x/n/c  and b, is the
smallest integer greater than yvn/o . If in (8) we put a = a, »b=b_,
P=p,>»q=q, and let n > = , then we obtaln (43). In (B) we can
interchange the limit and summation. Ifx-0and if in Lemmz 1 we choose

¢y = 1, 0, -1 depending on j , then we get (432) for X=0.
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We note that in the particular case of a =0 (45) reduces to

[ea)

(46) o) = 1 (1N eCaeby 1 4x)-0 (k(xy)-y)]

P, ]

o]

If, in particular, p = g = 5 , then by using (36.67) we can write that

atb k 1 sin—=
: _ 2 1+(-1) kn (ol SHHgEp
1'7) ] 3 = 1 = eem—— e, oA
(47)  P{-b <n <a for r=0,1,..., n} = = YL 5—1(cos =) — .
k=0 sin ?a-l,t—)-

In this case if we use (47) instead of (8) in (45), then we obtain that

- _ (2j+l)21r2
. D 2(x+y)2 sin(23j+1)wx
(48) ! Fo(x,y) = - i 55T e ——MTJ%_B—

for x>0 and y > 0 .

Finally we notethat the process {gn(u) > 0 < u <1} has independent
increments and by (35.17) we have
£,(t)- g (W-a(t-u)
(49) 1im P{ < x} = o(x)
n-> e o Yt-u

for O<u<t<l. Since obviously lmg{in(u)} =ou , lim ;v;@wr{gn(u)} =
n > « 1 &> » .
2

o“u- and lim ggy{gn(u), g, (0)} = o2min(u,t) for 0O<uz<l and O<t <1,

n > « =
we can conclude that for O <t <t,<... <t <1, the random variables

(1) 5 £ (E5)5eee, £ (%) have a k-dimension2l limiting normal

distribution



tl tl’ tl’ . tl
(ESO) N o ?2 , 02 tl: t23 seey t2
\ tk tl’ tz,o- s tk

If a stochastic process {£(t), O'< t < =} has the property that
for any k =1,2,... and O <ty <vt2 <...<t <= the random variables
E_,(tl), g.(tz),..., g(tk) have a k-dimensional normal distribution, then
we say that {&(t), O £ t < =} is a Gaussian process. If, in particular;
‘E{E(ti} =aqft for t >0 and pgy{g'(u), g{t)} = cgmjn(u, t) for 0. <u

<

and t , then we say that {g(t), O £ t < =} is a Brownlan motion

I =
I

proceés.
If {&g(t), 0 < t < =} is a separable Brownian motion process, then we

can prove that

(51) P{-y < &{u) £x for O <uzxl}=1im P{-y < %;n(u) <x for O ;u‘;_, 1} =

n -+ «

=F E.y_
o/c'c?® o

for x>0 and y > O where the right-hand side is given by (44). Hence

"1t follows immediately that

(52) P~y < E(u) <x for O<us<tl=F (% L)
' e a’'t o't o/t

forany t >0, x>0 and y >0 .
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Randam Walks in Euclidean Spaces. In 1919 Lord Rayleigh [150]

studied random flights in one, two, and three dimensions. The one-
dimensional case discussed in this section can be extended in a natural
way to random walks in multidimensional periodic lattices. The first

extensive study of such random walks was given in 1921 by G. Pélya 1487,

Here we shall consider only symmetric random walks. Let us suppose
that a particle performs a random walk in an r-dimensional Euclidean
space, Starting from the origin in each step the particle moves a unit
dista?ce in one of the 2r directions parallel to the coordinate axes.
We subpose that the successive displacements are incdependent and each of

the 2r directions has the same probability.

The probabllity that the n-th step takes the particle to the point
(xl, Xgseees Xr) is

1l .n E n!

(53) P (X 3X55e005%,) = (5= N T e T 1 i
: n 12 r 2r 31‘32""Jr'k1‘k2""kr'

Jg7H7%

(i=1,2,..,r)
where the summation is extended over all nohnegative integers jl, 52""’

jr’ kl’ kz,..., kr satisfying the conditions Ji ki = Xy for

a N

i=1,2,..., ¥ . For the number of possible paths is (2r)n . If we
denote by ji the number of steps taken in the positive directionb
parallel to the i-~th coordinate axis, and by ki the number of steps
taken in the negative direction parallel to the i-th ccordinate axis, then

a path is favorable if it satisfies the requirements ji— ki = X, for

i=1,2,..., r . The mmber of such paths is given by the sum in (53).
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If r =1, then (53) reduces to

e _ /N 1
(54) Pn(X) = (n+x) =
= 2

for X =n, N=2,...5 12, -n . If r = 2, then (53) reduces to

- _ n n 1
(55) Bo(29) = ey ey
2 2 _

for x+y. =0 (mod. 2) and |xty| <n, |xy| 2n.

Eenote by the vector an(r) = (nn(l),..., nn(r}) the position of the
particle at the n-th step. The characteristic function of ;gn(r) =
(nﬂ(l),..., nn(r)) is given by

1t.n_(1)+...+#it_n (r) T T
(56)  Efe 0 Tty o

_ (co§t1+...+ COStr)n

r

for real t;, t,,..., t, . Hence by inversion we obtain that

: 2r 2w cost.+...+ cost it X —...-15 X
— 1 "7 r.n 11 °*° rrr
(57) Pn(kl,...,xr) (2n)r é....é ( = ) e | dtl...di_:r

for any (xl, Xyzeees xr) .
In the particular case when Xy = Xy = e =X, = 0, let us write

| (58) B | Qn(r) /= Pn(O, Opeens .O)-“:,

that is,-Qn(r) is the probability that in an r—dimensional symmetric
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random walk the particle returns to the origin at the n~-th step. By (53)

we have

m .
(59) Q, (r) = () ) (2m) !
2m r’ 41+ 0 ga (G151 . ,)2
Jl 32 sco Jr“;ll Jl.JZ.g.ﬂJP.

and Qy ,4(r) =0 . ILet us write also Qy(r) =1 .

In particular,

(60) | Q, (1) = (Y 21% ,

and aJn elementary inequality (see Pfoblem40-3') shows that

(61) | — () <L
,} ,'(m+ %)ﬂ 2 vYmr
for m=1,2,... . Accordingly
(62) lim Q, (1)/mm =1 .
m—> o
If r =2 , then we obtain that
(63) a, (2) = (& L15°
3 om m’ 2am
ané thus
(64) » 1im Q,am(Z)mTr =1,
m - o«

By using Stirling's formula,
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0
(65) n! = V2m (fel e T
where 1/(12ntl) < 6, < 1/12n , (H. Robbins [551), we can prove that

T4l r

(66) | Q)R 2(E°

fOI‘ mo= 1Q2,cao L For we h'a‘ve,

m 2m
(%) | 2 Lo
Q (r) = —L— 7 (e < D max el
aﬂ' (2r Zn- J-l+.".+jr=m Jl'J2--00Jr! (2r)2IT1 jl+a.+j = Jl!Jz!o-a
(67) : T
2m
v m! _ (m) m! < 2m mi

L B e max T T T T
RS R R o LN B S AR S (G IR (E 1D

Here we used that m!/jlijz!...jr! attains its maximum if Ijs- ‘jtl <1
for all s and t . By applying (61) and (65) we obtain (66) for

m=1,2,... .

Following G. PSlya [148] we can prove that

=

(68) ) v 2

as m +« . By (57) we have

2r 2w cost,t.. -+cost,, op

1 1
(69) Q,- (r) = e s e ( ) dt .c-dt .
2m (zﬂ)r é é r _17 r

Since the integrand in (69) is a periodic function in each variable with

pericd 27 we can replace the.domain of integration in (69) by
3

D= {(fyseees £ =5 <t 22

the value of the integral. Thus we can write that

BV E

for k=1,2,..., r} without changing
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r
%- mé- cost+...+cost, 2m
(70) m® Q, (r) = ——= ["""[ ( = ) dby...dt, .
(2n)” U p

We observe that in the domain D +the function

costl+...+ costr
(71) I,
equals 1 1if tl = t2 = .. = tP =0 orif tl = t2 = L. = tr =7 and
< 1 otherwise. Let Dl(e) = {(tl"°"tr): e <t <e, k=1,..., 7

and D2(e) = {(tl"°" tr): -e <t -r<e , k=1,..., r} for some

smaille 5 0. Thenif 1i=1 or i=2, we can write that

u .
! - cost.+...+tcost_ 2m e/m e/m COSTZ Fe..t COS = R
2 1 b . m vl

m" feeef ( = ) dtj...dt, = feeeef ( = Ydu, .. .du,

b; (e) e/l —e/m
(72) u§+...+u2
ST = ()2
~n _£ _i e du,...du, = (rm)

as m->e« ,

. ,
Denote by D (e) the set of all those points of D which dc not
%
belong to Dl(e) or Dg(e) . In the closed set D (g) the function (71)

has a maximum p < 1 and therefore

L

(730 m= [eef
D¥(e)

cost +..a+costr 2m -

L ) dty...dt < (2n)

r /2 2m
r 1 m-p

>0 as m-> e« ,

If we add (72) for 1 = 1,2, and (73) and divide the sum by (2n)" , then
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we obtain (68) which was to be proved.

Iet us denote by An (n=1,2,...) the event that the particle
returns to the initial position at the n-th step. In the random walk
process discussed above, and in many other random walk processes a return
to the initial position is a recurrent-event, that is, if the particle
returns to the initial position, then the future stochastic behavior of
the process is independent of the past and is the same as the stochastic
behavior of the whole process. Briefly we can say that after each return -
to the initial position the process starts anew indeperidently of the past.
In t.hs,ks case the events Al’ A2 seees An,.. . satisfy the following property:

|

If k¥ and m are poSitive integers, and 1 2 ny < n, Reee < e then

[}

(74) PAA . .. A L} =PAJPIA ... A},

m m+r11 m—!—nK PYVIES i1 ROV 1 nk

As far as the theory of recurrent events 1s concerned we refer to W. Feller

[24 1.

Denote by v the number of events occurring in' the sequence Al’ A2 PR
An seee o Then v 1Is a discrete random variable taking on nonnegative
tegers (possibly ) . We are interested in studying the distribution

of v .

Iet P =P{v> 1}, that is P 1is the probability that at least one

event occurs in the sequence A,, A2,..., An""‘ . We can write that

5

(75) P=£{Al+ A +s.-+ -An+i vv-} =E{Al}‘i£{AlA2}+.. Q+E{A100.A ' J"-I.‘o.-' .

A
2 ol n-1n
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Iet M = E{v} , that is M 1is the expectation of the number: of

events occurring in the sequence Al’ A2,.. s A ,oe. o We can write that

Bl

(76) M

il
o~ 8

n

*
Denote by A  the event that infinitely many events occur in the

I
sequence Al, Agyasey An,..., that is, A = {v

= »}, We can write that
) . % o -
(77) A=l
L7y
n=1 i=n

and b( the continulty theorem for probabllities we can state that

(78) ! PA'} = lim JUL AL

n-—>w i=n

" Theorem 3, Let Al, A2 seses An,.. . be a sequence of events sabisfying

(79) P{AA ... } = P{A }JP{A_ ... A }
o iy o, | Am+r)k ~ My .
for 1sn) <n;,<e.o<mn. ad kx1 and mz21. Then we have

(80) P =

=
_’£{Al+ A2+ oo e + An+ ooo} - l'H.VI

where M 1is given by (76) and the right-hand side of (80) should be taken
1 if M=o,

Furthermore, we have

% 1 if M=
(81) P{A} =
o 0 if M<
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Proof. By using (79) we can prove that

E{Ai'l- Ai+l+"'} =NI:{A.1}+£{A.1+1+ Al+2 coel n}i{AlAl+l A1A1+2 3=

(82) ,
= P{ - ~pf + +
VP{A.}+P{A.|1+ A.12+...} PKA.}P{Al A2 eael

for 1i=1,2,... . 1In proving (82) we need the relation

63 PO Fry gt = BAJER - By
for k =2,3,... . We shall prove (83) here for k =2 . For k = 3,4,...
we can prove (83) similarly. If we use (79), then we can write that

AR Ay o) = PIAA o} =PIALA; H Ay o) =

(84)
= P{A;IP{A}-P{A,IP{A A ) = P{A,}P{A.A} ,
e LT

which proves (83) for k = 2 . By (83) we get

JPUAA g+ Ay ot oo = POAA o+ Ay Ay ot Luu) =

(85) =~E{A°A H P{ 5 1+1A +2} oo =h?{Ai%EfAl}+NEﬁAi}EEAlAg} ... =

= P{Ai}EﬁAl+ A2+ eeol

which we used in (82). Accordingly (82) is indeed true.

If we add (82) for 1 =1,2,..., n , then we obtain that

n oo
(86) P=(1-P) J P{A,} +P{ ] A.}.
=17 Y " g=mel

First, let M < » , Then
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(87) 0<Pl ] A}s [ PAY>0 as nrw,
™ i=nt+l f=nt1 ™t

Thus it follows from (86) that

(88) P=(1-P) ] PA} = (1-P)M
i=1"

%
and from (78) that M?{A } =0 . This proves (80) and (81) in this case.

If M= , then P < 1 is impossible, because in this case the right
hand side of (86) would tend to « as n>« which is obviously false. Thus

1 . Furthermore, by (86) it follows

if M = «, then necessarily P

i3

that

=]

(89) PU T Ap
i=ntl

1}
—

* .
for every n =1,2,... . Consequently by (78) we get MIf{A }=1. This

campletes the proof of the theorem.

«} =1 1if

Bt Theorem 3 we haveNf{v<w}=l if M < » and P{v

M=, Now let us determine the distribution of v if M < « ,

Theorem 4., If A Aoseens Ay con satisfy (79), and M < =, then

1’

M

k+l

(90) ~ P{v=k}=
e (1)

for k =0,1,2,... .

" Proof. We shall prove that
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(91) Plv 2k = (5

for k = 0,1,2,... . Hence (90) follows because P{v =k} = P{v 2 k} -P{v>k+1}
for k= 0,1,2,... . If k=0, then (91) is trivially true. If k=1,

then (91) is precisely (80) . For any k = 1,2,... we have

(92) Plv 2k} = [Pv 2 1DIC.

v

We shall prove (92) only for k =2 . The general case can be proved simllarly.

By (79) it follows that

- — - - R
(93) Af.{Al' "Am-lAmAmﬂ * 'Anri-n-l m+n} E{A m—lAm }MPA{AJ.‘ “*"n-1'n

for m=1,2,,.. and n=1,2,... . If we add (93) for m = 1,2,... and

n=1,2,..., then we get

(94) P{v 2 2} = P{v > 1}P{v > 1}

P

which is (92) for k = 2 . Since by (80) P{v > 1} = M/(1+M) , the refore
-

(92) implies (91).

Finally, let us consider the problem of finding the distribution of

vy s the number of events occurring among Al, A2 seeey A . in the case

when A A2,..., An"" satisfies (79). Iet us define the random variables

1’
T (k = 1,2,...) in the following way: T =0 if and only if the k-th
~event which occurs in the sequence is An . let g = 0 . If the séqu.ence

A Als ... satisfies (79), then it follows that T

12 et K k-1
(k = 1,2,...) 1s a sequence of mutually independent and identically

A
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distributed random variables taking on positive integers (possibly « ) .
Let

(95) - : P{Tk—- Ty = Jjy = £,

[

for § = 1,2,3;04. &

If we know the probabilities {fj} , then the distribution of .vn

can easily be cbtained. For we have

(96) P{\Jn < k} = P{1,. > n}

= - K

wherever n>1 and k > 0, and Ty is the sum of k mutuaily independent
é.nd identically distributed random variables having the distribution (95).
Thus the problem cf finding the distribution of vh can be reduced to the
problem of finding the distribution ' {fj} . This is given by the following

theorem. ILet us introduce the notation

]

97) ' u

N NE{An}

for n=1,2,... and uo=l . let

(98) Ulz) = } uﬂzn’
n=0
for |z] <1 . Obviously

for n=1,2,... . lLet



100) F(z) = J fnzn

n=1

Theorem 5. If |z| <1, then we have

|
-
{

(101) : ' F(z) =

U(z) )

- Proof.  Since obviously |

1]

(102) P{A }

N

n A
jz PRy By AR

for n=1,2,..., it follows from (79) that

n
(103) w = ) f.u .
n jmp d0ed
for n=1,2,... . If we multiply (103) by 2z' and add for n = 1,2,0..,
then we get |
(104) U(z)-1 = F(2)U(z)

for |z| <1 and this proves (101). The definition of F(z) for |z| <1

can be extended by continuity.

Now let us return to the random walk processes studied previously

and let us give a few examples for the use of the above theorems.

First we shall prove an interesting theorem due to G. Polya [1481.
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Theorem 6. In one- and two-dimensional symmetric random walks the

‘particle sooner or later retumms to its initial'bd<ition.with'pfbbability

-1 . In three- and higher dimensicnal ”andam walks, however, thiS'proba~

"blllty is less than 1 .

Proof. A return to the origin is a recurrent event in each case.
by '

If we denote/\An the event that the particle returns to the origin at
the n-th step, then we can apply Theorems 3, 4 and 5 to the sequence
{An} . For an r-dimensional symmetric random walk (r = 1,2,...) dencte
by Qn(r)‘ the probability that the particle refurms to the origin at the
n~th step. A return cannot occur at the 2mtl -st step. By (67) we have
PR L P2
(105) | Qo ()~ 207
as m-~ =, Thus
= iff r=1,2,

<o if r

(106) I &, (7) {
=1

v

3

and Theorem 6 follows from (80)., If r=1 or r =2 , then the particle
infinitely often returns to its initial position with probability 1 . If
r>3, then thié probability is 0.

returns
If we want to find the probablllty that the partlcle precisely k

times (k¥ = 0,1,2,...) - = to the origin in an r-dimensiocnal symmetric

random walk where r > 3 , Then we should determine the sum

(107) - Qr) ~Y (r)
: . « n*O Qn

where Qn(r) is defined by 8) and can be expressed by (57). If r =3
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then by (57) it follows that

4-
ﬂ dtldUth3

1% %-(costl+fcost

Y]

o
— |

(2ﬂ)3 0

(108) Q(3) =

O~ N

;
0 2+ cost3)

In 1939 G. N. Watson [153] found that

(109) Q(3) = — (18+12/2-10/3-1/6)K2((2/3) (V3-/3))
3w ‘
where
/2 1 .
(110) Kk) = [ — - dt

" : _ 0 Vl—k2sin2u 0 /Ql—tz)(l-k2t2)
is the complete elliptic integral of the second kind. Numerically,
(111) ' Q(3) = 1.51638 60591 ....

We can analyse in a similar way various random walks on Euclidean
syumetric lattices.- First let us consider a two-dimensional symmetric
random walk on a triangular 1atticé. Suppose. that starting at the origin
(0, 0) a particle takes a series of steps on the plane. In each step

- the particle moves according to one of the following six vectors
12y O, 00, B b, B, -h, «8.h, £, -D

with probability 1/6 . ,Suppose that the successlve displacements are
independent. Denote by (nn(l) ,‘nn(2)) the position of the partiecle at

the n-~th step. Now we have
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t1/§ t

. n
108 + S
5~ COS 35 CObt2)

1
3"

eitlnn(1)+it2nn(2)}

(113)  Ef (2cos

for real t‘l and t? values., Hence it follows that

T t1/§ t

4
. Y e 2 .. n
é (2cos 5 COS == + costz) dt,at, .

W

(115) Lim r2(n_(1) = 0, n_(2) = 0} = 22 ,

e

Since the integrand in (114) is periodic with periods ty = Yn/¥3  and

t, = by , we can replace the domain of integration in (114) by
(116) D={(¢t t):-Ls__t;EIT— -1 < t, £ 3n}
12 BT A ’ 2

without changing the value of the inftegral. In this domain the function

2 53 ¢t
(117) 3 COoS —5— COS %~ + c:ost2
equals 1 if t, =¢t, =0 or'ift=—2—7—r- and t,=2r and it is < 1
1 2 1 3 2

otherwise, It ¢ be a sufficiently small positive number and define

t

Dy(e) = {(t, t,): |tli <e, |t2[ < e} and Dy(e) = {(£q,

2T
) ]t - --I < g
2 1 2
. | 3
ltz- 2n| < e}. Denote by D (e) the set of all those points of D
which do not belong to Dl(e) or D2(s:) . In the closed set D (g) the

function (117) has a maximum p < 1 .
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If we take into consideration that for 1 =1 and i =2
t /:3' t eVl e/, U. /-3- UA
n [ [ (2 cos s cos =2 + cost)at.at, = [ [ (2 cos ——— cos —2- +
D. (&) 3 e 2 2 1772 4 3 o/n 5/5
i —evh-e/tl
(118) 2 2
1 u2n e/l e/t ui ugn o m_.é}__s_z.’
= £ I A -
5 cos )y aujdu, v [ [ (- 52 5 dugdu, m—i i e du,du, = /6 =
. n —e/n-e/nn -
as n >« , and
(119) o5 . . ,
‘ 2 1 2 n 16m n
n [ [ (5 cos 5= cos 5=+ cost,)dt b, £ =" > 0

¥
D (e)
as n > « , then we obtain (115). Since a return to the origin is a

recurrent event, it follows from Theorem 3 that the particle infinitely

often returns to its initial position with probability 1.

Now let us consider some three-dimensional random walks which were

analyzed in 1956 by E. W. Montroll [144],

Pirst, let us suppose that starting from the origin in a three-
dimensional Euclidean space a particle takes a sequence of steps and in.
each step it moves in accordance with one of the eight vecﬁors (+1, +1, +1)
ﬂith probability 1/8 . Let us_suppoée that the successive. displacements
are independent. Denote by MEn(B) = (nn(l), nn(2), nn(3)) the pesition

of the particle at the n~th step. Now we have
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it.n_(L)+itn_(2)+itn (3)
(120) E{e 1n en 3n }= (cos’cl co:st2 cos’c?))n

for real t., t,, ©

12 bos by oo In this case.

]

(121) £{nn(1) 0, ny(2) =0, n (3),=0} =

1 2m 2m 2n n
t..) 4
(21:)3 (j; é é(costlcostzcos 3) ’r;ldtzd.’c3 ,

whence we obtain that

)2*]2‘?“]3-11‘ n=2m,

(122), L(

'le’{"rgn(?;) = 0}

0 S if n o= Zmtl

Here we used the notation O = (0, 0, 0) . By (61) it follows that

- , . 1
(123) P{n, (3) = 0} v ———
— e 2T — (mﬁ)j/Z

as m~»«, Since a return to the origin is a recurrent event, it follows
fran Theorem 3 that with probabllity 1 the particle returns to the origin

only finitely many times. To find the probability distribution of the

number of returns to the origin we should determine the sum

; L §
(124) P{n (3) = 0} = ——= [ [ = — dt.dt dt. .
n=o"~ n N (2")3 0 _O 5 1 CbbthObt2pOSt3 1772773

G. N. Watson [153%] showed that the right-hand side of (124) can be
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expressed as

. I
@]

3 = 1.39320 3929‘7 e .
Ly

(125)

Second, let us suppose that starting fram the origin in a three-
dimensional Euclidean space a particle- takes é sequence of steps and in
each step it moves in accordance with one of the twelve vectors: (+1, +1, C)
(+1, 0, #1) , (0O, #1, +1) with probability 1/12 . Let us suppose that
the successive displacements are independent. Denote by Mr}n(3‘) = (nn(l) s
nn(2)r’ nn(B)) the position of the particle at the n-th step. Now we have

? it n (1)+it,n_(2)+it_n_(3)

“1ln 2'n In -y _ 1

) 9 = e ) PO O n
{126) E{e 5 (costlcost2+ cost1c05t3+ poutevthB)
for real IZF 82, t3 . In this case
’ 1 21 2w 2n cost1cost2+costlcost,,+cost \,os‘c3 n
(127)  P{n (3) = 0} = — 3 / I( = ) dt.dt,d

e (ew)? 0 O

In a similar way as we proved (67), it follows that

| - 3/3
(128) Floon(3) =~ =575 -
Obviocusly, iy (3 =01 =0.

First, in (127) we can replace the damain of integration by

(129 D = {(ty, by t3): -2

no =
b
ot
~
fla
[\]{W¥]
B
-
=
1
[
-
[AY)
»
Lo
et

3 .



V~76

without changing the value of the integral. In this domain the integrand

in (127) equals 1 if t, =¢ =0 orif t, = t2 =t, =7 d

1° 8=t 1 3
has absolute value <1 otherwise, For a sufficiently small positive ¢
let us define Dy(e) = {(ty, t,, t3): |tkl <e for k=1, 2, 3} and

: ¥, .
D, (e) = {(ty, ty, t3): Itk—n[ <e for' k=1,2,3. Let D{(e) the

set of all those points of D which do not belong to Dl(e) or D2(e ) .

If n=2m and 1=1 or 1i=2, then

s ~ cost. cost,tcost. cost tcostcost, om
=t T3 2 3 4t atat, =
1 Di(s) 3 . 1 ‘2 3
(130)|
¢/m e/m e/m u. u u u u u, 2m
= ] [ / (%COS £ cos =2 + %-cos L cos 2+ %-cos -2 cos ) du
-evm -e/m -e/m /n /m ‘m mo - /m /m
_ 2(u +u +u )
v I ——;2%-——) duy duydu, {if e duydudu, = (35)

v %
as m~> <« , The integral over the domain D (e¢) tends to 0O as m-> = ,

Thus by (130) we obtain (128).

Accordingly, with prObability 1 , the particle retwns to the origin
only a finite number of times. - To find the distribution of the number of

returns to the origin we should determine the sum

[+]

L Pin (3) =0} =

- Wn
n=0

(131) op op 2n 4t dt_dt
R S [ I ' 1 2 3

(2r)3 0 0 0 1-4% (cost

costLtC st +costLcos
1 goug cost, co 5teos ‘Co%t3)
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G. N. Watson [15% showed that the right-hand side of (131) can be

expressed as - -
8

PRIEY
(132) ~g75 T = 1.3W466 11832 ... .
) 2.).. T[‘ .

" Further Results for One—Dimensionél Random Walks, A particle performs

a random walk on the x-axis. It starts at x=0 and in each step independently

of the others, it moves a unit distance to The right with probability p or a

unit distance to the left with probability g where p>0, g>0, and p+g=l. Dencte by.
Ny th% position of the particlé at the n-th step (n=1,2,,..) and let g = o .
Denot% by Ty the time when the particle returns to the initial position

for the k~th time (k =1, 2, ...) and let n=0C.

The differences T Teel k=1, 2, ...) form a sequence of mutually
independent and idenftically distributed random variables taking on positive

integers (possibly = ) . lLet

(133)

It
Cae
—

i
)

T T j

for j=1,2,... . Obviously, f2m+l =0 for m=0,l,... . Now we shall

_prove that

. = 2 (2m-2 m
(134) for = = (T (pa)
for m=1,2,..., and

(133) - - | L Ty, = i-[p-qf .



V-78

let u, = P{nn =0} for n=0,1,2,... . We have

1
_mymm _ [~ 2}, \m
(136) u, = (L paq = (In )\—Mpq)
for m=0,1,2,... and Ugeq = O for m=0,1,2,... . Furthermore,
5 T omommom_ 1

(137) Uz)= ] uz = ] (7)pqz

= n =
n=0 m=0 /1-4pq22

for |z] < 1.

(138) F(z) = § f.29
j=1 ¢

for |z] < 1. Since a retum to the origin is a recurrent event, we

obtaln by Theoram 5 that

. 1
(139)  F(2) = 1- gy = 1u-/1—upqz2 - [T 1( )(upqa "

for |z| <1 and by continuity (139) holds for |z| <1 too. Hence

1
. m-1 _ 2 (2m=2 Jm
(140) fon = (-1) ( )(4 Q)" = ) ()
if m=1,2,..., and f2m+l =0 if m=0,1,2,... . Furthermore, we have
(141) ¥ £ = F(1) = 1-/1-8pq = 1-|p-q]

j=1
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Accordingly, if p =4 , then {fJ.}' is a proper distrdbution. If
p # q , then {fj} is defective. The recurrence time may be « with

probability §p-q! . If p =g , then the expected recurrence time

(142) _ ) .=,
jzl J 4
. - ' 3/2 .
For in this case f2m N 2/mm s Or more precisely,
1 1
(143) —_ <2mf, < - -
(nl—' 2—_ an L4 (m—'l)'ﬂ
2
for m=2,3,... &
We note that
. kX 2wk, m
(144) (Lo, = 2mb = 555 (T (pa)’

for m=k, ktl,... . This can be obtained fram the generating function

(145) I Pir, = 2nz®™ = [F(2)TF = (1- /1-lpaz®)

m=1""

by Lagrange's expansion. If we take into consideration that for |z] < 1

the equation

(116) | Wo— 2w + lpgz® = O

has exactly one root w = F(2) in the unit circle |w| <1 , and we form

the Lagrange expansion of [F(z)]k for k= 1,2,..., then we obtain (144},
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In the particular case when p =g , we obtain easily from (144) that

i

2[1-@(x 2)] if x>0,

T
(147) lim P{-5 < x} =
k >k 0 if x20,

where ¢(x) is the normal distributioh finction defined by (35.18) .

Now denote by v (n =1,2,...) the nurber of returns to the origin

in the first n steps and let vo = 0 . Evidently we have {vn‘< k} =

{r,>n} for n20 and k20. Thus

(148) Plv_ <k =Plc_>n}

k

for n>0 and k> 0. The probability on the right-hand side of (148)
can be ohtained by (144) and thus the distribution of Vo is determined

by (148).

If, in particular, p = q , then we obtain that

2Il’1—1” ) 1
m 2m-r

(149) Blugy = 1) = () -

omtl = r} =£{v2m = r} ., In this case

for m=1,2,..., and obvicusiy Plv

the expectation of v, is given by

(150) E( vt = (l'

for n=0,1,2,... . For
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‘i‘ T o235, 1 If j(‘%‘
E{v } =E{v, } = u,, = z (%) == (-1) =
ol T 72m j=1 2] 551 3752 j=1 \ J ,’
_ m{~ 2. _ ,2m, (2m¥l) [ _ 2mtl, (2mt+2)
= (1) Km.'_l_(m)“zan -1 = m)22m+1 -1

for m= 1,2,... which proves (150).

Accordingly, we have the following interesting identity

(152)
: m
- am-ry 1 _ 2m, 2m+l
vyt = _Z rCn) T - () -
=0 2 2

for m=1,2,... .

If p=aq , then by (150) it follows that

~

b ! 5 "b .d__r_l.
(153) Edv ) -

as n -+« , and by (147) and (148) we can prove that

(154) lim P {

v, 20(x)-1 for x>0,
—< x} =
n>e /n

0 for x<0.

For by (148) we have

Vo ok e
(155) P{1<®y =p( =52y
~ /ﬁ — k2 k2

for any n>0 ad k>0. ILet x>0 and choose n and k such that
n~kx as k- e, Then kv/n/x as n>e . Ifwechoose n and k

in such a way, then by (155) we cobtain that
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]

(156) 11m P{Vﬁ <x} 1];2”?{ k12‘ S-xl—g-} =2 $(x) - 1

for x > 0. This proves (154) for x > 0., The case of x <0 is trivial,

" Finally, denote by An the number of positive elements in the sequence

ﬁl, ﬂ2, e ﬂn and let A = 0,

If p =
| 1
(157 NI:{A = > ';

for 0< j<n where ( ) = 1, More generaily,»if 0<p<1, then

1
=5 then we have

we have P[An = 0} = an(P) for n=0,1,2,..., and
{158) Ag[An =3}l =p aj-l(q) a -

for j=1,2,,..,n where .
=1

(51 n
(159) a () =1-p mL?o <2;'f> %%"

for n=1,2,,,, and 0<p<1l and ay(p) =L,
In what follows we Shall prove (158). Write ;E{An = 0} = an(p). Then

ao(p) =1 for 0<p<1l and by (10) we have
_ | _ ) _
(160) an(p) "Nf{ﬂr <1l for 0<r <n} ’,}’;U\n < 1) qi(nn < -1}

for n=1,2,,.. « Thus

n
E j AR
(161) a(P)—(l-P-) Z ()p Pt R
=0 - I\ 31

for n =1,2,... and (l6l) can also be expressed in the form of (159).

Furthermore, we have
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(162) Bl =nl=pa (@

for n=1,2,,.. which follows from the relations

P{A_ = n} = PN land M, -7, >0 for 1<i<n}-=
Ma I [ 1 1 - - -

1
(163)

=A£{n1 l}f{-ﬂrSO for 0<r<nmn-1} .

By Theorem 22.1 we have

asn) P(y = i} = B(a; = 5} B{a_, = 0}

A n-j

for 0< j<n and this implies (158).

If p=gq= %, then (161) reduces to

' nt+l
L[\ L[ L
(165) 0@ = ) 2a =\ men | 202
- 51) 2 57) 22

. and as a particular case of (158) we obtain (157).

If p=gq= %, then we have

Qo

A
(166) lim P> < x} =
n-ko e T

arc sin J/x

for 0<x <1, (See P, Erdds and M, Kac [170], and E. S. Andersen [158].)

We can prove (166) in the following way. By (61) and (165) we have the inequa-

lities

| > 2
asn Vo <2, -0 <\g

for n=1,2,,,. « Thus by (157) we get

1 —
(163) I B Y T | Yewrs)
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for 1< j<n,
If 0<a<p<l, then
B dx

. 1 1
(169) lim 5 () (ni-) = 1o nas?sns (3-1)(n=3) =<Jx“ -

D aa<j<nf

and this implies that

A B
17 dx 2
170 lim Pla < = < B} = = = S(arc si - in /o)
(170) nﬁ’“ < <8B ni l-x ﬂ:( csmA/ﬁ arc sin ,/

for 0<a<B<1l, Since (170) holds for all 0 <a<pB<1l, it follows
that (166) holds for all 0 < x < 1.
In the references of this chapter many other results can be found for the

random walk processes discussed in this chapter and for various generalized

random walk processes,
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38. Ballot Theorems. In this section we shall study various problems

connected with the fluctuations of election returns. ' Throughout this
section we assume that two candidates A and B run in an election and.
candidate A scores a votes, and candidate B scores b votes. We

assume that all the possible (a;b) voting records are equally probable.

The first ballot theorem was formulated in 1887 by J. Bertrand [163%].

He found the following result:

“eounting the number of votes registered for A 1s always greater than the

f

"nmnbe'&"of"vc)tes registered for B 1S given by

_ ab

- Proof.  Denote by N(a,b) the nunber of voting records satisfying

the requirements in Theorem 1, Then

N(azb) :
@0y
a .

]

(2) P(a,b)

~ J. Bertrand noticed that for a > b the function N(a,b) satisfies the

following recurrence formula
(3) © N(a,b) = N(a-1,b) + N(a,b-1)

where obviously N(a,0) =1 for a>1 and N(a,p) =0 for b =a .

We can determine N(a,b) for & >b by (3). The following table
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contains N(a,b) for a <6 and b <l .

N{(a,b)
&
bNl Ol 1123141516
0 - 1111111171111
1 -10{1i2}13t141]5
2 -] -1012]519 {14
3 -1 -1 -1015 114 {28
thd -1 -] =1=10{14 {42

We can easily prove that

- _ (atb-ly _ ,atb-l
) | N(a,b) = (%1271 - (3°h)

for a > b . Hence (1) follows immediately.

!Actﬁally, J. Bertrand did not prove formula (4); however he indicated

that probably there is a direct proof for (1). He was right. In the
r 4

same year D. Andre [160] provided a direct proof for (1). He reasoned

as follows:

Every voting record can be described by a sequence of a letters A

and b letters B 1f A stends for a vote for .4 and B stands for

a vote for B . The number of such voting records is (azF)
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D. André showed that the number of unfavorable voting records is

at+b-1
) 2(%770)
Thug i¥ follows that
' _ atb, . ,atb-1
(6) N(a,b) = (°77) 2327

which implies {1).

To prove (5) let us observe that the set of unfavorable voting records
is th? union of two disjcint classes: . The first class contains all those =
votiné records which start with a B . The second class contains all those
votiné records which start with an A and at least once the number of
lettérs B 1s equal to the number of letters A , if we count the letters

from the left.

There is a one—to—oﬁe correspondence between the voting records in
these two classes. This can be seen as follows: If a voting record
belongs to the second class, then counting the letters from the left, there
is a shortest subsequence which contains an equal number of letters A and
B . The last letter in this shortest sequence is necessarily B . In
this shortest seguence let us remove all the letters except the last B and
put them at the end of the record in the same order. Then we obtain a

voting record which belongs to the first class.

Conversely, i1f*a voting record belongs to the first class, then

counting letters from the right,‘there is a shortest subsequence which
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contains one more letters: A than B . The first letter in this shortest
sequence is necessarily A . Let us remove all the letters in this
shortest  sequence and put them at the begimning of the record in the same

order. Then we obtain a voting record which belongs to the second class.

1t is easy to see that this mapping is one-to-one, and therefore

both classes contain the same number of voting records. The first class

evidently contains (a+k;—l) voting records. Thus the total number of

at+bh-1

o ) which proves (5).

unfavorable voting records is 2(

%[t should be added that Theorem 1 can also be deduced from a result

of’ du:?bationn of plays which was found in 1708 by A. Pe Moivre [76 p. 2621,

|
and in a different form in 1718 also by A. De Moivre [ 77p. 121].

De Moivre did not give procfs of his results. Proofs for De Moivre's

results were given only in 1773 by P. S. Laplace [86 pp. 188-193] and

in 1776 by J. L. Lagrange [ 88 pp. 230-238].

This result is the following: Suppose that two players A and B
play a sequence of games. In each game, Independently of the others,'
either A wiﬁs a cpin from B with probability p or B wins ‘a
coin fram A with.probability q where p>0,q>0 and ptg = 1.
Suppose that A has an initial capital of a-b coins, and B has an
unlimited number of coins. De Molvre found that the probability that A

will be ruined at the (atb)-th game is

- : a-b ,8tb, ab
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(See formuls (36.42).) The probability that in the atb games A loses

a games and B loses Db games is

(8) | NGRra

The conditional probability that A will be ruined at the (atb)-th game,
given that in the (atb) games A loses a games and B loses b games,

is accordingly (a-b)/(atb) .

If we consider the (atb) games in reverse order, and a loss for
A corresponds to a vote for A , and a 1loss for B corresponds to a
vote for B , then we can see immediately that (a~b)/(at+b) is the

probability that A is leading throughout the counting of the atb votes.

We can use the same reflection principle in proving (1) as we used in
Section 36 in proving (36.42). Equivalently, we can prove (1) by using a

random walk interpretation.

Suppose that a particle performs a random Walk on the x-axis. It
starts_at Xx =0 and moves a steps to right and b .steps to the lefﬁ
in random order. FEach step consists of a unit distance displacement. If
every path has the same probability, then the probability that the parti¢le

never returns to'thekpoint' x =0 1s given by (a-b)/(atb) for a>b .

For the total number of possible paths is (a;p)

. . The rumber of

paths in which the particle never returns to the point x =0 1is
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atb-1 atb-l, _ a-b ,atb
(9) (a—l)—(a)_%(a)

which can be obtained by using the method of reflection., If a step to
the right corresponds to a vote for A and & step to the left
correspcnds to a vote for B , then it follows that (a=b)/(a+b) is

the probability that candidate A - leads throughout the counting.

For other proofs of (1) we refer to J. Aebly [155], D. Mirimanoff [181],

‘A, Aeppli [157], P. Erdds and I. Kaplansky [171, and H. D. Grossman [173],

The following result is an easy consequence of Theorem 1.

Theorem 2. If a > b , then the probability that throughout the

' _ a(+l-b
(19) Q(a,b) = =T

“Proof. We have the obvious relation

atl

(11) : P(a+1,b) = ETI-_ZLTE

Qa,b) .

‘For if we add one more vote for A to the atb votes, then the probability
that A leads throughout the counting is P(atl,b) = (at+l-b)/(atl+b) .
Since A leads throughout:the counting if and only if the first vote is
for A , and even 1f we disregard this vote, he never loses throughout

the counting. Thus we obtain (11}, whence (10) follows. Conversely, (10)

implies (1) too.
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If we interpret the process of counting as a random walk, then
Q(a,b) 1is the probability that the particle never reaches the point

x = =1 . By using the reflection principle we obtain easily that the

atb atb
( a ) - (a+l

number of possible paths, (a,zb) , then we obtain (10).

number of favorable paths is ) . If we divide this by the

The proof of Theorem 2 can be deduced from a combinatorial result

which was found in 1879 by W. A. Whitworth [194. See also W. A. Whitworth

['1,97]& Chapter V, and P. A. MacMahon [179, [18Q.

| , |
; P'_n 1887 E. Barbier [161] generalized Theorem 1 in the following

way:

Theorem 3. If a > ub where u 1s a nomnegative integer, then the

Cprobability that throughout the counting the number of votes registered

for A is always greater than u times the number of votes registered

“'for B 'is given by

a~ub
- (12) P(a,bsu) = 25~

-and the probability that the number of votes registered for A is always -

at least p times the number of votes registered for B 1is given by

atl-ub

(13) | Qa,bsu) = E2P

" "Proof's Since we have the obvious relation
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a+l
(14) P(atl, bju) = i Q(a,bzu) ,

it is sufficient to prove one of the two formulas (12) and (13).

Let us prove (12). First, more generally, we suppose that u is a
normegative real nmuber, and then we consider the particular case when

r

¢ 1s a nonnegative integer.

Denote by N(a,bju) the number of voting records which satisfy the
réquirements that throughout the counting the number of votes registered
for A is always greater than the number of votes reglstered for- B .

If gf_’ > bﬁ , then we have
(15) N(a,b;u) = N(&-1, bsu) + N(a,b-1;u)

whefe obviously N(a,03u) =1 for a>1 and N(a,bsu) =C for a = [bu] .
The equation (15) is obvious, it reflects only the fact that the last vote
counted may be either a vote for A or a vote for B ., We can

obtain N(a,bju) recursively fram (15) if take into consideration the
boundary conditions N(a,0z;u) =1 for a >1 , and N([bp], bsu) =0

for b > 1. The following table contains N(a,b;2) for a < 8 and
bsh.
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Nftoll
‘!o -l
i!l - |-
HEE
3“.. -
b t-t=t=-1]~-1-1-1{-10

The general solution of the difference equation (15) which satisfies

the'boundary conditions N(a,O;u) =1 for a>1 is given by

b
(16) Nea,bsu) = [ 0,0 (*pT5)
- where C, () =1 . (See Ch. Jordan [331] p. 607.) The constants Cj(“)

(G = 1 2,...) are determlned by the boundaly conditions

an N(Crul,em) = T C.(u )(fr”7+r"1‘3>
j=0

for r=1,2,... . Thus we obtain that

b _’(aﬁb-@—j)' (b
(18) P(a,bzu) = § C,(n) b= = Z C.(u) —=——
j=0 J (a:?) aﬁb 3520 J (a+? 1)

for a z bu where Cy(u) =1 and C; W) (5 =1,2,...) are determined

by (17).



V=9 4

If, in particular, p is a nomegative integer, then by (17) we
obtain that CJ.(u) = -y for j=1,2,..., and in this case (18) reduces

to (12).

In the general case Cy(w) = -[ul , C,(u) = -[2u](1-2[ul+2ul)/2 ,

and so on.

2

The first proof for (12) was given only in 1924 by A. Aeppli [157].

Other proofs for (12) were given in 1947 by A. Dvoretzky and Th. Motzkin

[66], in 1950 by H. D. Grossman [175],

in 1961 by S. G. Mohamty and T. V. Narayana [18%], and in 1960 by the.

author 1917,

© Theorem 3 is a particular case of the corollary of Lemma 20.1 . This

can be seen as follows:

Let us suppose that a 'box contains a cards marked by | O and b
cards marked by utl . We draw all the atb cards from the box without
replacement.. Suppose that all the possible outcomes are equally probable,
Then P(a,b;ﬁ) can be interpreted as the probabllity that for every
r=1,2,..., atb the sum of the first r numbers drawn is less than r ,
and Q(a,bsu) , as the probability that for every r = 1,2,..., atb the
sum of the first r numbers drawn 1ls less than or equal to r . For if
among the first r drawings there are o, zeros and 8., (u+l)'s , then
0,0 + 8,(w1) < o+ B holds if and only if a, > B0 and o0+ 8 ()

2 dr+ Br holds if and 'only if @, 2 Brﬁ . Thus by Lemma 20.1 we obtain that

b(p+l)

(19) Pla,bsn) = 1- —5
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if a > bp and u is a nonnegative integer. Formula (13) follows

immediately from (12).

The problems discussed above can be considered as particular cases:

of the following more general problems:

As pfeviously, let us suppose that in a ballot candidate A scores

a votes and candidate 'B scores b votes and that all the possible

a voting records are equally probakle. Denote by o, and Br the

mmber of votes registered for A and B respectively among the first

r votes recorded. Denote» by -Pj(a,b;u) the probability that the
inequality « e uBr holds for precisely J subscripts r =1,2,..., atb
and by Q;(a,bsu) the probability that the inequality o, 2 u8, holds

for precisely Jj subscripts r =1,2,..., atb ., Here u 1is a nonnegative

real number.,

It has same importance to find the probabilities

(20) . PJ. (a,bsu) =le{ar > B, for J subscripts r =1,2,..., atb} .
and
(21) » Qj(a,b;u) =£{ar 2w, for j subscripts r =1,2,..., atb}

for J=0,1,..., atbh .

If we denote by Nj (a,bzu) the number of voting records satisfying
the condition o« > u, for precisely Jj subscripts r = 1,2,..., atb ,
then
‘ 7 Nﬁ' (a,bju)
(22) Pj(a,b;u) = -

atbh
&)
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and if Mj(a,b;u) denotes the number of voting records satisfying the

condition o, 2 w8, for precisely j subscripts r = 1,2,..., ath ,

then
Mj(a,b;u)
(23) : Qj (asb;U) = —(—a—‘l‘b) .
a

We shall determine the probability distributions {Pj(a,b;u)} and
'{Qj(a,b;u)} in two particular cases when either u 1is a positive integer

or p = a/b .
The following theorem was found in 1964 by the author [1941. -

i\ ,atb=]
CHIGARS
(24)  P,(a,bsu) = ] D=5 " p (ate~J,b-s3u)P.(I~5,s;5u)
bl J 5™ —j—— (3.+b) O ~ 3 s j o F R |
0O<s< = a

“for J =0,1,..., atb where

: : ) = 1 2t 1 suts+l, ,atb~sp-s-1

(25) Folasbsu) =1 (&'D) 'Xa+b~ sl (s 00 s )

a ’ Ossg T :

for aguwb and Py(a,bm) =0 for a> ub , and

(26) P, (a,b3u) = 22

for a>ub and Poip(@05u) =0 for a<ub .
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Proof.  Define the random variables v, (r =1,2,..., atb) in

the following way: v, = O 1if the r-th vote is cast for A and v, = (u4l)

if the r—~th vote is cast for B . Set Nr = vy

and NO =0 . Now Vis Vgsress Voo are interchangeable random variables .

+ooot vy, for r=1,2,..., atb

taking on nomnegative integers and satisfying the condition v.,+ v + ...

1 2

+ Vosp = b(u+l) ., We have -

‘ a.,b i, ,at+b-i
| , | C(50Q) QD
27) A{E{Ni = s(utl)} = T =5

(<.7) (<.7)
i : a
for  § = 0,1,..., min(i,b) and P{N, = j} = O otherwise.
If we use the above rotation then we can write that

{28) Pj(a,b;u) =~I:{Nr <r for J subscripts r = 1,2,..., atb}

for J =0,1,..., atb . Since N, = Br(wf—l) and r = ot B, for
r=1,2,..., atb , it follows that the inequality o, > B, holds if and

only if N, < r . This proves (28).

By Theorem 22.1 we can conclude that the probability that Nr <r
for J subscripts r = 1,2,..., atb 1is the same as the probability that
‘the first maximal element in the sequence r-Nr (r = 0,1,..., atb) 1is

J-N Accordingly, it follows that

j L]
Pj(a,b;u) =le{f"Nr, < j-NJ; for 0gr<j and r-Nrf__j—Nj for j<rzatbl}
(29) B ‘ N
= )} P{N, = s(uL)IPIN,- N < j~r for O = r<j|N, = s(u+l)} :
. Sﬂm dJd ~ o d iy =" J

* P{r-j < N~ N, for j<r<atb|N, = s(u+tl)} .
~ =r" % =t = J
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By using the representation (28) we can write (29) in the following

equivalent form:

b
(30) P.(a,bsu) = § P{N, = s(u+1)}P.(j-s,s;u)P (ats=j,b~s;u)

where J = 0,1,..., atb . By (27) this proves (34).

If j =atb in (28) and if we take into consideration that

N, = b(uw+l) , then by Lemma 20.2 it follows that
| Pa+b(a,b;u) =N§{Nr <r for r=1,2,..., a+b|Na+b = b(p+l)} =
1 b(utl R '
3 Rt L REE
o if bu2>2a.
(We note that PO(O,O;u) = 1.) This proves (26). Obviously Pa+b(a,b;u) =

P(a,b,u) defined by (12). Accordingly, in formula (245 we can write
PJ (J=s,83u) = (J-su-s)/J if s(ptl) <j and Pj(j-s,s;u) =0 if

s(utl) > 3 .
i

It remains to find P(a,b,3u) . By Theorem 20.2 and by (28) it

follows that

Po(a,b;u) =P{r-N,<0 for r=1,2,..., atb} =

r
»a&b 1
=1 - le Z PN, =41} =
(32) - '
. . E O _ .
=] - %j-b-l ‘mﬁﬁ?—i{NS(U‘Fl)'Fl = S(le)} °

<8< =
=S ptl
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Finally, (27) and (28) prove (25). In formula (24) we can express

Polats-j, b-s; v) by (25).

By (24) we obtain the following relation for Nj(a,b 3 ﬁ) defined
by (22):

(33) Ni(a,b;u) = ) No(a+s-~j, b-s)NJ.(j—s,s) .

s< —J
Oss< o4y

In same particular cases formula (24) in Theorem 4 can be simplified.

The following theorem contains some particular cases of (24),

1

"'J}[heorem 5. Let u be a positive integer. If a > ub+l , then

!

| . 1 (a-bu-1)  suts, atb-si-g-2
(34) Pj(a,b,u) a+b) a+b_§_ S(0-5) (S 1 ) ( beg-1 )
D

" for § = 0,l,..., atb-1 , and P_, . (a,bsu) = (a-bu)/(atb) .

atb

If a= ‘ub-l-l » then

1
(35) Pslasbsu) = o35
Cfor J =1,2,..., ath .
If a = b, then
1 v 1 ,su+s a,+b-sﬁ—s-l
(36) P (8. b,u) -L" ‘—a}‘s‘)“ La+ ., 3 S—l )( b_s )
a ’ Ossg =
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o %) . = 1
(5/) lj(a3b3~1-‘)" 24D

su+s) (a+b-su--s-2)

) (
atb-j-1 s( b—s ) be-s~-1

)O<s< L

fOI’ j = 1,2,-.0’ a+b_l .

" Proof., If we apply Theorem 26.1 to the random variables Vs Vosreess

Voth and if we use (27) then (34), (35), (36) and (37) follow immediately.

Formulas (34) and (35 ) were proved in 1963 by the author [193], and
formu.FLa ( (36) in 1964 also by the author [194].

Kow let us determine the probabilities QJ.(a,b su) for j = 0,1,.., ath .
We can determine Qj(a,b;u) in a similar way as Pj(a,b;u) . See the

author's note in [194] . The details can be found in [ 63] .

‘Theorem 6. = If u is a nomnegative integer, then we have

TG
(38) Qj(a,b;u) = Z,‘. .—_"25;53——'Qo(a+s-j’b'S;u)Qj(j_S’S;U)
cac —d_ '
for J =0,1,..., atb where
. - b 1 ' 1 suts~1l, ,atb-su=-s
(39) Qo(a’b’“) atb (a+b) 5 z +o (usts=1) ( S ) b3 )
a <8< aro
ut+l == pt+l

for a < bﬁ and Qo(a.,b;u) =0 for a2>bu, (QO(O,O;u) = 1) » and
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N 1 (a+l-bu) ,suts-l,, atb-sy-s-1

L) 2 . @b
RERTES ut+l
for azbuand Q. (absu) =0 for a<bu.

" 'Proof. Define the random variables Vis Voseess Voo in exactly

the same way as in the proof of Theorem 4. Then we have

' = _ 8" b-8
(4 2 = i) = S
a

_ for fL;ig__aﬁLb and

i, /k-i, atb-k
. | . hydy vk,
(ha) BNy = surl), N = e(utl)) = )
| a

for 1212k g atb.
By using this notation we can write that
(43) Qj(fa,b;u) =£{Nr sr for § subscripts r =1,2,..., atb}

for j =0,1,..., atb . Since N, = 8.(utl) and r =atg, for

r=1,2,..., atb , it follows that the inequality a, 2 u8,, holds if

and only 1f N, <r . This proves (43).

By Theorem 22.1 we can conclude that the probability that Nr r

ka

for J subseripts r = 1,2,..., ath 1is the same as the probability that
the last maximal element in the sequence r-N, (r =0,1,..., atb) 1is

j-N  Accordingly, it follows that |

5
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Qj(a,b,;u) =,\E{P'Nr < j—NJ. for O<r<j and r~Nr < j-—NJ. for j<r<atb} =

b .
= ¥ P{N,= s(p+1)}IP{N,~ N < j-r for Oz<r< jIN,=s(ut+tl)} *
:é‘" M J r = = = J

* P{r-j < N~ Nj for j<r ;zaﬁb{Nj = s(p+l)} .

By using the representation (43) we can write (44) in the following equivalent

form

b
i (Ll'5) Qj (agb-pu = EoMIi{N = S(u+1)}Qj (j“S,SSH )Qo(a+s—j ,b"'s§1l)

where j = 0,1,..., atb . By (U41) this proves (38).

If we prove (39) and (40), then Q (a,b 3 ) is completely determined
vy (38).

If j = atb in (43), then by Theorem 20.1 it follows that

<r for r=1,2,..., atb} =

(46) '
atb-1
- (atl=bu) -
=1 zél Tatbt) ity = &+

for a > bu and Q b(a bsu) =0 for a < bu . By_(lll) this proves (39).
If =0 in (43), then by Theorem 26,4 it follows that

Qo(aqb su) =AE{NP >r for r=1,2,..., ath} =

(47) |
= ) 1T - - = = 1
POL > 1 - [ Sy PO <0 and Ny =1

If a2 bu , then obviously Qo(a,b; p) =0 . By (42) this proves {(40).
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By (38) we obtain the following relation for Mj(a,b; u) defined

by (23):

(48) Mj(a,b;u) = 3 Mo (ats-], b—s)Mj(j—s,s) .

O<s<

u+l

In some particular cases formula (38) in Thecrem 6 can be simplified.

The fcllowing theorem contains some particular cases of (38).

" Theorem 7. Let uw be a positive integer. If | a > ub , then

Qs(asbsu) = 0 for J < a-bu

e | 1 ’ (a+1l-bu) Su+s a+b-su—s‘
nay . = —
(497 Qj(a’b’U) (a+b)'a+b+l—' (suts-1) (atb-us~s+1) ( S ) b-s
a / E2) sep :
ptl ==
- for a—-b;i <J<atb, and
: .y = atl-bu
(50) Qa+b(a,b,u) t1 o
If a= bﬁ-l , then
(51) Q,(a,b51) = e
j 3~ a+b

for J =0,1,..., atb-1 ‘and Qa+b(a,b;u) =0.

Proof.  If we apply Thecrem 26.3 to the random variables VisVoseresVou

and if we use (41), then (49) and (51) follow immediately. By Thecrem 26.3

we ob*cain that
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, N 1 (a+1-byu) su+s, ,ath-sp-s
(52) Qa+b<a’b’”) = 1- atb, ) (atb-su~s+l) ( s )( b~s )
(a)-—-—2 <s<b

pt+l ==

for a2 ub . On the other hand by (13) Q_, (a,b31) = Qla,bsu) =

(a+1-bu)/(a+l) which is an interesting identity..

For the proofs of (49), (50) and (51) we also refer to 0. Engelberg

[167] and the author [19%1, [63 ] .

Finally, we shall consider the problem of finding the distribution
{Pj(a,b;u)} in the case when u = a/b . Obviously Pa+b(a,b;u) =0, If
we know {Pj(awb;u)} , then {Qj(a,b;u)} can be obtained immediately by

using the following relation

(a,byu)

(53) Qj(asb;U) = Pa+b—3

which holds for j = 0,1,..., atb and u =a/b .

The identity (53) follows simply by symmetry. For if u = a/b , then
we cén interpret Pj(a,b;u) also as the probability that a, < asr/b holds
for exactly j subscripts r =1,2,..., atb . Accordingly, if Qj(a,b;u)
(where u = a/b) denotes the probability that the inequality a, ;:asr/b
holds for exactly Jj subscripts r = 1,2,..., atb, then we have Qj(a,b;p) =

Pa+b_j(a,b;u) whenever u = a/b -

In the particular case when a.  and- b are relatively prime integers
and u = a/b the problem has a simple solution which was found in 1954

by B. D. Gressman [177] . His result is the following:
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Theorem 8, If a and b are relatively prime positive integers,

“and u =a/b , then

1
(54) _ Pj(a,b;u) iy

’ fOP J. = O,l,,oos, a.+b_l . '

e e

~Proof.  We shall prove that Q,(a,b;u) =1/(atb) for j =1,2,..., aib
which is equivalent to (54). In proving this statement we shall use
Lemma 26.2 . Since (a,b)b= 1, we cén choosé two positive integérs P
and such that ap-bq =1 . Define the random variables Y1s y2,“;, Y ot
as follows: Y, =a if the r-th vote is cast for A , and Y, = -p i |
the r~-th vote is cast for B . Then Y15 Yoseoos Youp are interchangeable
random variables taking on integers only and satisfying the condition
Yoteoot Yorp = 1 . Now a, ;=a8r/b holds if and only if o, > psr/q , or

equivalently, Yl+...+ Yp > 0 . Accordingly

(55) Qj(a’b;u).=AEFYl+"'+ Y, > 0 for Jj subscripts r =1,2,..., atbl}.

By Lemma 26.2 it follows that Qj(a,b;u) = 1/(atb) for j =1,2,..., atb .

This completes the proof of (54). (See alsc the author [192], [€3 1.)

If w=2a/ and a and b are not relatively prime, then it is-
more complicated to find {Pj(a,b;u)} . The degree of difficulty increases accordi

to the magnitude of (a,b) .

Let us mention briefly the historical background for finding

Pj(a,b;u) in the case when u = a/b . In 1950 H. D. Grossman [17€]
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published a conjecture concerning Po(a,b 3u) . Grossman's formula was

proved in 1954 by M. T. L. Bizley [164] . In the same paper Bizley found

also Pa+b_l(a,b;u) . In 1965 M, T. L. Bizley [165] made a conjecture

concerning the gneral form of Pj(a,b;u) for j =0,1,..., atb . (See
also the author [63 ].) Bizley's formula for Pj(a,b ;u) was proved in

1969 by the author [195]. '

In what follows we suppose that

S8

- (56) po=

|
wherel m and n are relatively prime positive integers and we shall find

|
the probabilities
(57) PJ-(M, kn; v
for k=1,2,35c00 &

Throughout the remaining of this section we assume that m and n
are fixed relatively prime positive integers and k varies through the

set of positive integers.
Let us write

NJ.(km, kn ;o)
(58) By (lm, o 5 w) = T T

km

for j =0,1,..., atb , and k = 1,2,..., and let Ny(0,056) =1 .
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‘Theorem 9. If uw = m/n where m and n are relatively prime

........

(59) N, Gan,knsn) = I NolemsnqdNy oy o ((kmsdm, (s )ngu)
4 O<g<k — —9—

for J =0,1,..., kimn)-1 . Here Ny (0,05u) =1.

Proof. let us define the random varisbles &, (r=1,2,..., k(mn})

in the following; way: lLet gr =n 1if the r-th vpte is cast for A and

g = -m 1if the r~th vote is cast for B . The random variables ¢

r r

(r=1,2,.0., k(m+n))» are interchangeable and their sum is O . Let

g, = Epte v &, for T =1,2,..., k(mn) and g = 0 . By using this

r

notation we can write that
(60) Pj(m,lm;u) =,E{Cr' >0 for j subscripts r=1,2,..., k(min)}
for J =0,1,¢.., k() . Evidently PJ. (km,knzu) = 0 if Jj = k(mn) .

By Theorem 22.1 we can conclude that the probability that ¢ > O
holds for exactly J subscripts r = 1,2,..., k(mn) 1is the same as

the probability that the first maximal element in the sequence .,

g

(r =0,1,..., k(mn)) is ty - Accordingly, it follows that

(61) Pi(lx;m,Lm;u) =Pt <t for O<r<j and ¢, 2 ¢; for j crek(mn)}

J J

for j =0,1,e.., kK(mn) . If J = k(mn) , then (61) is C .-

For j ;-'0,1,“5, k(mn)-1 we can write that
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(62) P (imkny) = Plg; <O for O gi<k(mn)-j and ;<O for k(mn)-j <

rn L=
i< k(mn)} .
If j =0, then (62) is precisely (61). If O < j < k(mn) and in (61)
we replace the randc.m variables &y,...y £ys 854122 Sx(min) by
gk(m+n)+l-_—j”'°’ gk(m_+n)’ Eiseees gk(m&n)—j respectively, then Pj.(lqn,kn;u)

remains unchanged, and the right—hand"side becomes (62). This proves (62)

fOI‘ j = O,l’-oo, k(m+n)"l .

If 5 = 0,1,..., k(mtn)~1 and the event on the right-hand side of
(62) occurs, then there isan i (0 <1 < k(mtn)-j) such that z; =0 .
Denote by r the largest such 1 . Then necessarily r = (mm)s where-

0 < s < (kntkn-3)/(mn)  and furthermore g, <0 for s(mn) <1 < k(mm) .

Accordingly,
PJ.(km,kn;u) = ) —LE{Ci <0 for Ogigs(mmn), Cs(m%-n) = 0, g < 0
_ O;_S<k— T o
(63) for s(mn) < i < k(mn)}
= ) = 0O} <O £ < = 4
I Plog () = OIB{g; <0 for Ogd ;S(m+n)|cs(m+n> 0}
Oss<k- —— ‘ -
* P{g; <0 for s(mn) <1< k(mn)lz 0}

s(mn)
for j =0,1,..., k(mn)-1 . By using the representation (60) we can

vrite (63) in the following equivaient form:

sun) ~ O Folemsnin) ©

_Pj(km,kn;u) = R 3£

O< 8< k_.. ._l..
= min
(64)

. P(k—s) (m+n)—l( (k=s)m, (k-s)nju)
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for J =0,1,..., k(mtn)-1 where PO(O,O;u) =1, In (64)

(sm+sn) ((k~s)m+(k—s)n)
(65) AE{CS(IH‘{"H) = 0} = S kIn-HE;{l"S)m ,
Cym

and if we multiply (64) by (lmmr;m) and 1f we use the notation (58),

then we obtain that

(66) Nj(krn,kn;u) = T - Ny(sm,sn3u)N ((k-s)m, (k-8 )n;z1)
‘ © Ogs<k- 93—
= m+l

(k=s) (min)-1

for J =0,1,..., k(min)-1 where NO(O,O;u} = 1 ., This completes the

procf| of Theorem 9.

!
For fixed positive integers m and n let us introduce the abbreviation

| _ kirkn
<67} » Ck - ( km )

for k=1,2,... . The generating function

-]

X (km-i-lm) Z
=1 km k (mrtn)

(68) - c(z)

is convergent if |z] <p =m" n'Y (mtn)™ 1

Theoren 10. If pv=m/n where m and n are relatively prime |

" positive integers, and k = 1,2,..., then we'have

- (69) Pylmnzu) = oo L Uy Vo
( km ) O<s<k- —J_
= 1
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(km,kn;u) = 0 . Here U

for § =0,1,..., klmin)~1 and By L (=0,1,...)
‘and V. (k= 1,2,...) are given by the generating functions
(70) uz) = [ U & . L(2)
- ¥=0
- and
(71) Vi{z) = z Vk Zk - 1_e-C(Z)
k=1

which are convergent for |z| <o .

Proof. For fixed m and n 1let us introduce. the notation

(72} _ U, = Ny(km,knju)
for k= 1,2,... and let U, = NO(O,O;u) = 1 . Furthermcre, let
(73) Vk = Nk(m+n)—l (km:lm;”)
for k =1,2,... . Then (59) can be expressed as
(74) | N, G nze) = ] j UV,
Ozs<k- =

fOI" J’ = O’l,o.o, k(rﬁ+n)_1 . »

If we add (74) for J = 0,1,..., k(mn)-1 , then on the left-hand
side we get the total number of voting records, @gkn) = k(mm)ck , and
therefore

k-1

- N
(75) kC, = ] (k-s)U; ¥
s=0
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for k=1,2,00. « If j =0 in (74), then we get
kil
(76) U = § UV _
k 520 ° k=-s

for k=1,2,... o

If we form the generating functions of (75) and (76), then we obtain that

(7 C'(z) = U(z)V'(2)
and ' ’ _ .
(78) L ©U(z)-1 = U(z)V(z)

for lzl <p, The generating functions are convergent for |z| < p because

evidently U, <kC, and V, <C  for k= 1,2,... « By (77) and (78)

k
Ut(z) = UN(z)V(z) + U(z)V'(z) = U'(z)V(z) + C'(z) , that is, C'(z) =
= Ut(z)[1-V(z)] . Hence U(z)C'(z) = U'(z)U(z) - [1-V(z)] = U'(z) , that

is,

(79) U'(z) = C'(2)U(2)

for |z| < p and by definition U(0) = 1 . The solution of this differential
equation 1s given by

(80) U(z) = e°(2)

for |z| £p . Consequently, by (78)
@y V(z) = 1-e"C()

for

—
A
©

km+lkn

If we divide (74) by ") ,

-then we obtain Pj(lan,}m;u) for -
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3=0,1,0..5 k(mn)-1 . This completes the proof of the theorem.

Our next aim is to find explicit formulas for U (k = 0,1,2,...)

and V. (k = 1,2,...) « Then Pj(km,kn;u) can be calculated explicitly

for j =0,1,..., k(mn)-1 by (69).

If we form the pbwer series expandions of (70) and (71), then we

obtalin at once that

o
. C17 Cymeen G
(82) - U™ i ) i me LTI
ll 12 oco+ -k_ l 2 k
and
' i i i
RN 1 .72 k
. _ . ll+12+o'.+j-1{""1 Cl (42 e e C k
(83 v = ) (-1) RN 11
i 423 +...+Ki =k 1" —2°°*° k7
1 2 k

for k=1,2,... .

These formulas have the disadvantage that if Kk increases, the

number of terms in the sums increases tremendously.

In what follows we shall give another method of finding Uk and
Vk for k=1,2;000 ‘I‘his method can be applied equally for smsll and

large. k values.

Theorem 11, If |z| <p , then we have

. , n
CONEES U(z) = 1 y(e 2™
r=1

“and
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n -1
(85) V) = 1o 1 Cr(e 2

r=1
vhere e = L2mri/mn 1,2,..., n) are the n-th roots of unity and

L) ) 3

¢ = 2 (mn) +d oz
(86) - [v(=2)] = 1 921( n )Wm+n)+a
L

- for any o .
Proof. Let us consider the equation
@n 1-wh ™ =0

"and denote by w = y(z) that root of this equation for which v(0) =1,
If |z] <o , then we can expand [y(z)]® into the power series (86).

(See L. Euler [21] and G. Pdlya [50 1.) From (86) it follows that

. SR 27050 o N T e W
(88) Logy(z) = Iim === = gzl( n ) ey
L
and
( 89) ‘%11,( 1/n)_§(lqn+lm zk PN
9) . ogy (e 2z = - )m—ckz/

r=1 k=1

for |z| <0 . Accordingly,

, | . y
(90) C(z) = ] logy(e z’™)
r=1 .

for |zl ;'p in formulas (70) and (71). Hence (84) and (85) follow.

This completes the proof.
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Note. By (86) it follows that

l/n a "‘f‘ kmtkn+ I'—l. . U.Zk'
(91) (Z)'E[\(e& =0+ ] H—E—
r=1 k=1 ket

for any o and |z '; p . If we apply Waring's formula, then we obtain

jmnediately that

n

a
(92) - 1 Cy(e /™1 =
r=1
i 12 i
; (l)il-i-lz SR [Sa(z)] [S,,(2)] “..ul8,,(2)1 "
=, . - i, 1 i
J.l+212+...+n1n=n .l ! ...1 12 2 3 3.” .

where 1= 0,1,2,... . (See Problem 40.4,)

The generating functions U(z) and V(z) can easily be obtained

fram (92) by putting o« =1 and o =-1 in it.

Fxamples. If n=1, then U(z) = y(z) and V(z) = 1-[y(z)]"

and by (86) we obtain that

- k(m+1)+1 1

(93) U, =« X )Em
and
(9t) S L5 D N |

k k k(mtl)-1

for k= 125000 &
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1 1 L P |
If n =2, then U(z) = v(z2)v(-z°) and V(z) = 1-[y(z°)y(-2z°)]

and by (86) or by (92) we obtain that

gk (-1)* ﬁ- 1(mrt2)+ %— %(2k~i)(nﬁ-2)4v ~21~
(95) Uy = izo DT ¢ 1 00 o )
and

S (-t | 3 1(mt2)- % %(2k—i)(nﬁ-2)— %
9 V= L meeareneoar ¢ 1 00 s O

for k=1,2,... .

|

#[‘hese formulas meke it possible to find Pj(k:rn,kn;u) for 3 =0,1,...,

k{m)~1 if uw=m/n and either n=1 or n=2, and m is an odd

integer.

Finally, we mention briefly a result concerning the asymptotic behavior
of Pj(lm,kn;u) as k » o . Let us denote by 8, (m,n) the nuwer of
subscripts r = 1,2,..., k(mmn) for which o, > msr/n if candidate A
receives a = km votes and candidate B receives b = kn votes. If

O0<x<1, then we have

Ak(m,n)

(97) Lim P { -5 ——

k—)-oo

<X} =x.

For the proof of this result we refer to [195] .
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39. Order Statistics. The objective of this section is to discuss

various approaches for the solutions of two main problems in the theory

of order statistics.

The first problem 1s as follows: We have m independent observations
Xq5 Kpseevs X oON A random variable £ . | The distribution function
'Mli{g & x}  1s unknown. It is to be decided whether or not the observations
Xys Xpseers Xy are compatible with the hypothesis that E{E’ < xb o= F(x)
where F(x) is a specified distribution function.

$uch problems arose in the middle of the nineteenth century in

|
comegtion with the normal distribution function

|

x -

(1) B(x) =— [ e % au.
_ o B _
The normal distribution has appeared in several instances in the Theory
of probability and achieved some kind of general recognition. First in -

1733 A. De Moivre [18 ] showed that the normal distribution is a good

approximation for the Bernou 111 distribution. In 1782 P. S. Laplace

: [%7 ] demonstrated the usefulness of the normal distribution in the

theory of probability. In 1812 P. S. Laplace [ 39] showed that under

suitable normalization the sums of mutually independent and identically
distributed symmetric random variables taking on inkeger values have a
limiting normal distribution. In 1809 C. F. Gauss [ 27] demcnstrated that

the distribution of errors of observation is normal if we assume that
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the arithmetic mean of the observations is the most probable result.

(See also W. F. Bessel [10 J, R. L. Ellis [201], A. Cauchy [ 14],

) 7 . :
M. W. Crofton [16 1, and G. Polya [52 1.) It should be noted that in

1808 R. Adrain [ 3 ] gave an obvicusly inadequate explanation for the
appearance of the normal distribution in the theory of errors of'
observation. 'Thus the priority of R. Adrain over C. F. Gauss which

C. Apbe [1 ] claims is unjustified. In 1846 A. Quetelet [312] analysed
various ;statistioal data and illustrated, for example, that t_he
distribution of chest measurementvs of 5 ,738 Scotceh soldiers and the dist-
ribution of heights of lO0,000 French conscripts fit the normal distribution.
In 1884 F. Galton [ 26] compared the distfibution of several physical
charac’ﬁeristics of a group of people‘ with a normal distribu‘cion and found
good agreement. There were, however, examples for asymmetric distributions
which of dourse did not fit a normal distribution. In 1895 K. Pearson
[305] classified asymnefric distributions and introduced six basic types

which would fit many non-normal distributions. In 1903 J. C. Kaptemi B4 ]

expressed his view that the normal distribution is exceptional and most of

the observations have an asymmetric distribution.

These scientists used the method of moments in fiﬁting distributions
tb eﬁxpirical observations., First, they chose a suitable type of
distribution which depends on a few parameters, and then they determined
the unknown parameters by requiring that the same number of moments of
the hypothetieal distribution and of the observations be equal as the

number of unknown parameters. The problem arises naturally to measure.




V-118

the accuracy cf this approximation. To answer this problem in 1900

g( Pearson [(308] invented the method of X2 which preovided a solution

for discrete distributions. For continuous distributicns the method

of _x2 depends on the way in which the observations have been g:;fduped.
This defect necessitated the introduct'ion of some general measure for
th;é,discrepancy between the empirical observations and the _hypothetical

distribution.

To introduce a measure between the empirical cobservations and the hypo-
thetical distribution 1t is convenient to define the so~called
emﬁﬁ'%.cal distribution function. If we have m observations
xl,xz, ces Xppos that is, a sample of size m , then let us define
Fm-(b(—) " as the number of observations g x divided by m . The function Fm(x)
defiﬁed fbr' —» < X < @« is the empirical distribution function cf the
sample (x4, Xpseees xm) . If F(x) is the theoretical “(hypothetical)
distribution function, then f_‘or example ‘

(2)

- ey 12
o, =m -{o [Fm(x) - F(x)]%ax
can be considered as an adequate measure of the discrepancy between Fm(x)

and F(x) . The smaller o, the better the agreement.

The distance (2) was introduced in 1928 by H. Cramér [224] for
F(x) = ¢(x) and in 1931 by R. V. Mises [299pp. 316-335] for any F(x) .
We can use G defined by (2) in testing the hypothesis that ﬁfi < x} = F(x)

vhere F(x) is a specified distribution function. Knowing the sample

(xl, Xgseees xm) we can
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determine Fm(x) for every x and we can calculate dm by (2) . If
a is small, then we accept the hypothesis that N?{g < x} = F(x) and
if a is large, then we reject the hypothesis that mgfg ;Qx} = P(x) .
How small or how large should @, be?

To ahswer the last question we should determine what kind of o=
values would we obtain if the hypothesis NEﬁ& < x} = F(x) would be
correct.” Knowing this we can campare the actually calculated dn{ value
with the expected o - values and make a decision accordingly.

|

us we can proceed in the following way: Let us suppose that
NEﬁE <!x} = F(x) where F(x) is the specified distribution function. ILet
us suppose that we make m  independent observations on the random
variable & . Then we obtain a sample (El, Egseens gm) where £y, £q5.-y
Em are mutually independent random variables having the same distribution
function F(x) . In this case Fﬁ(x) , the empirical distribution
function, is a random varieble for every x . By definition Fm(x) is
equal to the npmber of variables El, 52,..., gm less than or equal to

X divided by m . We obtain easily that

. D NP K
(3) PR (x) = o} = (DIFE)TT1-F) T

for k = 0,1,...,m and for every x . Then o defined by (2) is also
a random variable. Knowing F(x) , we can determine the distribution
of o and we can determine the expectatlion, the variance and the higher

moments of o if they exist. If we have thls information, then we can
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make probability statements about the magnitude of % . Thus for some e
values (possibly for every € ) where O < e <1 we can find an a, = am(e)

such that

(W) , ME{am < am} = l-e .

Then o will be < 8, with probability 1l-e and @ will be f & with

probability e .

For any possible e (0 < e<l) we can design a test in the following

way: We observe a, - If a8, s then we accept the hypothesis that

P{¢ < %} = RMx) , and if «o_ > &, > then we reject the hypothesis that
o~ m T
P{z < x} = F(x) . If we perform the test on the level = , then if the

hypcthesis is correct we accept the hypothesis with probability 1l-e and
reject it with probability e ... The largest e for which we accept the

hypothesis can be used as a measure of degree of the goocdness of fit.

Although even for a simple F(x) it is complicated to find the
distribution of G the moments cf @, can usually be determined easily.
Knowing the expectation, the variance, or the higher moments of a, , We

can find lower bounds for the probability Ag{am < X} Dby using Chebyshev's

inequality. Thus we can find good upper estimates for a, = am(s) which

can be used in the above mentioned test.

Iet us consider some examples. If F(x) = ¢(x) , the normal

distribution function defined by (1), then we have

® Ha) =

NI
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(H. Cramér [224]), and

(6) Var{am} 2%*’?{"_&""&{ 7""""—”—‘"')

AN 3

(R. v. Mises [299], [301]).

Ifr
0O for %<0 s

(7) F(x) for 0<x=<1,

]
»

1 for x>1,

then we have

(8) o} =7
and
(9) Varle } = f= - 55

(R. v. Mises [301]).
If we want to apply the test described above, then for each F(x) we
should determine either exactly or at least approxjnlately the distribution

a .
of n

In 1933 A. N. Kolmogorov [283 intrcduced another distance

(10) 8, = -§3§<L F (x) - F(x)]

which has many advantages over @
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First we mention that in 1933 V. Glivenko [259] proved that if
Eqs g PYRRRP %;m,...is an infinite sequence of mutually independent and
identically distributed rendom variables with distribution function F(x)
and Fm(x) is the empirical distribution function of the sample

(€15 &p5e-o gm) , then

(11) JPilims =0} =1,
oo

and this result guarantees that F(x) can be estimated arbitrarily closely

by Fm'(x) if m 1is large enough.

|
K#]mogorov noticed that if PF(x) is a continuous distribution function,

and thé elements of the sample (El, Epsenes & ) are mutually independent

m
random variables having the same distribution function F(x) , then the
- distribution of the random variable <Sm does not depend on F(x) . The

random variable 8, is a so-called distribution-free statistic.

In 1933 A. N. Kolmogorov [283%] proved that if F(x) 1s a continuous

distribution function, then

(12) lim P{v/m 8§, <2} = K(z)
m = ]
where
- 2.2
(13) Kz) = ] (-1)Je™3 2
J': _——3

for z>0 and K(z) =0 for z<O0.

If z > C , then we can write also that
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()%

or e 2

(1) K(z) =525 ] e "
30

We have

oo o Tl

| = [ S _ri(r/2) 7 o(=007

(15) M, = [ zak(z) = r/e _2 .r

0 2 J=1 J
for r=1,2,... . Inparticular, M = /7 log2//Z end M, = v

For other proofs of (12) we refer to W. Feller [254], J. L. Doob [24&]

! 90D
M. D. Donsker [245], and N. V. Smirnov [528].
l

In 1939 N. V. Smirnov [3271, [330Q) published a table for the

distribution function K(z) . Here we reproduce a few values of K(z).

z, K(z) T2 K(z) 7 R(Z) ]
0.5 {0.036 055} 1.2 0.887 750 | 1.9 0.998 53¢
0.6 0.135 7181 1.3 | 0.931 908 2.0 0.999 329
0.7 |0.288 7651 1.4 | 0.960 318 | 2.1 0.999 705
0.8 [0.455 87| 1.5 | 0.977 782 2.2 0.999 874
0.9 | 0.607 270] 1.6 | 0.988 048 | 2.3 0.999 949
1.0 {0.730 000 { 1.7 | 0.993 823 | 2.4 0.999 980
1.1 ] 0.822 282 1.8 | 0.996 932 | 2.5 0.999 992

In 1956 P. Schmid [322], [323 determined the limiting distribution
of vm §, asm>« foran arbitrary F(x) . If F(x) has discontinuities,
then the limitingdistribution of vm §, @ m>e depends on the positions

of the discontinuity points of F(x) and on the magnitudes of the

b
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corresponding jumps.

In his paper of 1933 A. N. Kolmogorov [283] deduced a system of

recurrence formulas which makes it possible to find the distribution of

<Sm for finite m values whenever F(x) is a continuous distribution

function. By using these recurrence formulas in 1952 Z. W. Birnbaum [204
tabulted the probabilities Nlj{dm < k/m} where k=1,2,...,t for m < 1C0

and k < 15. (3ee also F. J. Massey [29€].)

For a continuous distribution function F(x) and for m = 1,2,...

the djstribution of <Sm was foundAin 1957 by J. H. B. Kemperman [277],

in 1998 by J. Blackman [210], in 1962 by M. Depaix [243], and H. Carnal [212],

in 1968 by V. A. Epanechnikov [253%], and J. Durbin 48], and in 1971 by GePe Steckis:

S. G. Mohanty [302], Z. Govindarajulu, R. Alter and L. E. Bragg {267, and

K. Sarkadi [320]. By the result of V. A. Epanechnikov [253] for a

contjhuous distribution function F(x) we have

| 6 —a T

: m-1 v k. k.

(16) P{s < z} =ml Y (_l)m—v-]_ Y il (Ll( f% i
_v=O O=l«;o<kl< vee <kv<K\) +17m i=0 i+1 i
ki+l-k._<__2mz

. + - s or :
where @ = min{[ (k-mz)/m] , 1} and By = mln{i_(k+-rnz),/m]+, 1} . Obviously
Nli{émf__z}=0 if z<1/2m and P{6 <z} =1 if z2>1.

1If we know the distribution function of dm , then we can use the
same method as before for testing the hypothesis that P{g < x} = F(x) .

let us determine a d_=d (e) for O<e <1 such that P{6 <d} = l-g .
| m m =

/( in 1955 by V.S. Korolyuk (2867, in 1956 by L.C. Chang [215],
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Then let us calculate the actual value of Gm for the specified
distribution function F(x)  by (10). If 8,54, , then we accept the
hypothesis that AE{E < x} = F(x) on the level e and if §,> & , then
we reject the hypothesis on the same level. The largest e for which

we accept the hypothesls can be considered as the measure of degree of

the goodness of fit.

If ¥(x) 1is a continuous distribution function and if m 1s large,

then we can replace the probabllity P{ém < 7} by the approximate value

K(vm z) and in this way we can find d,, = d,(e) epproximately.

Next we shall mention briefly a method of finding the lﬁniting
districution (12). If F(x) is a continuous distribution function, then
the distribution of & defined by (10) does not depend on F(x) .
Therefore in finding the distribution of ém we may assume without loss

of generality that

0 for x<0,

]

x for O

fia

(an F(x)

1l for x> 1.

Then F (x) =0 for x<0,F (x) =1 for x21 and F_(x) for

0 <x <1 can be obtained in the following way: Let us choose m points
at random in the interval (0,1) in‘such a way that each point independently
of the others has.a uniform distribution over the interval (0,1). Dencte

x<1.

<

by vm(x) the number of random pcints in the interval (0,x] for O

Then F_(x) = vm(x)/nm for 0 <x <1, and we can write that
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vm(x)

(18) Gm = max
Oxsl1

Here {vm(t) , 0 <t <1l is a stochastic process with interchangeable

increments., If O=.t0<tl<...<tk< tk+1_1 and O=jc)=<__-jl_<__...;

I £ 1 T m , then we have

1+1 ‘]1

m (t. t)

. 1
(19)  Plo (67) = 3159 (6,) = Joseesv (8) = 3.} =m! T 1t
1 1°’m* "2 | Jdo> k k 1=0 (Ji+l Ji).

If we write

(20) n (t) =

for 0<t <1, then by (19) we can easily prove that for O < B <ty <en.

tk < 1, the random variables nm(tl), nm(t2)"“’ nm(tk) have a

k-=dimensional limiting normal distribution

0 t(1-t1), t(1~t5),0 0, £ (1-E))

/, o} 51(1-t5), t5(3=t5) 500, t5(1-8))
(21) N\ N . . e .
' | 0 £, (1-t,), tz(l—tk),'...,tk(l—tk)

If a stochastic process {n(t) 0 £t <1} has the property that
for any k= 1,2,... and O < tl < t2 <ese< tk < 1 the random variables
n(tl), "<t2)’ .o ;, n(tk) have a k-dimensional normal dist;ribution, then

we say that {n(t) , 0 <t <1} is a Gaussian process. Let us suppose
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that {n(t) , 0 <t <1} is a Gaussian process for which n(tl),n(t2),...,n(tk)
have a k-dimensional normal distribution defined by (21) whenever k = 1,2,...

and G <ty <t,<...<t<l. Then E{n(£)} =0 for 0t <1l and

1 2 1
Covin(u) , n(t)} = min{u,t)-ut for O<u<l and Ot <1l.

PAAA

Accordingly we can conclude, that'if m » =, then the finite dimensional
distributions of the process {n m(t)‘ s 0<t <1} converge to the
corresponding finite dimensional distributions of the process {n(t) ,

O<t<1}.
ince evidently

(22) P(/E 6

<
AN m==

z} = P{ max Inm(t)] < z}
" 0ges1

for every 2z , we expectv that
(23) lim P{/m 6 < 2z} = P{ sup |n(t)] < z}

e ™ O<tsl
where {n(t) , 0 <t < 1} 1is a separable Gaussian process for which
E{n(t)} =0 and Cov{n(u) , n(t)} =min(u,t)~ut for 0O <u=<l and
-~ DA = zo=
O0<tz<1l. This is indeed true. The above method was suggested in 1949

by J. L. Doob [246] and was justified in 1952 by M. D. Donsker [245].

Accordingly, we have

(2L) P{ sup |n(t)| < z} = K(z)

™ 0<tzl o

where K(z) is given by (13) or by (14).

We note that the process {n(t) , 0 <t <1} can be repreéented in

the following way
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(25) n(6) = (1-6)6(

where {£(t) , O < t <=} 1is a Brownian motion process for which
E{e(t)} =0 and Covig(u) , &{(t)} =min(u,t) for O <u <« and

0 <t <« ., Thus we can write down also that

(26) AR{li(u)i 2 (I+uw)z for O < u < «}= K(z2)

where {£(u) , O < u < =} is a separsble Brownian motion process for which

E{g(u)} =0 and Cov{t(u) , £(t)} = min(u,t) for O<u<wand C<t < =,

t
T%he left hand side of (26) for z > O can be obtained by solving the
diffouicn equation (heat equation)
/ 2
af(£,x) 3°F(t,x)

. 1
(27) T 2
90X

for t >0 and |x| < (1+t)z with the boundary conditions f(t,x) - O
if x -+ +(1+t)z and £(t,x) >0 if t > Oand x # 0 , and further

Z
[ f(t,x)dx » 1 if t > 0 . Then we obtain

-Z
(1+t)z »
(28) K(z) = 1im [  £(t,x)dx
e =(14t)2

for % > 0 . This method was actually used by A. N. Kolmogorov [283%] in

finding K(z) . See also A. N. Kolmogorov [35], [36] .

More general statistics than Gn have been considered by G. M. Maniya

[293], T. W. Anderson and D. A. Darling [201] , and A, Re’nyi [214]. These

authors considered various particular cases of the following statistic
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(29) s(h) = swp |F (x) - F(x)[n(F(x))

-0 XKoo

where h{u) for O fu <1 is some preassigned weight function. If

h(u) 2 1, then (29) reduces to Kolmogorov's statistic (10).

If F(x) is a continuous distribution function, then the distribution
of Sm(h) does not depend on F(x) -, that is, Sm(h) is a distribution-
free statistic. In this case the limiting distribution of /m 6m(h) as

m = © has been determined in several particular cases. In 1949 G. M. Maniya

[20%] and in 1952 7. W. Anderson and D. A. Dar*lirig [(201] found the iimiting

distribution of vm Gm(h) in the case when h(u) =1 for o < ug B and
nfu) =0 for O<u<a and B<ugl where O<a <R <1. In the
case when h{(u) = 1/Vu(l-u) for O <o <cu<B <1 and h(u) =0 other-

wise, T. W. Anderson and D. A. Darling [201] found the Laplace-Stieltjes

transform of the limiting distribution of /ﬁ'am(h) as m~> e ., In 1953
A. Réhzi [214] found the limiting distribution of /ﬁidnéh) in the case

‘when h(u) =u for O<asux<B <1 and h(u) =0 otherwise.

We can also generalize Kolmogeorov's test in several other ways. First

let us introduce two statistics

(30) 57 = sup [P (x) - F(x)]

: m -M<®m

and

(31) 67 = sup [F(x) - F_(x)] .
m @<L <P n

Obviously we héve




+ -
) =
(32) 6m max(é;m, 6m) .

If Fm (x) 1is the empirical distribution function of a sample
(gl, F,2,..., gm) where gl, £2,..., Em are mutually :‘l_ndependent random
variables having the same distribution function F(x) , then 5;1 and 6;1 s
defined by (30) and (31) respectively, will be random variables. If we
know the distributions of these random variables, then we can design various

tests for checking the hypothesis that P{g < x} = F(x) where PF(x) is a

specified distribution function.

1

| Zflf F(x) 1is a continuous distribution function, then the distributions

+’ - + - At ] . + -
- of ‘GI is S, and (cSm, Gm) do not depend on F(x) , that is, 8.5 6, and
( 6;1, 6;) are distribution-free statistics.

Let us suppose that F(x) is a continuous distribution function.
+ -
Then obviously Gm and Gm have the same distribution for every m = 1,2,...

In 1939 N. V. Smirmov [328] proved that

-222

1-e for z>2 0,

>

(33) 1im P{/m § ,
m>e 0 for z< 0.
As a generalization of Kolmogorov's limiting distribution (12) we obtain
that for x>0 and y >0
. + -
(34) lim P(vm 8 < x , /m s <y} = K(x,y)
o

where
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\2 2
) ~2k®(x+ =2{k(x+y)+x)
(35) K(x,y) = (e (xty)™ _ ool (x+y)+x) )
or in another form
22
: - A
. _ 2T T 2(xty)” . 2 jux

(See J. L. Doob [246] and the author[BB&].) Obviously K(x,x) = K(x)
efined by (13) or by (14).

|

The joint distribution of & and 6~ for m = 1,2,... has been

de‘cenrlined in 1968 by J . Durbin a8 .

Similarly to (29) we can introduce the statistics

OIS 51(n) = _Ep 5 - FO ()
and
(38) s(n) = sw [F(x) - F(OIEX)

_.oo<x<co

where h{u) for O0<u sl is some prea531gr1ed welght - functlon. Tet S (h) =
'max( 5*(11), & (0)).

It can easny be seen that both § (h) and 6;(11) are distribution -
free statistics, that is, if F(x) 1is a continucus distribution function,

then the distributions of 61 (h) , &~

+ -
(o) {h) ,
m'8 and (6.(n) , § (g)) for any

h(u) and g(u) do not depend on F(x) . Obviously 6;(11) and Sg(g)

have the same distribution if h(u) =g(l-u) for O <uz 1.
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In the case where F(x) 1is a continuocus distribution function and h(u) =1

for o <cu<B (0O<La<B8<1) and h(u) = Q otherwise, the limiting

1 + _ :
distributions of mi/ 2 Gm(h) and ml/ C am(h) as m > « were found in 1949

by G. M. Maniya [293]. These results have been generalized by I. I. Gi_khman

[431 ] . In the case where F(x) is a contiruous distribution function and

lh(u)=O for a2us<B {0<a<pB<1) and h(u) =1 otherwise, the

limiting distribution of mY’2 aj;(h) as m > = was found in 1952 by Kh. L. Berlyand

ard I. D. Kvit [ 408] . In the case where h(u) =u for o« <u <8

(C<a<B8zl) and h(u) =0 otherwise the limiting distribution of

e 5;( ) as m~+ was found in 1953 by A. Rényi [314] . See also

S. Malmquist [292] who considered same more examples of this nature. The joint

+ - : .
distribution of Sm(h) ard Sm(g) was found in 1971 by G. P. Steck [ 459 ]

for arbitrary functions h(u) and g(u) . See.also S. G. Mohanty [302], [ 449 ],

K. Sarkadi [320] and E. J. G. Pitman [ 548 ] .
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Now let us consider another statistic which was.introduced in 1939

by N. W.-Smirnov [328]. Let (gl, Egseens Em) be a sample of m mutually
indep kdent and identically distributed random variables with distribution
function F(x) . Denote by Ei, EZ,..., %; the elements of the sample
arranged in increasing order of magnitude. Let Eh(i) be the empiricél
distribution function of the sample 7(51, 52,..., %n)v. For any real a

. ,
define cm(a) as the number of integers k = 1,2,...,m for which

k—l ¥ )

(39) ———;F(E;k +

=1

<

s~

It is easy to see that if F(x) is a continuous. distribution function,
_ *
then the distribution of om(a) does not depend on F(x) . Furthermore,

* %
it follows by symmetry that cm(a) and cm(—a) have the same distribution.
Obviously,we have

+’ a. _ - a, _ ¥ _
(40) | AE{SmV< Eﬁ —,E{Sm < Eﬁ —AE{Gm(a) = (}

and




(41) Pls, <2 = Plo(a) + o (-a) = 0}

= g

N. V. Smirnov [328] proved that if F(x) is a continuous distribution

function, then

_ (2z+w)2

. 2

(42) 1lim P{cm(z ) < w/m = l-e
oo ™

for z>0 and w20, and

lmNI:{c;(z Ym) + a:;(—z vm) <w /m }=

(43) N - ob 111 )
=12 J S d_de 2
=0 It awd

\

for z>0 and w>0. Ifweput w=0 in the right-hand side of (43)

then we obtain K(z) given by (13).

At the begimning of this section we dealt with the statistic o
defined by (2). We observed that the distribution of am” depends on
F(x) . To eliminate this disadvantage, in 1936 N. V. Smirnov [325], [32¢

intrcduced the following modification of o

(44 o =m [ [F (x) - F(0)1g(F(x))dF(x)

=-aCO

where g(u) for O <u <1 1is some preassigned weight function.
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It can easily be seen that if F(x) 1is a continuocus distribution
function, then the distribution of wri does not depend on F(x) . If
we can determine the distribution of (4U), then we can replace the statistic
o by wi in the test described after formula (2).

m
that
Now iet us supposeA Fm(x) 18 the -emplrical distribution function

of the sample (gl, ng,..., am) where  E£15 E55eeey & are mutually
independent and identically distributed random variables with distribution
function F(x) . Then wri is a random variable and our objective is to
f‘ind the limiting distribution of mi in the case when F(x) is a

continuous distribution function.

Let us introduce the notation

o

(L5) H(z) = lim Plw, < z}
>

and

(L6) - ¥(s) = [ e >%an(z)
0

for Re(s) 2 0.

In the particular case when g(u) =1 for O<u<1l, N. V. Smirnov
[325], [ 22d proved that

: 1
(47) [ e S%H(z) = (S22
0 V25

1}

lir

for Re(s) > 0 . If we introduce the stochastic process In{t) , 0 <t

‘defined after formula (23) and if we use a result of M. D. Donsker (ous) ,
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then we can conclude that in this case

1
(48) H(z) = P( [ [n(t)3°at < z} .
| E35

The stochastic process {n(t) , 0 <t <1} can be represented in the

following way

_ - o sin krt
(49) o on(e) =42 21 T
where gl, 52, ooy Ek’ ... are mutually independent random variables having
the same normal distribution function ¢{x) defined by (1). In (49) the
right-hand side converges almost everywhere and represents a random variable.

By (48) and (49) we obtain that

2

. s

™ k=1 kK°r°

and thus
(51) [ SmH(z) = 1 (52 ° - (sinh /25,7 2
o k=1 KT Vory
where we used that
. - 5
(52) dnrz . ogpo- )
' i k=1 K

for any 2z . By inversion N. V. Smirnov (326] found that
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2

oz

>
-2 ] ] A=
k=1 (2k~1)n v-x sinx

© 2Km

Ino

(53) H(z) =

for z >0, and T. W. Anderson and D. A. Darling [201] proved that

1 S (143+l) ( 5
4 _ i . 2 16z b3+1)
(5 H(Z) = WJE JEO 1)<( )(uJ+1) 1 (——izEr*ﬁ

for = >'O where

calI_(2)-I (2)]
- (55) K, (2) = — g

2sin vw
for v # O > ¥2,... and
@ 2j+v
‘ - (z/2)
(56) I\)(Z) = .Z j!r(j+\)+l)

for v # -1, -2,... and Iv(z) = I_v(z) for v =-1, -2,... . The
function Iv(z) is called the modified Bessel function of the first kind

of order v . The paper of T. W. Anderson and D. A. Darling [2Q1] contains

a table for the limiting distribution H(z) .

"N, V. Smirnov [326] also showed that if glu) has a continuous

derivative for 0 < u < 1 and we define H(z) again by (45), then

(57) ¥(s) = e S2@H(z) = T (l+ is)—l/a
0

k=1 k
for Re(s) >0 where O < Aq < Ay Sewe < Ny <... are the pfoper values

of the integral equation
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1
(58) £(x) = A k(x,y)f(y)dy
o .

for 0 <x <1 where

e(x)g(y) x(1-y), for 0<x <

<
fia

'_.l
-

(59) k(x,y) =
Ve(x)gly) y(1-x) for O<y<x<1.

By inversion he obtained that

. - E
‘ o 2k 2

(60) Hz) =1-% ] [ 22— &
| k=1 )"’k—l Y=D(x) .

!
for z > 0 where D(s) is the Fredholm determinant of the kernel k(x,y)

defined by (59).
We have

(61) D(s) = I (I-35-)
k=1

for 211 s .

It should be ncted that if we write y(x) = £(x)//g(x) , then the
integral equation (58) is equivalent to the second order differential

equation
2

-

(62) + aglx)y

N

dx

with the boundary conditions  y(0) = y(1) = 0., (See also R. v. Mises (B0C1
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and [301 pp. 482-490].)

Finally, we note that in 1949 M. Xac [276] introduced a statistic
for the camparison of an empirial and a theoretical distribution function
in the case of random sample sizes. See also the author [327] and

J. L. Allen and J. A. Beekman [198], [199.

to

Now we tum%he discussion of the second main problem of order

-statistics.

T{he second problem is as follows: We have m independent observstions

X1s Xgseees X ON A random variable & . The distribution function
E{g <x}l = P(x) is unknown. Also we have n independent observations
Yis Ypseres ¥, On & random variable n . The distribution function
Pln = x} = G(x) 1is unknown. The two sets of observations are also
indeperident. It is to be decided whether or not the observations

X1s Xgseees X and Y15 Yoseess ¥, are caonpatible with the hypothesis

m
that F(x) =z G(x) .

If we want to solve this problem in a mathemafical way, it is convenilent
to introduce vthe empirical distribution functions of the samples
(xl, Xpsenes xm) and (yl, Ypseers yn) . Iet us define Fm(x) as the
- number of observations Xys Xoseees X less than or equal to x divided
by m, and G n(x) as the mmber of observations ¥,, ¥,,..., ¥, 1less than
or equal te x divided by n . Next we introduce a measure for the

discrepancy of the twd empirical distribution functions. n 1939
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N, V. Smirnov [327] suggested the following measure

(63) Gm,n = _su wlFm(X)...fGn(X)l .
If <Sm n is small, then it 1s reascnable to accept the hypothesis that
, .
F(x) = &(x) . If & 1is large, then it is justified to reject the
. i ,'_

hypothesis that F(x) = G(x) . However, it remains to be decided that
for how small Gm 0 should we accept the hypothesis and for how large
3

(Sm n should we reject the hypothesis. To give an adequate answer to the
b4 .

last question let us prbceed in the  following way:

Iet us suppose that le{g <x} = F(x) where F(x) is a g,ivén
distribution function and let us make m independent observations on the
- random variable ¢ . Then we obtain.a sample (gl, Eoseens gm) where
15 & 2,‘... .5 &, are mutually independent random variaebles having the same |
distribution function F(x) . ILet us suppose also that NE{“ < xt = G(x)
where G(x) is a given distribution function and iet us make n independent
observations on the random variable n . Then we obtain a sample
(nl, UPYRRRP nn) vwhere' ﬁl’ Noseses N, 8T mutually independent random
variables having the same distribution function G(x) . In this case Fm(x)).
the empirical distribution function of the sample (El, 62,. eos & m) R and
Gn(x) , the empirical distribution function of the sample (nl, Nosesns ”n) 5
are random variables for every x . By definition Fm(x) is equal to the
number of variables 515»52,. ees Ep less than or equal to x divided by

m and Gn(x) is equal to the number of variables Nys Npseses Ny less

than or-equal to x divided by n Let us suppose also that the two
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samples ( E1s Epseens Em) and (nl, Moseees nn) are independent. Then

{F (x)} and {G (x)} are independent and § defined by (63) is a
m n m,n

randon variable whose distribution is completely determined by F(x) and

alx) .

In principle we can determine the 'distribution of Gm a in the case
b

when F¥(x) = G(x) 1s a given distribution function, or when it belongs to

a class of distribution functions. If we know the distribution of (Sm n
4 .’ -
in the case when F(x) = G{x) , then we can decide that an actually calcu-

lated valus of Gm n is compatible with this distribution. or not and we
3

can make our decision accordingly.

N. V. Smirnov [327] noticed that if F(x) = G(x) 1is a continuous

distribution function, then the distribution of Gm n does not depend cn

F(x) = G(x) . This observation makes it possible to give a simple method
for testing the hypothesis that & and n have the same continuous

distribution function. If we know the distribution of 8 n ? then for

all
2

some ¢ values (_O < g <1) we can find a dm,n = dm,n(e) such that

(64) P{s d _} =1 .

<
e TN = m,n

Then for any possible e we can design a test in the following way:

We observe Gm,n . 1If Gm,n < dm,n s then we a.qcept the hypo’chesmv that

£ and n have the same continuous distribution function, and if Sm n > dm n
, s S

then we reject the hypothesis. If we perfom the test on the level ¢ ,

2

then if the hypothesis is correct we accept it with probability 1-e and

reject it with probability e .




V-141

There -are several other possible statistics which have the same
property as (63), namely, if F(x) = G(x) 1s a continuous distributicn
function, then the distribution of the statistic does not depend on
F(X) = G(x) . In what follows we shall consider exclusively such statistics
and o{u’ aim 1s to find the distributions of such statistics in the case .
when F(x) = G(x) is a continuous distribution function. If we know this
distr’ibuf{ion.,' then we can use the test mentioned above in checking the

_hypothesis that £ and n have the same continuous distribution function.

Iin 1939 'N. V Smirnov [(327] proved that if P(x) = G(x) is a

contirjlluous distribution function, then
e

(65) _rlﬂm}g{ ﬁ,@:a Spn < 21 = K(2)
N> e

where K(z) is defined by (13) or by {(14).

If m and n are large, then we can use the approximaticn  P{ Gm n<
Fanv » =

dm,n} 4 K(dm,n &) in (64)., If m and n are small then it is

convenient to know the exact distribution of 6m 0
;]

In the particular case when n =m , we obtain easily that

1 k, 2m
ey ch D™ e
m |

re~ M,M

for ¢ =0,1,..., m . This result can easily be deduced from classical

results for random walks as have been shown by B. V. Gnedenko and V., 3.

" Korolyuk [263]. (See formula (37.06).) The provsbilities (66) have been
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tabulated by F. J. Massey [297] for m < 40 and ¢ <15 .

Mathematical methods for finding the distribution of 6 n where
m,r
m = 1,2,... and n = 1 ,2,... have been given by V. S. Korolyuk [286], (fer n=mp),

o G.P, Steck{453],
J. E. B. Kemperman [2771, J. Blackman [210C], Depaix [247], /\S G. Mohanty - “

[3021, ‘K. Sarkadi [320] Obmously , 8 and ¢ have the same
S ~ m,n n,m
distribution. and E.J.G., Pitman E’#"B] w

If we introduce the following two statistics

67) ot = sw [F (%) -G (0]
. } ? e S5
and !
!
(68) 6;1 L= Sup [G (x) - R (x)]
2 —0< K 0o

which are also distribution~free statistics, then 6m L can also be
n,T

expressed as follows:

(69) § = max(s &) .
This is equivalent to (63).

If F(x) = G(x) 1is a continuous distribution function, then st
- 3

and dr—n n have the same distribution. The asymptotic distribution of
S
+

L. has been found by N. V. Smirnov [327] who showed that
2 i -

(70) um p(/E st gy =1 -22°
’ W3 e/ min m,n = 27 T 1€

for z > 0.
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B. V. Gnedenko and V. S. Xorolyuk [263] found that

+ _e (o)
(72) ' le{ﬁm,m plt= 175
()

for ¢=0,1,...,m, Forany m=1,2,... and n = 1,2,... the distribution

of 6; o has been determined by V. S. Korolyuk [286], and G. P. Steck [3372].
, N e ——

For  x >0 and y >0 we have

o I 4 fon - - Klv <
(72) Um FY n Gm,n =X Y mn Gm,n < ¥} = Kx,y)

m - oo
1 > co

g

where K(x;y) is given by (35) or by (36).

If n=m, then have

+ a - by, _ 1 2m
LOnm S m e Cmym m = (2 lz{ Untic(at))
m
(73)
- e aey)] = e 1 (con ) 1 b2

for a=1,2,..., m and b =1,2,..., m . (See B, V. Gnedenko and

E. L. Rvacheva [266] , and the author [334].)

For any m=1,2,... and n = 1,2,... the joint distribution of

+ - . S ; %
. o)
8 ,n and § , hags been determined by J. H. B. Kemperman L_ ? ?J 3

G. P. Steck (332], £.G. Mohanty[z0p 1, K. Sarkadi [320}, and Z.J.G.

Pitmanlas87. J. Blackman [210]considered the joint distribution
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+ - . ‘ . . .
of (Sm n and Grr n n the case when n 1is an integral multiple of m .
] . i :

In 1969 I. Vincze [348] determined the distributions and the asymtotic
+ . .
distributions of §__ and ¢ in the case when F(x) =z G(x) is
m,n m,m

arblitrary.

The Limit theorems (65) and (72) can easily be proved by using the

+

“method of J. L. Doob [246] . Since the distributions of § , S ,
— m,n > m,m °

and Sn'l .. do not depend on F(x) = G(x) 1if this is a continuous
’-‘..L

distribution function, therefore in {inding the distributions of these

randan variables we may assume without loss of generality that

0 if x <0,
(74) F(x) = G(x) = x if 0<x<1l,
1 if x> 1.
' : %
If we suppose that {n (t) ,0<t <1} and {n (t) ,0<t <1}
aré independent stochastic processes defined in the same way as (20)

except that in the second process m is replaced by n , then we can

write that

n (£)  n(t)

. - \
(15 of = max [P
> O<t<l vm n

and

n*(t) n_(t)
(76) A §° = max [—- 27,
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Now let us suppose that m + » and n +eoolin such a way that n/m -+ p
where p 1s a positive real number. Then the finite dimensional
distributions of the process {nm(t) , 0 <t <1} converge to the.
corresponding finite dimensional distributions of a process {n(%t) ,

0 <t <1} and the finite dimensional distributions of the process

s
‘ {n:(‘c) , O<tzsg1l ¥ converge to the corresponding finite dimensional
distributions of a process In (t) » 02t 2 1} where {n(t) , O <t}
and {n*(.’c) , 0 <t <1} are independent Gaussian processes for which
E(®)} = B (1) =0 and Govin(w) , n(6)} = Covin (@) , n'(8)} =

= nlin(iﬁ;t)-ut for O<uz<l and O<t <1. If we suppose that

{n(t), 0<t <1} and {n (t), 0 <t < 1} are separable stcchastic

processes, then by a theorem of M. 'D. Donsker [245] we can conclude that

s m + mm - _
(7n ﬁﬁ{/mémnéxa ey dm,né‘-y} =

2

Y>>
/B n(t)=n" * (£)=/p n(t]
P{ sup [22 n(t)=n (t)] <x, suwp[® (t)-vp n(t)] < 3}
T Ostsl V1+p O<tsl Y1+p

for x> 0 and y > 0 . The process

(78) R B (1) , 0<t<l}

is obviously a Gaussian prccess and it is easy to see that for any p > 0
it has the same finite dimensional distributions as the process {n(t) ,
Otz 1}. Agcordingly we can conclude that if m+ e and n >« in

such a way that n/m - p where p is a positive real number, then
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(79)  umP(/T st <x, /T8 <y) = K(xy)

mn m,n = min m,n

for x>0 and y > O where

(80)  K(x,y) = Pl-y < n(t) <x for O<t <1} .

In the particular case when n =m the probabllity on the left-hand

side of (79) can be obtained explicitly by (73). If we put a = xV/m/2
and +;b_= y/m/2 in (73) and let m + = , then we obtain K(x,y) given
by ('$5) or by (36). This completes the proof of (72) in the case when
r/m —|> p and p is a positive real nunber. Actually (72) is true even

if n/m does not tend to a limit as m>e~2and n- o , 4 If x =12 and

y =z in (72), then we obtain (65). (((See Problem #0.11.) )
v .

We note that if we use the representation (25), then by (80) it follows

that
( 81) P{-(1+w)y < &(u) < (I+uw)x for O 2 u < =} = K(x,y)

for x> 0and y >0 where {g(u) , O < u < «} is. a separable Brownian
motion process for which E(&(u)} =0 and Cov{g(u) , g(t)}= min(u,t)

for O<u<=and Ot <=,
In analogy with (37) and (38) we can intoroduce the
statistics

$hoa() = swp  [F(x) = 6, )] (G GD)
=CD<X<0 '
and

§a,58) = s L&, (x) ~ F (x)] n(e, (x))

where h(u) for 0€ufl is some preassigned weight function.
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2 ) - + - = 3o o
Rirthermore, let am,n(h) -mx(sm’n(h), ém,n(h)) . If F) z06&) is a

+ -
contimwous distribution function then & _(h), 6§ _(h) , and & _(h) are
_ - m,n m,n n

> i,

distribution-free statistics.

In 1950 I. D. Kvit [441 ] fourd the asymptotic distributions of 6;; n(h)
e LT

ard 5; n(B) in the case where h(u) =1 for a<u <@ (0<a<g 1)

is

and h(u) = O otherwise. In 1952 E. L. Rvacheva [ 454] determined the

+
distributions of & rl(h) and -8 n(h) in the case where n =m and either
> 2

h(u) =1 for o <u =<8 and h(u) = 0 otherwise, or h(u) = 0 for

asu <8 and h(u) =1 otherwise (0 <a < # <1) . She has also found
the asym},ototic distributions of these statistics as m > « . Also in 1_952
I. I. G:Lid“man [431 ] found as a particular case of a somewhat more general

"1/9
result the limit of the joint distribution of 6;1 n(h)ml/ 2 nl'/'“/ (m-!-n)l/ 2 and -
3 .

6; n(h)ml/2 1'1]'/‘2/(m-i-n)1/2 as m~>® and n -+ « 1in the case where h(u) =1
is

for o <u < B and h(u) =0 otherwise (0 <a <8 <1).

For any h(u) ard g(u) the joint distribution of a; L) and & (g)
> 3

can be obtained by the results of G. P. Steck [332] , S.G. Mohanty [302] ,

K. Sarkadi [320] , and E.J.G. Pitman [ 4487 .

In 1939 N. V. Smirnov [327] introduced also a more general statistic than

st and §_
m

m,n Let El’ 52, e Em be mutually indeperdent random variables

s

having the same distribution function F(x) . Let Nys Moseess Ny be mutuslly
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independent random variables having the same distribution function G(x) .

Denote by Fm(x) the empirical distribution function of the sample

(gl s Egseens Em) and denote by Gn(x) the empirdical distribution
1’ n2,. e G’n n

the random variables Nys Npseees Ny Larranged in increasing crder of

ction of the sample (n'l, Mosesns nn) . Denote by n

magnitude.

Now let us introduce the statistic o n(a) for any real a defined
5 ) .

a,é the number of subscripts r = 1,2,.‘.. R n for which

% % a - *
(82) G (n,-0) <F (n)+2<q(n) .

If we suppose that PF(x) and G(x) are twoc identical continuous
distribution functions, and the two samples (&, Enseres §) and

(nl, Toseees nn) are independent, then we can easily see that the

distribution of the random variable S, n(a) does not depend on F(x) = G(x

]

We have the obvious relations

(83) X{Gm,n < 1—,1-} —(f{ém’n —5‘-171-} _NE\),{Um,n(a) = 0}

for a>20 and

(84) 'E{Gm,n < %} =£{cm,n(a) + cm,n(_a) = 0}

for a>0 .

N. V. Smirnov [327] proved that if m + « and. n + « in such abway ‘

\
/
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that n/m - p where p 1s a positive real number, then
' _ (2z+w)‘2
. /(mn)n /m - 2
(85) gg{om,n(z m =Y/ 1-e
rl—):x)

for z >0 and w3 O . The limiting distribution (85) is identical

"~ N. V. Smirnov [327] also proved that if m > «» and n + « in such a

way that n/m > p where p is a positive real number, then

1 ;Hifi{om,ntz _lnr-;n ny, Om,n(—z (m+ n)n ) < / } _
| Tiwo
(86)1 5
i3 [2(j+1)ztw]

for z>0C and w > O . The limiting distribution (86) is identical

with (43).

We can introduce an analogue of the statistic (44) in the following

way

mFm(x)MG (x))d(mE‘m(x)JrnGn(x)

87 W = . [F_(x)-G_(x) 1!

mn ‘

where g(u) for 0 <u <1l 1is some preassigned weight function.

If we suppose that F(x) and G(x) are two identical continuous

-distribution functions, then we. can easily see that the distributicn of -
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the random variable wri n does not depend on F(x) = G(x) , that is,
3
2

O is a distribution-free statistic.
9

The statistic (87) in the case when gt) =1 for O<us<l was

proposed in 1951 by E. L. Iehmann [290]. In 1952 M. Rosenblatt [318]

provéd that if g(u) =1 for O0<u<1 ,then

(88) ﬁg{mi’n < z} = H(z)
1o

vhere H(z) is given by (53). (See also M. Fisz [256].) In his proof

M. Rosenblatt [318] assumed that n/m + p where p 1s a positive real
|

nurber. For g(u) = 1 the expectation and the variance of w2 has
3

been found by T.'. W. Anderson [200],‘ In 1957 D. A. Darling [237]

mentionéd that if m >~ and n - «-in such a way that 0 < a ér-rrlf; b < =,
thén for a general g(u) the statistic wri,n has the same limiting
distribution as (44) whenever m + « ,

Distribution-free statistics analogues to (63) and (87) can be
introduced f‘or the comparison of more than two samples. In this respect
we refer to V. Ozols [304], L. C. Chang and M. Fisz [217], [ 218,

I. I. Gikman [258], J. Kiefer [’28@, [281], M. Fisz [255]1, [257], and

H. T. David [241].

In what follows we shall study several statistics in detail. These -

statistics can be used for the camparison of a theoretical and an -
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empirical distribution function or for the comparison of two empirical
distribution functions. Our aim is to find the exact distributions of

these ctatistics for finite samples.

" 'The Comparison of a Theoretical and an Empirical Distribution

Function. lLet E15> £5seees £ be mutually independent random variables
having a camon distribution function »E.){Er <x} =Fx) (r=1,2,..., m .
Iet Fm(x) be the empirical distribution function of the sample

(El, Esseees Em) , that is, Fm(x) 1s defined as the number of variables
£1> ﬁig,..., & less than or equal to x divided by m .

|
| : % % #
Denote by £ 5 Ens+ees E the random variables £, Eoseens &

_ . ¥
arranged In increasing order of magnitude. The random variable ¢_ 1is

called the r-th order statistic of the sample (£, Epnnees Bp)

First we shall consider such statistics which dépend on the derivations
* ¥
(89) op(r) = F(e)) - F(E))
for r=1,2,..., m .

If PF(x) is a continuous distribution function, then we can easily
see that the joint distribution of the random variables am(r) (r = 125000, m)
does not depend on F(x) .. In this case in finding the distribution of
any randam variable depending bon the deviations rSm(r) (r=1,2,.0., m) ,-
we may assume without loss of generality that F(x) 1is the distribution

function of a random variable which has a uniform distribution cver the
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%
interval (0,1) , that is, F(x) is given by (17). Then F(gr) =€,

% _
for r=1,2,..., m, and Fm(E_Zr) =r/m for r=1,2,..., m with
probability one. In this particular case, (89) can be expressed in the

following equivalent form

-r_.*
(90) - 6. (r) =%
for r=1,2,00., m.

First, let us consider the statistic

<91>i st = sup [F_(x) - F(x)]

m _m<x<co

|
whic}l was introduced in 19639 by N. V. Smirnov [328]. Equivalently we

can write that
+ ,
(92) § = max dm(r)
1sr<m

where Gm(r) is given by (89).

If F(’X) is a continuous distribution function, then the distribution
of 6; does not depend on F(x) and in finding the distribution of 6:;1
we may assume without loss of generality that F(x) is given by (17).
Then we can replace cSm(r) in (92) by (90). For a continuous F(x) the

distribution of 6;1 was found in 1944 by N. V. Smirnov [329]. This

distribution is given by the next two theorems.

Theorem 1. If F(x) 1s a continuous distribution function, then
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(93) p{s

for k=1,2,i.0., M.

" Proof. Suppose that F(x) is given by (17). Denote by v,

(r=1,2,..., m) the number of variables 15 £yseeey & Talling in

the interval (=, 1], and define N_ = v + v

Pl S v, forr=1,2,,.., m

2
and NO'= O . The

[ ¢ T N | r\m-i
(9k) PN, =1d) = (DE)T0- 5
for r = l.,'2,.v.., m and Nm =m .,

. . _r ¥ k. . . "
Since in this case ém(r) =5~ & <5 ifendonlyif N _, <7,

provided that r = k, k+tl,..., m , by (92) we can write that

(95) plst < £} = p{max (Z-5h <K

P (] m "_<__1"=<”_m m m

Accordingly,
’ m=k . .
+ kK ; X .

(96) P{6_ <=} =P{max (N - r) < k}= 1- ) == P{N, = j+k}

e~ m e I;r;m r j=lm—‘]m J
for k=1,2,..., m . For in this case Vis Vosee.s v oare interchangeabie

random variables taking on nonnegative integers only, and the last equality
follows fram Theorem 20.1. Since 6; has a continuous distribution |

function, this proves (93).

By using the following auxiliary theorem we can find the camplete
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distribution of 6; .
let us suppose that n random points are distributed

' Lemma 1.
independently and uniformly on the interval (0O,t) . Iet x(u)
(O<u < t) be c times the number of points in the interval (0,u]

where ¢ is a positive constant. Then

ne
for O<nec <t ,

-

(97) P{x(u) <u for O<ux<tl=
~ IO for nc >t .

>t , then (97) is evidently true. Let nc <t .

“"Proof. If nc 2
(r =1,2,..., n) the number of random points in the

i

Denotie by v,
= v, t...t v, for r=1,2,..., n.

interval ((r-l)c, rc] . Set N, = vy
Now V15 \)>2,. ey Vv, are interchangeable random variables taking on
nomegative integers. We have N <n , and

] = 1} = (y(0CyJq_ neyn=J
(98) 2O =3} (j)(t )7 (1= )
for j=0,1,..., n . Thus ,QE.,{Nn} = nzc/t . By (20.8) it follows that

o} = P{Nr <r for = 1,2,...,0} =

P{ix{(u) £ u for O <uzt} R

=

ne

— — T —
= E{[1- 27"} = E{1- % = 1~ =

for O < nc <t which was to be proved.

We note that (97) can also be expressed as follows

K%—)— for 0 < x(t) 2t ,

1-
(100) P{x(u) cu for O <ugt} =§
~ 10 for x(t) >t .

L
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Lemma 1 can easily be proved also by mathematical induction on n .
See the author [62 ].

- Theorem 2. 1f F(x) is a continuous distribution function, then

(101) P{¢
e

+ - mg My g J Jym=j
n<¥r =1~ ] e (j)(m— x)° (Jx- £

for 0<xz<1.

'Proof. We shall determine the probability i 6_;]'; > x} . Suppose
that F(x) is given by (17). If 6; >X , then for some u (0 <u< 1)
the empirical distribution function Fm(u) intersects the line utx
(0 <u<1) . Suppose that the last intersection occurs at u=v . 7
Thén Fm(v) =% for some J (mx < js<m) and v = (j-mx)/m . In this
case 'thgre are J elements of the sample in the interval (0,v] and

m-] ‘elements in the interval (v,1] . This event has probability
(102) ’ (f)f‘)vi’(l-v)m'J .

Furthermore, if the last intersection occurs at u = v , then Fm(u) < utx
for vius<l or Fm(u) - Fm(v) UV for vcucl,. Since F (1) -
- Fm(v) = 1-(vtx) , by Lemma 1 the latter event has probability

X

(103) =
Thus by (102) and '(1Q3) |
(08 Peexm = ] £ (I;.l)v‘j(l-v)m_j

where v = (J-mx)/m and mx < j

<

m ., Formula (101) follows from (104).
In the particular case when x = k/m , formula (101) reduces to (93).

See also N. V. Smirnov [329], A. Wald and J. Wolfowitz [349],
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7. W. Birnbaum and F. H. Tingey [209], B, L. van der Waerden [343],

" A. P. Dempster [242], M. Dwass [250], and the author [338], [339].

Let us consider two more statistics depending on the deviations

5m(1), §.,(2)50uey §,(m) defined by (92).

%
Denote by Y the number of nonnegative elements among cSm(r')

(I’ = 132_90003 m) )

Define p; as the largest r for which cSm(r) (r =1,25000y M)

attaTs its maximum.

If we assume that F(x) 1s a continuous distribution function, then

% % .

the distributions of the random variables Y ~and o do not depend on -
: % %

F(x) , and consequently in finding the distributions of Y @d-op = we

may assume without loss of generality that F(x) 1is given by (17).

......

‘Theorem 3. If F(x) 1s a continuous distribution function, then

a1 %1 m il i
—J}_H'Z —'—(i—l)(ﬁ) (1~ ﬁ)

 Proof. ILet us suppose that F(x) is given by (17), and let us use

the same notation as in the proof of Theorem 1. Since Gm(r) >0 if and

only if F’r' 2 _rrﬁ , that is, Nr > r , therefore Yo is equal to the number
of subscripts r = 1,2,..., m for which Nr >2r . Now Nm =m and by

(26.6) we obtsin that
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/ % 1 . .
L ) ,(,Pv{Ni = 1-1} for J = 1,24..., m-li,

(106) P(y. = J} =
Hence by (94) we get (lOS).

o # .
The distribution of Y, Wwas found in 1958 by P. Cheng [221]. See
also the author [338].

Theorem U, If F(x) 1is a continuous distribution function, then

aon) Plo, = 3} = Ply, = 3}
|

Cfor |§ =1,2,..., m vhere the right-hand side of (107) is given by (105).

v' Proof. Let us suppose again that F(x) 1s given by (17) and let
us use the same notation as in the proof of Theorem 1. The random
 variable Y:l is equal to the number of subscripts r = 1,2,..., m for
which 6m(r) 20, that is, N~-r2> 0, and p:; is the largest sub-
seript r =1,2,..., m for which Nr' r attains its maximum. By
Theorem 22.1 the position of‘ the last maximum in the sequence Nr-‘ r
(r = 0,1,..., m) has the same distribution as the number of nonnegative

elements in the sequence N -r (r =1,2,..., m) . This proves (107).

We note that the random variables § m(r) (r =1,2,..., m) are
continuous, and with probability 1 there is only a single maximum in

the sequence 5m(r) (r=1,2,00.,m) .

_ % .
The distribution of P, Was found in 1958 by Z. W. Birnbaum and

R. Pyke [208]. See also the author [338].
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We mention briefly two more thecrems.

Theorem 5. If F(x) 1is a continuous distribution function, then

" the randdm variable

(108) | = -5

" has a uniform distribution over the interval (0,1) , that is,

Q* f if x<0,
(109) P{ .ot cxpm{x if Ogxc1,
MM - = = ,

| 11_ if x> 1.,

This theorem was found in 1958 by Z. W. Birmbaum and R. Pyke [208].

For other proofs see M. Dwass {249, N. H. Kuiper [289] and the author

(338]. Theorem 5 can easily be proved by using Lemma 1.

Theorem 6. Let F(x) be a continucus distribution functicn, and

let

*
pm

X N
I-T—l—'—(s ;H andp—k}

8 +

(110) G, (x) P{

for k = 12,...,m andall x . If x<0, then G(x)=0. If

m~k=1 [x]

4G, (x) | s
(111) = R G L G Pk
m J=1 '

_JProbability (110) was found in 1958 by Z. W. Birmbaum and R. Pyke [20&].

- See also reference [338]. Formula (111) can also be proved by using

Lemma 1 .

x>k, then G (x) = P{p =k} is given by (107). If O <x <k , then
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As a generalization of (91) let us intrcduce the following statistic

(112) 67 (0,8,7) = swp [F (1) = vF(w)]
: a<F(u)<B

-

for O0<a <B<land y 2 1 . Furthermore, let us define

. + Fm(u) - yF{u)
(113) _ u(e,B,y) = a<F?}f))5e[ e ]

for 02a<B<l and vz 1.

v

It is essy to see that if F(x) 1is a continuous distribution function,
then ‘the distributions of 6;(oc ,B,Y) and u;;(oa,ﬁ ,Y) do not depend on
F(x) ! Thus if we want to find the distributions of 6;(01 ,8,y) and
g:; (oi,.BA,.y) in this case, then we may assume without loss of generality
that F(x) 1is given by (17). In this particular case let F _(x) = y (x)
for 0<x<1. Here { xp{W) » O gux 1} is a stochastic process

which has interchangeable increments. The Increments are nonnegative integral

multiple of 1/m and Xm(l) =1, In this case

(114) | P{e;;(a,e,y) > x} = P{ sup [x () - yul > x}
e ™ agu<p

and

(115) PLu(a,B,y) > x} = P sup [x.(u) - (x+y)ul > O}
A m oo Otf__u;B m

for x> 0.

We note that

(116) Plx,(u) = %} - (?)uj(lmu)mvj. |

for 0<Jj<m and O<ux<l, and
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m! m=k

) P =L, 00 =D = ety wd (v=0) K9 (1-v)

for C<j<ksgm and Ogugvel,

- Theorem 7. If F(x) is a continuous distribution function, then

Plst(a,ey) > xb = ] R (®) =23+
- kem(x+gy)™
(118)
. (x+8y)-k J-mx k
+ Tl ey g (P 1) =Ly () = £
m(X+aY)‘J<}\_’n’1(X+B ) m X+SY} J m ? m
for|x 20 , and if, in particular, £ = 1 , then for x 2 0
| -
, + \ - m(x+y )-m J-mx - J
(119} Nf{om(a,l,y) > x} ) [m(xﬂ) 3] {x m( ~ ) -}

m(xtoy)<j<m
for x> 0.

Proof. If O<a<B<land y2l and x > O, then (118) can -
be obtained by (114). In (114)
P{ sup [xy(w)=yul > x} = P{x (B)-yB > x} +
" agu<h
(120)
+.) 1 (S_Z\P{xm(y) Yy + %, X, (B) = yz + x} .
asyszsp
To prove (120) we observe that the event on the left-hand side of
(120) can occur in two mutually exclusive ways: either xm(s )=yB > X
or x,m( B)— YB <x and xm(u)-Yu >x for some uelo, Bl . The first

event has probability Py m( B)-vB8 >x }. To find the probability of
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the second event let us suppose that sup{u : xm(u)-yu > x and

d_i_ u < B} =y . Then necessarily Xm(.,V)-Yy = x and xm(u)-yu 1_ X

for y <u < B , or equivalently Xm(u)-xm.(y) <v(u-y) for y <us<B.
If we suppose that xm('B) =yz + x < yB +x and apply Lemma 1 to

[xm(ﬁ) - xm(‘y)]/y where y < u < B , then we cbtain that

(121) Nli{xm(u)-xm(y) < v(u=y) for y;u;Bi%B)-M(sf) = y(z-y)} = %—3

for y.__<__ z and O iIf y > z . If we multiply (121) by NI:{xm(y) = yy+xz ,

xm(e) yz+x} and add for all possible y and z satisfying the inequalities
T

o <V

kA

. Z < B , then we get the probability of the second event. This
g ‘ . ( = = r = &l i £

proves (120). In (120) Ng{xmky) = yytx , xm(B) = yz+x} = 0 except if

y=(J-mx)/my and z = (k-mx)/m where O0<J <k<m. Thus we

obtain (118). If B8 =1 , then (118) reduces to (119) because xm(l) =1,

" Theorem 8. If F(x) 1is a continuous distribution function, then

P{u_(a,B,y) > x} = Pix (B) =—1 +
e k>m<}zc+y>s”“ LA
(122) (xby ) Bk . . 1
1 (st Ipx (=) =, x (8) = £
m(x+$)a§j£k§n(x+y)6 m{x+y S—J e X m mxry ) m ° *m m
. ;‘_QE x>0 ,and if, in particular, 8 =1 , then for x > O
+ ) mx)-m, 3 s L]
(123) Plu_(o,1,y) > x) m(xﬂ%agdj;m e PGy =5

for x>0,
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Proof, Now (124) can be obtained by (115) for 0 <o <8<l and

y2>21l and x ; O . If we compare (114) and (115), then we can conclude
that if in (118) we replace x by O , and then we replace y by vy+x s

ther we obtain (122). If 8 =1 1in (122) and if we take into

consideration that xm( B) =1 , then we obtain (123).

The probabilities oceurring in formulas (118), (119), (122) and (123)
are determined by (116) and (117).

We note that 1f o =0 and x =0 , then (123) further reduces to
(124) P{u'(0,1,y) > O} = 1/y
_ R 1

where y > 1 . For by Lemma 1

(125) ' P{u m(0s1,y) > 0} = P{ sup [ (u>-vu] = 1/y
Ozu<l

whenever y > 1 .

In various particular cases several authors determined the distributions
of 6;1(0.,6,7) and u;;(a,s,y) . The distribution for 6;'1(0,1,1) was found

by N, V. Smirnov [329] and by Z. W. Bimbaum and F. H. Tingey [209], for

8 (a l ,1) by N. V. Smirnov [;7 1, and for ¢ (O ,1,v) by A. P, Dempstcr

[2421, and M. Dwass [25@ T‘ne dlstmbutlon for w (O B 0) - was found
by L. C. Chang [215, and for x,lm(a,l,l) by G. Ishii [275], and N, V.

- Smirnov [351]. The probabiiity (124) was found by H. E. Daniels [23%5],

 H. Robbins [317], L. C. Chang [215,.and D. G. Chapman [220]. Theorem 7

and Theorem 8 were found by the author [53€].
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%
Next we sha.ll determine the distribution of the statistic cm(a')
defined by (39). Actually, we shall consider some slight modifications

. o
of o*m‘(a) .

First, for anjfr*eal a let cm(a) denote the number of interseetiens

. ) it+h _a- X6 o ryr o = |
of F(x) with Fm(x).+ﬁ1' for -« <x =, In other words, cm(a) = K

if the set

(126) S, ={x :F(x) =F (0)+2 and — <

X < o |
a 1 = = !

is the union of k separated inftervals or points.

S'econd‘, for any real a let tm(é) denote the number of ,]umpb of
Fm(x) +% over | F(x) for -~ < x < = , In other words, Tm(a) =k if

and only if e

* a VT, % %
( T YRR - T, a
(127) | Fle, -0t =<Flg) <F(g) +=
holds for precisely k subscript r =1,2,..., m .

Third, for any real a let -rm(a) deriote the number of subscripts

r=1,2,..., m for which

con atr-1 ¥ atr
(128) '——m—;F(Er) S

It is easy to see that if F(x) is a continuous distribution
function, then the distributions of the statistics om(a') s -cm(a) and

.
rm(a) do not depend on F(x) .

In this cgse we have rm(a) = om(a) if a#0 and rm(O) = cm(O)-l .
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These relations can be seen ﬁmnediately if we take into consideration
that if F(x) is a continuous distribution function, then the inter-
sections and the jumps (if any) alternate as x varies from -~ to

© L

%
Furthermore, we have P{Tm(a) ==,rm(a)} =1 for any a . For if

* _
F(x) is a continuous distribution function, then F(g, - 0) = __._I'ml_ and
% .
F(gr) = I% for r=1,2,..., m with probability one and the event
¥ -
F(Er) = a‘*'IIr’1 L has probability zero for r = 1,2,..., m and for any a. .

% %
By the above substitutions (127) becomes (128). Obviously rm(a) = om(-a)
" defined by (39). '

*

. .In what follows we assume that Px) is a continuoﬁs_ distribution
_ function and we shall determine the distribution of the random variable -
om(a) . It follows by symmetry that om(a)'~ and om(—a) have the same
distribution.. If we know the distribution of cm(a) , the distributions

%
of rm(a) and rm(a) can be obtained immediately by the above relations.

The distribution of cm(a) for 0 < a <m has been given without

proof by D. A. Darling [238 and for a = 0,1,2,..., m it has been given by

W. Nef [307]. Same generalizations have been given by the author [B41].

Theorem 9. If F(x) is a continuous distribution function and

a >0 ,_then we have

(at) )

ok Jzma

= m! Ng=K=Ll, m=d
L) > ki = GEOTG)T (B mmang) =

(129)

' . .- e 2
S_m (e m! (a+i)9F (meamg )™

— 7
(m=k) !mk e m-a<j<m (G=k) Hm=)!




V-164

for O <k <m2a.

Proof. let us assume that F(x) 1s given by (17). For O <u<m
denote by v m(u) the number of variables &y, &55..., &~ falling in the
interval (0, u/m] . Then Fm(x) = vm(mx)/m for C<x<1 and cm(a)

can be interpreted as the number of distinct points in the set

(130) S, = {x : vm(mx) =mx-a and O <x <1},

or equivalently, as the number of integers j = 0,1,..., m for which

v,ﬂ(‘a;-irj ) = J . Acéomﬁgly,'_We nave
(131) N}:{om<a) =k} = Ply (atj) = J for k values J =0,1,...,m} .
Here {vm(u) »»,0 < u <m} 1s a stochastic process with interchangeable
increments for wnich vm(m) =m,
= <1 = (Myuyi,. um-i
(132) Py =13 = (HDETA- D)

for 0<i<m and Oguzgm, and

s R S P § Uyj-1
(133) Py (u) = v (8) = 3} = ()@ (1- )

for 0<i1<js<m and O<uzts<m. Purthermore, for 0<% < m

and O <r<m we have

l-f if Oxrst,

(134) P{v (u) <u for O<ux<tlv (t) =r}=
~e o m ="“'m o

,_J

Hy

ot
A

jad]
fin

&
-

which follows from Lemma 1.

If O0< k < m-a , then we can write that
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N?{cm(a) > k} =

(135)

) P{vn(a+j) = j} P{vm(a+i) =1 for k values
k<j<m-a™ o

is= O,lsef':j-ll\’ (atj) = jt =

m

]

Ng{vm(a+3) = J}Af{vm(l) =31 for 'k wvalues

1= 1323!'°sj|\’m(a+j) =73} .

For the event am(a) > k occurs if and only if vm(a+i) =i for ﬁore
th k values i=0C,1,...., m . This event can occur in several
mutually exclusive ways: the (k+l)st largest i =0,1,..., m for
which v (ati) =1 is i=j where k < J gm-a . The last equality

in (135) follows by symmetry.
Llet us introduce the notation
(136) qk(s) =Nf{vm(i) =31 for k values 1 = l,2,...,sivm(s) = g}

for 1 <kx<szm. Obvicusly qk(s) is independent of m whenever
sim ;j-by using this nofation in (135) we can write that

Py (1) =1 for k values 1= 1,2,...,j|vm(a+j) = 3} =
(137)

.i .
= 1 @P0n(s) = sly(ar)) = 5)

1}

For the event {vm(i) =1 for k- values i =1,2,...,J) can occur in
such a way that vm(s) =s forsome s (kgs<Jj) and vm(i) =3 for

exactly k values i = 12,0005 3 &
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If we put (137) into (135), then we obtain that

J
(138) P{oc_(a) > k} = ) q, (s)P{v_(s) = s, v_(atl) = j}
- T k<j<m-a S_z__, k' m m

for 0Lk <m-a.

It remains only to find q (s) ‘for 1 < k<s . We shall prove

that

(139) | q (s) = —SK
_ ‘ Kk (s-k)!sld—l

|
i

for| 1< ks<s . If weput (139) into (138) and use Abel's identity

J S-ktl '(garj-s.)j"S (at] )j—k
v . = N1
.(140) k L T 0TS G-y 2

then we obtain the first expression in (129). The second expression
in (129) follows again by Abel's identity

- ) _m
e N € = T ="

The probabilities qk(s) for 12 kX s ecan ve obtained by the
following recurrence relations:

(142) g, (s) = ) Ply (J) = i|v. () = s}tq,(J)a, -(s-3)
K lejer™ M 18791

(143)  q(si = 1= T Py ()=jlv (s) = ska ()

1< <8

z

Let us introduce the folleowing notation




V-167

[¢7]

(144) Q.(s) = 35 q,(s)

for 1 <k <s . Then by using (133) we can express (142) and (143)

in the following equivalent forms:

(aus) &)= Q(3)Q, - (s=3)
k icjesatl T -1

for 2 <k <s and

- - 8 . y8~J
Le = S_ iy (8=J)

-
for s 21 . From (145) and (146) we can find Q. (s) for 1 gk <s

by using generating functions.

It will be convenient to derive first the generating functicons

which we need in solving (145) and (146).

By using Rouché's theorem we can prove that if |z| < 1/e , then

the equation

(147) ’ we ¥ =g

has a singi_e root w = p(z) in the cirele |w| <1 , and by Lagange'é

expansion we obtain that
(148) eap(z)[p(z)]k = K4 (atk) ) (a+])

and
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\ B (K T Ik
(149) =16 B N R

J=k

for |z| < 1/e , k =0,1,2,... and for any a . In particular, we have

o SR
(150) ‘1—3%%”9'@321;*?—

for |z| < 1/e . We note that p(z) >1 if z -+ 1/e .

The equation (147) has been investigated first by L. Fuler [21 Te

(See also G. Polya [50 1.)

If we form the generating function of (146}, then by (150) we obtain

that
L, v . ;, s _ plz) - % s
(151) sél Ql(S)Z =150 [1- szl Ql(S)Z ]
and hence
(152) L Q (s)2° = o(2)

. 5=

for |z] <1/e . By (145) we obtain that

(153)

K

Q ()2° = (] 9,()25 = [p(2) ¥
K s=1 -

ye~38

8

for |z| < 1/e and k = 1,2,... . Thus (139) follows from (1i4) and

(148). This completes the proof of Theorem 9.

" NCTE. If we form the coefficient of vzm’ in the product of
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2@ )% ana 00 (2) , then by (148) we obtain that

m ; J~k-1 .
, . (at+j) (o4m=j)
ashy @ ) STt

mj-1 m—k~1 -

) (atb+m)" -
(m=-k) !

= (at+b+k

fcr O<k<m and forany a and b .

If we form the coefficient of z© in the product of eap(z>[p(z)]k

and ebp(Z)/[l—p(Z)] , then by {148) and (149) we obtain Abel's identity

T DI o)™ (et

(155) (atk) .Z, GR)Tm=-3)T  ~ ~ (mk)!

J=k

15
|
fo% O<ks<m and forany a and b .

The Comparison of Two Empirical Distribution Functions. Iet

£1> 52,..., gm be mutually independent random variables having a

common distribution fuiction Plg < x} = F(x) (r=1,2,0e., m) .

Denote by -Fm(x) the empirical distribution function of the sample

(El, Enseees Em) . Let ny, nyse.., n be also mutually independent
random variables having a common distribution function AE{”r <X} = G(x)
(r =1,2,..., n) . Denote by G (x) the empirical distribution function

of the sample (nl, Noseses nn) . let us suppose also that. (gl,wgz,.u., Em)

and (nl, Noseses nn) are independent.

_ * % * . s
Denote by Nys Noseees Ny the random variables arranged in increasing

order of magnitﬁ@k.

For the purpose of testing the hypothesis that F(x) = G(x) we can

introduce several statistics depending on the deviatlons




% #
(156) F(n) -G, -0 (r=12,...,n) .
let
+ ¥ ¥
Y = r - 4 —
(157) _ ém,n 12;§p [F (n,) - G (n, - 0)]

which is in agreement with (67).

Denote by v, n(a} the number of subscripts r = 1,2,..., n for
3

which-
o % % a
(1?8) Fh}nr) < Gn(ﬁr) -5
whére a8 1is a real number.
Denote by Prn the smallest r = 1,2,..., n for which .
i ’ )
o * %
(159) F (n) = G (n_ - 0)
attains its maximum.
For any real number a let us define O n(a)s as the number of
.A’
subscripts r = 1,2,..., n for which
: % # a ¥
(160) | G (n. = 0) £F (n) +2<G(n) .

If we suppose that PF(x) and G(x) are two identical continuous

distribution functions, then we can easily see that the distributions

+ ‘ . e N
of Gmsn s Ym,n(a) > Tyon 3 and Om,n\a) do not depend on F(x) = &(x) .
. ¥ - . . s
C LY & a N 100N~
Accordingly 5m,n.’ Ym,n(a)  Ton 0 and Gm,n( )  are distribution

free statistics. In what follows we shall determine the distributions
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of these statistics in the case when F(x) and G(x) are two identical
continlous distribution functions and n = mp where p 1is a positive

integer,

To find the distributions of the above statistics let us introduce

the following notation.

For r=1,2,..., ntl 1let us define v, @ p times the number of
;- ' - . - » K * *
variables Eys Egseees g, falling in the interval (nrul’ ”-p] where
Ty = = and Mpg™ < . Here p 1s a positive constant.

If F(x) and G(x) are two identical continuous distribution
functions, then Vis Vpseers Vpuq AT interchangeable random variables
taking on nonnegative integral multiples of p . If we set Nr = \)1+ \)2+. e
+'vr for r=1,2,..., ntl , then we have Nn_,r =mp,

it+s-1. ,mn-i-s
(FEh (e
mn
(™

(1€1) ;}:{Ni sp} =

for 1 2iz<n and O

fia
0

il A
2]

w

Gl [Chi

(162) £{Ni = spqum. = (s+t)p} = (i+J. +_s+t-l)
: ; stt
for 1 gi1<itj<n and O<s<stt <m, and
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PIN, =sp , N.,. = (S+’c)pl = (s+t+u)p} =

i+j Ni'i— Jtk

(163)

i4s-1, j+t-1, ktu-1
CTEHETTHET

st+t4u

for 1 <i<itj<itjthk<in and O<s < s+t <s+tiu < m .,
By using the above notation we can write that

N

. , ¥ Tp
(164) Fo(ng) = o=

for r=1,2,..., n , and obviously

. ¥ _r ¥ _ r-1
(165) Gn(nr) =3 and Gn(nr' -0) = =

for r=1,2,..., n with probability one,

- Thus we obtain easily that

(166) & = max (Z-Thy
1r<n p n

The variable y_ (a) 1is equal to the number of subscripts r = 1,2,..., n

v myn"
for which
‘ : 'Nr' pea
- r -
\157) mp n >
the variable LI is the smallest r = 1,2,..., n for which
3
: N
(168) | 2ol
mp n

attains its maximum, and finally, the varliable n rl(a) is equal to
ol
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the number of subscripts r = 1,2,..., n for which

N
. -l r,a._r
{ ) ol ——t =g
(169) n '<—=mp n n°

In the particular case when n=mp and p 1is a positive integer
we can determine the distributions of the above statistics by using the
combinatorial methods developed in Section 20, and in Secticn 26, For

if p 1s a positive integer, then Vis Voseees V are interchangeable

nt+l
random variables taking on nonnegative iintegers only.

The ‘distribution of 6 . If, in particular, n = mp , then by
X 3

(146) it follows that

_ 1
(170) $ = o max (Nr- r+l) .

- Theorem 10. 'If n.=mp where p 1is a positive integer, and

c =0,i,..., n , then

+ e, _
oy nint =1-
(17L) _
o1 et ,sp+s-c-l) (rrri-n+c—sp—s)
(nﬂ'n) o+l ntc+l-sp \'os m-S ?
) 3 <8 '
and, in particular,
P e
(172) M.P.,{Gm,m Lt =1 @
m

“for ¢ =0,l,.0., m .
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Proof. If n =mp , then by (170)

(173} NIj{éi:l;,n __g_%} =M§’{Nr <rtc for v = 1,2,..., 01},

If we take into consideration that in this case Nn+l =mp =n , then

by Theorem 20.1 or by Theorem 26.6 we obtain that

_ ' n
- - + - g = - C+l N\ - 3 1
(_1_714) . 3{ 6m’n = 1’1} 1 jgl __—n+l-j ELNJ J+CJ
for ¢ =0,1,..., n. By (161) we obtain (171). If, in particular,

p 4 1, then (171) reduces to (172).
!
|

| The result (171) can also be interpreted in the following way: Let

us combine the two samples (815 Eoseeey &) @nd (nq, Noseeey n) s

m n

where now n =mp , and let us arrange the min variables in increasing
order of magnitude. ILet us define x; =p 1f the i-th ordered variable

in the ccmbinéd sample belongs to (gl, 2;2,;.., gm) and X = -1 if

the i-th ordered variable in the combined sample belongs to' (nl, UPTERRS nn) .
Now let us suppose that a particle performs a one-dimensional random

walk on the x-axis. The particle starts at x =0 and takes min steps.

At the i-th step it moves either p unit distance to the right if

x; =P or a unit distance to the left if x; = -1 .
Now. all the (m;l-nn) paths are equally probable and the event

+

' {Gm n ; rc_f} can be interpreted as the event that the particle never reaches
) _

the point x = ¢+l during the mn steps.
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If n=m then by using the above interpretation we can easily
find (172) directly by using the method of reflection.

. . s . . +
The distribution of the randcm variable 5m a for n=m was found
-]

in 1951 by B. V. Gnedenko and V. S. Korolyuk [263] , and for n = mp

where p 1s a positive integer in 1955 by V. S. Korolyuk [28&] . See

also the author [335] .

If we suppose that ¢ = [nx] where O <x <1l and n =mp , then

by (171) we cbtain that
i
|

. + cy _ + _
o Ume e Rl -
(175) o . |
. =- - _.._I.n_.x..._.. 00 _J_ _ J Y _l lT}—j
| ' Z rHmX-] \j)(m x)* (Lx= &)
mx<j<m

which is in agreement with (101).

If we suppose that ¢ = [z/2m] where O < z < = , then by (172) we

obtain that

(176) | I]r.ﬁllilNE{ 5 6m,m‘<—'Z} l-c¢

which is a particular case of (70).

If we suppose that ¢ = [zvp(p+1)m ] where O 27z < ,‘ then by

(171) we obtain that
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lim P{/ <z} =

p+l m,mp =

(77 )

Z

1 7 2uli-w)

4 e o =27

- = = du
V3 0 (1-u)Y A2

which is another particular case of (7C).

“We can prove (176) and (177) easily if we use Stirling's formulsa

(35.28) or A. De Moivre's approximation of the Bernoulli distribution,

| The distribution of vy n(a) . let n=mp where p is a
‘ 3

positive integer. In this case y_ _(a) =vy_ ([a]) for any real a
m,n m,n .
where [a] is the greatest integer < a . Furthermore, in this case

Y, (@) and n-y m,n n(-a) have the same distxfibution for a =0, +1, +2,...,

that is,
(178) ' NE{Ym,n(a) = jl =~Ii{'rm,n(-a) = n-j}

holds for j = 0,1,..., n and a =0, +1, +2,... . This follows from

(167) and from the following relations

P{y. (a) = j} =P{ = < r_';l_a_ for j subseripts r = 1,2,..., n} =

. m,n N Inp
N N ,
= p( L r, Dot for j subseripts r = 1,2,..., nl =
e~ mp
(179)
_ P{ NS s S+a—l f ’ s . - - 2 } —
=P n’E — or Jj subscripts s = 1,2,..., N =
-P{NS<*°’+a f bscripts s = 1,2 } =
"‘NV ﬁ ) l'—r'l"— (014 n“J Su SCI’lpuS [= R 3Cgrney n -
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for j=0,1,..., n and a =0, t1, +2,... .

We note that by (166) and (179) we can conclude also that

Sip
()

i

(180) P{y. (a) =0} = Mlj{es;

PWRES (Ph 1 el

for a=0,1,..., n and for a1l m. and n .

If, in particular, n = mp then by (167) it follows that Yo.n'&)
4. 8-

is equal to the number of subscripts r = 1,2,..., n for which
(181) N <ra.

! Now let us find the distribution of ym,n(a) for a=0,1,..., 1

whenever n =mp and p 1s a positive integer.

Theorem 11, et n=mp where p 1is a positive integer. We have

- 51 - L
(182) Jlg n(0) = 3} = oo

29}: j =O,1,2,..., n. ;Et: a:l,2’...,n s then
] ' 1 + +s—a- +8~Sp—
(183) P{Ym n(a.) =0} = 1= —3— } atl spts-a l)(m+n 8-5p-—5

[y mratl-sp s m-s
m “atl

<ssm
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Py 1q(a) =jl =

(184)
f=j-a
T § _a_ (J+s-l)(a+tp+t 1)(m+n—j—s—a-tp—t) _
£=0 a+tp S t M=-5-t
§ atl J+s—1)(a+tp+t)(m+n-_—s-a-—tp—t 1)]
- t2p atlttp s m-s—t

for j=1,2,..., n-a .

‘ If, in particular, p = 1 , then (183) reduces to
|
!

: | (rtva)
(185) Py, (@) =0} =1 - St
(m)
for a=1,2,..., m » and (184) becomes
. : R a 2i,  2m-21
- (186) NI:{Ym,m(d) =J} = ?275)— 123 i+1) (m-1) G )(m+a—1)

for a=1,2,see, m=1 and Jj =1,2,..., m-a .

mp , then by (181)

" Proof. If n

(187) Ply_ _(a) = j} = PN, <r-a for j subscripts r =1,2,..., n}

e ,N

for j=0,1,2,0ee, n and a =0,1,2,,0., 1 .

If a =0 a2d we take into conslderation that Nn 7 =N, then by

iTL
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(26.5) we obtain (182).

If a=1,2,..., n and J =0 , then (180) holds and (183) follows

from (171), and (185) fram (172).

If a=1,2,0e.,n and J = ,2,..., n , then by (26. 5¢) we obtain

that
Ply__(a) = % (1- —)[ Z T Pd\l , N, N, = i-j-a} -
m,n %=0 T 4540 G 35 -
(188)
T an
- ] Gy =, NN, —-J-a-l}}
1=j¥ar1 1)~

the probabilities on the right»-hand side of (188) can be obtained by
(161) and (i62). This proves (184). If, in particular, p = 1 , then
(184) reduces to (186). Formula (186) can be proved directly by using

the random walk interpretation mentioned after Theorem 10.

The distribution of the random variable Yo r](O) for n=m was
,n

found in 1952 by B. V. Gnedenko and V., S. Mihalevich [264] and for n = mp

where p 1is a positive integer also in 1952 by B. V. Gnederko and V., S.

'Mihalevich [265] . See also the author [335] .

The distribution of the random variable Y n(a) in the particular
b

cas-é of n=m was found in 1952 by V. S. Mihalevich [29&]. For n = mp

where p 1s a postilve mteger' the distribution of Vi, (a) was found

in 1969 by the author| 359]

We note that if O ¢x g1 and y > O ', then we have
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2
y fl (u—X)e—‘ -22 l"‘].l)

V2T x [u(].mu)']3/2

snxt =1~ du ,

s

39y 1 , [ m
(189} J‘lm'f{ym,n(y Y omin

3>

m , the distribution of vy_ (a) is
m

In the particular case when n m
3

given by (185) and (186) and we can easily show that in this case (189)
is true. On the other' hand, we can show that the limiting distribution
(189) doés not depend on the mamner in which m+ « and n~» « ., Thus
it foilows that (189) is valid in the general case too. 3See I.I.

Gikhmen [ %317 and I. Vincze L 3461,

" The distribution of P let n=mp where p 1is a positive
. ;

integer. Then by (168) it follows that P, 1s the smallest r =1,2,...,n

bt

for which
(190) N-r
ttains its maximum.

In what follows we shall determine the joint distribution of 6;; n
- 2

and pm’ n°

- Theorem 12. " Let n =rmp where p 1s a positive integer. 'IT

K=0,l,000,1 , J=1,2,.0., n-ktl and J+k = tp+l where t = 0,1,2,...,




V-181

S
+ k 1 JjHt=a(p) 1 (Spts-2y J¢ t—op—-.a.
s = — = e - 1
Amn T Pmpn J} (T Ly )2<Sz<._l€sp1) s )]
m =SP<J
(191)
[t - L YT ey -
-t 2<sperrtle-] nte-J-sp s m-t-s
“where a(p) =3 if p=1 and a(p)=2 if p>1.
If, ‘in particular, p = 1 , then we have
. + _k e L Y (k+1) k4252 am+¢—21-k\ !
(192)B16) =5 » Puym = 3 = ey oy O 5=1 00 i o)

for k=1,2,...,m and § =1,2,..., ml-k , and

. - T
(193) Nlj{dm’m—o,pm—l}-m_l.

" Proof. We can write that

=:l£ = 13 =
Nf{am,n n*® 33

(194)
=PIN~rl <N j#l=%k for 1gr<j and N-rtlg Nj- j+1

+
2‘?‘
[
et

C

for j;r;n}=E{NJ.-N > j=r for J<r<J and N]

- PN~ N, <rj for j<r<n|N, = j+k-1} .

By Theorem 26.4 the first factor on the right-hand side of (194) is

PN, = k} if j=1 and

-

(195) PNy > 1, N, = Jtk=1} - 2 T‘) Py =0, N =1, N, = JHk-1}

<
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if j ’9 ceo s r\+1"k s Bl'ld O _Lf J > 1’1+l'-k

We note that if k = 1 , then (195) reduces to

(196) | T’—‘U P{N, )Ny = 3)
which foliows from (26.€) .

If we take into consideration that N +1
tﬁat

obtaln(%he second factor on the right-hand side of (194) is

=n , then by (26.37) we

n-j
(197 1- 73
’ i=1

Py, .- N, = 1IN, = g4

ntl-j=ipm J+iL ]
for J‘ = 1,2,..0, n+1_k Y

We can easily see that (194) is O wnless k = 0,1,2,..., 11 ,
J=1,2,..., ntl=k and Jj+k = tp+l where t = 0,1,2,... . If we use

(161), (162), and (163), then by (194), (195) and (196) we obtain (191).

We note that if, in particular, k=1 and J = 2,3,..., n where

jJ=tp and t =0,1,2,..., then

plsT =L, =g} = Ll -
~m~  mn n?’‘mn (3-1) (Y
(198) n |
m-t nt2-j-sp * s m~t-s *

2sspsntl-J

This result can be obtained by (196).
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If, in particular, k =0 and J =1 , then we have

+ = = -
5{6m,n =0, Pm,n 1
(199)
1 min-1, - 1 Spts~2, [MN=Sp=5 |

m ' == .

Formulas (192) and (193) can be proved directly by using the random

walk interpretation mentioned after Theorem 10.

The joint distribution of the random variables &, _ and p
,' “m,n m,n
in tj;particular case of n=m was found in 1957 by I. Vincze [344],[343],

Theorem 12 was found in 1969 by the author [339].

Now we shall find the asymptotic distributions of the random
) + | . . - _ : -
variables 6m,n and pm,n in the case when n=nmp and p >,
~ Theorem 13. 'If n=rnp , then
. ®m,n -
(200) lim P{ —*= < x} = x
e n =
p—)cb

for O<x gl and

| N e [m(xty)]
(01)  umPLsy cx, By = ]G (my)-6, (kmx)]
pr > k=1 .

for O < x < xty <1 where Gk(x) " 'is defined in Theoren 6,

- Proof.  Withiout loss of generality we may assume that F(x) = G(x)
is given by (74), that is, it is the distribution function of a random

variable which has a uniform distribution over the interval (0, 1) .
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Since by a theorem of V. Glivenko [259] it follows that
(202) P{lim sup |G (x)-G(x)] =0} =1,
A n

we can conclude that if n =mp , then

+ +

(203) Ng{llm Gm,n = Sm} =1
where

. o e (2l
(20«11i § = max ('m gr)

‘ T lzeam
i rd
defined by (90) and (92). Furthermore,

N
P %
(205) P{1im —rel = ot =1
| o

%
where p_ 1is defined after formula (104).
m

Since by (170)

‘ + 1 -
(206) Sm,n = R [N Pm,nt 11,
m,n
it follows that
¥
(207) p{iim oMall o m by g
! ~ n m- om .

Accordingly, we have

L
(208) lim P{ 22 < x} = P{ - ¢
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and the right-hand side is given by Theorem 5. This proves (200).

By (203) and (207) we have

%

: P o]

+ m,n \ + m + .
o] im P < —ll & = < — - }
(209) 1im {Gm,n X, LV} P{Gm_x s R Gmf_y

and the right-hand side can be obtained by Theorem 6. Thus we get (201).

' We note that if we do not make the assumption that n = mp s Then

(200) and (201) hold unchangeably whenever n -+ « ,

}Flnally, we note that I. Vincze [B44] proved. that
| ,
|

u
(210) Lm P{/n Spm <% vl /_ —-————4—3 v(I=v) dudv
< Ty o [v(1-v)]
for 0<x and Oy <1, ad
u2

3 5 X 2

(211)  1mp(/F B x = L & T ;1
m+°° m,m 2 Q - E, E‘
for x > O where
Z .
—'é' N m—-%‘--k tm—%—ﬂ{

(212) (z) -—-——-—~j e "t (1+ 2 dt

T (mt+ l - k)

;
is the Whittaker function defined for Re(m-k+ 5—) >0 . (See E. T,

 Wnitteker [67].)

The distribution of o (@ . If n=rmp, where p is a positive
' .
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integer, then om’n(a) ‘can be interpreted as the number of subscripts

r = l‘,2v,w.».b.‘, n for which

('213) : Nr =pr - [a] -1

where {aj is thé é;c*eatest integer < a . This follows from (169).
Thus if n =mp , then we have

(214) ' | Ng{om,n(a) = k} =£{om’nk[a]) = k}

for all a and k=0,]1,.s0., m,

Furthermore, we have also

~JeN 1 =3 g = - 1"' =

(215 Nlj{om’n(a) k} A,}j{om,n( [atl]) = k}

for all a and k=0,1,..., m ., For Nn+1 =mp and thus
P{oc_ (a) =k} = P{N_, = r-[a]-1 for k subscripts r =1,2,..., n} =
~ M, ~ .

(216)

= P{Nn+l— N, = ntl-r+[a] for k subscripts r =1,2,..., n} =

Hoe

= P{Ni = i+[a] for k subscripts 1 =1,2,..., n}

which proves (215).

Accordingly, 1f n =mp and if we know the distribution of o rl(a)
m,

for a =0,1,2,..., then by (214) and (215) we can find the distribution

of cm’n(a) »for all a . Obviously, gm’n\a) =0 if azn. If

a=0,l,..., n, then o 1q(a) is a discrete random variable with possible
23
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values

distribution of o n(a) for

2

k = 0,1,..., [(mp-a)/p] .

If, in particular, a = 0 ,

Thus it is sufficient to determine the

a=0,l,.e0, 0.

k(ptl)+atl
(m-j) (p+l)+a+l

)

— <J<m-k
p J=

(m=-J ) (ptl)+atl )
meJ K

(m-J ) (ptl)+atl

J

*oim

then (217) reduces to

k
= D
c ’n(a) < k}=1- o
(o
(217)
k mpHm
- ( m—k) pk 2
(mp-%m) (mpim)
m m 0gj=
for 0 <k < (mp-a)/p .
(218) Brloy (0) <k} =
for 0Lk<m.

Proof.

(219)

for 0 <k < (mp-a)/p and a =

(220)  p,(ma) = PN, = i+a

As we shall see pk(m,a)

]

- (221) i for

: pk(m,a) = P{o

k+1 (mp-i-m )
1m k=17
(e

We shall determine the probability

n(a) > k}

2

0,15..., Mp . By (216) we have

for more than - k subscripts 1 =1,2,...,

(Jp+’-a--_L) ( (m=3) (p+l)+a+l,
M-

mpl} .

can be expressed by the following probabilities:

k subsceripts 1 =1,2,..., sp|N__ = sp}

sp

) =
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(222) rk(s,a) =£{Ni = i+a for at least k subscripts i =1,2,...,

sp-a-1|N = sp}

sp-a
for 0 <k < (sp-a)/p < (mp-a)/p . Obviously, ro(s,a) =1 for

Oa<spgrm.

We shall need the following result: If O<r < j<ntl and

P{N, = r} > O, then
IV | )

(223) PIN, <1 for 1=1,2,..., j[NJ. =r} =1

Cl 3

Thisjresult follows from Lemma 20.2. It can easily be proved by mathematical

induction,

Now we can write that

_ atl . _ A
(224) pk(m,a) = az .mEiNsp_a = Sp}I‘k(S,a)
k+ o <s<m

for 0 <k < (mp-a)/p and a =0,l,..., n . For the event N, = i+a
for more than k subscripts i =1,2,..., n} can occur in such a way

that for some s where atkp < sp < mp we have N = gp , further

sp-a

N; = ita for at least k subscripts 1 = 1,2,..., Sp-a~1 and N; < ita for

sp = a<1<n. Byusing (223) and the fact that Npﬂ =n , we obtain
that

atl

(225) N\]?{Ni < jt+a for ap-a.< ix I’llN = sp} = m

= "sp-a

for a<sp <mp . Hence (224) follows.
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Furthermore, we have

(226) r(s,a) = ] PN =up|N, . = splg ()

- a
k<u<s- —
= P

for 1<k < (sp-a)/p and a =0,l,..., sp .

It follows immediately from the definition of qk(s) that

7 ( = ' { = = sp] ( 11}
(22;} qk(s) qu ;tNup up]NSp .,p}qlku)qk_l(s u)

for 2 <k s and

!

228 = 1- PN = = sp)
(228) | q; (s) l<g<s"“{ up = INg, = splay (W)

In the above formulas we have

uptu-1, , (s-u) (p+l)-a-I
(L A
| (sp+:—a—l)

spt =

(229) Af{Nup = up|NSp_a =

which follows from (162).

Accordingly, the problem of finding pk(m,a) can be reduced to the
problem of finding r'k(s,a) for (atkp)/p <s <gm, qk(s) for k <s<m
and ql(s) for 12 s< m . These probabilities can be determined by

(224), (226), (227) and (228).
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It will be convenient to use the following notation. lLet

(230) P ma) = (™ Mp, (m,a) ,
(231) R (s,2) = (P2 (s,
and

(232) Qs) = (P hg (s) .

It is easy to see that Qk(s) and Rk(s,a) are independent of m

wheneverr 1 < s <m.

By using the above notation, equations (224), (226), (227) and (228)

can also be expressed in the following way

- atl (m=s) (pti)+a,.
(233) Pk(.m,a) = az T=s)pratl ( s )I{K(Sga)
k+ §-<s;m :

for Oék< (IIIp—a)/P and a'—'osls"'smp )

((s—u)(p+l)—a-l
s~u

(238)  R(s,a) = ]

k<u<s— =
= P

)Q, (W)

for 1<k <(sp-a)/p and a =0,1,..., sp ,

(235) Q) = ] g we_,(s-u)

I<uss

for 2<k<s and

¢ s +S_ : ( ~U +1 - /
(23) o) = L Loy (Bl
< s lzugs o

=

for s >
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To obtain Pk(m,a) for 0 <k < (mp~a)/p we should determine first
Q(s) for 1<k <s and then R (s,a) for 1<k < (sp-a)/p where
l<s<m. We shall determine these quantities by using genersting

funetions.

First we shall derive some generating functions which we shall need

in what follows.

By \using; Rouché's theorem we can prove that if |z] < pp/ (p+1)p+1 s

then the equation
-
, |
(237) 1-w+zmPl =0
|

has a single root w = y(z) in the circle |w - 1] < 1/p and if g(w)
is a regular function of w in this circle, then by Lagrange's expansion

we obtain that

@  r r-] e )(Hx)r’pﬂ'
(238)  gly(z) =gy + § L& & @0Q ] .
r*=lr! dxr-l x=0
It follows immediately from (238) that
= 1 oy (PHD) (1)
(239) gly(2)y'(2) = ] I (LELI) ]
r=0 *° dx™ x=0

If k 1is a nommegative integer and a is any real or complex number,

then by (238) we obtain that

A oY1 Y1 T = K v kptkta ,rptrta-1l, r
(2L0) [v(2) v (z)-11" = 2+ r'=12<+3 i gy )2
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and by (239) we obtain that -

Q1) @ PL @A () = § (F ey r
rék r-k
for |z| < pP/(p+1)Pt .

We note further that

' oy wae [y(2)1%1 T ey 2
(242) logy(z) iiné ) rzl ( . )?pi-r ,
and h{ience
_! |
ﬂ\? - ply(z)-1] - pZY'(Z)= g;ogl(z) _ = rpir-1, r
(243) 1-ply(z)=-1] Y(zy  P? Tz I G e
r=1
+ . \p¥l
S R pP/ (p+1)P 1 , then y(z) » (p+l)/p .

for |z} < pP/(ptl)

Now let us find Qk(s) for 1 <k <s . If we form the generating
function of (236), then we obtain that
o Spts—
. I (Pl
(2u4) I qs)2® = =2 = ply(2)-1]

=1 1+ Z (spgs—l ) Zs

s=1
for |z| < pp/(p+1)p+l . Formula (2U4) follows from (243). If we form the

generating function of (235), then we obtain that

(2u5) I G = (1 Q, ()2 = pTr(2)-11%
S= S=4

for k =1,2,..., and lz| < pp/(1o+l)p+l . Thus by (ZL!-O) we get
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| spts kpk
(246) Q. (s) = (P75 L

s-k’ s
for 1 <kz<s.

Next we shall prove that

p _ ok J (s-J)(p+1) Jptj-a~1
=] =
= <Jjss-k
7 Y p -
(247)
k spte-a-1, . Kk 1 (s=~J)(p+l), Jpti-a-1
p (o -kt ] 597 Cangex TS
0<j< %

for 12k < (sp-a)/p .

If we form the generating function of (234), then we obtain that

(248) I R(s,m)2 = (] g wa 1 (IPFIahygdy
a u—-k

J
kt = <s = <J
1Y p

for [zi <pp/(p+1‘p 1 . The first expression for Rk(s,a) in (247)

follows from (246) and (248).

If we take into consideration that by (241}

(249) 7 PRy oy ()17 P2 ()
j=0 7

for |z]< o°/ (p+1)p+1 , then it follows from (248) that
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I R(s,a2° = pTv(@ 72 P2 [4()-17% () -
kt %-<s .
(250) o s .
S (T a2 ] (P )
: u=k a
QJ;E
for |z] .<pp/(p+l)p+l . If we use (241) and (246), and form the coefficient

S “ . . .
of 2z~ 1in (250), then we obtain the second expression for Rk(s,a) in

(247).
We note that by definition

l (sp+s—a—l)

(@1 Ry(s;a) = (%7

for O <a<sp.

Finally, we are in a position to prove that

= k(ptl)+at+l  ,jptj-a=1,,(m=3)(p+l)+at+l, _
— <] <ITle=
p =0
(252)
it ey Kkt dpti-acly (mg) (pHLivarly
k a (m—j) (p+l)+a+l i In_j__k
<j< —
=J==p

for 0 <k < (mp-a)/p .
Let us form the generating function of (233). Then we obtain that

o«

(253) ] Pmad=( ] R(s,a)2®)(] Z_ (Pteays,
=0 sptatl s
k+ §-<m kt+ %-<s S

for |z| <pp/(p+l)p+l . Here by (245) and (248)
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k+ ?'— <SS §'_ <j
1Y P

for k=1,2,... . If k=0, then (254) is trivially true. Furthermore,
by (2U40) we have

T atl ,spista S atl  spist +
(255) ] S (PRS- | OEL DS Pt
=0 ’ s=1

Thus by (253), (254) and (255) we get

(256) I pmas” = ply@F Iy()-11° | (P,
k+ % <m % <J

for |z <p®/ (p+l)p+l . If we make use of (240) and form the coefficient

of z 1in (256), then we obtain the first expression for Pk(m,a) in

If in (256) we write

(257) ) (J'p*gi‘a“l)zj = [v(2) T3P 2 (z) - 3 <3p+§'a*1)zj,
%<J Ogis &

which follows from (249), then we can obtain the second expression for

Pk(m,a) in (252).

By (252) and (230) we obtain P{o n.nt@) £k = 1-p (ma) for
" N s .
C<k< (mp-a)/p and a=0,l,..., mp . This completes the proof
of Theorem 1l4.
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In the particular case when n =m , the distribution of o m(a)
]

was found in 1952 by V. 2. Mihalevich [298].. He showed that if

a=0,1,..., m, then

2m

( )

of ot k+a mtk+a+l

1 = < = o oatnrtal -
(258)  Plo, (a) sk} =Pl <8 =1 s
m

for k =0,1,2,..., ma . The distribution of S rl(a) for n=mp

3

where p 1is a positive integer was found in 1970 by the author [(340].

Theorem 15. If a2 >0 and n=1mp , then

_lefiml g j-ayd (megra)™ I K1

lim P{o_ (ap) <k} =1 : .
pro™  MsT) . a<j<mk J!(mf-g-k)!
(259) ] -
1. © m! + (atk)m! Z (j—a)J (m—j-{-a)m-')’"k"l
(mk) ' " JHm-j-k)!

Osiza

for O<k<ma. If, in particular, a = 0, then (259) reduces to

m!

(260) lim P{o (0) <k} =1-
preo” P (mk-1) tr¥HY
for O<k<m,
"~ 'Proof, Since
(261) N?{om,n(ap) < k} =£{Gm,,n([ap]) < &}

if n=mp ,a20 and k = 0,1,2,..., the limit relations can be obtained

immediately from (217) and (218) if we replace a by [ap] and let p oo .,

/< J By (217) we can easily determine the limiting distribution of o mp(a;p)
. 11a

as p - « when a 1is a nonnegative real number.
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" Note. By using Theorem. 15 we can provide a new proof for Theorem Q.
In Theorem 9 the random variable om(a) denotes the number of intersections
of F(x) = G(x) with, F_ (x) +-§1- for —= < x < o , MNore precisely,
. : . a
5) = + { S = . = pad -C0 ) 3
om(a) k 1if the set S, {x : G(x) Fm(x) + = and <x<e} is

the union of k separated intervals or points. Since by a theorem of

V. Glivenko [259] we have

(262) P{lim sup IGn(x) - G(x)] =0r=1,
e —we<x<e

we cjn coriclude that

(263) Flop(a) <10 = Mn Bloy p(ap) < 10

for O<k<ma and O<a<m. This proves (129) for a> 0 . If

a = 0 , then we have

(264) P{o_(0) < k} = lim P{o_(a) < k-1}
A M - a_)Om— m |

for 1 <k<m. For if we suppose that a >0 and let a~ 0 in S

a >
then we obtain every interval or point in SO except one which contains
x = «, Formula (264) implies that
1
(265) P{o (0) <k} =1 - —%
10

(m~k) !mk

for 1 <k <m . This proves (129) for a =0 .

Finally, we shall determine the asymptotid distribution of

o mp(yv/hpipﬂj) in the case when m > » ,
3
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Theorem 16. If x>0 and y > O, then

lim P{o_ (,]e/mpip+ ) < x Yip/(pFl
M :

(266) (a2

fOP ANy D = 1,254e.
" Prcof. Now

(267) Plop (@) 210 = oy (Ta]) <%

is g,ﬂven explicitly by (217). If in the first formula on the right-hand
side of (217) we put a = [y vmp(p+l) ] and k = [x /mp/(p+l) 1, J = mu

and let m > « , then we obtain that

_ §[<A+Y) 21

1-u U

. . _ (x+y)
(268) 1im P{o (a) <k} =1- -
™ TR - 2r O (l—u.)j/ 2 172

for x>0 and y 2 O . If we evaluate the integral on the right-hand

side of (268), then we obtain (266) which was to be proved.

Theorem lGIis a particular case of a 1limit theorem of N. V. Sydrnov

[327]. According to the result of Smirnov, (266) is valid for any non-—

negative real p. Smirnov's result is given by formula (85) in this section,
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L, Problems

40.1. Two piayers, A and B, play a series of games. In each game,
independently of the others, either ‘A wins a counter fran B with
probability p or B wins a counter from A with probability q where
p>0,q>0 and p+ag=1. The ser@es ends if either A wins a total
number of a counters from B , or B wins a total number of b counters
from A . Dencte by pn(a,b) the probability that A wins the series in

exactly n games. Determine the generating function of the sequence {pn(a,b) R

n=1,2,...1. ‘(S-ee P, S. Laplace [ 39 p. 2287.)

40,2, Two players, A and B , play a series of gamés. In each game,
indepeﬁdently of the others, either A wins a counter from 'B with
probability p , or B wins a counter from A with probability ¢ where
p>0,q>0 and p+qg=1. The series ends if A winé a total number
of a counters from B . Denote by p the duration of the games. Determine

the generating function of p . (See P. S. Iaplace [ 39 p. 229].)

40.3. Prove that

1 (2n) 1

V(n+-%)v . /om




1 and

6’:
=
~
H
(@]
o
[o3)
OQJ
[t}

Li<igl..clen 11 1, iy

<iq<ds
for k = 1,2, , i . Prove that
(-l)i1+.,.+1k Sll . 5 n“k
, Xk _ 1 5 ...ok
-Lra, = ot 4 ) et = 1. 1 i
el t. . el =k IEIE 233, x

for k= 1,2,..., n .
40*5. Let Eqs Egseees By be mutually independent real random variables

having Lhe same distribution function F(x) . Denote by Fm(x) the empirical

distribution function of the sample (gl, 52,..;, gm) , that is, Fm(x) is

equal to the number of variables < x divided by m . Provevthat if Fx)

is a continuous distribution function, then

%= sup [F_ (x) - F()] and 6_= sw [F(x) - F(x)]

_co<X<co -.oo<x<co

have the same distribution function.

40.6. et (Egs EyseessE) @ (nys Mypeens ) e independent
sequences of mutually independent real random variables with distribution
functions F(x) and G(x) respéctively. Denote by Fm(x) and Gn(x) the
empirical distribution functions of the samples (gl, Egseees gm) and
(”1’ Noseses nn) respectively. Prove that if F(x) and G(x) are

identical. continuous distribution functions, then
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+ - .
= — 3 an 4 ( i
Sm,n -mi;f:co [Fm(x) Gn(x)] and .am,n —mfirioo [Gn(x) Fm\x)_(

have the same distribution function.

40.7. Find the distribution and the moments of the random variables

O %
E’l’ 52,..,, gm in the solution of Problém 40.5 in the case where F(x) = x

for O <x<1.

40,8. Find the distribution and the moments of the random variables

Nl, Nz,..., NV1 in the solution of Problem 40.6.

40,9, Iet Eys Enseees B be mutually independent real random variables
| _

having the same distribution function F(x) . Denote by Fm(x) the empirical

distribution function of the sample (gl, Enseons &

2 o) - Determine the joimt

distribution function of

st = swlF (x) - F&x)] and 6~ = sup [F(x) - F_(x)]
1 m m m
—oX <0 —c0L Y <00

in the case where F(x) 1is a continuous distribution function. (See K. Sarkadi

[320 ], S. G. Mohanty [ 302 ], G. D. Steck [459 7], and E. J. G. Pitman [448 1.)

40.10. Iet £1s 52,..., Epr Mo Nyseees Ty be real random variables.
Denote by Fm(x) the empirical distirbution function of the sample
(gl, Ergeses & m) and by Gn(x) the empirical distribution function of the
sample (nl s Nyseses N n) . Determine the joint distribution function of

F \ ‘ - |
§opn= sw [F(x)-Gx)] and & = sw [G(x)-F (2]

00X <00 sT1 —o< Y <00
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in the case where F,l, 52, cvey Em, Mys Noseees My are mutually independent

random variables having the same contiruous distribution function.

40.11. Prove that (39.79) holdsif m+ ® and n + « in an arbitrary

Way.

ho.12. Let El, 62,..., F,m, Nys Nosenes Ny be mutually independent

random variables having the same continucus distribution function. Denote by_
) ‘ function

1y m(x) the empirical distribution}\of the sample (gl, Eg,. .oy &) &and by

G 1,l(x) the enﬁgjj:'ical distribution function of the sample (rsl, Noseses np) .

Define.

6 (a,8) = swp  [F (%) -G (x)]

fl a<G, (x)<8

for 0 <a<8<1. Findthe asymtotic distribution of &  (0,0) ,
' 3

+
st (a,8) , 8

) 3 _ o -
m,n m,n(f:1) @ m>e and n>e. (See E. L. Rvacheva (454 19

40.13. Consider Problem 40.12 and determine the limit

1im P{s (a,8) = O}
m > « m’_n
n-+ e

for O <o <B8<1. (SeeB. V. Gnedenko [ 260 ] and I. I. Gikhman [431 7.)

40.14. Let ¢, &, seees £ De mutually independent random variables
 having the same continuous distribution function F(x) . Derote by B (x)
the empirical distribution function oif the: sgmple (251, ;2,,. - gm) .
Define D - R
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sn(:8) = s [F(x) - ()]
asF(x)<g

where O < a <8<l . Find the limiting distribution of i 6 (a,8) as

m>o . (See G. M. Maniya [293 1.)
40.15.  Under the assumptions of Problem 140.14 let

+ _ nix) = F(x)
uo(as8) = a;?zi);ﬁ[ %)

for 0 <a<Bg<1l. Find the limiting distribution of vm u:,; (a,1) as
i ‘ ha
m>o .| (See A. Rényi [ 314 1.)
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