CHAPTER IV
ORDERED PARTTAL SUMS

28. Preliminaries. Let Xqs Xyseees X, Dbe real numbers and arrange

n

them in increasing order of magnitude. ILet us assume that Xy precedes

X, 1if either x, < x, or x, =x, and i < J . Denote by
J 1 J 1 J

L2

%
(1) X, = Rri,k(XO’ Xyseees Xn)

the k-th (k = 0,1,..., n) number i: the ordered sequence. Then

* * *
X .
n

fia

XO;Xl;...

Let gl R 52 sesss gn sve« b mutually independent and identically

distributed real random variables. Define Zy = gl+...+ En for n=1,2,...

and z;o =0 . Write

(2) Lk T Rn,k(‘:o’ L seeesty)

for k=0,1,..., n and n = O,;L,2,... . We say that ﬁn,k is the k-th
(k = 0,1,..., n) ordered partial sum in the sequence Tys Gpseees Gy -
We have "0 < 1 < ...;nnn .

Our aim iIn this chapter is to give mathematical metheds for finding

the distribution of the randam variable for 0<ks<n . Such

In,k
methods were given in 1952 by F. Pollaczek [ 5 ], in 1960 by J. G. Wendel

[7 1 and in 1962 by D, A. Darling [ 2 ].




In what follows we shall introduce some auxiliary random variables

which will be useful in solving our problem .

let (anO’ O jseees &

which n, =¢  for k=0,1,..., n. Inother words a, (
nk
is the subscript of the k-th ordered .partisl sum in the sequence

nn) be that permutation of (0,1,..., n) for

k=0,1,..., n)

Cgs Gyseees Gy o We have S T J if and only if N = ;j .

Denote by (Bno, Bpseees Bnn) the inverse of the permutation

(o‘noy a,ﬂ_:“‘s am) s That 1is, an =k 1if and only if « In other

ke =9
'word%, Snk (k = 0,1,..., n) 1s the rank of the k-th partial sum in the

|
sequ?nce Lgs Gyseees Cn . We have Bnk =3J ifand only if n_. =

nj - %k -
% —
We note that Ny = N, a5 we defined in Section 14 and "o = - g
"
as we defined in Section 15. Furthermore, we have Bnn =0, as we defined

in Section 22.

We are interested in finding the distribution of Ny for C<ks<n;
however, to achieve our goal we shall solve first a more general problem.
Iet us define the following expectation

-=5n_, ~VC a
(3) A (s,v,2) = Efe nk "n ,nky

which exists if Re(s) = Re(v) =0 and O <k <n . We shall determine
the generating function
® N

(4) Y L A (s,v,z)pnwk
n=0 k=0 ™



for Re(s) =Re(v) =0, |zl <1, |e| <1 and |p| <1 . If v=0

and z =1 in (4) , then we obtain the generating function

(5) I ) Ble ™Rk
n=0 k=0""
for Re(s) =0, |o] <1 and |p] <1 . From (5) we can obtain Ef{e }

and P{n nk < X} can be obtained by inversion.

The determination of the generating function (4) makes it possible to solve
another problem which we discussed at the end of Section 2U. Denote by
en(x) +he number of partial sums Lgs Gysee++s &, wWhich are < x .
. ,
Acco%rding; to Theorem 24.3 we have
-vg  0,(x)

w© o - o) n
6) ] o7 [ e afEe "u }=-(1~w) § 7§ Efe
n=0 - n=0 k=0

Mk Ven, n k
o w

for Re(s) =Re(v) =0, J|w] <l and |p|] <1 . The right-hand side of

(6) can be obtained ty (4) in the particular case when z =1 . By (6)

we can find the joint distribution of ¢ and 6 (x) for n=1,2,...
n n 272

and for any real x .

Taking into account what we said above we can state our goal as the

determination of the generating function (4).

be
If we would /able to provide a simple proof for the following relation

(7) A (s,vs2) = Akk(s’V’Z)An—K,O(S’V’Z)

" which holds for O < k <n , then we could obtain (4) immediately by

using Theorem 24.1 . Although the relation (7) is simple its proof is far



fram evident. Actually, we shall conclude that (7) is true, only after

(4) has been found.
To find (4) we shall introduce another expectation

o -8 .=VC B .
(8) B (s,v,0) = Efe Jon Ty

which exists if Re(s) = Re(v) =0 and O < J <n . We shall show that

<o

n © n .
(9) 7o Ank(S,V,Z)pnwk = ) ] Bm.(s,v,w)pnzJ
n=0 k=0 n=0 j=0

|
for |Re(s) = Re(v) =0, |pzu] <1, |pw] <1, |pz] <1 and |o| < 1.

Furthermore, we shall show that

(10) Bm.(s,v,w) = Bjj(s’v’w)Bn-—j,O(S’v’w)

for 0 < J <n which can easily be proved. Finally, Bnn(s,v,w) and

Bno(s,v,m) for n = 0,1,2,... can be obtained by Theorem 24.1 .



29. The Determination of Bm.( s5,v,w) . For any event A define

§(A) =1 if A occurs and S8(A) =0 if A does not occur. The random

variavle 6(A) 1is called the indicator variable of the event A .

For any given j (j = 0,1,..., n) let us write ZO =L4mty s
El = Ty Eysenes En_j =t~ &y and define En_j.k (k = 0,1,..., n-3)

and B.

n-j & (k = 0,1,..., n=j) for the sequence ZO’ El"“’ T in

;n-j
exactly the same way as we defined ® and Bnk for Cgs Gyscees Cp -

Theorem 1. We have

@ Slog= 3 = Sa, = DOG_, = O)
rie max(o,j"'k—n)ér_f_min(j LK) O'JI’ OLrl--‘j SK-1

A

for O<ks<n,0<jsn and n=0,1,2,... .

Proof. The event {a = J} can occur in several mutually exclusive
ways: There is an r [max(0,j+k-n) < r <min(j,k)] such that in the
sequence r,o, z_;l,..., cj-—l precisely r elements precede _Cj (that is,
Z; ¢ 3 holds for precisely r subscripts i = 0,1,..., j-1) and in the
sequence Cj $12°00 Cn precisely k-r elements precede Cj (that is,
Ci < i;J. holds for precisely k-r subscripts 1 = j+l,..., n) . Thus (1)

follows.
Since {a = jt = {an= k} we can write equivalently that

(2) §(B_.=k) = ) (B

= K-1)
nJ max(0, j+k-n)<ramin(j k) 99

= )88 5 o

for 0<kzzn,0<js<n and n=0,1,2,... .
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Theorem 2. If Re(s) =0 and Re(v) = O, then we have

(3) an(s,v,w) = Bjj(s’v’w)Bn—j,O(s’V’w)

for 0<Jjzxn.

-3¢ -V
Proof. Iet us multiply (2) by e 9 "X . Then we obtain that
~ST .=V -SZ .~V .
W e I MM =k = ) [e 9 JuTs(8..=1)] -
nJ max (0, j+k-n) <r<min(j k) JJ
V(g _-z.)
n °j’ k-r_, = - Lo
The #wc tactors in brackets on the right-hand side of (4) are independent
| -V _ & a
and #he second factor has the same distribution as e n=J mk_ls(sn 3 O= k-r).
! ~J

If we form the expectation of (4), then we get (3) which was to be proved.

Let us define
-vg B
(5) B (vyu) =Ele "o
and
- ~vg_ B
(6) Br(v,a) =Ele w0}

for Re(v) =0 and n=0,1,2,... . Then we can write that

(7 B (5,7,0) = B} (s4v,0)
and
(8) Bno(s,v,w) = B;(V,w)

~and thus



+ -
(9) an(s,v,w) = Bj(s+v,w)Bn_j(v,w)
for Re(s) =0 , Re(v) =0 and 0<j<n.

Theorem 3. We have

(10) B;(v,w) = wnB; (v, %?
and
(1) - B;(v,w) = w'B (v, %

for n=0,1,2,... and Re(v) =0 .
1
|
|

I

|

is the same as the joint distribution of z, and n-B . . Hence both

Procof. We shall prove that the jolnt distribution of Ly and Bnn

(10) and (11) follow.

Let us write Ly Tty et for i =0,1,..., n and define BnO
for Lgs Gpscers &y N the same way as we defined Bno for Tgs Cyseees Gy o
Then we have BnO =n - Bnn' For if Bnn = k , then Ly 2%, for exactly k
subscripts 1 = 0,1,..., n-1 or, equivalently, E; =y Cpng <0 for

n-k subscripts 1 =1,2,..., n, that is, EnO =n-k . Thus ?;’n =z,

and 8 4 =n-8 . Since evidently (;n, B o) and (Cn’ Bno) nave

identical two-dimensional distributions, it follows that

-VCn n-g
(12) E{e w ) = Ele w T

for Re(v) = O . This implies both (10) and (11).
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Let us introduce the generating functions

(13) G+(V,p,w) = ) B;(V,w)prl
n=0

and

(14) G (vyo,0) = ] BL(v,0)e”
n=0

for Re(v) =0, |uw]

A

1 and |p] < 1.

Theorem 4, We have

(13) " (0,007 (v40.0) = (T (T

for Re(v) =0, |ow[ <1 and [p| <1 where
“VE,

(16) p(v) =Efe ™}

1l
o

for Re(v)
Proof. By (9) we can write that

n + _ - _ n . _ n —VZ,'n Bl’l,]
jZo Bj(v,m)Bn__j(V,m) = jzo Bn,j (0,v,w) = jZO’E{e w Y}
an .

= [Ltwte+. .+ oI[6(v) "

for Re(s) =0 . If we multiply (17) by o™ and add for n = 0,1,2,...

then we get (15).



Tneorem 5. If Re(v) =0, el <l and |pw| <1, then we have

(18) aF(v,0,0) = 6T (v,0,0)G7(v,0u,0)
and
(19) G (Vyp,0) = G (V,p0,0)G7(v,p,0)
where
where , -
T{logll-p¢(s)]}+ § 5= Plz < O}
s n=1 o o
67 (s,0,0) = & -
1-p¢(s)
(20)
. -t
= exp { Z 2 Be "s(z, < O}
Ao 1
n—l
and
-T{1og[1-p¢(s) 1}~ z %—Nli z,< O}
G (5,0,0) = e n=1
(21) © n -5z
=exp { | B-Ele To(z 2O

n=1
for Re(s) =0 EEQ. |p| <1,

¥
Proof. Since Bnn = Pn (the subscript of the last maximal element

%
in the sequence gy, Zyseess cn) , and since by Theorem 22.1 (;n, pn)

¥
and (;n, An) have the same two-dimensional distribution, it follows

that
+ T 2
(22) G (s,p5w) = ) rlk(S)o W
n=0 k=0

*
for Re(s) =0, |e|l<l and |pw| <1 where V. (s) is defined by
(23.3). The right-hand side of (22) is determined by (23.10) and by

Theorem 24.1 . Thus we obtain that
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("+ = v in_‘w)ri ;! —SCn 3 1 __on v —SCn
(23) G (s,p,w) =exp{ ) [ E{e “6(z_20)}+ =—E{e “8(z_<O0)}]}
n=1 11 A n= n -~ n

for Re(s) =0, |p|l <1 and jow| <1 . By (15) and (23) we obtain that

(24) G (s,p,w) = exp { Z [—-—n—— E{e ~ 5(Cn<0)}+ o E{e 5(Cn=>=o)}:|}
n=1 - it
for Re(s) =0, J|p|l<1l and Jow| < 1.
By Theorem 24.2 we can write that
-T{log[l-pw¢(s)]iri{logl1l-p¢(s)]1} © N, on
+ _ o~ ~ p (l—w ) .
(25) G (s,p,w) = T=53(3) exp {n=1 Plz, <01}

for Re(s) =0, |p] <1 and |pw| <1 . By (15) and (25) we obtain that

_ o T{1log[1-p¢(s)]H+I{1ogl 1-pu¢ ()1} v el(1-e™
(26) G (s,p,0) = T = us(s) expl-

=1 n ME{CI’I< 03}

for Re(s) =0, |p| <1 and |pw| < 1.

Formulas (23), (24) and (25), (26) prove Theorem 5.

Theorem 6. If Re(s) = Re(v) =0, |pwz| <1, |pu| <1, |pz] <1,

“and |p| <1, then we have

© n

o d \ | + -

(27) ) Z Bn.(S,V,w)pan = G (8%V,02,0)G (V,po,w)
n=0 j=0 ‘¥

and
PO 1y, \n_j - +

(28) I 1 Bi(s,v, 2)ew) 2 = G (54v,02,0)G (V,0,0)
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where the right-hand sides can be obtained by (23) and (24) or by (25)

and (26).

Proof. If we multiply (9) by anJ and edd for j = 0,1,..., n

and n =0,1,2,..., then by (13) and (14) we obtain (27).

By (9), (10) and (11) we can write also that

n 1, _ o~ +
(29) . m an(s,v, BJ = Bj(s+v,w)Bn_j(v,w)

for 0 <j<n . Ifwemultiply (29) by p'z) and add for j = 0,1,..

and | 1 = 0,1,2,..., then by (13) and (14) we obtain (28).
{ . .

* 2
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30. The Determination of Ank(s,v,w) . By using the results of

Section 29 we are in the position to determine the generating function

(28.4). Next we shall prove that (28.9) helds indeed.

Theorem 1. If Re(s) =0, Re(v) =0, |pwz| <1, |ow] <1,

loz| <1 and |p| <1 , then we have

n=0 k=0

o n .
(1) ) Ank(s,v,z)pnmk = G+(S+V,pz,w)G—(V,p,w)
n=0 k=0
and
} v 5 n n-k - | +
(2) | ) A (s,v,2)0 = G (5+V,02,0)G (V,p,w)
|

where the right-hand sides can be obtained by (23) and (24) or by (25)

and (26).
Proof. Since we have the obvious relation

n -3Nn_, =VZ_ o n
(3) I Ee ™ Ko 7 e
=0 j=0

-sr.-vz_ 8 .
oy 1/]k} 7

for Re(s) = Re(v) =0 and for any z and w , or, equivalently,

! LA (v = 7 J
(4 A (s,v,2)u = Z B .(s,V,w)z
Lo TV s e nj o2V ’

it follows that
= n nk T nj
(5) ) Ahy(s,v,z)p w =7 3 an(s,v,w)p 29
n=0 k=0 ) n=0 j=0

for Re(s) =Re(v) =0, |pwz| <1, lpw] <1, |pz] <1 and |p| < 1.
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This proves that (28.9) is indeed true. Formula (1) follows from (29.27)
and (5).

If we replace o by pw and w by 1/w in (5) and if we use (29.28),

then we obtain (2).

By (29.23) and (29.24) we can express (1) in the following equivalent

way
- E‘ E ﬁg{e—snnk‘VCn Zank}pnmk -
n=0 k=0
= exp { Zlv[$99§?f;gxe_(s+V)C“a(zn; 0)} +(p§>nﬁgie_<S+V)Cna<cn <0)i +
+ “gﬁ g{e-vcrla(cn< 0)} + %2 E{e-vcna(cn > 0)}1}

whenever Re(s) =0, Re(v) =0, |pwz| <1, |ez] <1, |owl <1 and

!p|<1.

If we use (29.25) and (29.26), then by (1) we can write that

@« n
(1) [1-pzé(s+v)1[1-pwp(v)] § 7V Ank(S,v,z)pnmk =
n=0 k=0

- e—-¢(s+\f,mpz)+¢($+v,pz)-¢(v,p)+¢(v,pw)exp{ _ °z° 0P (1-wl) (1-2")

g {
- «E{cn< 0}}

n=1
for Re(s) =0, Re(v) =0, |pwz] <1, jpz] <1, |pw] <1 and

lo] < 1, where

(8) $(s,p) =Ngilog£l~p¢(5)]}

for Re(s) > 0 and |p| < 1.
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We can also express (2) in a sﬁnilar- form as (6) or (7).

We note that if w =1 in (1), then we get

-]

-5 \ n _ 1
@ n;'O kZO Auc(s5v52)e = [1-p¢(v) [[1~pz¢ (s+v)]

for Re(s) =Re(v) =0, |pz| <1 and |e| <1 . This follows from (7)

or it can be proved directly as follows:

T SV, 9 ® 1 -5 ,—VE
W) 7 Ee ™ Mo v 7 pe 9 Mgdl-
n=0 k=0"" n=0 j=0"
5oy J n-j jn 1
—3 + : -
nzo kzo Lolst Lo I “ate [1-p¢(v) J[1-pz¢(s+v)]

for Re(s) = Re(v) =0, [pz] <1 and |p] < 1.

We mentioned at the beginning of Section 28 that the functions
Ank(s,v,z) defined for 0 <k < n by (28.3) satisfy a simple relation,

namely, (28.7). Now we shall prove that this relation is indeed true.

Theorem 2. The functions

-Sn_, =VL_  «a
(11) Ank(s,v,z) = Ele M 0,0

A

1

defined for Re(s) = Re(v) =0 and O <k <n satisfy the relation

(12) Ank(s,v,'z.) = Am{(S’V’Z)An-k,O(S’V’Z)
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Proof. This theorem follows immediately from Theorem 1. If we put

w =0 1in (1), then we obtain that

. «© _{_ -
(13) ¥ Ano(s,v,z)pn = G (s+v,02,0)G (v,p,0)
- n=0

and if we put w = 0 1in (2), then we obtain that

(1) z Am,l(s,v,z)pn = G_(s+v,pz,O)G+(v,p,O) .
: n=0

If we replace p by pw in (14) and if we form the product of (13) and (14) s
then we obtain G+(s+v,pz,w)G—(v,p,u) . This follows from Theorem 29.5 .
Accordingly by (1), (13) and (14) we can conclude that

A nk_

5,v,z)e et = (] A (s,v,2)0)( ] A_(5,v,2){pw)")
n}( 3% no 3v> " n Y2
n=0 n=0

(15)

&M 8
&l)l\’lﬁ

n=0 k

for Re(s) =Re(v) =0, |owz| <1, |ew]<1l; Jez] <1 and [o] <1.
If we form the coefficient of p"w® for O <ks<n in (15), then we

obtain (12) which was to be proved.
It is interesting to point out that we have the identity

(16) Am{(o,v,z) = Bnk(o,v,z)

for Re(v) =0 and O <k <n . This follows from (29.27) and (30.1).

For by (29.27)

<o n .

~ ° + -

(1n )) z an(o’v’z)pan = G (v,pw,2)G (v,0,2)
n=0 j=0

and by (30.1)
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o n
vk o+ -
(18) I ] AL(0,v,z)e e = G (v,ez,0)G (vy0,u) .
n=0 k=0

The right-hand sides of (17) and (18) are equal which can be seen by using

(29.18) and (29.19). Accordingly (16) is indeed true.

In what follows we shall provide & direct proof for (16). The identity

(16) can also be expressed in the following form.

Theoram 3. If Re(v) =0 and O <k <n , then we have

vz a . =VG B
(19) Ble Dy % =Be "o iy

P~

Proof. First we shall prove (19) in the particular case of k =0 ,
and then we shall show that the general case can be reduced to this particular

case.

0 . Let us define BnO and anO

Ci =g -z . (1=0,1,..., n) in exactly the same way as we defined SnO

)
~
"

for the sequence

‘ and %0 for the sequence Lgs Cyseees Ty o We have BnO =n - Snn R

=n- a and Eh =z, . In proving Theorem 29.3 we have already shown

that if 8 =k , then Eno=n-k for k=0,1,...,n. If o =k

where k = 0,1,..., n , then 2y Lo for O0<1i<k and g < for

by

k <is<n, orequivalently, ¢ nei Eh—k

n-i % Sp-k for 0<i<k and ¢

for k <1i<n, that is, a‘no = n-k .
Accordingly, BnO and n have the same joint distribution as n- enn
and S and similarly, %5 and tn have the same joint distribution as

- o and z_ .
nn n
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Now let us prove (19) for k = O . We shall prove by mathematical

induction that BnO and Cn have the same Joint distribution as @0

and n for n=0,1,2,... . If n=0, then o, =8~ =0, and the

oo T00
statement is true. Suppose that for n , where n = 1,2,..., the variables

) and (o ) have the same two-dimensional

(Bp1,00 ®n-1 n-1,0° “n-1

distribution. Since 8 "and ¢ do not depend on ¢ = and

n-1,0° *n-1,0°
T, =t e, it follows that both (Bn—l,O’ gn) and (an—l,O’ cn) have

n-1

exactly the same two-dimensional distribution.

%f En,;=o . then evidently BnO = Bnﬁl,o' and I %-1,0 Thus
if x>0 and j =0,1,..., n-1, then
(20) P8 =d5 ¢, 2% =£{Bn-1,o =J, ¢, 2%}
and
(21) Af{anﬂ =J, ¢, > x} =N?{“n—1,0 =Js T, 2 x} .

By the induction hypothesis the right-hand sides of (20) and (21) are

equal and hence
(22) P8 =, 5, 2%} = Pla

for j=0,1,..., n and x>0 . If j=n, then both sides of (22)

are 0.

ifr T, < 0 , then evidently Bnn = B and o =

n-1,n-1 anyl,n-l

and thus fer x <0 and j = 1,2,..., n
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»E{Bno =J y < x} =,£{Bnn =n-J, tn < x} =

(23)

=,£{Bn—l,n—l =), oy < x} =N}E{Bn-l,o =J-5, oy x}
and
Plogg = J5 &y < x} = Pla = n-j, ¢ < x} =
(2h)

= P{q

~on-1,n-1 T =J-1, ¢t <x}.

n

By the induction hypothesis the right-hand sides of (23) and (24) are

equal and hence

(25) E{Bno =7, Ty < x} =/'P{c>znO =j, z, < x}

s

|
|
for x <0 and J =0,1,..., n. If J =0, then both sides of (25) are O .

Since (22) holds for all x > 0 and (25) holds for all x < 0 , it
follows that (BnO’ z;n) and (ano s cn) have identical two-dimensional
distributions. Thus by mathematical induction it follows that (19) is true

for k=0 and alln=0,1,2,e.. &

Since (E_no, ?,_n) = (n-B_ ., ¢,) has the same two-dimensional distr'ibutiqn

as (Bno, r,'n) , and (ocno, cn) = (n- o

an? r,n) has the same two~dimensional

distribution as (ano, z;n) , 1t follows that (19) is also trus for k=n

and all n = 0,1,2,... .

Finally, it remains to prove that (19) is true for all O <k < n and

n=0,1,2,..., that is,

(26) Ank(o’v’w) = Bnk(O’V’w)



Iv-19

helds for all O <k <n and n =0,1,2,... . We shall use Theorem 29.2,

Theorem 29.6 and Theorem 3C.1 . Accordingly, we have

[+ o

n
) Ank(s,v,z)pnwk = ) Z (s,v )z =
n=0 k=0 n=0 j=0
27 |
= G+(s+v,pz,w)G_"(v,p,m) .
where
(28) . G+(s+v,pz,m) 7 B (s,v,0)(pz)"
n—O
and )
(29) | G (v,p,0) = Z B, (Ov,w)p

l n=0

Ifweput s =0 and w =0 in (27), then we obtain that

(30) 2 A0(0,7,2)0" = 67 (v,02,0)6™(v,0,0) .
n=0

On the other hand since (26) is true for k = 0 , it follows that

(31) n£0 A.o(0,v,2)p" ng@ Boo(0v,20™ = G (v,0,2) .

By comparing (30) and (31) we obtain that

(32) G (v,0,2) = G+(V,0Z,O)G_(v,o,0)

which is in agreement with (29.19).

If we replace p DY pw and « by 1/w in (27) and if we put

= 0 1in it, then we obtain that

s=0 and
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(33) z Arm(O,V,Z>pn = G—(V,DZ:O)G.*-(V:F’:O) .
‘ n=0

On the other hand since (26) is true for k =n , it follows that

(34) } A _(0,v,z2)0" = § B_(0,v,2)e" = G'(v,0,2) .
n=0 m n=0 nn

By comparing (33) and (34) we cbtain that

(35) . G (v,0,2) = G (v,p,0)G (v,02,0)

which is in agreement with (29.18).

Thus by (27), (32) and (35)

© n

. + -

éo ) Ank(s,v,z)pnwk = G (s+v,02Z,w)G (V,p,u) =
n k=0 .

= G (54v,p2,0)G (s+v,pzw,0)G (V,pw,0)G (v,p,0) .
If s=0 in (36), and if we interchange 2z and  , then the right-

hand side remains unchanged. Accordingly, we have the following identity

: k
Gn 11 8.(0,7,2)p"w" = I LA 1 (057,002
n=C k=0 n=

and by (27) we can express the right-hand side of (37) as

@ n © N
k
(38) ) Ank(ogv,w)pnz =7 ) B ](O,V,Z)pnwk .
n=0 k=0 n=0 k=0

Consequently by (37) and (38)

(39) A (O,v,2) = B, (0,v,z)
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for Re(v) =0 and O<k<n and n=0,1,2,... . This completes the
proof of Theorem 3.

. In conclusion, we mention that Theorem 3 implies Theorem 2, that 1is,

the identity
(40) ' Ank(s,v,z) = Akk(s’V’Z)An—k,O(S’V’Z)
for O0<k<n and Re(s) =Re(v) =0.

By (36) it follows that

| = n

(b1) | ' A (s,v,z)pnmk=(°° (s,v’z)pn)(” A (s,v,2)(w)?) .
ko e oLy Bo oLy A(esvsm) (oo

The two factors on the right-hand side of (41) can be obtained from (36)
by putting o =0 in (36) first, and then by replacing p by pw and w by

1/w in (36) and by putting w = 0 in it. If we form the coefficient of

pnwk in (41) for O < k £ n then we obtain (40).

If we start with Theorem 3, then the problem of finding (5,v,2)

o
for 0 <k <n can be reduced to finding G+(v,p,z) and G (v,p,2) .
These two functions can also be obtained directly from Theorem 29.4 by

using the method of factorization.
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31. The Distribution of the k-th Ordered Partial Sum. Let

-5n_, =VT
() v (sv) = Be ™

for Re(s) =C, Re(v) =0 ,k=0,1,..., n and n=0,1,2,... . By (28.3)

we can write also that
(2) \Pnk(s,v) = Ank(s,v,l) .

Theorem 1. If Re(s) =0, Re(v) =0, |pj<1l and |ew| <1, then

we have
w e-g‘{log[l—pw¢(s+v)]} + T{log[1-p¢ {st+v) ]}

'!
: n nk _
@ 1 L L alssvee” = (T3 ()T (T4 (5]

where T operates on the variable s .

" Proof, Formula (3) is a particular case of (30.7) . Ifwe put z =1

in (30.7), then we can obtain (3).
We shall give, however, a separate proof for (3) based on the identity

(W) ‘?nk(s,v) =¥  (s,V)¥

Xk n-k,0(85v)

which holds for O < k <n and Re(s) = Re(v) = 0 . The identity (4)

is a particuler case of (30.12) or (30.40).

¥
If we take into consideration that " = M defined in Section 17,

i

then by Theorem 17.1 we obtain that

[ ]

I
(5) nzo ¥ (8o =

o T{log[l-p¢(stv} ]}
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for Re(s) > 0, Re(v) =0 and |p| < 1. If we take into consideration

that n 4 = -En defined in Section 17, then by Theorem 17.3 we obtain thab

S n  el{logll-p¢(stv)]}
® nzo ‘i’no(s,v)p " [T-e¢(v) T 1-p¢p(stv)]

for Re(s) =0, Re(v) =0 and |p| < 1.

Since by (4)

©

n nk T n o n
(n néo kzo ¥ (s, v)ew = (néo ¥ (s,7)(ow) )go LN CR

|
|
for “pw[ <1, |p|] <1 and Re(s) = Re(v) = 0 , we obtain (3) by (5)

and (6).

Let “;k = max (0, nnk) . Our next aim is to give a method for finding

the distribution of n;k for O<kz<n.
Define

S + V.
Tk Cn

(8) ¢ (s,v) = Efe }

for Re(s) >0 ,Re(v) =0, 0<ks<n and n =0,1,2,... .

" Theorem 2. We have

® n
(1-0)[1-p¢(DNI ] T o (s,7)p™¥ =
(9) n=0 k=0

=1 -y o logll-puwp(stv)]} + T{1logll-p¢(s+v) ]}

~for Re(s) 20 ,Re(v) =0, |p| <1 and |ow| < 1.
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Proof. By (3) we can write that

-] n '
()10 § T ¥ (5,v)0"" =
n=0 k=0
(10)
= [Lopwe(sty) 4 -Tllogll-pus(s+v)]} + T{ Log[ L~p¢ (s+v) 1}
1-p¢(stv) - ~
for Re(s) =0 ,Re(v) =0, |p] <1 and |pw| <1 . We can see easily

that (10) considered as a function of s belongs to the space R introduced
in Section 2. On the left-hand side of (10) the functions ¥ nlf(s ,V) belong

to R, and we can apply the operator T term by term in the double sum.

™
Since]‘
|

(11} E{wnk(S,V)}= @nk(S,v) |

for Re(s) >0, Re(v) =0 and 0 <k ¢n , it follows that if we apply
the operator T to the left-hand side of (10), then we obtain the left -
hand side of (9). We shall show that if we apply E to the right-hand
side of (10), then we get the right-hand side of (9) which implies the

theorem. It is sufficient to show that

(12) 1 ewslsty) e?E{logtl—pw¢(s+v)]} + T{logl1-p¢(s+v) 1}, _

I-p¢(s+v) 1.

A%
This is true because obviously

e@{log[l—pq»(sw)]} .

Tt o6 (srv)

(13) a
= T{e—log[l—p¢(s+v)]fg{logtl—D¢(S+V)]}} =1

A

and
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T{[l—ow¢(s+v)]ejzﬁlog[l'p“¢(s+V)]}} =

(1k)

T{elogtl-pmcb(sw)]-E{log[l-ow¢(s+v)]}} =1 .

For if T{@l(s)]- =1 and T{@Z(s)} =1, then T{@l(s)¢2(s)} =1,

A

In what follows we shall consider, some particular cases of Theorem 2

separately.

- +
= (s =
First, we note that n_ > O and therefore " = " and @mw,v)

\f'm(s,v) . Thus by (5) we have

[ <]

(15) Lo (s,ve"'=] v (s,v)0" =
.n=0" n=0

e:@_‘{ log[l-p¢(stv) ]}

for Re(s) ;O , Re(v) = 0 and |p| <1, The same result can be obtained

fram (9) if we replace p by pwand w by 1/w init andput w =0 in it.

Second, we note that

(16) L on0:v)e = 1557
n=0
for Re(v) =0 and || <1 . Since n_ <O , it follows that niy = O

and ¢ ,(s,v) = [6(v)]® for n=0,1,... .

Third, we have

~1

(17) )
n=0 k=0

n _ 1 - 1
*c(S:V00" = Tty 2 ety

for Re(s) 20 , Re(v) =C and |p] < 1.



Since
n n ~5n_, =Vg n -SC ~VE
J ¢ (s, = ] Ble ™ M= | Ee ny o
k=0 = j=0™
(18) n ) .
= ] Le(s) Lo 17
j=0

for Re(s) = Re(v) = 0, it follows that

® n
v \ n_ 1
9 \ néo kéo Frc(S5Ve = [T-oo (V) {109 (s+v) ]

|
{
|
|
for Fe(s) =Q,R(v) =0 and |p| <1 . Ifweapply T to (19), then
A
we gef (17). The same result can also be obtained from (9) if we let

w=>1 Iin it.
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32. A Generalization of the Previous Results. Let us suppose that

2

£ 1is a real random variable. let & and the sequence {En, n=12,2,...}

be independent. Define

(1) $(s) = E{e~5F

(A

for Re(s) =0,

v

In what follows we shall bé concerned with the random variables
(2) ke = Rnk('?;o‘} g, Cl+ Egeney Cn+ £)

where, O <k <n . If E =0, then (2) reduces to n defined by (28.2) .

nk
|
In the previcus section we dealt with various problems connected with the
!
variables n nk where O <k <n . In this section we consider analogous

problems for ':]-nk where O <k<n.
First, let us define

-sﬁ'nk-V( . £) }

(3) Ti‘_ﬂ}!{(s,'\r) =E{e

for Re(s) =0 , Re(v) =0 and O <k < n as a generalization of (31.1) .

Since obviously

(L;) nnk = nnk+ g
for 0 <k <n, 1t follows that
(5) ¥ (s,v) = ¢(stv)y  (s,V)

for Re(s) = , Re(v) =C and O <k <n . That is, if @*nk(s,v) is
kncwn, which can be cbtained by Theorem 31.1, then T*Tnk (s,v) is determined

by (5).



Iv-28

Let }Tnf{ = max(0, n..) . Our next aim is to fird the distribution of

nk
a—rﬂi for 0<kz<n.
Define
—+ —
(6) <I>nk(S,v) =E{e ; }

for Re(s) 20, Re(v) =0 and O<k<n.

If we know ﬁnk(s,v) for Re(s) =0 and Re(v) = 0, then (6) can

be obtained by

i
|
{

(7)

Enk(s,v) ;{‘{"Fnk(s,v)}

for Re(s) >0 and R(v)

0O . Here T operates on the variable s

whereas v 1s a parameter. By (5) we can write that
(8) 3nk(s,v) =£{$(s+v)‘l’nk(s,v)}

for Re(s) 20 , Re(v) =0 and O0<k <n . By Theorem 31.1 we can deduce

the following theorem.

Theorem 1. We have

b n
[1“9¢(V)] 2 Z -ank(s,v)pnwk =
) n=0 k=0

_ $(stv) =T{log[l-pwé(s+v)]} + T{logll-pé(s+v)]},
eI R . -*

for Re(s) 20 , Re(v) =0, |p|l <1 and |ouw] <1 .
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Proof. If we multiply (31.3) by ¢(s+v) and apply the transformation

T , then we obtain (9).

lad

Note. It is interesting to note that if we know (9) in the particular
case when £ = ¢ {constant), then -@-nk(s,v) can be obtained from (7) by the

following limiting procedure:

® N o © n ‘
(10) D) ‘i’nk(S,V)ank = 1im S5V ) ‘I?nk(s,v)pnwk
n=0 k=0 cC > n=0 k=0

for Re(s) =0 ,Re(v) =0, J|o]<1l and |pw| <1.

This follows from the following observation. If ¢(s) € R, then we

have

(11) ¢(s) = 1im ecsg{e—cscb(s)}

C >

for Re(s) =0 . For if o(s) = E{ze ™"} where E{|¢]} < =, then

(12)  Efze™ "} = 1im Bree~Stnted=cly o g3 cospp shntel’y
-~ c > o C»>o ™
for Re(s) =0 .
If
(13} Nk = Rnk(co, Gyseees zn) s
then
(1) nnkf ¢ = Rnk(co+ CsCqt Chunes cn+c)

and

[}
=

(15) [n o+ eI’
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Hence

(16) L K

C > » C > o

If we take into consideration that in (9)

-c(s+v) 3
e(s4v)., e ° ~-T{log[ 1-puw¢ (s+v) ]} + T{log[l-po(s+v)]},
S A TRy o - }
(17)
. 'e"E{ log[ 1~pwé (s+v) HT{log[1-pd(s+v) ]}
‘1 B 1 - p¢(s+v)
!
for Re(s) =0, Re(v) =0, |p| <1 and |pw| < 1 , then we can prove

Theorem 31.1 by Theorem 1 1f we apply it to ¢(s+v) = e—c(stv)

*

= m {[n + o™= ¢} = Tm (R ([z+ o7, (g el',.on e ¢ c1)- o} .
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33. An Alternative Method. In this section we shall mention
Accordingly,

briefly an alternative method for proving Theorem 31.2 .

our aim is again to find
-sn+ - VI
(1) ¢ (s,v) = Ble nk my
for Re(s) >0 , Re(v) =0 and O <k'sn Obviously, we have
Ven -n
(2) 2o(8sv) = Ele 7} = [4(v)]
for Re(v) =0 and n =0,1,2,... .

f‘3y using Dirichlet's discontinuity factors F . Pollaczek [5 ]

deducjed a recurrence formula for <I>nj(s,v) . From Pollaczek's formula we

can easily deduce the following equivalent recurrence formula:

n-k r
L T{lo(s+v)] %,

n
¢ .(s,v)
jzk nJ r=0

k(s,v)}

(3)
k<n and n=0,1,2,.

A

for Re(s) >C, Re(v) =0, 0
This recurrence formula makes it possible to find @ l,]k(s,v) for

Czks<n and n=0,1,2,... .
Let us introduce the generating function

nk
w

8

) @I]k(s,v)p

&M
Lo

U(s,v,p,0) =
Y

(#)
low] < 1.

for PRe(s) 20, Re(v) =0, |p] <1 and
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First, we observe that

® N =Sn_ -V ©® 7 -ST ,—VC
UGs,vpp,1) = § JEle ™ Mpfoqr 7Y Be 9 M=
n=0 k=0 ~ =0 j=0™
(5)
PR J n-J ny
_.’El{nzo 120 [o(s+v) Lo (V)T ~p p¢(v) T{l—p¢(s+v)
that is,
. V . 1
(6) [1~p¢(v)JU(s,Vv,p,1) = M T5Gay !
for Re(s) 20, Re(v) =0 and |p| < 1.
Next: we c¢btain that
a0l 3 T emeis ] Y (st -
n=0 k=0 j=k ™ n=0 j=0 k 0 *n]
(7 o .
= z o, (5,)0" @-9 ™) = U(s,v,0,1) - wU(s,v,0,0) =
n=0 j—O
- 1 .
- 1--p¢(v) T J.—p¢(%+v\ = WU(s,v,0,0)
for Re(s) 20, Re(v) =0, lol <1 and |ew| <1 .
On the other hand by (3) we can write that
« ® n n-k
AR (& = UL )T Datso TR (5,00} =
n=0 k=0 j=k ™ ™ n=0 k=0 r=0 n-r,

(8) ® n n=r
T{ ) o ) ]

n=0 r=0 k=0

(s,v)[¢(s+v) T S

nrl

¢ B r.n-r 055 k
{ ¥ ) [e¢(s+v)T5™T § o (s,V)uw'} =
~ n=0 r=0 . k=0 TTTHK
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s r = I nk
=T{( ] [og()T)C] ] o  (s,v)pw)}=
=0 n=0 k=0 ¥

— e U(S,V,0,w)
=M o
for Re(s) 20 , Re(v) =0, Jo| <1 and |ew] <1.

By (7) and (8) we obtain that

vy U(S,V,0,0) _ 1 1
9 A TN A Frr el mery o B ey e

or equivalently,

I1-pw¢(stv) 1 _ w
(10) asgeerny LU, vee,0) = 3y ]} = - 5y

for Re(s) >0, Re(v) =0, |p| <1 and |pw| < 1.
The solution of (9) or (10) can be expressed as

1o 108 1-puga+v) 1+ T(log[ 1-n¢ (s+v) 1}
(T=)[1-po (V)]

(11) U(s,V,p,0) =

for Re(s) >0, Re(v) =0, |p| <1 and |pw| <1 . This can easily be
proved. If U(s,v,p,0) 1is given by (11), then T{U(s,v,p,0)} = U(s,v,0,u)
and U(s,v,p,w) satisfies (9) and (10). If we expand U(s,v,o,w) into

a power series according to (4), then it follows from (9) that the
coefficients ¢ nk(s,v) satisfy (2) and (3). This proves that (11) is

indeed the correct formula. Formula (11) is in agreement with (31.9).
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34, Problems

34.1. Let El, 52, cees Epens be mutually independent and identically

distributed real random variables. Let L, = gl+. ..t gn for n=1,2,...

and ¢, = O . Denote by « (k = 0,1,...,n) the subscript of the k-th

nk
ordered partial sum in the sequence Zgs Lyscecs Ty v Find the probability

Az{ank =3} for j=0,1,..., n.

34.2. Let E1s E5svees &5-.. be mutually independent and idnetically
_s{-;
distributed random variables for which Efe P} = ap{s)/(x-s) for O < Re(s)

< 2 where y(s) is the Laplace;Stieltj es transform of a normegative random

M,k

variable. Find d:nk(s) = Efe } for O <k <n and Re(s) 20 where

",k is defined by (28.2).
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