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CHAPI'ER III 

POSrrIVE PARTIAL SUMS 

22. An . Equi valence 'Theorem. First we shall prûve a useful basfo 

theorem which we shall use not only in this chapter but in the subsequent 

chapters too. We shall formulate this theorem a little more generally 

than we need in this chapter. Thl.s theorem was found in 195:~ by 

E. S. A.Ï1dersen _[ 2 ] and a simple proof for it was gi_ven in 1959 by 

W. Fell~~: [23]" 

i 

jTheorem 1. Let i;1 , i;2" •• , i;n be interchangeable real ra!Klom 
1 
! 

variables. Define çr = ~ 1+ i;2+ ... + i;r for r = 1,2, •.• , n and ~O = O . 

Deno!e by 6n the number o~ositive partial. sums and 

by pn _!;he subscript of the first maxirnal element in the sequsn~ 

* Denote by 6n the number of nonneg;ati ve part::tal s~m.s_ 

* ç
1

, z.; 2, ••• , çn, and by_ pn the subscript of the last rnaxirral elen:=nt 

in the sequence ç0, ç1 , ... , çn. 

We ·have 

(1) P{6 = j , ç ~ x} = P{p = j , ç ~ x} ,..,._ n n- ~ n n-

éind 

(2) * * P{6 = j , ç < .x} = P{p = j , ç 2- x} 
~n n= """"""n n·-

f or j = 0, 1 ~ ••• , n and all x . 

• 

·I 
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Proof. It is sufficient to prove one of the two relations (1) 

and (2) because each one :implies the other. For if we apply (1) to the 

random variables -·ç;1 , -ç;2 , ••• , -ç;n, then we obtain (2), and if we 

apply (2) to the random variables -ç;
1

, -ç;
2

, ••• , -ç;n, then we obtain (1) • 

This can easily be seen if we take into consideration that for the 

* sequence -i;l' -ç;
2

, ••• , -ç;n the nurnber of positive partial Sl.UTJS is n-t.n , 

and the number of nonnegative partial sums is n-lin , and for the 

sequence -i;n' -!;n-l' ••• ,--ç;1 the subscript of the first maximal part~Lal 

* sum is n-pn , a"ld the subscript of the last rnaxima.l partial sum is n-p • 
n 

1 

1 Now we shall prove (1). If n=l , then t.
1 

= pl a"Yld thus (1) holds. 

We shai1 prove by mathernatical induction that (1) holds for all n = 1,2, •..• 

Let us suppose that for n (n = 2,3, ••• ) , the vector random varia.bles 

(lin-l' z;:n-l) and (pn-l' çn_1) have the same dj_stributi.on. Th:l.s imp:!.ies 

that (lin-l' i;;n-l' z:n) and (pn-l' z.;n-l' z:n) have also the same 

distribution. For lin-l and pn-l depend only on i;1, ç; 2, ••• , ç;n-l and 

these ra"Yldom varia.bles are conditionally interchangeable given z:n-l and 

z:n • Hence it follows that and (p r ) have also the 
n-1' "'n 

s~ distribution. 

Let x .::_ 0 and j = 0,1, ••• , n-1 • 'l'hen we have 

(3) P{li = j , z: ~ x} = P{li l = j ,...,... n n - fV'-"' n-
[ < x } 

' 'n = • 

For if z;:n ~ O , then the n-th par.tial svm cannot be positive and there

fore fin = lin-l • Furthermore, we have 
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(4) P{p = j , z:.; ~ x} = P{p 
1 

= j ,ç ~ x} • ,...,... n n- -.,n- n-

For if z:.;n ~ 0 , then the first maximum carmot occur at the n-th place 

(being z:.;
0 

= o) and theref ore By the induction hypothesis, the 

right-hand sides of (3) and (4) are equal and hence 

(5) P{t. = j 
/Vv- n , z:.; < xl = P{p = j n= ,..,.... n ' 

for x < O and j = 0,1,2, ••• , n • If j = n , then both sides of (5) 

are evidently O • 

Let x > O and j = 1, 2 , ••• , n • Then we have 

(6) 

For if c;;n > 0 , then iln = ilfr-l + 1 B'urthem1o:r•e, we have 

(7) P{p = J. r. > x} = P{p = J·-1 r > x} • 
fV'- n ' 'n ,.,._ n-1 ' "'n 

For n-p 
n 

can be interpreted as the subscript of the last maximal 

element in the parti.al surns of -t.;n' -t;n_1, ... , -t;1 . If -çn < 0 , then 

the last maximum cannot occur at the n-th place and thus n-p = n-1-p .. , n n-..L 

that is, p = p 1+1 • By the induction hypothesis the right-hand sides n n- -

of (6) and (7) are equal, and hence 

(8) P{t. = j r > x} = P{p = J. r > x} 
rv-- n ' "'n ""- n ' "'n 

for x > 0 and j = 0,1,2, ••• , r: • If j = 0 , then both sides of (8) 

are evidently 0 • 
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Now (5) and (8) imply that (~ , z:; ) and (pn' z:;n) have identical n n 

distributions. This cornpletes the proof of ( 1) , and ( 2) f ollows from ( l) • 

In 1961 A. Brandt [ 14] generalized Tl1eorem 1. We shall prove this 

generalization in the following version. 

Theorem 2. Let i;1 , i;2 , ••• , ç;n· be interchangeable random variables. 

Define z:;r = i;1+ ~2+ ••• + ç;r for r = 1,2, .•• , n and z;0 = O. Denote by 

L\n(c) the number of partial sums greater than c in the sequence 

* z;
1

, z;
2

, ••• , z;;n , and _Qy_ L\n ( c) the number of parti al sums greater than 

or egual to c in the seauence z:;1 , z:; 2, ..• , z;;n • Denote by pn(ci the 

smallest subscript r = 0,1, ••• , n for which z;;r > rnax(z.:;0 , z.:;
1
,"., z;r)-c 

* and by pn (c) the largest subscript r = 0,1, ••• , n for whl.ch 

z:;r > max(z;;o, z;;l, ••• , z;;n)-c • 

If c :::_ 0 , then we have 

(9) P{Li (c) = j , z;. < x} = P{p (c) = j , z; < x} 
"""n n= ,..__n n= 

and 

(10) 

for j = 0,1, ••• , n and all x • 

Proof. If' c = 0 , then Theorem 2 reduces to Theorem 1. It is 

sufficient to prove one cf the two relations (9) and (10) because each 

one irnplies the other. For if we apply (9) to the random variables 

-i;1 , -i;2, ••• , -t,;n, then we obtain (10), and if we apply (10) to the 

random variables -~1 , -i;", ... , -t,; , t.hen we obtain (9) • This ca.."'1 
c.. n 
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easily be seen if we take into consideration that for the sequence 

-ç1 , -ç2, ••• , -f,n the nurnber of partial sums greater than c is 

* n-6 (-c) , and the number of partial sums greater than or equal to c n 

is n-6n(-c) , and for the sequence -f,n' -f,n_1, •.. , ~s1 the subscript 

of the first pa.rtial sum greater than or equal to the maximal partial soo 
' 

* . minus c ·is n-p ( c) , a.vid the subscript of the last partial sum greater 
n 

than or equal to the maxirnal partial sum minus c is n-p (c) 
n 

Now we shall prove (9). If n = 1, then ti1 (c) = p1(c) fcr 

c > ? &11d thus (9) holds. We shall prove by ma.thematical inducti·::m that 
' 

(9) h1olds for all n = 1,2, •••• Let us suppose that for n (n = 2,3, ••• ) 
1 

1 ,· 

the vector random variables (t>.n-l (c) , z;n_1 ) and (pn-l (c) , z;n_1 ) have 

the same distribution. This j.mplies that (l>. (c) r r ) anö 
n-1 ' "'n-1' "'n · 

(p \., c) 7 r ) have also the same distri.bution. 
n-1 ' "'n-1' "'n For t:. 

1
(c) and 

n-

pn-l (c) depend on1y on s1 , s2,"., f,n-l and these random variables are 

condi tionally intercn.angeable gi ven çn-l and çn . Hence i.t follows 

that (t>.n_1 (c), çn) and (pn_1 Cc), çn) have also the sarr~ distribution. 

Let x < c and j = 0,1, .•• , n-1 • Then we have 

(11) 

For if çn < x < c , then the n-th partial sum cannot be greater than c 

and theref ore l>. (c) = ~ 
1

Cc) • n n- Ji""urthermore, we have 

(12) 
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For r,
0 

= O and if r, ~ x ~ c then ç - c < O • Thus the smallest n- -- n = 

subscript r = 0,1, ••• , n for which çr 2:. max(r,0, ~1 , ..• , çn)-c cannot 

be r = n • Therefore pn(c) = Pn_1 (c) • 

By the induction hypothesis, the right-hand sides of (11) and (12) 

are equal and hence 

(13) 

for x " c and j = 0,1, .•• , n • If j = n , then both si.des of (13) 

are e•,•j dently 0 • 

1 

(14) 

(15) 

1 
1 

J Let x > c and j = 1, 2, ••• , :n • Then we have 
1 

P{A (c) = j , ç > x} = P{A 1 (c) = j-1 , t > x} . 
'""'n n N,,..n- n 

Furthermore, we have 

P{p (c) = j , ç > x} = P{p 
1

(c) = j , ç > x} . 
tv'- n n """' n- n 

For n-pn(c) can be 1nterpreted as the largest subscript r = 0,1, ••• , n 

f or which Ç ~ max(r,0, z;;1, ••• , Ç )-c where î = -t; -t; 1- ..• -.; +l r - n r n n- n-r 

for r = 1,2, ••• , n-1 and r.0 = O • If Ç = -ç < -c , then this n n 

largest subscript cannot be r = n , and thus n-p (c) = n-1-p 1(c) , n n-

that is, p (c) = p 1Cc)+l • n n-

By the induction r1ypothesis, the right-harid sides of (14) and (15) 

are equal and hence 

(16) 
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for x ~ c and j = 0,1, ••• , n • If j = 0 , then both sides of (16) 

are evidently 0 • 

Now (13) and (16) imply that (~ (c), ç ) and (p (c), G ) have 
n n n n 

identical distril"•utions. 'l'his completes the proof of (9), and (10) follows 

from (9). 

Finally, we note that in 1961 E. S • .Ai.11dersen [ 6 ] generalized 

Tneorem 1 in another wa:y. 
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23. The Distribution of the Number of Positive Partial St111s. Now 

let us suppose that ç:1 , ç; 2, ••• , ç:n'""" is a sequence of mutually 

independent and identically distributed real random varia.bles. Let 

çl' 

çl' 

Let US denote by !J. the number.of positive partial sums among n 

* <;2, ••• , çn and by A the number of nonnegative partial surns among n 
* ç2'· ••• ' çn . Let tJ.o = 60 = 0 . 

Denote by p the subscript of the first max1rra1 element in the 
n 

* and by p n the subscript of the last maximal 

For any event A let us denote by o(A) the indicator variable of 

A , that is, o(A) = 1 if A occurs and o(A) = 0 if A does nc.t 

occur. 

Let us introduce the following notation: 

(1) 
-sç 

Vnk(s) = E{e no(ó = k)} ,,.,.... n 

a11d 

(2) 
* -sr;; * 

-Vnk(s) = E{e no(L\ = k)} 
~ n 

for Re(s) = 0 and 

The joint di.stribution of the random variables çn anl An is 

uniquely determined by Vnk(s) for 

distribution of the random varia.bles 

k = 0,1, •.. , n and the joint 

* ç and t>, is uniquely determined 
n n 



* by Vnk(s) for k = 0,1, ••• , n • Our next aim is to find (1) and (2). 

'llie solutions of these problems were gi ven in 1953 by E. S. And~_rsen [ 3 ] , [ 5 ] , 

in 1961 by G. Baxter [10] and in 1962 by D. A. Darling [20 ]. 

First, we shall show tha.t if we lmow V 
0

(s) and V (s) fcr 
n nn 

n = 0,1,2, •.• , then Vnk(s) can be o?ta.ined imnedia.tely for O ~k ~ n, 

* . * and sim:i.larly if we know V 0 Cs) and V (s) for n = 0,1,2, ••. , then n nn 

can be obtajned i..rnrnedia.tely for 0 < k < n . 
= = 

Theorem 1. We have 

ànd 

( 4) 

for Re (s) =: 0 and 0 < k < n • 

Próof. The case of n = 0 i.s tri vla.lly true. Let n > 1 . = By 

Theorem 22.1 we can write that 

(5) 
-sz;; 

Vnk(s) = E{e no(p = k)} 
~ n 

for Re(s) = 0 and 0 < k < n • 

Let us define pn-k as the subscript of the first maxima.l element 

in the sequence z;;i = çk+i- r:k (i = 0,1, ••• , n-k) • Then we can ·write 

that 

(6) 
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i < k < n • Hence it follows that = = 

(7) 

The two 

-SÇ -S[ -SÇ n 'k n-k -e ö(p = k) = [e ö(pk= k)][e o(p k = O)] . n n-

factors in brackets on the right-hand side of (7) are independent, 
-sç 

and the second factor has the same distribution as e n-ko (p k = O) • n-
Thus it we form the expectation of (7), then we obtain (3) . 

. t,;e can prove ( 4) in a si.TJ1Ï.lar way. We can also obtain ( 4) from ( 3) , 

1 

if we apply (3) to the random variables -ç;l' -ç;2, ... , -Çn. Denote by 

6n lhe number of positive elements in the sequence -ç0, -ç1, ... , -~n 
(n = 0,1,2, ••• ) • - * Obviously 6 = n-6 for n = 0,1, •••• Now by (3) n n 

we can \l.Tite that 

* -sç * -sç 
Vnk(s) = E{e 110(6 = k)} = E{e no(!\ = n-k)} = ,.,... n ""'- n 

(8) 
-sç -sç 

= E{e n-ko(l\ k = n-k)}E{e ko(6k = O)} = n- ,..,_ 

for 0 < k 2_ n and Re(s) = 0 which is in agpeement with (4). 

By (3) and (4) we can write that 

(9) 

and 
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(10) 

f or 

oo n * nk '"' oo * l l Vnk(s)p w = ( I v* (s)(pw)n)( l v rCs)pn) 
n=O k=O n=O nn n=O nu 

!PI < 1 , IPwl < 1 and Re(s) = O • 

Let us denote by <j>(s) the La.place-Stieltjes transforrn of ç; 
n 

(n = 1,2, ••• ) , that is, 

(11) 
-sç; 

<j>(s) = E{e 11
} 

fV'--

for Re(s) = 0 . 

if we put w = 1 in (9) and in (10), then we obtain that 

(12) 

and 

( 13) 
00 * 00 * ( l v (s)pn)( l v o<s)pn) = 1 

n=O nn n=O n 1-p<j>(s) 

for IPI < l and Re(s) = 0 • For if w = 1, then the le~-hand sides 

of (9) and (10) both reduce to 

(14) 
c:o -sr 

'n n · n n 1 l E{e }p = n--lo [q,(s)] P = 1-pq,(s) n=O,.,... 

co 

whenever !PI < 1 and Re(s) = O. 

* Accordingly, if we lmow V nn ( s) and V nn ( s) f or n = 0, 1, 2, ••• 

and Re(s) = 0, then by using the above results we can obtain Vnk(s) 

for 0 < k ,;., n and Re(s) = O • 11hus the whole problem is reduced to 

* finding Vnn(s) and Vnn(s) for n = 0,1_,2, •••• This is our next aim. 

,' 
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24. 

that 

(1) 

and 

( 2) 

'11he Deterrnination of V (s) nn 

-sz;: 
Vrm(s) = E{e nó(A = n)} 

"""" n 

-sz; 
vn

0
(s) = E{e nó(6 = O)} ,,,_... n 

First we recall 

for n == 0,1,2, ••• and Re(s) = 0 where /J. denotes the number of n 

positive partial surns among z;1, z; 2, ... , z;n and A0 = O. Fu.rtherrnore, 

* -sz;n * 
Vnn(s) = E{e ó(A = n)} 

"'"' n 
(3) 

and 

( 4) 

* for n = 0,1,2, ••• and Re(s) = 0 where ~ denotes the number of non-n 

* negative partial sums among z; 1 , z; 2,. ": z;n and fl
0 

= 0 • 

Theorem 1. We have 

(5) 
oo 00 n -sz:; 
I V (s)pn = exp { I L E{e no(z; > O)}} 

n=O nn n=l n f"'-. n 

for Re(s) > O and IPI < 1 , 

(6) 
"" 

00 n --sz; 
·~ n l p n ) V 

0
(s)o = exp { - E{e · o(z:; < O)}J 

~ n · · n N'-.J ·n= 
n=O n=l 

for Re(s) < O and lol < 1, 
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(7) 

for Re ( s) ~- O and 1 p 1 < 1 , and 

(8) 
oo * w n -sz:.; 
l V 

0
Cs)rP = exp { l L E{e no(t; < O)}} 

0 
n 

1
n ,.._ n 

n= n= 

for Re(s) < O _and !PI < 1 • 

* Proof. We note that Vnn(s) and V (s) exist f or Re(s) > 0 nn 

IV (s) 1 * and < 1 and lvri.n(s) 1 ~ J f or Re(s) > 0 • Similarly, v~0 (s) nn = 

* IV110 (s) 1 ~ 1 * and vno(s) exist f or Re(s) < 0 and and lv110 Cs) 1 ~ 1 

for Re(s) < 0 • 

In wha.t follows we shall prove first ( 5) , and then we shall show 

that (6), (7), and (8) follow easily from (5), (23.12) and (23.13). 

In Section 2 we introduced ,B. 
1 

a space of functions ~ ( s) defined 

for Re(s) = 0 on the complex plane. In Section 3 we introduced a 

linear transformation T defined for ~ (s) e: R • We used the notation 

~+(s) = T{~(s)} for Re(s) > 0 . 
N-

Now let us define another linear trai1Sforrnation S by assuming that 
fV'-. 

(9) S{~(s)} = ~+(s) - ~+(oo) 
~ 

for Re(s) ~- 0 and ~(s) e: R • In other words, if 
IV'-

(10) <l>(s) = E{z:.;e-sn} 
Nv-

for Re ( s) = 0 where z:.; is a complex (or real) random v-c.triable for whid1 
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E{lr,;I} < 00 and nis a real random variable, then 
NV-

(11) S{~(s)} = E{r;e-sn6(n > 0)} 
IV- rv---. 

for Re(s) ~ 0 • 

We can deduce a recurrence relation for Vnn(s) (n = 0,1,2~···) if 

we use the transformation S • For the sake of brevity let us vJrite ,.,..... 

(12) 
-sr; 

V (s) = V ,(s) = E{e no(~ = n)} 
n nr1 ~ n 

for .11 ~~0,1,2, ••• and Re(s) ~ 0 • We have V0(s) _ 1 and 

(13)' Vn(s) = S{<P(s)V 
1

(s)} 
IV'- n-

for n = 1,2, •••• For 

-sr; -sr; 
V (s) = E{e no(6 = n)} = E{e no(A 1= n-l)o(r; > O)} = n M,,.. n ,.,,_ n- n 

(14) 
-sr; -st,; -si; 

= S{E{e no(A 1= n-1)}} = S{E{e n}E{e n-lo(A 
1
= n-1)} = 

-~ ~ -- - ~ 

= S{<P(s)V 1(s)} ,.,_ n-

for n =· 1,2, ••• and Re(s) > 0. 

~t 

oo n 
l ~ S{[<P(s)]n} 

(15) U(s ,p) = e -~{log[l-p<P (s)]} = e n=l ,_ 

for Re(s) ~ 0 &'1.d 1p1 < 1 , and let us expand U(s ,p) in a power 

series as follows 
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00 

(16) U(s,p) = ) U (s)p11 
• .... n 

n:=O 

This series is convergent if !PI < 1 and Re(s) > 0. We can easily 

see that u0(c.) = 1 and thus ~{U0 (s)} = O, furthermore U
11

(s) i::_,! 

and S{U (s)} = U (s) for n = 1,2, ••.• Accordingly, 
~ n n 

(17) S{U(s,p)} = U(s,p) - ~ 
M.. 

for Re(s) > 0 and IP 1 < 1 • On the other hand 

oo n 
(18) S{[l-p~(s)]U(s,p)} = S{ex~ { l ~- [S{[~(s)]11}- [~(s)]11]}}= O 

,..,_,._ ""' n= 1 ,,,_ 

for Re(s) > 0 and IP 1 < 1 • By (17) a'1d (18) it fellows that 

(19) U(s,p)-pS{~(s)U(s,p)} = 1 
~ 

for Re(s) > 0 and !PI < 1. If we put (16) into (19) and form the 

coefficient n of p for n = 0,1, ••• , then we obtain that u0(s) = 1 

and 

(20) 

for n = 1,2, ••• and Re(s) > 0 • Thus we can conclude that the sequence 

U
11

(s) (n = 0,1, ••• ) satisfies the same recurrence relation and the same 

initial condition as the sequence V
11

(s) (n = 0,1,2, ••• ) and therefore 

it follows that Vn(s) = Un(s) for n = 0,1,2, •••• Accordingly, we 

proved that 

(21) ~ V ( ) n _ -S{log[l-p~(s)]} 
l sp -etv--

n=O nn 
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for Re(s) > O and 1p1 < 1 • In (21) we can vJrite 

(22) 

for Re(s) ~ O and thus we obtain (5) wllich was to be proved. We note 

that 

oo n 
(23) S{log[l-p~(s)]} = T{log[l-p~(s)]} + I ~ ,!'.{sn _::.. 0} 

""" /\/" n=l 

for Re(s) 2'.. O and IP! < 1 and thus (5) can also be eÀ-pressed in the 

follp1;.: .... ig equivalent fom1 
i 

(24) 

oo n 
-T{log[l-p~(s)]} - l .e__ P{ç ~ 0} 

oo "- n= 1 n f'/I.... n. -
l Vnn(s)pn = e 

n=O 

where Re(s) 2'.. O and !PI < 1. 

Fonnu.la (6) fellows from (5) and (23.12). If Re(s) = O and 

1p1 < 1 , then we can vJrite that 

(25) 

:X) n -ss 
l .e__ E{e n} 

1 _ -log[l-p~(s)] = e n=l n ~· 
°1-p~(s) - e 

and thus (23.12) and (5) imply (6) for Re(s) = O and !PI < 1 . 

Since the left-hand side of ( 6) is a reg;u.lar 1\mction of s in the 

dorrain Re(s) <O ru1d continuous for Re(s) ~O, it follows that (6) 

remains valid for Re(s) ..:::. O too. 

If Re(s) = O and !PI < 1, then by (24) anà (23.12) we can w~ite 

that 
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(26) 

co n 
-log[l-p~(s)]+T{log[l-p~(s)]}+ l E.__ P{ç 5- 0} 

co n ""- n=l n """' n -
l vno(s)p = e 

n=O 

If we apply (6) to the random variables -ç;l' -ç;2 , •.. , -ç;n'... and 

replace s by -s then we obtain (7,)_ .for Re(s) > O , and if we apply 

(5) to the random variables -ç;1 , -ç;2, ... , ... ç;n,··· and replace s by -s , 

then we obtain (8) for Re(s) 5- 0 • 

We can write down also that 
co n 

-T{log[l-p~(s)]} - l .e_ P{ç < 0} "" * r- n= 1 n ,_ n l V (s)pn = e 
:1=0 nn 

(27) 

for Re ( s) ~ O and 1 p 1 < 1 , and 

(28) 

oo n 
-log[l-p~(s)]+T{log[l-p~(s)]} + l .e..._ P{~ < 0} 

"° * """ n= 1 n ,,_, n l V .O(s)pn = e 
n=O n 

for Re ( s) = 0 and 1 p 1 < 1 • These formulas can be seen sirnply by usirig 

the fact that the ratio of (7) to (5), and the ratio of (6) to (8) are 

oo n 
(29) exp { l .e..._ P{ç = 0}} • 

n=l n ,,..,. n 

Now we are in the position that we can express the generating 

functions of Vnk(s) 

fo:rnn.üa. 

* (0 < k < n) and Vru/s) (0 ~- k < n) in a closed 

Theorem 2. If Re(s) = 0 , IP 1<1 and !Pwl < 1 , then we have 
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(30) 

00 n n 
• eXD { 'i' p (l-w ) P{ r < 0}} 

• l n ,.,.... "n = ' n=l 

and 

-T{log[l-pw~(s)]} + T{log[l-p~(s)]} e- ~ 

1 - p~(s) 

00 n n 
• exp { l P (l-w ) P{ç < 0}} 

n=l n "'- n 

Proof. By (23.9) we can express (30) as the product of (2At) with 

p replaced by pw ~ and (26). If instead of (24) and (26) we use (5) 

and (6), then we obtain that 

(32) 
00 n k 00 n -sç n -sç 
L I V 1k(s)pnw = exp { l [(pw) E{e nó(ç >0)}+ E._ E{e n5(~ <O)}]} 

n=O k=O 1 n=l n ""- n n fVv, n= 

for Re(s) = 0, !PI <l and jpwj < 1 • 

By (23.10) we can express C3i) as the product of (27) with p replaced 

by pw , and (28). If instead of (27) and (28) we use (7) a..~d (8), then 

we obtain that 

(33) 
oo n * oo ( n -s ç n -s ç l l V k(s)pnwk = exp { l [ pw) E{e 11ó(ç :::_0)}+ e.__ E{e nó(ç <0)}]} 

n=O k=O n n= 1 n ,.,..... n- n "'"" n 

for Re ( s) = O , 1 p 1 < 1 and 1 p w 1 < 1 • 
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Note. We would like to mention here a natural generalization of 

the problerrs discussed in the previous sections of this chapter. The 

solution of this more general problem, however, will be given only in 

the next chapter. Let us consider again a sequence of mutually 

independent and identically distributed real random varia.bles ç;1 , ç; 2, ... , 

ç;n,··· and define z;n = ç;1+ i;2+ ••• +ç;n· for n = 1,2, ••• and r.;; 0 = O. 

Denote by e (x) n the number of partial sums sa' r.;;1,···' çn which 

are ::_x where ....ro < x < 00 • In the previous section we studJ.eè. the 

* d1stril~11tions of t:i = n+l - 8 (0) and b. = n+l - 8 (-0) • As a . n n n n 

genebalization of the previous results we can ask what is the joint 
' 

1 

distribution of çn and en(x) for n = 0,1,2, ••• and -"" < x < 00 • 

If we denote by nnO' nnl, ••• , n
11
n the partial sums ç;0, Z:p···,çn 

arrangec.l in increasing order of magnitude, then we can prove the follov.Jing 

identi ty found by <T. G. Wendel [ 4 2 ] . 

'lheorem 3. We have 

(34) 

for Re(s) = 0, Re(v) = 0, !PI < 1 and IPwl < 1 . 

Proof. If we suppose that ç;1 , i; 2, ... , i;n,··· are numerica.l 

(non-random) quantities and if we define 0 (x) 
n and 

(n = 0,1,2, ••• ) in exactly the same way as above, then we have the 

following idnetj_ty 
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(35) 

f or any s and w 

n 
I 

-snnlc k 
e w 

k=O 

This fellows from the fact that 0 (x) 
n 

ls a 

step function for which on (x) = O if x < 11nO , e (x) = k if n 

~,k-l ~, x < ~,k (k = 1,2, ••• , n) and Eln(x) = n+l if' x > nnn. 

We can easily see that (34) is va.lid regardless of whether the quantities 

are d.i..stinct or not. 

If ç;1, ç; 2, ••• , ç;n,··· are random varia.bles, then the relati.on (35) 

is va 1-i d for alrnost all realizations of the sequence. If we form the 
i 
1 expeptation of (35), then we obtain that 

1 

(36) 
<» 0 (x) 

J e-sxd E{w n } = -(1-w) 
Xm,.. 

n -snnk k l E{e }w 
k-=O ""--

for Re(s) = 0 and n = 0,1,2, •••• If we multiply (35) by 

if we form the expectation of the product, then we obtain that 

(37) 
°" -vr. 0 (x) 

J e-sxd E{e nw n } = -(1-w) x ....... 

n -sn -vr. , l E{e nk n}wK 
k=O """ 

--vr "n e and 

for Re(s) = 0, Re(v) = 0 and n = 0,1,2, •••• If IPI < 1 and if we 

multiply (37) by pn and add for n = 0,1,2, ••• , then we obtain (34) 

which was to be proved. 

In the next cha.pter we sha.11 determine the generating function 

(38) 
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for Re(s) = 0 , Re(v) = 0 , IP 1 < 1 and jpwj < 1 • This makes j_t, 

possible to find the joint distribution of z;; and o (x) n n for n = 1,2, •.• 

and -=<x<co. 
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25. Sorne Particular Results. By using Theorem 24.2 we can find the 

probabilities 

(1) P{4 = k, r < X} ,.,,_ n "'n = 

and 

* ( 2) P{ l = k, r; ~ x } 
N'- n , n-

for 0 < k < n and -oo < x < 00 • In what follows we shall determine (1) 

in sorre particular cases. Probability (2) can be obtained in an analogous 

way, or by (1) if we apply i t to the random variables -t;; 1 , - ~, ••• , -ç:n, • . • . 

!First let us consider the distribution of ln for n = 0,1,2, •••• 
1 

By Theorem 23.1 we have 

(3) P{ A = k} = P{A. = k}P{tt = O} 
N-- n fY\; k N.,.. n-k 

for O < k < n • By Theorem 24.1 we have 
= = 

oo 00 n 
(4) l P{ l = n}p n = exp { L e_ P{ r; > 0}} 

n=O M.. n n= 1 n r- n . 

1 and 

"" "" n 
(5) l P{l =O}pn=exp{ l Q_P{ç < 0}} 

n=O - n n=l n ,.,,,,. n = 

, 
.J.. • By (3) it follows that the product of (4) and (5) is 

necessarily 1/(1-p) and thus (4) implies (5) and conversely (5) irrplies 

(4). We note that (4) is equivalent to (19.12) and (5) is equivalent to 

(19.10). 

If we use the notation 
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(6) a = P{i:; > 0} n ~ n 

for n = 1,2, ••• , then by (4) we obtain th2.t 

(7) P{.t. = n} -
,,...~ n l 

il+2i2+ ••• +ni =n . 1. 1 • ' 
n • i 1 .i2 •.•• in. 

for n = 1,2, ••• where i 1, i 2, ••• are nonnegative integers, and by (5) 

we obtain that 

(8) P{6 = 0} = l 
,..,.,,.. n i

1
+2L,+ ••• +ni =n 

c. n 

il i2 i 
(1-a.) · (1-a~) ••• (1-a ) n 

.l é. n 

for n = 1,2, ••• where 11, 12, ••• are nonnegative integers. 

Thus the distribution of 6 can be obtained e.h.1üicitly by (3), ('7) 
n 

and (8). 

Now let us consider the joint distribution of 6 and i:; • By 
n n 

Tneorern 23.1 it fellows that 

for 0 < k 2_ n and -<x> < x < 00 • That is, if we know the probabilities 

!_{6n= k, i:;n ~ x} (n = 0,1,2, ••• ) in two particular cases when k == n 

and k = 0, then by (9) we can obtain P{ö = k, i:; ~ x} for k = 0,1, ••• , n • 
rv.... n n-

The following particular case has sa.me importa.nce in studying discrete 

random variables. (See E. S. Andersen [ 3 ] . ) 
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Theorern l. We have 

n-k-1 
(10) P{6 = k and r, = 0} = l U V ,.,,..,_ n n 0 r n-r r= 

for k =0,1, ••• , n...:.1 and n = 1,2, ••• where 

( 11) 

and 

(12) 

and 

(13) 

for lzl < 1 . 

00 

\' n C(z) 
l U z = e · 

n=O n 

~ , 7 n _ 
1 

-C(z) 
1. v z - -e 

n,;;,l n 

oo P{r, = 0} 

C(z) = n~l N# ~ zn 

Proof. We shall provide a direct proof for t:his theorern. By 

Theorern 22.1 we have 

P{ó = k and r, = 0} = P{p = k and r, = 0} = ,.,... n n ,.... n n 
(14) 

for 0 < k ~ n • If k = n , then (l~) is 0 • If 0 < k < n and in 

(14) we replace the r•a.YJ.dom variables ç;k+ 1,"., ç;n , ç;1,"., ç;k by 

ç;1 , ç;2, ••• , ç;n respectively, then ~{~n = k and r,n = 0} rema.ins 

unchanged. Thus we can write also that 

(15) P{l:I = k and r, = O} = P{r,; < O for O < i < n-k and r,. < O f'or rv-n n /""-~ = J_ 

n-k < i < n} = 

for 0 < k < n • If 0 _<;_ l{ < n and the event on the right-hönd side of 
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(15) occurs, then there is an i (0 < i < n-k) such that z;;i = 0 • 

Denote by r the largest such i • Then necessarily z;;i < 0 for 

r < i < n • Accordingly 

(16) 

f or 

(17) 

n-k-1 
P{~ = k and z;; = 0} = l P{z;;. < O for O ~ i < r, z;; = O ,..,... n n 

0
,.,,.. i = r ' 

= 

r= 

z;;i < O for r < i < n and 

0 < i < n-r and z;; = 0} n-r 

0 < k < n , or equivalently 

and z;; = O} n-r 

z;; = 0} = n 

and z;; = O}P{z;;. < 0 for r ,.._ i 

f or 0 < k < n • 
= 

Let us introduce the notation 

(18) U = P{~ = 0 and z;; = O} n ,._ n n 

for n = 0,1,2, ••• and 

* (19) V = P{ó = O and z;;n= 0} n ~ n-1 

for n = 1,2, •••. Then by (17) 

(20) 
n-k-1 

P{~ = k and z;; = O} = I U V 
,_.,__ n n r==O r n-r 



for O .::_ k < n • If we add (20) for k = 0,1, ••• , n-1, then we obtain 

that 

n-1 
(21) P{r, = O} = l (n-r)U V 

""'" n r n-r r=O 

for n = 1,2, •••• On the other 11.and if we put k = 0 in (20) then we 

obtain that 

(22) 

f or n=l,2, •••• 

Iet 

(23) 

and 

( 24) 

n-1 
u = l uv n 0 r n-r 

U(z) 

r= 

co 

= l U zn 
n=O n 

co 

These generating functions are convergent for 1 zl < 1 because evidently 

U ~ P{z:; = O} .::..1 and nV .::_ P{z:; = O} -~ 1 for n = 1,2,... • If C(z) n - /VV n - n -,.,._ n -

is defined by (13), then by (21) and (22) we obtain that 

(25) C' (z) = U(z)V' (z) 

and 

( 26) U(z)-1 = U(z)V(z) 

for !zl < 1 • Accordingly 

(27) U'(z) = C'(z)U(z) 

for izl < l , and U(O) = 1 • Hence 

(28) U(z) = eC(z) 
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and consequently by (26) 

(29) 
-C(z) V(z) = 1-e 

for 1 z 1 ~ 1 . This cornpletes the proof of the theorem. 

Finally, we shall mention a related theorem. 

Theorem 2. We have 

n 
(30) P{L\ = k and sn+l > 0} = l P{t~ ·+1= j+ l}[P{t. .= 0}-P{6 . 1:: 0}] 

N'v n j=k,,,... J ,h n-J ,.,.. n-J-

f or 0 < k < n and = = 

n 
(31) P{ö = k and r,; +l 5- 0} = l P{ö .= O}[P{ö.= j}-P{ö.+l= j+l}] 

,.,... n n - j=k ,,,.,. n-·J ,.,, J ,,,..., J 

f or 0 < k < n • == = 

Proof. To prove (30) we observe that the event {6n+l ~ k+l} can 

occur in two mutually exclusive ways, either {6n= k and r,;n+l > 0} 

occurs, or {An~ k+l} • Hence 

(32) n n 
= l P{ó +l= j+l} - l P{~ = j+l} 

"k'"" n .k,.,..,. n J= J= 

for O<k<n. 
= == If we use (3), then we get (30). 

To prove (31) we observe that the event {6 > k} n= can occl.lI' in two 

!Illltually exclusive ways, either {L\n= k and r,;n+l ~ 0} occu.rs, or 
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{6n+l > k+l} • Hence 

(33) P{6 = k and 1'; +l ~ O} = P{éi > k} - P{6 +l ~ k+l} = ,...... n n - '""' n- r- n --

n n 
= r P{6 = j} - I P{à +, = j+l} 

j=k'- n j=k,...._ n ..... 

. 
for 0 ~ k < n • If' we use (3), then we get (31). 
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26. Cornbinatorial Methods. In sorne particular cases we can use 

special rnethods for finding the distribution of !:l , the nurnber of positive n 

* elements, or the distribution of 6 , the number of nonnegative elements 
n 

in the sequence .;1 , .;1+ .;2,.", .;1+ ••• + i;n for n = 1,2, ••.• In what 

follows we shall show that if .;1, .;2, ••• , .;n are either mutually 

independent and identically distributed discrete random variables taking 

on the integers -l,0,1,2, ••• (or l,0,-1,-2, ••• ) or interchangeable 

discret.e random variables taking on the integers -1,0,l,2, •.• (or l,0,-1,-2, •.• ), 

* then we can find the distributions of !:l and 6. for n = 1,2, ••• by n n 

using the cornbinatoriê.l rnethods introduced in Section 20. 

1 

1 Iet us suppose that "l' v2,.", "n are interchangeable discrete 

random variables taking on nonnegative integers only. Let Nr = v
1 

+ ••• + vr 

for r = 1,2, ••• , n and N0 = 0. Consider the sequence .; =1-v 
r r 

(r = 1,2, ••• , n) and denote by Än the nurnber of positive elements in 

the sequence of partial sums 

* 
z; = r-N r r (r = 1,2, •.• , n), and denote by 

/'::. the munber of nonnegati ve elements in the sequence of partial surns 
n 

z; = r-N r r 
(r = 1,2, ••• , n) . 

* Ä f or n = 1, 2, • • • • 
n 

Our first aim is to find the distributions of 

(See the author [39], ~0], [41].) 

The following auxiliary theorem wi.11 be useful in this section. 

Lerrrna 1 • 

.Among the n cyc:J:iepermutations of (k1, k2, ••• , kn) there is exactly 

one for which exactly j (j = 1,2,H ••• , n) of its successive partj_al svms 

are positive. 
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Proof. let kj+n = kj for j = 1,2, ••. , and define dj= n(k1+ ••• 

+kj)-j for j = 1,2, ••.• Then dj+n =dj for j = 1,2, •••. The 

numbers ct1 , d2, ... , dn are distinct, and dn = 0 . We shall prove 

that if d1 is the r-th largest number among d1, d2, ... dn, then the 

cyclic permutation (k1+1, ••• , ki+n) has exactly n+l-r positlve parti!ll 

sums. This j_mplies the theorem. 

VJ?-dently, (ki+l' ki+l+ k1+2, ••• , ki+l+ ••• + ki+n) has the same 

number of positive elements as· (d.+1- d., d.+2- d., ••• , d.+ - d.) has 
i i i i i n i 

nonnegative elements. For if 
1 

+ ki~j)-j.::_O for j = 1,2, .• ,n. 

. k 1 0 f 4 - 1 2 + . +. > or 0 - ...... , , ••• ,n . 
l J 

ki+l+ ••• + ki+j > 0 , then di+j- di = n(ki+l+ ••• 

Conversely, if d. +. ·-d. >O , then k. +l-+ ••. 
l J i= l 

Thus (ki+l' ki+i+ ki+2''"'' ki+l+."+ ki+n) 

has the same munber of positive elernents as (d1-d., ct
2
-ct., ... , d -d.) has non-

1 _ l n i 

negative elements. If ct1 is the r-th largest munber among ct1 ,d2, •.• ,dn' then 

the latter sequence conta1ns n+l-r nonnegative elernents. This proves the lemma. 

Lerr:ma 1 irnmediately implies the f ollowing auxiliary theorem. 

Lerr:ma 2. If r 1, r 2, ••• , Yn are cyclically intercbangeable discrete 

random variables taking on integral values only and if IJ. denotes the 
n -------

number of positive partial sums among y1+ •.• + yr (r = 1,2, ••• , n) then 

(1) P{ ~n = j J yl+ •• • + y = 1 } = 1 
{'J'..-. n n 

for j = 1,2, ••• , n, provided that the conditional probability is 

defj..ned. 



Proof. For al.most every such realization of the sequence 

y l' y 2, •.• , y n for which y 1 + ••• + y n = 1 we can apply Lemma 1, and 

thus (1) fellows easily. 

In the follow-lng theorems we shall assume that v1 , v
2

, ••• , "n are 

interchangeable discrete random va..-riables taking on non11egative integers 

only and n is a positive integer. We shall write N = v1+ ••• + v r r 

for r = 1,2, •.• , n and N0 = O. 

Let us denote by ör (r = 1,2, ••. , n) the number of positive elernents 

in t~e sequence i-N. 
1 l 

(i = 1,2,.", r·) 
1 

numbfr of nonnegative elernents in the sequence 

1 * 
Let ö 0 = ö 0 = 1 . 

We shall also use the notation 

(2) Q.(rj k) = P{ö = jjN = k} 
J """ r r 

f or 0 < j 2. r < n and k = 0,1,2, ... and 

(3) * * Q.(rik) = P{ö = jl~ = k} 
J rv- r r 

i-N. 
l 

(r = 1,2, ..• , n) the 

(i = 1,2, ... , r) . 

for 0 < j < r < n and k = 0,1,2, ••• where the conditional probabilities 

are defined. up to an equi valence ._f rn some particular cases we ca.11 find 

* the distributions of ö and ö by using Lemma 20.2 and Lemma 2. and 
n n · 

in the general case by using Lemma 20.2 and Theorern 22.1. 

'lheorem 1. If k : 0, 1, ••• , n-2, then 
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(4) Q. (n!k) 
J 

J 
0 for j = 0,1, ..• ,n-k-1 , 

k+l ( k l' 
= l ~- --_.< P{N. = i-ljN = k} 

l
. ._,] _1_(n-iJ,.,.... l n i=n-J"-__ 

k 
1 - - for j = n • 

n 

f or j == n-k, ••• ,n-1 

· Ftirthermore, 

(5) 

and 

(6) 

(7) 

Q. (nj!1-l) 
J 

Qj Cn jn) = 

1 for j = 1,2, .•• , n, = -n 

n-1 
1- f i P{N. = i-llN = n} 

1; 1 i ,.,._ 1 n for j = 0 , 

n-j. 1 
I ·c ·) P{N.= i-llN = n} for j = 1,2, ••• ,n-1 • 

i=l 1 n-1 ,..... 1 n 

Proof. Pirst, we note that 

O Cnlk) = P{~ = nlN = k} = 1 - ~ I1 ,.._n n n 

for k = 0, 1, ••• ,n • This is exactly Lemma 20. 2 • Furthermore, we have 

(8) Q.(nln-1) = P{ö = ilN = n-1} 
J rvv n "' n 

1 = -n 

for j = 1,2, •.• ,n. This follows from Lemma 2 if we apply it to the 

random variables yi = l-v1 (i = 1,2, ••• ,n) • 

Next we prove (4) for j = O,l, ••. ,n-1 • If t:. = j < n and n 

Nn = k < n-1 , then there exists an r such that Nr = r-1 . Denote 

by r = i (i = 1,2, ••• , k+l) the gPeatest r with this property. Then 

and N - N
1
. < r-i for r == j_ + 1, ••• , n • r - Thus we get 
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k+l 
(9) -~u"n = j INn= k} = l PUL = i-llN = k}·P{t-. = i+j-n!N.= i-1, N = k}· 

-v- • • -1 ,..,_ l n /Vv l l n 
l-.L 

•P{.!l -6. = n-ijN.= i-1, N = k} 
("V n i i i1 

for j = 0,1, ••• ,n~l and k = 0,1, ••• ,n-2 • Now by (8) 

' { f for n-j < i ;,.n , 
(10) P{il. = i+j-n!N. = i-1, N = k} = 

""'l l 11 0 th. o erwise, 

if we apply it to the random variables v1, ••• , vi >and by (7) 

(11) P{.!l - il. = n-ijN.= i-1 N = k} = P{.!l .= n-ijN .= k-i+l} = ,..._ n l l ' n ,..,., n-1 n-1 

n-1<-l = . for i = 1, .•. , k+l , n-1 

if we apply it to the random variables vi+l, ••• , "n • Thus (4) follows 

for j .::_ n-1 • If j < n-k , then Q.(njk) = O • 
J 

If ,j = n , then ( 4) 

reduces to (7). This completes the proof of (4). 

Formula (5) is identical with (8). 

It remains to prove (6). If !J.n = j where j = 1,2, •.• , n-1 a.~d 

Nn = n , then there exists an r = 1,2, ••• , n for which Nr < r • Denote 

by i the smallest r with this property. Then necessarily N. = i-1 , 
l 

Nr > r for r = 1,2, ••. , i-1 and 

r = i, i+l, ••• , n. Thus 

N < r holds for j 
r 

indices among 

n-·i 
P{6 = j!N = n} = ( P{N.= i-llN = n}P{.!l. = OjN. = i-1, Nn= n}· 

""" n . n i=l ,._ l n ~ l i 

(12) ·P{!J. - t:... = J' IN. = i-1 N = n} 
""""n J i 'n • 
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Now by (8) 

(13) P{6. = OIN. = i-1, N = n} = '*-
"'"' l i n l 

for i = 1,2, ••• , n-1 • If we apply Lemrra 2 to the random variables 

then 1.'fe obtain that 

1 (14) P{6 - 6. = j!N. = i-1 
"""" n J i 

N = n} 
' n = ~(n---i-) 

for i = 1,2, ••• , n-j • Thus 

(15) 
n-j 

P{6 = jlN ~ n} = l ~-IT P{N. = i-llN = n} 
N-- n n i=l i,n-1, ,....... i n 

for j = 1,2, ••• , n-1 • If we add (15) for j = 1,2,: •• , n-1 , then 

we get 

(16) 
n-1 

l-P{6 = OIN = n} = l ~ P{N. = i-llN = n} • 
,.,.,,._ n n i=l i ,,...,. i n 

Formula (6) follows from (15) and (16). This completes the proof of the 

theorem. 

Theorem 2. We have 

(17) 
n 1 . 

P{~ = 0} = 1- l • P{N.= 1-l} 
~ n i=l 1 Nv. i 

and 

(18) P{6 = j} 
'rv-,. n 

J i ~ 1 P{N.= i and N.-N. -
= l (1- -J:-) [P{N .= i} - l (i-j) /'(-. J i J 

.Q,=0 ,,... J :i_=j+l 

= i-j-1}] 

for j = 1,2, ••• , n • 
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Proof. First we shall find P{ti. > 0} -. n If ti. > 0 , then 
n 

N = r-1 for some r = 1,2, ••• , n. Denote by i the smallest such r . r . 

Then 

(19) 

n 
P{ti. > 0} = l P{N ~ r for r = l, ••• ,i-1 and N. = i-1} = 

,..,.,. n i=l ,.,.,,._ r - i 

n 
= l P{N.- N < i-r 

i=l ,,,,_ l r 

n 1 = l 7 P{N. = i-1} , 
i=l i,,,,,. l 

for r = l, ••• ,i-1 and N.= i-1} == 
1 

whery the last equality follows from Lemm. 20.2 if we apply it to the 
1 

randpm variables v1 , v1_1, ••• , v1 . 'Ihis proves (17) • 
1 

We note that in exactly the same way as we proved (17) we can prove the 

following more general forrnula: 

(20) 
n 1 

P{ó. = 0 and N = k} = P{N = k} - l - P{N.= i-1 and N = k} M--n n -..n . 1 1,,,__i n 
i= 

for k = 0,1,2, •••• If we add (20) for k = 0,1,2, ••• , then we get (17). 

If ,R{Nn = k} > 0 and if we divide (20) by ~{Nn = k} , then we obtain 

P{ó. = OIN = k} for k = 0,1,2, •••• We already found this latter ,,,,.... n n 

probability for k < n in Theorem 1. 

Next we shall prove (18). By Tbeorem 22.1 it follows that !;,. and 
n 

pn have the same distribution. Accordi:ngly> we can write that 

(21) P{l = j} = P{i-N. < j-N. ,...,,..n ""- 1 J 

for j < i 2. n} 

for O ~ i < ,j and i-N. < ·1· -N. 
l = < J 
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Hence for j = 1,2, •.• , n 

P{li = j} 
,.,.. n 

= ~ P{N.- N. < j-i for o ~ i < J!N. = i} • Q,~0 ~ J l -- J 

(22) :!{Nj- N1 < j-i for j < i ~ n and Nj = Q.} 

J Q, n 1 
= L (1- -:-)[P{N.= Q.} - l ë· ·) P{N.= Q. and N,-N.=i-j-1}] . 

R.=0 J ""-- J i=j+ 1 l-J """ .J l J 

In proving (22) we took into consideration that the event 

oc_cur in several mutually exclusi ve ways, namely { N j = R.} 

and we applied (7) to the random variables v., v. 
1

, .•• , 
J J-. 

{li = j} can 
n 

(R.= 0,1,2, .•• ), 

v1 and (20) to the 

randfm variables "j+1, ••. , "n • This proves (18). 

(23) 

/In exactly the same way as we proved (18) we can prove that 

(1- -~) [P{N. = Q., and Nr
1 

= k} -
J IV'- J 

n 1 
l (i-j)_~{NJ. = t, N.- N. = i-j-1 and N = k} 

i=j+ 1 ,.- i J n -

for j = 1,2, ••• ,n and k =0,1,2, •••• If we add (23) for k = 0,1,2, •.• , 

then we obtain (18). If we divide (23) by P{N = k} whenever ,..,.... n 

P{N =k}>O,thenweobtain P{li =jlN =k} for k=0,1,2, •.•• 
~ n ~ n n 

In Theorem 1 we already found this latter probability for k ~. n in a 

somewhat simpler form. 

By using the notation (2) we can obtain from (20) and (23) that 

j 
(24) Q~(nik) = l P{N; = ilN = k}Q.(jj2)Q0 (n-jjk-2) 

.; R.=0 IV'- " n J 

f or j = 0,1, ••• , n, where 

. ! 
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n 1 
(25) Q0 Cnlk) = l - I .:;:. P{N. = i-l!N = k} 

i=l l.,.,... i n 

and r-k f or k = 0,1, ••• , n ' n 
( 26) ~(nik) 

0 f or k > n , 

for n = 1, 2, • • • and k = O, 1, 2, • • • ·• 

(27) 

* The following :theorems are concerned with the d1stribution of t-. 
n 

Theorem 3. _;r:f k = 1,2, ••• , n ,the~have 

f k~l Cr;+l-~) P{N. = i+llN = k} for 
i 

l . i (n-1) .fV.,. i n * =n-J 
Qj (nik) =) k-1 

1 - I (n+l:-k)P{N. = j_+llN = k} for j c i=l --cn:n Nv- l n -

n-k < j < n , 

= n • 

* If k = 1,2, ••• , n and j = 1,2, ••• , n-k, then Q.Cnlk) = 0. Further-
- -- J 

more)we have 

(28) 1 - -n 

* for j = 0, 1, ••• , n-1 , ~ ~ (n 1n+1) = O • 

Próof. We can write that 

(29) * Q.Cnlk) = P{N < r+l for j subscripts r = 1,2, •.• , n!Nn = k} . J ,,..... r 

By (29) we can write that 

(30) * Q.Cnln+l) = P{N > r for n-j 
J ""'" r 

sub scripts r = 1,2, ••• ,n!N = n+l} 
n 
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and if we apply Lemma 2 to the randon1 variables yi = v1-l (i = 1,2, ••. , n) , 

* then we obtain that Q.(njn+l) = l/n for' j = 0,1, ••• , n-1 which proves 
J 

(28). 

Next we shall.prove (27) for n-k < j < n. If N < r+l for j r 

sub scripts r = 1, 2, ••• , n where n-k < j < n and N = k where n 

1 ~ k 5:. n , then there exists an r such that N = r+l . 
r 

Let i 

(i = n-j, ••• , k-1) be the greatest r with this property. Then 

N < 
r 

N < 
r 

i 

1 

(3l)i 
1 

r+l 

r+l 

for j+i-n subscripts r = 1,2, .•• ,i , f'urther N1 = i+l and 

for r = i+l, ••• , n • By (28) we have 

,!{Nr < r+l for j+i-n subscripts r = 1,2, ••• , ilN1 = i+l} - Î 
for n-j < i < n and by Lerrrna 20.2 we obtain 

(32) ,!{Nr < r+l for r = i+l, ••• , n!N1 = i+l , Nn = k} = 

= P{N - N. < r-i for r = i+l, ••• ,nlN.= i+l, N = k} = 1 - k-i:-l 
,.,,.._ r i i n n-i 

for O < i < k-1 < n , if we apply Lemma 20.2 to the random variables 

v1+
1

, .•. , vn • Thus by the theorem of total probability we obtain that 

(33) 
* k-1 1 1 • 1 

Q.(njk) = L -:- (1- K-l~ )P{N. = i+llN = k} 
J 1 j l n-1 ,.._ l n =n-

for n-k < j < n and 1 ~ k ~ n which proves (27) in this case. 

It remains to prove (27) for j = n • We have 

(34) * ~ (njk) = ]{Nr < r+l for r = 1,2, ••• , nlNn = k} = 

k-1 
= 1 - I (n+l~k)P{N. = i+llN = k} 

i=l (n-1) ,_,,__ i n 
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for k = 1,2, ••• , n • It is sufficient to prove that the subtrahend on 

the right-hand sj.de of ( 34 ) is the probabili ty that Nr ~ r+ 1 for some 

r = 1,2, ••• , n-1 given that Nn = k • r.I.1his event can occur in the 

following ITilltually exclusive ways: the greatest r for which Nr > r+l 

is r = i (i = 1, ••• , k-1) • Then N. = i+l and N < r+l for 
i r 

r = i+l, ••• , n, or equivalently N -·N. < r-i for r = i+l, ••• , n r 1 

By lemma 20.2 we get 

. 1 k-i-1 P{N - N. < r-i for r = i+l, ••• , n N. = i+l, N = k} :;:1-·--.-
r i i n n-1 

for 0 ~ i < k-1 < n if we apply it to the random variables vi+l, ••• ,v n • 

Thus (34) fellows by the theorem of total probability, m1d this completes 

the proof of the theorem. 

(35) 

and 

(36) 

Theorem 4. We have 

* n 1 
P{ll = O} = P{N1 > l}- l (i-l).~{N1 = 0 and Ni = i} 

M. n """ i=2 ,", 

* 
j j-1 

P{ll = j} = 
!"'- n 

\ [P{N n N n+l} \ (j+l-2.)P{N = ·+1 
l .. = ;c,' ·+1 > ;c, - l (J·-i) ,._ i l ' 

t=O ~ J J - i = 1 "-

Nj = 2-, N.+l > 2-+l}] 
.1 

J n -
l l [( : l) P{N.= 2-, N.+1= il, N = 2-+r-j} -

2-=0 r=j+2 r-J- ""~ J J r 

j-1 (j+ 1-.Q.) ' -
- \ ) PUI - 1+1 N._"

1 
= 2., NJ.+l= 2-, Nr= 2-+r-j}] 

1~1 (j-.:.) (r-j-1 ,,,_ i ' 
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f or j = 0, 1, ••• , n-1 • Furthermcre 

(37) 
n-1 

P{ti* = n and N = k} = P{N = k} - l n+J.:-k P{N_,== i+l and N = ld 
,_,_ n n ,.,,,_ n 

1
=
1 

n-i ,.... .L n 

f or k = 0,1, ••• , n . 

Proof. To prove (35) we can write that 

(38) * . P{ti = 0} = P{N > r for r = 1,2, ••• ,n} = _?{N
1 

> l} -
,..,.. n ""' r ·-

- !{N1 > 1 and Nr < r for some r• = 2, .•. , n} • 

i 
To fjnd the last probability we take into consideration that there is an 

1 

r = 2,3, ••• , n such that N = r • Denote by i the sma.llest such r . r 

Then 

* P{ti = 0} = P{N > l} N'..n ,_ l 

n 
l P{N > r for r = l, ••• ,i-1 and N.= i} = 

i=2,...... r .l 

(39) 
n i (s-1) -= P{N1 > l} - l l (i-l) P{N1- s and N.= i} = P{N1> l} -

""' i =2 s=2 ,... l ""' 

n 1 -
l, (i-lL!:{N1- o and N. = i} 

i=2 l 

where we applied Lemma 20.2 to the random variables vi' .•• , v
2 

• This 

proves (35). We note that in exactly the same way as we proved (35) we 

can obta-tn that 

(40) * n 1 
p{t:i = 0 and N = k} = P{Nl > 1 and N :::. k} - l n-l) P{N1= 0 , 

'"" n n """' n "_2 \.l ,,..,._ _L-

N .=- i and N = k} 
i n 
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for k = 0,1,2,... • Obviously (l~Cl) is O if k ~ n • 

To prove (37) we can write that 

(41) . * P{ti = n and N = k} = P{N < r+l for r = l, ••• ,n and N = k} = 
,.,_,,.. n n ""- r n 

= P{N = k} -P{N ~ r+l for some r = l, ••• ,n and N = k} • 
""' n ,..,_ r- . n 

To find the last probability we take into consideration that there is an 

r = 1,2·, ••• , n-1 such that Nr = r+ 1 • Denote by i the greatest such r • 

Then 

* n-1 
P{ti = n and N = k} = P{N = k} - l P{N.= i+l , N < r+l 

Mr n n w... n i=l,....,.. i r 
n-1 

for i < r ~ n , N = k} = P{N = k} - l P{N - N. < r-i 
(42) - n ,__ n i=l..,.. r l 

for r = i+l, ••• , n and Ni= i+l, Nn= k} = 

n-1 
P{N = k} - l n+l~k P{N.= i+l , N = k} 

l'V'- n i = 1 n-1 ,...,.. i n 

where we applied Lemma 20.2 to the random variables vi+l' .•• , vn This 

proves (37) • 

Finally,we shall prove (36). * Bu 'Iheorem 22.1 it fellows that t::. 

" n 

* and pn have the sa.'T!e distribution. Accordingly, we can write that 

(43) * P{ti = j} = P{r-N ~ j-N. for O ,~ r ~ j and r-Nr· < ,j-NJ. for .i < r ,~n}. ,....,. n ,.,.._ r- J 

The event on the right-hand side of ( 4 3) can occur in sE:veral mutua.lly 

exclusive ways, namely, 

we have 

N.= !/, 
J 

(!/, = 0,1,2, ••• ) • Hence for j = 0,1, ..• , n 
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(44) 

* P{ó = j} ,,..,,_ n = i P{N .- N ~ j-r 
R.=0 ,,.__ J r --

for O < r < j 

·P{N.- N < J0 -r for j < r < n!N.= .2.} • 
,..,.J r J 

anà 

In the sum the first factor can be obtained by (37) if we apply it to 

the random variables v., v. 1 , ••• , v1 and the second factor can be 
J J--

obtained by (35) if we apply it to the ra..~dom variables vj+l'··•) vn • 

Thus we obtain that 

(45) 

"':nJj- Nr 2. j-r for O < r ~. j and Nj= .R.} = ,f{Nj= .R.} -

j-1 -· - l J+l~.2. P{N. = i+l and Nj= t} 
i=l j-l Nv>. l 

for 1= 0,1, ••• , j and j = 0,1, ••• , n and 

(46) n 
l ( ~ l) P{N.+1= R.+l, N = .2.+r-j!N.= t} 

r=j+2 r-J- ,..,..__ J r J 

for j = 0,1, ••• , n-1 • If we multiply (45) and (46) and add for 

Q. = 0,1, ••• , j , then we get (36) for j = 0,1, ••• , n-1 • 

* In exactly the same way as we found P{ 6 = j} we can find ,,,._ n 

. * 1 P{~ = j N = k} for k = 0,1,2, ••• and we obseF..re that it can be expressed ,,_,.._ n n 

as follows: 

(47) * J * «· Q.Cn!k) = l P{N.= R.!N = k}Q.(jlt)o_(n-jlk-t) 
J Q.=O f't-- J n J IJ 

f or j = 0,1, ••• , n and k = 0,1,2, ••• where 
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(48) 
* n ~ 

Q_(n!k) = P{N > llN = k} - l (i~l) .~{N1= 0 , N1.= ilNn= k} 
"'O ·"" 1 n i=2 "_ 

for k = 0,1,2, ••• and 

(49) * ~(nik) 
n-1 ( = 1- l n+l~k)P{N.= i+l!N = k} 
i=l (n-1) ,._ i n 

* for k = 0~1,2, ••• , n and ~Cnlk) =' 0 if k > n . 

Note. Finally, we shall be concerned with the problem menticned at the 

end of Section 24 in the particular case when t:.. = 1- v. for i = 1,2, ... , n 
l J. 

and v
1

, v2, ••• , vn are interchangeable discrete random variables taking 

on n~n1egative integers only. Let Nr= v1+ ••• + vr for r = 1,2, ••• , n &1d 

N0= b . Denote by !:i.~c) the nurnber of elernents greater than c in the 

sequence r-Nr (r = 1,2, •.. , n) • 

Ll ( c) Our next aim is to find the distribution of n for c = O, ±_l, ±_2, ••• , 

that is, the probabili ties 

(50) p{ü(c) = j} = P{N < r-c for exactly j subscripts r = 1,2, .•• ,n} 
,..,_ n ""' r 

for j = 0,1,2, ••• , n • Previously we considered only the pa::-tic1ilar cases 

c = o and c = -1 , In the notatlon of Section 26 we have ~O) = li
11 

and 

6(-l) = Ä* 
n n 

Theorem 5, If c = 0,1, ••• , n, then 

(51) 
n (c'J \ c+l P N . 1 P{A. - = Ü} = 1 - l -.- { . = 1-·C- } 

IV'- -n i=c+ 1 1 ·"""' J. 

and if c = 0:1, ... , n-1 and j = 1,2, .•. , n-c J then 
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P{ó(c) = j} 
,..,,._ n 

j i n c 
= l (1- -:-)[ l Ti=Tr P{N. = i, Ni- NJ. = i-j-c} -

t=O J i=j+c 1 J, ,.,..,, <l 

(52) n 
~ c+l P{N -

i=j~c+ 1 (i-j) '- j 
9,, N.·- N. = i-j-c-1}]. 

l J 

If c = 0 and i = j , then c/(i-j) should be interpreted as 1 in (52). 

Proof. If c = 0 , then Tneorem 5 reduces to Theorem 2. First we 

shall prove (51) • We have 

_ ,!,{·ó~c) = O} = !{Nr ~ r-c for r = 1,2, ... , n} = 

(53) 1 

1 

If the event 

= 1-P{N < r-c for some r = 1,2, ••• , n} • ,..,.__ r 

{N < r-c for some r = 1,2, ••. , n} occurs, then there is r 

an r = 1,2, ••• , n such that N = r-c-1 • 
r 

Denote by i the sma.llest 

su.ch r • Thus we obtai.n that 

n 
P{6(c) = 0} = 1-

;v- n 
l P{N.- N < i-r 

. ,..,... l r 
J.=c+l 

for r = 1, ... , i-1 and i~·. = i-c-1} -· 
l 

(54) n 
= 1- l E'.1 P{N. = i-c-1} , 

i=c+ 1 1 ,.,,.., J. 

where in proving the second equality we used Lemma 20.2 applied to the 

Next we shall prove (52) for c = 1,2, ••• ,n-1 and j = 1,2, .•• , n-e • 

If ó~c) = j , then there is an r = 1,2, ••• , n such that Nr = r-c . 

Denote by s the smallest r with this property. Then N > r-c r f or 
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1 < r < s , Ns = s-c , and N < r-c for ,j subscripts r = s+ 1, ••• , n • 
r 

Here the last condition rnay be replaced by the following one: N - N < r-s r s 

for j subscripts r = s+ 1, ... , n • If, in addi tion, we replace the 

last condition by the follov.'ing one: the first maximum in the sequence 

(r-N) - (s-N) (r = 3, ••• , n) occur.s at r = s+j , then this does not r s 

change the probability of the event {~~c) = j} • This is a consequence 

of Theorem 22.2 • Now let us define p(k) (k = 0,1, .•• , n) as the 

sma.J.lest r = O,I, ••• , n (if any) for which r-N == k Accord:Lrio- to r . ~ 

the above reasoning we can write that 

n-j J 
P{ö(c) = j} = l l P{p(c) -

,..,.... n s=c Q.=l 
s,p(c+Q.)-p(c) = j,p(c+Q.+I)-p(c+Q.) > n-s-j} (55) 

where we used that N + .- N = J. -Q. with 1 < 9.. < .J· • Tne condition s J s = = 

{p(c+9..+l)-p(c+9..) > n-c-j} should be interpreted as the ccmplementary 

event of {p(c+9..+l)-p(c+9..) < n-c-j} • If we replace the randcm variables 

v1 , ... , vs, vs+1 , ... , vs+j by v
8
+1 , ... , vs+j' v1 , ... , vs respectively, 

then (55) rernains lIDChanged and we can write that 

P{~(c) 
,._,.... n 

(56) 

n-j J 
= j} = l Lf {p < Q,) = = s,p(9..+c+l)-p(9..+c) >n-s-j} = 

s=c 9..=l 

= ~ P{p(9..) = j,p(9..+c)-p(9..).::_n-j,p(9..+c+l)-p(0,)> n-j} = 
9..=1"'"" 

- ! [P{p(9..) = j,p(Q.+c)-p(Q,) ~n-j} - P{p(Q.) = j,p(i+c+I)-p(X.)~-=n-j}] • 
R.=l ,.,... ,..,_, 

Now by Lemna 3 i t follows that 
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(57) P{p(i) = j,p(i+c)-p(i) = r} = .:c P{N. = j-9.., N.+ - N. = r-c} 
,_,.._ Jr,- J J r J 

for 1 ~ Q, < i + c < j + r :_ n • If we add ( 57) for r = 1, ••. , n-,j , 

then we obtain the first sum on the right-hand side of (56). The second 

surn on the rlght-har.d side of (56) can be obtained from the first sum by 

replacing c by c+ 1 • Thus we get ( 52) • This completes the proof of 

the theorem. 

Finally, we shall prove the followi...1îg theorem. 

Theorei11 6. If c = 1,2, ••• and Q, = 1,2, ••• , n+c , then we have 

( n-j J 
P{ti. -c)=j and N =n+c-i}= l s [ [, i_t-l) P{N .=n-j-s, N .. -·N .=r-i+l, 

,...,_ n n s=l (n-j) r~.Q.-l r tv.. n-J n-Ji'"r n-J 

(58) 
N =n+c-i}- ! !. P{N .=n-j-s N . - N .=r-i Nn=n+c-t}] 

n r=Q. r,.... n-J ' n-J+r n-J ' 

for j = 0,1, ••• , n-1 and 

(-c) ~ Q, (59) P{ti. =n and N =n+c-i}= P{N =n+c-i} - l "P{N.=i-Q, and N =n+c--i}. 
,.,..,.. n n ,.,_ n i=Q, i 1"'- i n 

Furthermore, for c = 1,2, ••• , and j = 0,1,2, ••• , n-1 we ~v~ 

(- ) n-J-1 * * 
(60) P{~ c =j and N =n+c} = ) P{N ~ =i}CJ • (n-j-112)0 .. (j+lln+c-:i) 

n n w """ n-J-1 11-J-l IJ ~ Q,=0 

where the probabJ.li ties on the right-hand side are gi ven l~y ( 48) and ( 1!9) • 
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Proof. If c = 0,1,2, •• , and Q, = 0,1, •.• , n+c , then we have 

P{~ (-c)=j and N =n+c-t}= P{N < r+c for i 
""-' n n ,,... r " 

subscripts r = 1,2, ••• )il and N =n+c-î}= 
n i 

(61) 
= P{N - N > n-r-t for j subscripts r = 1,2, ••• ,n and N = n+c-t}= rv--n r n 

= P{N. < i-t+ 1 for n-j 
,..__ l 

subscripts i = 0,1, .•. , n-1 and N = n+c-i}. 
n 

Acco.rdingly; 

(62) P{t.(-c) 
,..,.,_ n 

= j and N = n+c-t} = P{L\ U-l)= n-j 
n ,.,..... n and N = n+c-9,} n 

for c > l and t > 1 and the right-hand side is given by a slight 

:m.odification of 'Iheorem 5. 

Furthe:rmore, we have 

(63) P{A(-c) = j and N = n+c} = P{A(-l) = n-j-1 and N = n+c} 
Nv-n n ,.,...n n 

for c > 1 • Here 6 (-l) = A * and the rig."lt-hand side can be obtained 
n n = 

by 'Iheorem 4 or by (47). 

Th...""Oughout this section we assumed that vl' v2, ••• , vn are inter

changeable randc:m variables taking on nonnegative integers only. If, in 

particular, we assume that vl' v2, ••• , vn are mutually independent and 

identically distributed random variables taking on nor..negative integers 

only, then all the resliits obtained in this section can be simplified 

scmewhat. 

1 
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27. Problems 

27.1. Let ~l' ~ 2 , ... , ~n'··· be rrrutually independent and identically 

distributed random variables having a continuous and syrrnnetric distribution. 

De fine i:;0 = O and s = ~1+ ... + ~ for r = 1,2, .••• r r 
Denote by t. the n 

number of positive elements in the sequence i:;1, i:;
2

, ••. , ç • Find P{t. = j} n ,.,.., n 

for j = 0,1, .•• , n. (See E. S. Andersen [ 2 ] and D. A. Dar ling [ 19 ] . ) 

27.2. In Problem 21.4 denote by t. the nUIPber of positive elernents n 

Find P{t. = j} for j ~ 0,1, ... , n. 
,vv- n 

27. 4. We distribute n points at random on the interval (O, 1.) in 

such a way that independently of the others each point has a uniform distribution 

over (O, 1) • Denote by vr (r = 1,2, ... , n) the number of points in the 

interval r-1 r] (- - and let 
n ' n ' 

N = v1+ ... + v for r = 1,2, •.• , n. r r 
Denote 

* by t.n the number of subscripts r = 1,2, .•• , n for which Nr ~r. Find 

* P{t. = j} for 1 ~ j ~ n • ,...,._ n 

27. 5. In 'Iheorem 26.5 determine P{t.(c) = j} for c = 0,1, ••. , n-1 ,_,_... n 

and j = 1,2, .•. , n-c by using 'Iheorem 22. 2. 

27.3. Let ~ 1 ,~, ••• ,~n'··· be mutually independent and identically dis

tributed random variables for which P(~ = l} = p and P(~ = - l} = q where 
"""' n ,..,.... n 

p > o, q > 0 and p + q = 1. Let Cu = ~l + ~ + + ~ for n = 1 2 '::> ,_, ••• , 
n 

and C0 = o. Denote by b. 
n (ri = 0,1,2, ••• ) the number of positive elements 

among Find P(~ = k} for 0;,; k _< n. ,...,.,,, n 
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