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CHAPTER ITI

POSITIVE. PARTTAL SUMS

22. An Egquivalence Theorem, First we shall prove a useful basic

theorem which we shall use not only in this chapter but in the subsequent
chapters too. We shall formulate this theorem a liftle more generally
than we need in this chapter. This theorem was found in 1953 by

" E.'S. Andersen [ 2 ] and a simple proof for it was given in 1959 by

' W. Feller [23].

jTheorem 1. Let gl, §2,..., &n be interchangeable real random
t

variébles. Define Cr = £1+ £2+...+ g

r

Denote by An- the number of positive partial sums Cys 52,".., r o oand

no e

by p, the subscript of the first maximal element in the sequence

n

*
Tgs Gyscees Tp - Denote by A, the number of nonnegative partial sums

¥
Cl’ 52,..., Ty s and by S the subscript of the last maximal element

in the sequence CO’ Ciseces Cp o

- We have
@) Ploy =3, exb =Rl =, 0,5
and
* 1 .
(2) Pla =3,z 2% =Plo =3, ¢ <xl

for j=0,l;..., n and all x .

for r=1,2,..., n axd -, =0.
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Proof. It is sufficient to prove one of the two relations (1)
and (2) because each one implies the other. For if we apply (1) to the

random variables -£,, ~£55..., £, then we obtain (2), and if we

apply (2) to the random variables =E15 ~E5seees <€ s then we obtain (1) .
This can easily be seen if we take into consideration that for the

v 3 . . o *
sequence -El, —62,..., —En the number of positive partial sums is n—-AY1 s

and the number of nomnegative partial sums is n—An , and for the

sequence ~§ -gn—l"“’"gl the subscript of the first maximal partial

¥
sum is n-e. and the subscript of the last maximal partial sum is n=g, .

| .
|Now we shall prove (1). If n=1, then A and thus (1) holds.

1"
We sLall prove by mathematical induction that (1) holds for all n = 1,2,... .

Let us suppose that for n (n = 2,3,...) , the vector random variables

, ot et fe St e
(& _1» En—l) and (pn—l’ gn—l) have the same distribution. This implies

that (An—l’ Gy ;n) and (pn—l’ Co1» ;n) have also the same
distribution. For Anrl and Pl depend only on gl, 52,..*, anrl ard

these random variables are conditionally interchangeable given S and

g, - Hence it follows that (An-l’ cn) and (pn—l’ cn) have also the

same distribution.

let x<0 &and J = 0,1,..., n-1 . Then we have

(3) Play =3, sxb =P8 1 =3,z 2x}.
For if ;nlégo , then the n~th partial sum cannot be positive and there-

fore An = A

-1 ° Furthermore, we have
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() Af{pn =J s 5y < x} =AEiQNel =Jd st n x} .

fIn

For if ¢ <

n < 0, then the first maximum cannot occur at the n-th place

(being CO = 0) and therefore Py = By the induction hypothesis, the

Pa-1 *
right-hand sides of (3) and (4) are equal and hence

(5) Pl =3,z <x} =P

n

for x <0 and Jj=0,1,2,..., n. If J=n, then both sides of (5)

are evidently O .

let x20 and j =1,2,..., D . Then we have

{ = 1 = PI
(6) ,“P,{An Jd s Cn > x} ELAn—l

=31, c,> % .

For if ¢ >0, then A =A__+1 ., Furthermore, we have
n n n-1

> x} = P{pn_1 = j-1, &, > x} .

(7 . /E{pn =J, Cl’l

For -nepn can be interpreted as the subscript of the last maximal

element in the partial sums of -gn, -En-l""’ —&1 . 1If -L, < O , then

the last maximum cannot occur at the n-th place and thus n-p, = n=l-p_ . ,

+1 . By the induction hypothesis the right-hand sides

that is, P = Ppq?

of (6) and (7) are equal, and hence
(8) Play =3, 0> xb =Pl =J,0¢,>x

for x>0 arnd j =0,1,2,..., n. If J =0, then both sides of (8)

are evidently O .
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Now (5) and (8) imply that (An, z;p) and (pn, cn) have identical
distributions. This completes the proof of (1), and (2) follows from (1).

In 1961 A. Brandt [ 14] generalized Tieorem 1. We shall prove this

generalization in the following version.

Theorem 2., Let gl, &2,..., En’ be interchangeable random variables.

Define L. = &gt &ttt £ for r=1,2,..., nand Zy =0 . Denote by

An(c) the number of partia.l sums greater than c¢ in the sequence

%
Tqs Toseees Ly s and by An(c) the number of partial sums greater than

or equal to c¢ 1in the sequence r,l, 2;2,..., Cn . Denote by pn(c) the

smallest subscript r = 0,1,..., n for which Z, ;_rnax(go, Tysenes cn)-c

%
and by pn(c) the largest subscript r = 0,1,..., n for which

L, 2max(gy, Cyseees T 0-C .
If c¢ > O, then we have
(9) Plae) =7,z xt=Plplc)=7, ¢ <x}
and
* A *
(10) Pla(-e) =3,z <%l =N§{pn(0) =J,t,2%

for J=0,1,..., n and all x .

Proof. If ¢ =0 , then Theorem 2 reduces to Theorem 1. It is
sufficient to prove one cf the two relations (9) and (10) because each
one implies the other. For if we apply (9) to the random variables
“E1s “Egsenes =€ s then we obtain (10), and if we apply (10) to fhe

random variables -€1s ~Enseees —En , then we obtain (9) . This can
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easily be seen if we take into consideration that for the sequence
—gl, -52,..., —gn the number of partial sums greater than c¢ is
n—Ai(—c) , and the nunber of partial sums greater than or equal to c
is anﬁ(—C) , and for the sequence “Es B qarees

of the first partial sum greater than or equal to the maximal partial sum

;gl the subscript

* _
minus ¢ "1is n—pn(c) , and the subscript of the last partlal sum greater

than or equal to the maximal partial sum minus c¢ is n—pn(c) .

Now we shall prove (9). If n =1, then Al(c) = pl(c) for

c ;=? &1d thus (9) holds. We shall prove by mathematical induction that

(9) ?olds for all n = 1,2,... . Let us suppose that forn (n= 2,3,...)
|

the vector random variables (An_l(o) 5 Cn—l) and (p_ ,(c) , Cnrl) have

n-1
A K L R TP 1.. - . 3
the same distribution. This implies that (An—l(c)’ Z.1° gn) and

(pn_lkc) > Co o cn) have also the same distribution. For A and

(
nrl\C)

pn—l(c) depend only on €15 Bgseevs €1 and these random variables are

conditionally interchangeable given ¢ and - Hence 1t follows

n-1
that (An_l(c), cn) and (pn_l(c), t,) have also the same distribution.

Iet x<c¢c and j =0,l,..., n=1 . Then we have

(11) Plae)=3 ,z,sxr=P{a () =],z <x}.

n= A—

For if Cn 2 X £ ¢, then the n-th partial sum cannot be greater than ¢

and therefore An(c) = A_,(c) . Furthermore, we have

n-1

(12) Plo () =7, ¢, xl =,f_{°n-1(°) =3, sxk .
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For Lo = O and if § < x < ¢ then tm ¢ 20 . Thus the smallest

n=
subscript r = 0,1,..., n for which C, ;=max(co, Cyseees cn)-c cannot

(ec) .

be r=n . Therefore o (c) =po .

By the induction hypothesis, the right-hand sides of (11) and (12)

are equal and hence

(13) Plafe) =3,z < x} =Mli{on(0) =J ., t, 5%}

for x¢c and J=0,1,..., n. If j =n, then both sides of (13)

are evidently O .

)Let x>2c ad J=1,2,..., n . Then we have

|
aw ;E{An(c) =J sz, x} =N§{An_l(c) =J=1, g, > x.
For if z, > Xxc, then An(c) = Anrl(c)+l . Furthermore, we have

(15) Ng{pn(C) =35z, >x =~E{pn-l(c) =J .z, > %

For n—pn(c) can be Interpreted as the largest subscript r =0,1,..., n

for- which Zn ;=max(co, Tyseees gn)-c where T = 8 € ]
for r=1,2,..., n-1 and Zb =0, If Zh = -z, < —c , then this
largest subscript camnot be r =n , and thus n—pn(c) = n—l—pn_l(c) s

that is, pn(c) = pn_l(c)+l .

By the induction hypothesis, the right-hard sides of (14) and (15)

are equal and hence

(16) Pla (e) =], ¢, > Xt = Plp (e} = J, ¢ > x}
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for x>2c¢c and J=0,1,..., n. If j =0, then both sides of (16)

are evidently O .

Now (13) and (16) imply that (An(c), cn) and (pn(c), z,'n) have
identical distributions. This completes the proof of (9), and (10) »follows

from (9).

Finally, we note that in 1961 E. S. Andersen [ 6 ] generalized

Theorem 1 in another way.
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23. The Distribution of the Number of Positive Partial Sums. Now

let us suppose that El, £2 geees En,... is a sequence of mutually
independent and identically distributed real random variables., Iet

C =El+£+oto+ E_’ fOI’ n=1’2,,.. and_ CO=O.

Let 'us dencte by An the number, of positive partial sums among
Ty Soseees T and by Afl the number of nonnegative partial sums amc?ng
G Lpseees By« Leb Ay =80 =0 .

Denote by p =~ the subscript of the first maximal element in the
sequ%enc:;- Lgs Cyseres &y and by p: the subscript of the last maximal

1
elenx?nt in the sequence r,o, Ciseers Cp o

For any event A let us denote by &(A) the indicator variasble of
A, that is, 6(A) =1 if A occurs and §(A) =0 if A does nct

occur.

Let us introduce the following notation:

-sz
(1) Vv (s) = Efe s (8= )}
and
. -SC
(2) »vf]k(s) = Ble na(z\} K)}

for Re(s) =0 and O<kzs<n.

The jJoint distribution of the random variables [ ard An is
uniquely determined by Vny(s) for k¥ =0,l,..., n and the joint

*
distribution of the random variabies Zh arnd An is uniquely determined
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*
by Vnk(s) for k=0,1,..., n . Our next aim is to find (1) and (2).

The solutions of these problems were given in 1953 by E. S. Andersen [ 3 1,[ 51,

in 1961 by G. Baxter [10 ] and in 1962 by D. A. Darling [20 ].

First, we shall show that if we know Vno(s) and Vm(s) fer
n=0,1,2,..., then Vnk(s) can be o?tajned immediately for O <k <n ,
% %
and similarly if we know Vno(s) and Vnn(s) for n=0,1,2,..., then

%
V (s) can be obtained immediately for O <k <n .

" Theorem 1. We have

3 | V() = Vg (s )W, e ()
and
* * *
() Vnk(s) = VLd{(S)Vn—k,O(S)

“for Re(s) =0 and Ogkz<n.

" Proof. The case of n =0 1is trivially true. Let n>1 . By

Theorem 22.1 we can write that

-SC
- n -
(5] Vo (s) = Ele  "8(p = k)}
for Re(s) =0 and O<k<n.
Iet us define Hn-k as the subscript of the first maximal element

in the sequence Ei = Tpi Ui (i=0,1,..., n=k) . Then we can write

that

(6) 8(p = k) = 6(p,= k)8(p_,=0) .
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For pn=k if and only if Ly < ¢ for 0<1i<k and ci;c for

k k

i <k<n, Hence it follows that

-8z -ST -8z
(7) e 5o =) =le Ss(o=W)Ile e =0)] .

The two factors in breackets on the ri'g;ht-hand side of (7) are independent,

-3z _
and the second factor has the same distribution as e n k<S(pn_k =0) .

Thus if we form the expectation of (7), then we obtain (3).

%e can prove (4) in a similar way. We can also obtain (4) from (3),
if we apply (3) to the random variables “E1s “Eoseees <E . Denote by

Kn he number of positive elements in the sequence —Lgs “iyseces ~C,

— *
(n =0,1,2,...) . Obviously o, =n-b,  for n=0,1,... . Now by (3)

we can write that

* =Sty % =S,
Vnk(s) = Efe G(An =Kk)} = E{e G(An = n-k)} =
(8)
-5z i >14
—E{e 6\An—k n k)}E{e cS(Ak = 0)}
-ST -SC
_ Nn--K. * _ . k * _ \ _ * *
—[E{e O(An—k = O)}E{e cS(Ak =k)} = Vn—k,O(s)Vldc(s)

for O0<kz<n and Re(s) =0 which is in agreement with (4).

By (3) and (4) we can write that

o0 n e o) [¢+]
) Vo (8)o i = (T V() o)™ ( T V_(s)e™)
I‘IZO kzo nk ? nzo nn nﬁO no+>7°

and



TI-11

% *
(10) V. (s)p s = ( V* (s)(pw)™)( vV (s)o™)
n=z=0 k=g K P n%O SR Zo no >’

for Jo|l <1, |ow] <1 and Re(s) =

Let us denote by ¢(s) the lLaplace-Stieltjes transform of tn

(n=1,2,...) , that is,
gn
(1) ¢(s) = Efe }

for Re(s) =

! "we put w =1 in (9) and in (10), then we obtain that
\
l
I

ny _ 1
(12) (nzo V__(s)e )(nzo (S)O ) = T53(5)
and
ny, v % ny _ 1
(13) <n§O V() ] Voo™ = ey

for |p| <1 and Re(s) =0 . For if w =1, then the left-hand sides

of (9) and (10) both reduce to

-sT

(14) Ele pp" [6(s)1% ﬁ—yl
ngo n-z'o 1-p¢(s

M
@]

whenever [p| <1 and Re(s)

*
Accordingly, if we kriow Vnn(s) and Vm(s) for n=0,1,2,...
and Re(s) = O, then by using the above results we can obtain V (s)

for O0<k<n and Re(s) =0 . Thus the whole problem is reduced to

finding V (s) and V (s) for n=90,1,2,... . This is our next aim.
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%
24, The Determination of th(s) and th(s) . First we recall

that
(1) | Vv (s) = Ele na(An= n)}
and
_scn
(2) VhO(S) =/E§e 6(An§ 0)}

for n=0,1,2,... and Re(s) = 0 where A denotes the number of

positive partial sums among Lys Losrees Ly and A. = 0 . Furthermore,

0
* =S, %
(3) | - V. (s) =Ele “6(a=n)}
and
-ST
(4) Vo(s) = Ele  Ts(a= 0))

%
for n=0,1,2,... and Re(s) = O where &~ denotes the number of nor~

%
negative partial sums among Lys Loseess Cn and AO =0 .

Theorem 1. We have

°z° n °z° ol . "%

(5) V_(s)e = exp { — E{e sz > 0)1}

nog O oy 0o~ n

for Re(s) 20 and |p| <1,

(6) ; V()" = exp { ; EE'E’ mscnﬁ( < O}
L Tno'"P T P L g e °h = '

n=0 n=1

for Re(s) <0 and |p] <1,
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o ¥ n . o ~5%

(7) Y Vm(s)p = exp{ ) - Ele G(Cn > 0)}}
n=0 n=1 ~

for Re(s) 20 and || <1, and
o o w n -Sz

(8) I VoG =expl ] EBe sz <0}

n=0 n=1

for Re(s) £ 0 and |p] < 1.

: *
Proof. We note that Vnn(s) and Vnn(s) exist for Re(s) > C

¥ X
and (s)| £1 and lvm(s)] <1 for Re(s) 20 . Similarly, V_,(s)

s
nn ‘
% . *
and V ~(s) exist for Re(s) <O and IVnO(s)l <1 and IVnO(s)I <1

for Re(s) £ 0.

In what follows we shall prove first (5), and then we shall show

that (6), (7), and (8) follow easily from (5), (23.12) and (23.13).

In Section 2 we introduced R , & space of functions @¢{(s) defined
for Re(s) = 0 on the complex plane. In Section 3 we introduced a
linear transformation N&: defined for ¢(s) e R . We used the notation

ot (s) =E{®(s)} for Re(s) 20 .
Now let us define another linear transformation N% by assuming that
(9) ste(s)} = ¢7(s) - ¢7(=)
for Re(s) >0 and ¢(s) ¢ R . In other words, if
(10) 8(s) = E{ge™")
-

for Re(s) = 0 where ¢ is a complex (or real) random variable for which
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E{|]z|} < » and n is a real random variable, then
e’

(11) S{e(s)} = E{ze™"s{n > 0)}

M~

for Re(s) »0.

We can deduce a recurrence relation for Vnn(s) (n=0,1,2,...) 1if

we use the transformation M~S . For the sake of brevity let us write

‘ st
(12) V(s) =V (s) = Ele  Ts(a =n)}
for |a =0,1,2,... and Re(s) 20 . We have Vy(s) =1 and

Vv, (s) =N§{¢(S)Vn_1(s)}

for n=1,2,... . For

-t -z,
Vn(s) =£{e G(An= n)} =N§{e S(An_l'-'- n—l)é(cn >0)} =
~ST -sE -sz

= ri - — n n-1 _ _
(14) —E{E{e G(An_l-— n-1)}} —E{E{e }E{e d(An_l- n-1)} =

=,§{¢(S)vn-l(s)}
for n=1,2,... and Re(s) >0 .

Ilet

| I E-stle(s)1™
(15)  U(s,p) = eRtioellpe(®)] _ o m=l = 7

for Re(s) >0 and |p| <1, and let us expand U(s,p) in a power

series as follows




IIT-15

(16) Ulsse) = [ U (s)e’ .
=0

This series is corivergent if |p]| <1 and Re(s) > O . We can easily
see that U.(s) = 1 and thus S{U.(s)} = O, furthermore U (s) € R
0 YOS n Ay

and S{U (s)} =U(s) for n=1,2,... . Accordingly,
~on n

(17) E{U(S’p)} = U(S,O) - 1

for Re(s) 20 and |p| <1 . On the other hand

*® n

(18)  S{[1-p4(s)TU(s,0)} = Sfexs ¢ [ &= [Stle(s)1- [¢(s)T"IN}= 0
e oo o=l Y

for Re(s) >0 and |p| < 1. By (17) and (18) it follows that
(19) U(s,0)=pS{¢(s)U(s,p)} = 1

for Re(s) >0 and |p| <1 . If we put (16) into (19) and form the
coefficient of o" for n = 0,1,..., then we cbtain that Uy(s) = 1

and
(20) U,(s) = 8{¢(s)U (s}

for n=1,2,... and Re(s) > 0 . Thus we can conclude that the sequence
U n(s) (n =0,1,...) satisfies the same recurrence relation and the same
initial conditicn as the sequence Vn(s) (n =0,1,2,...) and therefore
it follows that Vn(s) = Un(s) for n=0,1,2,... . Accordingly, we

proved that

= I & stle(s)I™
(21) Y V_(s)e" = o~S{logll-pe(s)l} _  n=l = ™7
n=0 m
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for Re(s) >0 and Je| <1 . In (21) we can write

~Sr -ST
(22) S{le(s)T™ = S{E{e M1 = Ele na(;n > 0)}

M

for Re(s) > O and thus we obtain (5) which was to be proved. We rote

that

pn
H—/\E{ z

Io~18

(23) S{logll-p¢(s)1} = T{logll-ps(s)]} + 0}

A

N n
n=1

for Re(s) 20 and |p| <1 and thus (5) can azlso be expressed in the

f‘ollbni.ng equivalent form
© n
. ~T{log[l-p¢(s)]} = | 2Pl <O}
(24) I Vop(s)e' = e i
n=0

where Re(s) >0 and |p] < 1.

Formula (6) follows from (5) and (23.12). If Re(s) =0 ard

IO! < 1 , then we can write that

© n -Sz
. (8] ) L _Ele ™
1 _ =log[l-p¢(s)] _  n=1 0o
(25) Ty ~ © = e

and thus (23.12) and (5) imply (6) for Re(s) =0 and |p| < 1.
Since the left-hand side of (6) is a regular function of s in the
domain Re(s) <O and continuous for Re(s) <0 , it follows that (6)

remains valid for Re(s) £0 too.

If Re(s) =0 and |p| <1, then by (24) and (23.12) we can write

that
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n

~log[1-p¢(s) *T{log[1~0¢(s) 13+ ) %. Plc

(26) z VnO(S)Dn = e n=1 [
n=0

If we apply (6) to the random variables =815 “E5seees “Eseen

replace s by -s then we obtain (7) for Re(s) > O , and if we apply

(5) to the random variables =-£;, ~E55eees =€ 5es

then we obtain (8) for Re(s) <O .

We_ can write down also that

© n
-T{log{1-pe(s)]} - [ & P(z < 0}

T AN n=1 n
Qﬂ'fgon®” =e
for Re(s) 20 and o] < 1,and

© 1N

., ~1log{1~p¢(s) #T{log[1-p¢(s)1} + ]

28) T V' (s)l=e n=l
=0 nd

for Re(s) =0 and |[p}l<1 . These formulas can be seen simply by using

the fact that the ratio of (7) to (5), and the ratio of (6) to (8) are

«© n
(29) exp { ) Q—P{cr = 0}} .
n=1 *

Now we are in the position that we can express the generating

. end replace s by

o
oLt

and

=
-3

#
functions of V ,(s) (0 <kz<n) and V,h(s) (0<k<n) Ina closed

formula.

Theorem 2. If Re(s) =0, |p|l<1l and [pw| <1, then we have

3
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(30) | E ? \ (S)onwk =
n=0 k=0 nk

o T{1og[1-pwo(s) 1} + T{logll-p¢(s)]}
1 - p¢(s)

- exp 1 § "1 b, oo
" and

[--]

o x nk _ e-iilogll-pwe(s)]} + T{logll-pe(s)]}
€31) ngo L Vnc(ede” = 7

v ol

cexp{ ) ———=P{g_ < O0}} .
| n=J. ™~
|
| Proof. By (23.9) we can express (30) as the product of (2#) with

p replaced by pw , and (26). If instead of (24) and (26) we use (5)

and (6), then we obtain that

- n k s (o) . TS ol ~5th -
(32) nZO kZO Vo (8)o w™ = exp {nzlﬂ—jq——J§{e (g O = Ele  T8(z <0)}]

for Re(s) =0, Jp|l<1 and |ow| <1 .

By (23.10) we can express (31) as the product of (27) with p replaced
by pw , and (28). If instead of (27) and (28) we use (7) and (8), then

we obtain that

[}

o nk _ s (pa)™ ~5tn o" 5%y -
(33) nzo k_Z__Ovnk(s)p W' = exp {HZIETE{e 8(z 2001+ o Ele 8(z <011}

for Re(s) =0, |p] <1 and J|pw|<1.
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Note. We would like to mention here a natural generalization of
the problems discussed in the previous sections of this chapter. The
solution of this more general precblem, however, will be given only in
the next chapter. Let us consider again a sequence of mutually
independent and idertically distributed real random variables 15 Ensenes

E_In,... and define iy = gl+ g2+..,+gn for n=1,2,... and ¢ 0= c .

Denote by @n(x) the number of partial sums ¢, Zy,..., L, which
are <x where -~ < Xx <« , In the previous section we studied the
*
21N . ) = n - A - -— - 3
dist;;m mitions of An nt+l On(O) and 8 n+l en( 0) . As a
L . . . . s
generalization of the previous results we can ask what is the joint

distribution of _ and O _(x) for n=0,1,2,... and -=<x <=,

+ s A
If we denote by Npgs Mp1eeete My the partial sums Cos Tysesraby
arranged in increasing order of magnitude, then we can prove the following

identity found by J. G. Wendel [&42].

Theorem 3. We have

© =) v =-Vg €] (X) o n -sn_, ~VC 1
(38) Yo ewsxdxgje My Py =) TV Efe nk nyon k
n=0 =« n=0 k=0""

for Re(s) =0 , Re(v) =0, |p|] <1 and |ow] < 1.

Proof. If we suppose that El s 52,. ey & are numerical

n,o--

(non-random) quantities and if we define On(x) and "no? M1ttt Mo

(n = 0,1,2,...) in exactly the same way as above, then we have the

following idnetity
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w 0_(x) n  -sn
(35) _f Nt (1-3) z e nkwk
=0

for any s and w . This follows from the fact that @n(x) is a

step function for which On(x) =0 if x < N s

Ml =% 5y =120, n) and O (x)

Gn(x) =k if

ntl iff x> n .
= nn
We can easily see that (3&) is valid regardless of whether the quantities

n are distinet or not.

r * e
no? 'nl’ s Ny

If El, 52,..., Eﬂ,.., are random variables, then the relation (35)
is valid for almost all realizations of the sequence. If we form the

expe&tation of (35), then we obtain that

® 0 _(x) n -Sn
(36) [ ¥aEw ™ 1= a(l) ) Ele RS
—o ™ k=0 """
-.Vg
I

for Re(s) =0 and n = 0,1,2,... . If we multiply (35) by e and

if we form the expectation of the product, then we obtain that

» -vz_ o_(x) n -sn_, =Vg
(37) / e—sxdx§§e B ™Y = —(1-w) N Efe nk

—00 k=i

for Re(s) =0, Re(v) =0 and n =0,1,2,... . If |p| <1 and if we
miltiply (37) by o" and add for n = 0,1,2,..., then we obtain (34)

which was to be proved.

In the next chapter we shall defermine the generating function

(38) Y z Ele o w
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for Re(s) =0, Re(v) =0, le| < 1 and [pow| <1 . This makes it
possible to find the joi istri i i
Joint distribution of Zh and On(x) for n=1,2,...

and —o < X < @
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25. Some Particular Results. By using Theorem 24.2 we can find the

probabilities
(1) Pla, =K 1«1
and
¥
( 2) : N?{An - k,'Cn b x}

for O<k<n and -» < X<« , In what follows we shall determine (1)

in some particular cases. Probability (2) can be obtained in an analogous

way, or by (1) if we apply it to the random variables €95 "Ereees "Epsene o

*lFir'st let us consider the distribution of A n for n=0,1,2,... .

I
By Theorem 23.1 we have

(3) JPla, =k = Mgy =KPa, , =0

M

for O< k< n . By Theorem 24.1 we have

© o n

(1) L By = e’ = exp L o Plc, > O}
n= n= ~

for le| < 1 and

(5) Zof{An =0} =exp { Zl &~ P(z, < O}
n= n=

for |e] < 1. By (3) it follows that the product of (4) and (5) is
necessarily 1/(1-p) and thus (4) implies (5) and conversely (5) implies
(4). We note that (4) is equivalent to (19.12) and (5) is equivalent to

(19.10).

If we use the notation
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(6) a =N§{;n > 0}

for n=1,2,..., then by (4) we obtain that

i, i
a,” a5 .
(7) Pléy=nb= . =2t
Tyfelptee o™y 43 110122, 00
1772 n
for n=1,2,... where il, 12,... are nonnegative integers, and by (5)

we obtain that

il 12 in
(l_a]_) ’ (l—ar\) oao(l—a )
(8) | P{An =0} = z — ‘ ?
‘ YN il+2i2+...+nin=r1 1151 in 12‘2 n'n
i 172" "n’ tee
|

for n=1,2,... where 1 12,... are nonnegative integers.

l’

Thus the distribution of A can be obtained explicitly by (3), (7)

and (8).

Now let us consider the joint distribution of An and Cp By

Theorem 23.1 it follows that

= 1 = = * = .
(9) N}j{An L < x} ,vlj{Ak k, g, < x} ,E{An—k 0, Cn_kj__x}

for 0<k<n and —~<x <« , That is, if we know the probabilities
Mli{An= k, ¢ < ¥} (n=0,1,2,...) 1in two particular cases when k = n
and k = 0, then by (9) we can obtain Ml.D{An =k, cn;x} for k=0,1,..., n .
The following particular case has same importance in studying discrete

random variables. (See E, 3. Andersen [ 2 1)
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Theorem 1. We have

N--Kk-1

(10) P{o, =k and ¢ =0}= ] UV
e r=0

for k =0,1,..., n=1 and n =1,2,... where

23

(11) ] vz = (2

n=0
and

o ~0f
(12) P vt = 1702

< n

n=1
and ® P{cn= 0} n
(13) c(z) = } = ———Z

;'1=1

for |z| <1.

Proof. We shall provide a direct proof for this theorem. By

Theorem 22.1 we have

”Ij{An= k and = 0} =E{pn= k and L= 0} =
(14)

=£{C’i<ck for O0gi<k and Ty S5y for k<i< n and cn=0}

for 0<ksn. If k=n,then (1!) is 0., If O<k<n and in
(14) we replace the random variables Epp1seees By 2 Epseees B by
E1s Bosenns & respectively, then le{An =k and T, = 0} remains

unchanged. Thus we can write also that

(15) P{A=k and £ =0} =Plc, <0 for Oci<nkand ;<O for

n-k < i < n}

for O<k<n. If 0<k<n and the event on the right-hand side of
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(15) occurs, then there is an i (0 <1 < n-k} such that gy = 0.

Denote by r the largest such 1 , Then necessarily &y < 0 for

r <1 <n. Accordingly

n—-k-1
P{a =k and ¢ =0} = ! Plz; <0 for Ogicr, £ =0,
r=0
zg <0 for r<i<n "and z,=0}=
(16)
n-k~1
= ) Plg, <0 for O0<izr and ¢ =0}P{z, <O for
oo 1 == = r Camci

0<1i<nr and S 0}
for ;O <k <n, or equivalently

n-k-1

(17)  PA=k and ¢ =0}= ] P{s=0 and g =OIP{A _ .=
r=0

*
0

for O<k<n.

Let us introduce the notation
(18) . U =,E{A =0 and t, = 0}
for n=0,1,2,... and

* -
(19) V,=P{a ;=0 and ¢ =0}

1

for n=1,2,... . Then by (17)

(20) P{A =k and ¢=0}= ] UV
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for O0<k<n . If weadd (20) for k = O,1,..., n-1, then we obtain

that
(21} Pig

for n=1,2,... . On the

obtain that
(22) . Un =
for n=1,2,... .

|

|

let
(23) U(z)
and
( 24) V(z)

These generating functions

o= o} = Z (n—r)UrVn_

n-1
-_"O r

other hand if we put k = 0 in (20) then we

I

Z

ot I
{l th .

are convergent for |z| < 1 because evidently

Un;P{cn=o};1 and oV, <P{z =0} <1 for n=1,2,... . If C(z)

n
is defined by (13), then by (21) and (22) we obtain that

(25) C'(z) = U(z)V'(z)
and
(26) U(z)-~1 = U(z2)V(z)

for lz| <1 . Accordingly

(27) U'(z) = C'(2)u(z)

for jz| <1, and U(0) =

(28) U(z)

1l . Hence

= L(2)
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and consequently by (26)

(29) V(z) = 1-e~C(2)

for |z| <1 . This completes the proof of the theoremn.
Finally, we shall mention a related theorem.

‘Theorem 2. We have

(30) Pla =k and ¢ ., >0} = JZk Pl8y,q= JHLILP(A 4= O}-Pla, ; ,= O3]
for O<k<n and

|

| n
(31) P{a =k and z ., <0} = I Pla .= O}[P{A = J3-P{a, 4= J41}]

1 'j=k/\f\ '4 J+1

for O<kgn.,

Proof. To prove (30) we observe that the event {An 41 2 k+1} can

occur in two mutually exclusive ways, either {An= k and sl C}

oceurs, or {An > k+1} . Hence

Fa =k and g 4 >0} =PF{A 5 2 k+t1}-P{4 2 ktl} =

(32) n
Z P2 4= J+1} - 2 P{a = j+1}
J=k J=k 7

for 0 <ks<n . If we use (3), then we get (30).

To prove (31) we observe that the event {An > k} can occur in two

mutually exclusive ways, either {An= k and L] 0} occurs, or
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{a > k+1} . Hence

n+l

(33) P =k and g . <O} =Pa >k}-P{A  >kH}=
= P{A = j} - P{a_ ., = j+1}
j__:kr\—-m n j___kr\-.. nt+l

for 0<kz<n . If weuse (3), then we get (31).
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26. Combinatorial Methods. In some particular cases we can use

special methods for finding the distribution of An s the number of positive
elements, or the distribution of A; » the number of nornegative elements
in the sequence gl, El+ 52,..., £1+...+ En for n=1,2,.c. « In what
follows we shall show that if gl, 52,..., En are either mutuslly
independent and identically distributed discrete random variables taking
on the integers -1,0,1,2,... (or 1,0,-1,-2,...) or interchangeable
discrete random variables taking on the integers -1,0,1,2,... (or 1,0,-1,-2,...},
then we can find the distributions of An, and A: for n=1,2,... by
usinf the comblnatorial methods introduced in Section 20.
éLet us suppose that Vis Vosees, V8T interchangeable discrete
random variables taking on nomnegative integers only. Iet N_ = v +...+ v
for r=1,2,..., n and N, =0. Considér the sequence Ep = 1-v

0

(r =1,2,..., n) and denote by A  the number of positive elements in

r

the sequence of partial sums ¢, = r-N, (r =1,2,..., n), and denote by

A: the number of nonnegative elements in the sequence of partial sums

L, = r—Nr (r=1,2,..., n) . Our first aim is to find the distributions of
A and AZ for n=1,2,... . (See the author [30], WC], [&#i].)

The following auxiliary theorem will be useful in this section.

lemna 1. ILet kl, k2,..., K be integers with sum k1+ k2

Among the n cyclie permutations of (k’ s k2""’ kn) there is exactly

{-..0+ k = lb
n

one for which exactly J (j =1,2,..., n) of its successive partial sums

are positive.
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Proof. Iet kj+n = kj for j =1,2,..., and define dj = n(k1+..»
+kj)—j for j=1,2,... . Then dj+n = dj for j =1,2,... . The
numbers dl’ d2,..., dn are distinet, and dn =0 . We shall prove

that if di is the r-th largest number among dl’ Grgeoo dn , then the

2

cyclic permutation (ki+l""’ k., ) has exactly n+l-r positive partial

itn

sums. This implies the theorem,

Evidently, (ki+l’ Kyt Kygooeees Ky gte e,

number of positive elements as - (di+l- d,, di+2- diseens d

+ ki+n) has the same
i~ 4y has
nonnfgative elements. For if Ky gqFeeot ki+j > 0 , then di+j- d; = n(ki+l+,,,
+ ki%j)—j;p for j = 1,2,..,n . Conversely, if di+j"di;p , then ki+1+"'

|

. 4 0= 1 < ,
+ ki+j>o for j = 1,2,...,n . Thus (ki k., «+ k. K, -F ot K., )

+1°2 i+l Tit22°tt? il n

has the same number of positive elements as (di—di’ d?_di""’ dn-d.) has non-

negative elements. If di-is the r-th largest number among dl,d2,...,dn, then

the latter sequence contains ntl-r nonnegative elements. This proves the lemma.
Lemma 1 immediately implies the following auxiliary theorem.

- Lemma 2. If Y15 Yoseees Y, aT€ cyclically interchangeable discrete

random variables taking on integral values only and if An denotes the

nunber of positive partial sums among Yiteeot v, (r=1,2,..., n) then

= 3 =11 = 1

for j=1,2,..., n , provided that the conditional probability is

defined.
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Proof, For almost every such realization of the sequence
Y1 Yoseees ¥, fOr which v,+...+y =1 we can apply Lemma 1, and

thus (1) follows easily.

In the following theorems we shall assume that Vi3 Voseees v, are
interchangeable discrete random variables taking on nonnegative integers

ooty

only and n 1is a positive integer. We shall write Nr = vy r

for r=1,2,..., n and NO =0 .

Let us denote by Ar (r =1,2,..., n) the number of positive elements

%
in the sequence I1-N, (i=1,2,..., r) and by A (r = 1,2,..., n) the
|
i
numb?r of nonnegative elements in the sequence i-N, (1=1,2,..., 7).

%
let A =4_=1,

We shall also use the notation

(2) Qj(rl k) = Pla, = jIN, = K}
for 0z2j<r<in and k=0,1,2,... and

* _ L -
(3) Q) (rlk) = Pla_ = jIN, = kI

for 0<Jjsr<n and k =0,1,2,... where the conditional probabilities

1-—-

are defined up to an equivalence. |In some particular cases we can find

P

*
the distributions of Ap and An by using Lemma 20.2 and lemmra 2, and

in the general case by using Lemma 20.2 and Theorem 22.1.

Theorem 1. If k =0,1,..., n-2, then
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0 for j =0,1,...,n=k~1 ,

L) Q,(nlk) = kJle (n-k-1) PN, = i 1N =k} £ = 1k, ... ,n-l
4 s n = B = 1-1IN = for J = n-KkK,...,n-1

1—n—34]
1- K for J =n.
n gt

" Furthermore,

5) Qj(n|n~l) = %‘ for j=1,2,..., 0,

Cand
n--J 1
(6) QJ(hln) =
-zf—-j-P N,= i-1 N for J = 1,2,e4.,0-1 .,
i:l 1(n=-i —_— 3&) 3
Proof. First, we note that
7) (nlk) =P{A =nlN=%k =1-5
QTI IV ¢ n n
for k=0,1,...,n . This is exactly Lemma 20.2 . Furthermore, we have
- - 3 - - = l‘.
(8) Qj(nln—l) _ﬁE{An = JINn n-1} =

for j=1,2,...,n . This follows from Lemma 2 if we apply it to the

random variables y; = l-v, (1 =1,2,...,n) .

Next we prove (4) for j =0,1,...,n-1 . If =3 <n and

Nn = k < n-1 , then there exists an r such that N r-1 ., Denote
by r=1 (1=1,2,..., kt1) the greatest r with this property. Then

Ni = 1i-1 and Nr— Ni <r-i for r=i3+l,..., n . Thus we get



K+l

‘ = INn = = P = J Y . = J+i- = e N = »

(9)  PB{a =JiNF=k} iznﬁi{Ni i-1{N, K}-P{a; = 14 n|N;= 1-1, N = k}
;B{An"Ai = n—iINi= i-1, N = k}

for j=0,1,...,n-1 and k = 0,1,...,n-2 . Now by (8)

H-! i

for n-j<izn,

i

(10) F{a, = i+j-nlNi i-1, N =k} =

n 0 otherwise,

if we apply 1t to the random variables vy,..., v, ,and by (N

(11) Pla - 8; =n-i|N;= i-1, N = k} = P{a ;= n-1|N ;= k-i+1} =

- n=l-1
n-i

for i=1,..., ktl,

if we apply it to the random variables . Thus (4) follows

\)i+l,aoc, \)n

for J<n-1. If J <n-k , then Qj(nlk) =0. If j=n, then (4)

reduces to (7). This completes the proof of (4).
Formula (5) is identical with (8).

It remains to prove (6). If 6, =3 where §=1,2,..., n-1 and

Nn =n , then there exists an r =1,2,..., n for which Nr <r . Denote

by 1 the smaliest r with this property. Then necessarily ki = i1,

Nf >2r for r=1,2,..., i-1 and Nr < r holds for | indices among

r=1, i+l,..., n . Thus

n=-Gi

= 9 = = © = Je = r = = J- =nlt.
Pla, JIN = n} 'Elfg{Ni 1-1N,; n}P{a; = O[N; = i-1 , N = n}

(12) X Z N = 1 _
P(A - &) = [N = i-1, N=n) .

Arer
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Now by (8)

ch s _ _1
(13) P{a; =ON; =1-1, N =n} =7

for 1=1,2,..., n=1 . If we apply Lemma 2 to the random variables

(vi+1 “1)yeues (vn-—'l) , then we obtain that
o it e o 1

(1) Pla - Aj = JINi =i-1 , N =n} ==
for 1=1,2,..., n=j . Thus

| n"'«j

M | = 3 = - =
(15,t ,EFAn JIN N Z —zﬁ_ij-P{N' i l]Nn n}

l )
for 'j = 1,2,..., n-1 . If we add (15) for Jj = 1,2,..., n-1 , then
we get

n-1 1

(16) 1:§{An = oan= 121 —-P{N = 1—1|Nh =n} .

Formula (6) follows from (15) and (16). This completes the proof of the

theorem.

Theorem 2. We have

H
i

1 s
an NE{An 1- ) T PiN;= i-1}

i=

“and

] n
‘A = = ¥ 2 - 1 P{N,= 2 and N-N=
GO M= 9= ,Lio - Pl L @p~ J

= i-j-1}]

~for J=1,2,..., 1.
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Procof. First we shall find P{An >0} . If A >0, then

Nr= r-l for some r =1,2,..., n . Denote by 1 the smallest such r .

Then
, n
P{a, >0} = ] PN >r for r=1,...,1-1 and N, =i-1} =
- i=1""
n
(19) = ) P{N.-N_<i-r for r=1,...,i-1 and N,= i-1} =
i=l e 1 r A
1
= ¥ LN, =113,
1=1 1 m 1

wher? the last equality follows from Lemms 20.2 if we apply it to the

|
rand?m variables Vi s Vi yseees Vp - This proves (17) .
We note that in exactly the same way as we proved (17) we can prove the

following more general formula:

(20) E{An =0 and Nn = k} =,.M{Nn= k} -

Hef

P{N.= i-1 and N = k}
. Prttns | n
i=1

IIM:

for k =0,1,2,... . If we add (20) for k = 0,1,2,..., then we get (17).
It Nlj{Nn =k} > 0 and if we divide (20) by P{Nn = k} , then we obtain
P{A_=0|N =k} for k=0,1,2,... . We already found this latter

M~ n

probability for k <n in Theorem 1.

Next we shall prove (18). By Theorem 22.1 it follows that A"l and

P have the same distribution. Accordingly) we can write that

(21) ,E{An = ]J} -‘~’£{5L--Ni < J—I\tj for 0<i<j and i_Ni < J-Nj

for j <1i<n}.
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Hence for Jj =1l,2,..., 1

. _ c e . . - .
,E{An Jj} gio”E{Nj Ni < j-1 for 0<1ic< ale 2}

(22) ‘PIN- Ny £ J-1 for Jgign and Ny = 2}

= gio (1- §JPE{NJ= }} - i=§+1z§f37-P{N' ¢ and Ni—Nj=i—j-l}] .
In proving (22) we took into consideration that the event {An = j} can
occur in several mutually exclusive ways, namely {Nj =2} (2 =0,1,2,...),
and we applied (7) to the random variables Vs Vigseees Vp
This proves (18).

and (20) to the

A\

mm%M\mﬂaM£s %+P'“’ n

|In exactly the same way as we proved (18) we can prove that
J
Pla =3 and N =k} = QEO (1- E)ENIf{NJ 2, and N =k} -
(23) 0
—§+l ZT—Ej'P{N Ni- Nj =1-j-1 and N = k}
for J=1,2,...,n and k =0,1,2,... . If we add (23) for k = 0,1,2,...
then we obtain (18). If we divide (23) by Ng{Nn = k} whenever
P{N_ =k}>0 , then we obtain P{a = JIN, =k} for k =0,1,2,... .
In Theorem 1 we already found this latter probability for k< n ina

somewhat simpler form.

By using the notation (2) we can obtain from (2C0) and (23) that

J
@4 Q,(nlk) = zgo PN, = 2N = k39 (3]2)Qy(n=3 [k-2)

for j =0,1,..., n , where
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I
'_l
i
N~
!—Jc} ’_J
g
=
=
i

(25) Qo(nlk) = i-1}Nn = k}

and

ol -y

for k=0,1,..., n,

(26) Q. (nlx)

0 for k> n,
for n=1,2,... and k = 0,1,2,... =
*
The following theorems are concerned with the distribution of An

" Theorem 3. If k=1,2,..., n ,then we have

(k-1
(n+l-k) PN, = 141N =k} for nk<j<n,
i=ri- i(n-1) ~ o

L3
=/
27 Qj(nlk) ,

1 - Z (“"l“‘)P{N = 14N =k} for j=n.
.
¥
If k=1,2,..., n and j =1,2,..., n-k , then Qj(nlk) = 0 . Further-

more, we have

* _1
(28) Qj(n!n+1) = =
%
“for } =0,1,..., n=1, and Qn(n]n+l) =
" Proof., We can write that
%
(29) Qj(n|k) = PN, < r+l for J subscripts r =1,2,..., nan =k} .

By (29) we can write that

N _
(30) Qj(n|n+l) =P{N,>r for n-j subscripts r = 1,4,...,n|Nn = nt+l}
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and if we apply Lemma 2 to the random variables vy = vyl 1=1,2,..., n),
%

then we obtain that Qj(n|n+l) =1/n for § =0,1,..., n-1 which proves

(28).

Next we shall prove (27) for n-k < j <n ., If Nr- <r+l for J
subscripts r = 1,2,..., n where n—}c <J<n and Nn = k where
1 <k 2 n ,then there exists an r such that N, =1+l . Let 1
(1 =n-J,.e., k-1) be the greatest r with this property. Then

Nr < rtl for Jj+i-n subscripts r = 1,2,...,1 , further N, = i+l and

1
N, < r+l for r = i+l,..., n . By (28) we have
(31)F AE{Nr < rtl for j+i-n subscripts r = 1,2,..., iINi = i+]1} = %
for n-j <i<n and by Lemma 20.2 we obtain
(32) PN, < rtl for r=itl,..., nINi =1+l , N =k} =
=P(N-N, <r-1 for r=1i+l,...,n|N,= i+1, N.= k} = 1 - 5232%
e I 1 1 n n-1

for 0<1z<k-1<n, if we apply Lemma 20.2 to the random variables
Vigpocecs Vg o Thus by the theorem of total probability we obtain that
© k-1

* _ 1, kei-l _ . _
(33) Q;(nlk) = i=£rj T Q- S5RM = 1N = k)

for n-k < j <n and 1 <k <n which proves (27) in this case.

It remains to prove (27) for j =n . We have

"

L *
(34) Qn(nlk_) PN, < (r*i-l for r=1,2,..., r1|Nn =k} =

k-1
1.y BBy - =1
1=1 + n

(1’1—1 ) o~
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for k=1,2,..., n . It is sufficient to prove that the subtrahend on
the right-hand side of {(34) is the probability that Nr > r+l for some

r=1,2,..., n=1 given that Nn = k . This event can occur in the

XL

foliowing mutually exclusive ways: the greatest r for which N > rtl
1s r=1 (1=1,...,k1) . Ten N, =i+l and N, <+l for
r=i+l,..., n , or equivalently Nr—' N, <r=i for r=14l,...,n.

By Lemma 20.2 we get

k=1-1
n-~i

[—

P{Nr— N, <=1 for r=1#,..., nlNi = i+l, N = k)

for 10 21isk-1 <n 1if we apply it to the random variables v
'Ihus;’ (34) follows by the theorem of total probability, and this completes

the proof of the theorem.

Theorem 4. We nave

(35)  Pa: =0} = PO > 13- 5 z————)-PxN =0 ad N, =1

- and

¥ (3+1-2) -
'r - - - -
(36) PlA = §} ZO QE{N L, Nj 41 > ML) - 121 —YE—ET-P{N i+l,
Nj = 4, Nj+1 > +1}]

n .
1 .
- % }  [7m=S—=~ PIN,= %, N, .= 2, N = +r-j} -
920 r=j+2 (r=J-1) e J+l r

WAL ping= 141, No= 2, N

Z 1 G=2)(r-j-1) J ja= % NS f4r-]}]

i+1,-o.,\) n .
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for j =0,1,..., n=1 . Furthermcre

n-1

* - = _ n+l-k . _
(37)  Pla, =n and N=k}=P{N=k}- ] —=—=PN.=1i+l and N =k}

for k=0,l,..., n.

Proof. To prove (35) we can write that

%
(38) .N?{An = 0} =~E{Nr >r for r=1,2,...,n} = P{Nl > 1} -

. _E{Nl>1 and N, <r forsome r =2,...,n}.

|

To find the last probability we take into consideration that there is an

r=2,3,..., n such that Nr =r . Denote by 1 the smllest such r .

Then
P{a* = 0} = PN Z PIN,>r for r=1,...,1-1 and N,= i}
OV ¢! il NN = 1
(39) (s-1)
= PNy >l}—z Zz—-—s— P{N,= s andN i} = P(N.> 1} -
i=2 g=2\1" 1) ~ 1

5 z———T-P{N and N, = i}
i=2 1

where we applied Lemma 20.2 to the random variables Viseses Vo o This
proves (35). We note that in exactly the same way as we proved (35) we

can obtain that

¥ n 1
f A - 3 = } - =
(4o) Pl 0 and Nn k} = P{Nl >1 and N = k} :_;2 Gy }P{N1 9,

PN

Ni=“ i and Nn= k}
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for k =0,1,2,... . Oobviously (#0) is 0 if k<n .

To prove (37) we can write that

R
(41) Mf{An n and N,= k} =MI:‘{Nr <rtl for r=1,...,n and N= k} =

Af{an k} ;f{Nr zrtl for some r=1,...,n and N =k} .

To find the last probability we take into consideration that there is an

r=1,2,..., n=1 such that Nr= r+1 . Denote by 1 the greatest such r .

Then
} * n-1
P{a =n and N=k}=P(N=Kk} - 1-21 PONG= 141, N, < v+
l’l-il
for i<r<n, N=k}=PN-=k} - P{N - N, < r-i
(412) n Pl o| o~ r 1

for r=1+l,..., n and N;= i+l, N = k} =

n-1
PN = kb - Y

oK pry = 141 , N = k}
. n
i=1

n-i .. 1

where we applied Lemma 20.2 to the random variables Vigsrets Vp oo This

proves (37).

%
Finally,we shall prove (36). By Theorem 22.1 it follows that A

¥
and Py have the same dilstribution. Accordingly)we can write that

(43) mg{/_\:f J} ='E{r—Nf ;=j—Nj for O0<r<J and r-N,< ijj for j < r<n}l.

The event on the right-hand side of (43) can occur in several mutually
exclusive ways, nanely, Nj= £ (¢ =0,1,2,...) . Hence for j =0,1,..., n

we have
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£ 9
P{a_ = j} = é P{Nj— Nr

< j=r for 0<r<J and N,= ¢} -
~m- 2=0"

== _ _ J
(k1)
"PINj- N, < j-r for J <r < nINj= L} .

In the sum the first factor can be obtained by (37) if we apply it to

the random variables v v and the second factor can be

j, j_l,aoa’ \)1

obtained by (35) if we apply it to the random variables vj+l"“" n

Thus we obtain that

] - N ] - r i & J.= 2} = P{N.= —
«?{Nj N,gJ-r for O0<r<J and Nj L} /E{kj 2}

j-1
J+l-2 - 4 -
(45) Zl S RN = i1 and Ny= )

for 2= 0,1,..., J and j = 0,1,..., n and

PN-N, < J-r for j<r< nINJ= 2} =N€{Nj+l > 2,+1|NJ.= L} -
(46)
- Z -(I'_J_-:]—.)_ P{N L+l NI’= 2+I’—JINJ.= 2}

r=j+2
for J =0,1,..., n=1 . If we multiply (45) and (46) and add for

2 =0,1,..., J , then we get (36) for j =0C,1,..., n-1 .

%
In exactly the same way as we found P{An = j} we can find
UK
P{a = jINf= k} for k =0,1,2,... and we observe that it can be expressed
P I

as follows:

% % *,
(47) Q (nlk) = zio PN,= 2N = k3, (J10)Qy (0= |k=2)

for j=0,1,..., n and k = 0,1,2,... where
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n
(58)  aml) = By > 1m0 = ] gl U= 0, = 1l 0

for k

0,1,2,... and

n=1
i=1 T

49) @ (k) = 1- 1411 = K}

. *
for k =0,1,2,..., n and Qn(nlk) =0 if k>n .

Note. Finally, we shall be concerned with the problem menticned at the
end of Section 24 in the particular case when &, = 1- v; for 1=12,...,n
and vl’ Vosesns Vn are interchangeable discrete random variables taking
on n#nnegative integers only. Let Nr= v1+.-,+ Vr for r=1,2,..., n and

NO= & . Denote by Aéc) the number of elements greater than ¢ 1in the

sequence r-N, (r=1,2,0.., n) .

S LI Y

Our next aim is to find the distribution of Ar(10) for ¢ =0, +1, +2

that is, the probabilities

(50) NE{AQC) = j} =N§{Nf <r-c for exactly j subscripts r =1,2,...,n}

for j =0,1,2,..., n . Previously we considered only the paticular cases

. 0
c=0 and ¢ = -1, In the notation of Section 26 we have Aé ) - An and
A(-1) _ a* |
n n'

Theorem 5, If ¢ =0,l,..., n, then

\ n + ) .
6D P =0y =i I, T A0 = el

and if ¢ =0,1,..., n-1 and J =1,2,..., n-c , then
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J
(c) s
Pla T =3 = ) (- ——)[ Z PN, = 2, N;- Ny = i-j-c} -
2=0 i=j+c § _T J J
(52) n
g - ) °+1) PN, = 2, N.- N, = i-j-c-1}].
i=j+etl J o

"If ¢=0 'and 1 =J , then c¢/(i-j) should be interpreted as 1 in (52).

" Proof. If ¢ =0, then Theorem 5 reduces to Thecrem 2. First we

shall prove (51). We have

]

‘Pngc) =0} = P(N, 2 rc for r=1,2,...,n} =

(53)
|

l—P{Nr < r-c for some r=1,2,..., n} .

If the event {Nr <r-c for some r =1,2,..., nl occurs, then there is
an r=1,2,..., n such that Nr = r-c-1 , Denote by 1 the smallest

such r . Thus we obtain that

n
P{A(c) =0} =1- ) PIN.-N <i-r for r=1,..., i-1 and N,= i-c-1} =
r~~ N PRt & r L
i=c+l
(54) n
=1~ ] SRR = i1},
i=c+l ~

where in proving the second equalify we used Lemma 20.2 applied to the

random variables Vis Vi _qseees Vq o

Next we shall prove (52) for c¢ = 1,2,...,n~-1 and J = 1,2,..., n-c .
If Ar(lc) = J , then there is an r = 1,2,..., n such that N, = r-c .

Denote by s the smallest r with this property. Then Nr > r-¢ for



l<r<s , N,  =s-c , and Nw <r-c for j subscripts r =s+l,..., n.

S
Here the last condition may be replaced by.the following one: Nr— Ns < -3
for j subscripts r = s+l,..., n . If, in addition, we replace the

last condition by the following one: the first maximum in the sequence

(r—Nr) - (S—Ns) (r = 58,000, 1) occurs at r = s+j , then this does not

(e)

n
of Theorem 22.2 . Now let us define p(k) (k = 0,1,..., n) as the

change the probability of the event {A = j} . This is a consequence

smallest r = 0,1,..., n (if any) for which r-N, = k . According to

the shove reasoning we can write that
|

(e) _

n

n-j 3
(55)1 P{a it =7 %g{p(c) = s,p(cte)~p(c) = J,p(ctat+l)-p(cte) > n-s-J}
e s=¢ £=1

where we used that Ns+j— Ns =J=-4 with 1<% < j . The condition

{p(cti+l)=p(c+L) > n-c=j} should be interpreted as the complementary
event of {p(cti+l)—p(ctr) < n-c-j} . If we replace the random variables

by 15 Vyseses Vo respectively,

Viseees Vgs Vgygaeees Vg Vogppoeees vS+J

then (55) remains unchanged and we can write that

%g{p(z) = J,p(2+c)=p (L) = s,p(24ctl)=p(24c) >n=-s5-j} =

n-Jj
p(al®) = y
- s=¢ %=1

n

(56) '
%Ig{p(z) = J,0(24c)-p(2) <n-J,p (24ctl)-p (2)> n=j} =
L=

it

"

% [Plp(2) = j,p(2+c)-p(2) <n~J} = P{p(R) = Jp(tctl)—p (k)< n=j}1 .
=17 ~

Now by Lemma 3 1t follows that
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= j = = &-9- \ = Jem - N. = =
(57)  Plp(x) = j,p(t+c)-p(2) = v} 77, PNy = J=, Ny - Ny = rec)
for 12 <8+c<j+tr<n. Ifweadd (57) for r=1,..., n-j ,
then we obtain the first sum on the right-hand side of (56). The second
sum on the right~hand side of (56) can be obtained from the first sum by
replacing ¢ by ctl . Thus we get (52). This completes the proof of

the theorem.
Finally, we shall prove the following theorem.

|Theorem 6. If ¢ =1,2,...and & = 1,2,..., ntc , then we have
| theorem o. 1L and

P{A("C)=j and N_=ntc-2}= an I % {&-1) P{N_ .=n-j-s, N N =r—g4l
~ N n L= " T e D= > Tn=jtr n-j -2
s=1 r=2~1
(58) g
L . . — 3
Nn=n+c-£}— ;E{Nn_j N=j=S, Nn-j e Nn_j—r—sz, ’ Nn—n+c-£ }]

r=4

for j=0,1,..., n-1 and

(59) p(al=®)

e~13

=n and N _=ntc-g}= P{N =rtc-2} - —i—}:{Nfi—l and N_=n+c-1}.

i=g

Furthermore, for ¢ = 1,2,..., and j = 0,1,2,..., n-1 we have

~-3-1
(-c)_.g - - n ’ r P * 1 ) ¥ 3 A
(60) P{a, " ’=j and N =ntc} = } LW s 1721Q 5 1 (n-3-1[0)Q (341 |nve~2)

2=0

where the probabilities on the right-hand side are given by (48) and (49).
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Proof. If ¢ =0,1,2,... and & = 0,1,..., ntc , then we have

T (—C)--' - =P s e k1 o ) - 3 =
E{An =j and N_=ntc IL}—Nt{Nr<r+c for j subscripts r = 1,2,..,n and Nn=n+c—£}-

4
(61) , L
' = P{Nn- Nr >n-r-% for J subscripts r = 1,2,...,n and Nn = nte-L}=
= P{Ni <i-2+1 for n-j subseripts i =0,1,..., n-1 and N = ntc-2}.

Accordingly )

(2-1)

(62) P{A(—C) = j and Nn = nte-L} :»E{An

Play =n-j and N, = n+e-1.}

for ‘.c >1 and & > 1 and the right-hand side is given by a slight

modification of Theorem 5,

Furthermore, we have

(-1)
n

(63) NI:{Ar(l—c) = j and Nn = ntc} =£{A = n~-j=-1 and Nn = nt+c}

(=1) _ \*

for ¢>1 . Here An = An and the right-hand side can be obtained

by Theorem 4 or by (47).

Throughout this section we assumed that Vis Voseees Vn. are inter-
changeable random variables taking on nonnegative integers only. If, in
particular, we assume that Vis Voseaey v, are mutually independent and
identically distributed random variables taking on nonnegative integers
only, then all the resuits obtained in this section can be simplified

sanewhat.



IIT-4 78

27. Problems

27.1. let El’ 52,. ces En" .+ be mutually independent and identically
distributed random variables having a continuous and symmetric distribution.
Define o = 0 and L, = §1+...+ gr for r=1,2,... . Denote by An the
number of positive elements in the sequence 2 g2,..., T, Find Ng{An = 3J}

for j =0,1,..., n. (See E. S. Andersen [ 2 ] and D. A. Darling [ 19 1.)

27.2. In Problem 21.4 denote by An the number of positive elements

in the sequence Tys Tooeres Ty o Find MP,{An =j} for j=0,1,..., n.

27.4, We distribute n points at random on the interval (0, 1) in
such a way that independently of the others each point has a uniform distribution

over (0, 1) . Denote by v, (r =1,2,..., n) the number of points in the

r-l r
interval (—-r—l—- s H] , and let Nr = \)1+...+ VL, for r=1,2,..., n . Denote
* i .
by An the number of subscripts r = 1,2,..., n for which Nr <r . Find

%
NE{An=j} for 1<j<n.

27. 5. 1In Theorem 26.5 determine P{A(C) =3j} for ¢c=0,1,..., n-1
~-n

and j =1,2,..., n-¢ by using Theorem 22.2.

£

27.3. Let §l,§2,...,§n,... be mutually independent and identically dis-

tributed random variables fer which le{gn =1} = p and Ng{gn = « 1} = q where
p>0, gq>0 and p +q = 1. Let €n=§1+§2+,,, + & for n = 1,2,,..,
and €0= 0. Denote by An (n = 0,1,2,...) the number of positive elements

among QO,Cl:-u,Qn- Find A.\I:{An =k} for 0 <k <n,
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