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CHAPIER II 

MAXI.MAL PAHTIAL SUMS 

14. · The Di.stribution of the M:i_ximal Partial Surn. Throughout this 

chapter we shall assume that ç;1 , ç;2, ... , ç;n,··· is a sequence of 

mutually independent and identically distributed real random variahles. 

Let us denote by F(x) 

(1) 

the distribution function of ç; : that is, 
n 

F(x) = P{ç; ~ x} 
'"' n -

for - 00 < x < .., • For such random variables the expectation 

(2) 
-sç; 

cjl(s) = E{e n} 
"""' 

exists for Re(s) = 0 • The function ~(s) is the La.place-Stieltjes 

transform of F(x) , tha.t is., 

Q) 

(3) $(s) = J e-sxdF(x) 

for Re(s) = 0 • 

Define r;n = ç;1+ ç;2+ •.• + ç;n for n = 1,2, ••• and ç0 == 0 • We 

shall say that r;n (n = 0,1,2, •.•• ) is the n-th partial su.111 of the 

random variables ç;1 , ç; 2,. "', ç;n'... • Let us w-rite 

(4) F (x) = P{r < x} n · ,_,_ "'n = 

for n = 0>1>2,... • The distribution function Fn(,'{) is the n-th 

iterated convolution of F(x) with itself. Obviously 

(5) 
1 if x ~ 0 ' 

F (x) ,;:; { 
0 0 if x < 0 • 
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The distribution functions Fn(x) (n = 1,2, ••• ) can be obta:ined by the 

following recurrence fonnula 

00 

(6) Fn(x) - f Fn_1Cx-y)dF(y) 
-00 

for n = 1,2, •••• 

The expectation 

(7) 
-sç 00 

~n(s) = E{e n} = f e-sxdFn(x) 
·-"" 

exists for Re(s) = O and n = 1,2, •.•.• Obviously, we have 
1 

1 

(8) 1 

for n = 0,1,2, •••• 

Let us write also 

(9) 

for n = 0,1,2, ••• and let 

+ 

(10) 
-sç 00 

~~(s) = E{e n} = F (O)+ f e-sxdF (x) 
!"'- n +O n 

which exi~ts if Re(s) ~ 0 and n = 0,1,2, •••• The function ~+(s) 
n 

is regular in the domain Re(s) > 0 and continuous for Re(s) > 0 • 

T.n what fellows we shall be interested in studying the distribution 

of the random var4n.'1le 

(11) 

for n ::::o O.sl,2,... • Let us define 
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(12) 
* -sn 

cl> r s) = E{e n} n' 

for n = 0,1,2, ..•• The expectation (12) exists if Re(s) ~ 0. If we 

* know <Pn(s) for Re(s) ~ 0 > then !{nn < x} can be obtalned by inversion. 

* If x is a continuity point of ~{nn ~ x} , then we have 

(13) 

where c > 0 • 

right-hand side 
1 

1 

* l C+iT sx 
P{n < x} = lim -. f ~ <P (s)ds 

,..,..,_ n = T -+ 00 21n C-iT s n 

If x is a discontinuity point of 

1 * of (13) is equal to 2 [P{nn ~ x} 
f"v 

* P{ n < x} , 
AA. n = 

* + P{ n < x}] • 
JVv- n 

/ Our next aim is to find <P n ( s) for n = 0,1,2, •••• 

then the 
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15. A Theorem of Pollaczek and Spitzer. In 1952 F. Pollaczek [4'j] 

and in 1956 B'. Spitzer [~] proved the follow:tng result. 

(1) 

(2) 

Theorern 1. If Re ( s) > 0 and 1 p 1 < 1 , then 

co 

l ~ (s)pn = exp{ 
n=O n 

Proof. For n = 1,2, ••• we can write that 

wher~ nt=o and n~-l = max(O,ç;2,ç;2+ç; 3, .•. ,ç;2+ ••• +ç;n) for n = 2,3, •••• 
1 

The r' andorn variable n* 1 has the same distribution as n* 1 and is n- n-
independent of ç;1 • Since 4>(s) e:j\0 , we can apply the results of 

Section 7 or Section 4. By (2) we can W!'ite that 

(3) ~ (s) = T{4>(s)<I> 1(s)} 
n """' n-

for R(s) ~ 0 and n = 1,2,... where <I>0 (s) = 1 • Evidently 11cp11 = 1 • 

Thus Theorern 1 follows frorn Theorern 7.1 or from Theorern 4.2 • 

We can express <I> ( s) n (n = 1,2, ••• ) explicitly with the aid of 

+ + + $l(s), 4>2(s), ••• , 4>n(s) if we introduce the following polynomials. For 

n = 1,2, .•• let 
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where k1 , k 2 , ••• , kn are nonnegati ve j_ntegers. Wri te % = 1 • 

fueorem 2. We have 

(5) 

for Re(s) > O and_ n = 1,2,... and <P0(s) = % = 1 . 

Proef. fuis fellows from fueorem 4.3 or from fueorem 7.2 • 

we· can express the generating function (1) in a compact form too. 

fueorern 3. If Re(s) ~. 0 and IP 1 < 1, then we have 

(6) ~ ~. ( ) n _ -T{log[l-p<P(s)]} 
l 'Il s p - e/W' . • 

n=O n 

Proof. If we take into considerat:Lon that cp (s) e R and li q, Il :::: 1 , 
,.,,,..,.._ 

then (6) follows frorn fueorern 4.1 • Also (6) fellows from (1) if refer 

to Lerrma 3.2 or, in particular, to fonnula (3.17). 

1rhe generating function ( 1) can also be obtained by usin.g the method 

of factorization developed in Section 6. 

Theorem 4. If 1p1 < 1 and 

(7) + -1 - pcp(s) = ~ (s,~)~ (s,p) 

for Re(s) = 0 where ~+(s,p) satisfies the reguirernents A
1

, A2, A
3 

of Section 6 and Q.>-(s,p) sati.sfies the requirements B
1

, B2, B
3 

of 

Section 6, then 
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(8) I '*' Cs)iP == ---
1
---n + -n=O '*' (s,p)t (O,p) 

f or Re ( s) > O and 1 P 1 < 1 • 

Proof. The theorem is a particula.r case of Theorem 6.2 . 

By (8) we can write that 

(9) (1-p) 
(lO -~ 

~ t (s)pn = • (O,p) 
l n + 

n=O • (s,p) 

for Re(s) > 0 and IPI < 1 . Furthermore, we can also write that 

(10) 
(lO -

[1-p~(s)] I t (s)pn = t (s,p) 
n -n=O t (0,p) 

for Re ( s) = 0 and 1 p 1 < 1 • Forrnula ( 10) determines the generating 

function (1) for Re(s) = O and jpj <l • Since the generating function 

(1) is a regula.r function of s in the domain Re(s) > 0 and continucus 

for Re(s) ~ 0, we can extend the definition of (1) for Re(s)-~ 0 by 

analytic con:tinuation. 

Note. By using Theorem 1 we can find also the distribution of the 

random variable nn = -min(ç0 , ç1 , ... , çn) for every n = 0,1,2, ...• 

We can write that 

for n = 0,1,2, •••• 
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Theorem 5. We have 

(12) 
oo -sn 1 oo k + 
l E{e nh'.P = ( exp{ - l .e_ et> (-s)} 

n=O M-' 1-p) [l-pcp (-s) J k=l k k 

for Re(s) = 0 and IPI <l • 

Proof. If we apply Theorem 1 to the ranàom variables -~1 , -~2 , ••• , 

-~n, ... , then we get 

(13) 
oo -sn oo 

l E{e n}pn = exp{ l 
n=O/Vv k=l 

+ k -s[-ç ] 
.e_ E{e k }} 
k ~ 

for Re(s) > 0 and IPI < 1. If we take into consideration that 

(14) -s[-x]+ _ sx s[x]+~ 
1 e - e - e . 

f or any s and real x , then we can write that 

(15) 

+ 
-s[-çk] ·. k 

E{e } = [cp(-s)] - cp~(-s) + 1 
/VV"" 

for Re(s) = 0 and hence we obtain (12) by (13). 

The left-hand side of (12) is a regular function of s in the 

doma.in Re(s) > 0 and continuous for Re(s) > 0 • T'nus the right-hand 

side of (12) uniquely determines (12) for Re(s) > O by analytical 

continu.at ion. 

A more general problem is to find the dist,....i.bution of nnk , 

(n = 0,1,2, .•• ; k = 0,1,2, ••• ) , the k-th ordered partial sum of 

~l' ~2 , ••• , ~n if we arrange the partial surns r; 0 , r;1 , ••• , z:;n in 



inc1oeasing order of magnitude. * Tnen n = n = max(ç
0

, ç
1

, ••. , ç ) n nn . n 

and nn = -nno = -min(ço, ~l, ••• , çn) • This problem will be studied 

i...""l Chapter IV. 
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16. A Generalization of the Previous Results. In 1948 A. Wald [68] 

* observed that the problem of finding P{n ~ x} for n = 0,1,2,... can /\\ .. n -

be reduced to a problem i.n the theory of Markov sequences. A. Wald 

observed that if we define a sequence of random variables n0, n1, ••• , ~1, ••• 

by the recurrence f orrnula 

(1) 

for n = 1,2, ••• where + [x] = max(O, x) and we suppose that 110 = O , 

* then nn has the sa.me d.istribution as n
11 

• 

If n0 is a nonnegative random variable and n0 and the sequence 

{ ç;n} are independent, then the random varia.bles n0, n1, ••• , nn • • • form .. 

a homogeneous ~iarkov sequence. 

* Now let us prove that nn and nn have the sa.me distribution if 

T1o = 0 • By (1) it follows that 

for .n = 1,2,, •••• If in (2) we replace ç;n' ç;n_1, ••• , ç;1 by 

ç;1, ç;2, ••• , ç;n respectively, then we obtain a new random variable which 

has exactly the sa.me distribution as nn • In the particular case when 

* n0 = O , this new random variable is precisely nn • This proves the 

statement. 

Wald's observation makes it possible to solve amore general problem, 

* namely, the problE.,,, Jf finding the joint distribution of n and t; • n n 
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By (2) we obta.:in that 

(3) 

provided that + n
0 

= [x-y] • 

In what f ollows we shall discuss the problem of finding the 

distribution of nn if n0 is a nonnegative random variable and if rr0 

and the sequence {~n} are independent. This problem was solved in 1952 

by F.Pnllaczek [47], [48 J • Pollaczek made certain restrictions on the 

distribution of ~n and he obtained the generating function of the 
1 

1 

I.aplace-Stieltjes transform of n in the case where n
0 

is a constant 
1 n 

by s~lving a singular integrai equation. 

(4) 

Let us introduce the notation 

-sn 
n (s) = E{e n} 

n rv-... 

for Re(s) > 0 and n = 0,1,2, .... The Iaplace-Stieltjes transform 

r.
0

(s) :i.s given by the distribution of n0 , and for n = 1,2, ... the 

Iaplace-Stieltjes transform nn(s) can be obtained by the recurrence 

formula 

(5) r. (s) = T{•(s)n 1Cs)} n ,..,,_ n-

for Re(s) > O and n = 1,2,... . Here <P (s) e: !o and r.0 (s) e: 2o and 

we can apply the results of Section 7. 

Theorem 1. n0r Re(s) ~ 0 and n = 0,1,2,... we have 
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(6) n * n (s) = l 9 k(s)T{n0 (s)Qk(s)} n n-- ;vv.. k=O 

* where 9k(s) (k = 0,1,2, •.• ) is given by (14.52, %Cs} = 1 , and 

(7) 

for k = 1,2, ••• ,n where the polynornial Qk(x1, x2, ... , xk) for 

k = 1,2, ••• is defined by (15.4) • 

Proof. This theorern follows frorn ~1heorem 7 .1 or frorn The0rern 4. 2 • 

We can express the generating function of Q (s) in a compact form 
n 

given by the following theorern. 

Theorern 2. If Re(s) > 0 a."1d 1p1 < 1 , then 

(8) Ï Q (s)pn = e-,!{log[l-p~(s)]}T{QO(s)e-log[l-p~(s)J+!!log[l-p~(s)]}}. 
0 n ""' n= 

Proof. If we take into consideration that ~ ( s) E: R , Il ~ 11 = 1 
Al'-

and n
0

(s) E ~, then (8) follows frorn Theorern 4.1 • Also, if we multiply 

(6) by pn and add for n = 0,1,2, .•• and we make use of Lemma 3.2 or, 

in particular, forrnulas (3.14) and (3.17), then we obtain (8). 

The generating function ( 8) can :.J_so be obtained by using the rnethod 

of factorization developed in Section 6. 

(9) + -
1-p~(s) = 9 (s,p)9 (s,p) 
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+ for Re(s) == 0 where 1> (s,p) satisf'ies the requirements Al' A2, A
3 

of Section 6 anà Q-(s,p) satisfies the reguirements Bl' B2, B
3 

of 

Section 6, then 

(10) 

f or Re ( s ) > O and 1 P 1 < 1 • 

Proof. The theorem is a particular case of Theorem 6.2 • 

By (10) we can write that 

(11) 

f or Re ( s) = 0 and 1 p 1 < 1 • Formula ( 11) deterniines the generating 

function (8) for Re(s) = ü and Since n (s) is regular in 
n 

the domain Re (s) > 0 and continuous for Re ( s) ~ 0 , we can extend the 

definition of (8) for Re(s) ~. 0 by ana.lytic continuation. 
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17. Joj_nt Distributions. Our next alm is to give a rrethod of 

fi.ncling the joint dis tri bution of nn and z;n for n = 0, 1, 2, • • • • 

Iet us introduce the expectation 

(1) 

for n = 0,1,2, ... , Re(s) ~ 0, and Re(v) = O. If, in particular, 

!_{n0 = _O} = 1 , then (1) can also be expressed in the following form 

* -sn -vz; 
t (s v) = E{e n n} 
n ' ,.,.__ 

(2) 

for n ~ 0,1,2, ..• , Re(s) > 0, and Re(v) = O . 

Theorem 1. We have 

"" r3) \ n ( ) n = -T{log[l-p~(s+v)]}T{n ( ) -log[l-p~(s+v)]+T{log[l-p~(s+v)]} 1 , l "'n s, v p e ,.... .~0 s e IV'-. J 

n=O ~ 

f or Re ( s) > 0 , Re ( v) = 0 and 1 p 1 < 1 • 

If, in particular, !_{ n0 = 0} = 1 , that is, n0 ( s) - 1 , then ( 3) 

reduces to 

(4) ~ ~ ( ) n _ -T{log[l-p~(s+v)]} 
l 'i' s,v p - e ,......._ 

n=O n 

f or Re ( s) ~- O , Re ( v) = 0 and 1 p 1 < 1 • 

Here T operates on the variable s , and v and p are parameters. 
NV' 



Proof. Since 7" - 7" ' r: 
"'n - "'n-1' "'n 

+ and n = [n 1+ ~ ] n n- n 

for n = 1,2, ... , it follows that 

(5) n (s, v) = T{~(s+v)~ 
1

(s,v)l n ~ n-

f or n = 1, 2, • • • , Re ( s) > 0 and Re ( v) = 0 • Here n
0 

( s, v) = n
0 

( s ) . 

Since for Re ( v) = O we have <P ( s+v) t:: ,~ and n0 ( s) t:: ! and I! cp ( s+v) Il = 1 , 

we can apply T'neorem 4.1 to obtain (3) and the particular case (4). 

Formula (4) was found in 1956 by F. Spitzer [_54.] in a sornewhat 

different form. 

The generating functions (3) and (4) can also be obtained by using the 

rrethod of factorization developed in Section 6. 

'rheorem 2 • Let 1 p 1 < 1 and Re ( v) = 0 • Let us SUJ2E.OSe tha t 

(6) 

for Re(s) = 0 ~here ~+(s,v,p) as a function of s satisfies the 

requirements A1, A2, A3 of Section 6 and ~-(s,v,p) as a function of s 

satisfies the requirernents B1, B2, B
3 

of Section 6 . Then we have 

(7) 

and 

CX> 

( 8) n l I et> (s,v)p = -+--------n -n=O ~ ( s, v, p ) ~ ( O, v, p ) 

for Re(s) ::. 0 , R.e(v) = 0 and IP 1 < 1 • 



Proof. This theorem is a particular case of Theorem 6. 2 • 

By (8) we can write that 

(9) [l-prp(v)J Ï qi ( )pn == ~+co,v,p) 
n

=O n s,v +, ) 
~ 1.s,v,p 

for Re(s) > 0, Re(v) = 0 and !PI < 1. Furthermore, we can also write 

that 

(10) [l-prp(s+v)]. ~ ~ (s v)pn = ~-(s,v,p) 
l n ' -n=O ~ (O,v,p) 

for Re(s) = 0, Re(v) = 0 and !PI < 1. This formula determines the 

generating function (8) for Re(s) = 0 • Since the generating function 

( 8) is a regular functj.on of s in the dorna.in Re ( s) > 0 and contjnuous 

for Re(s) .~ 0 whenever Re(v) = 0 and IPI < 1, we can extend the 

definition of (8) for Re(s) > 0 by analytic continuation. 
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Note. By using Theorem 1 we can find also the joint distribution of 

the random variables z:;n and n~ = -rnin(i;0, z:;1 , ••• , z:;n) = max(-z:;0 , -z:;l-' ••• , -z:;n) 

for every n = 0)1,2, •••• 

Theorem 3. We have 

co pk + 
exp{- l · ie" cf>k(v~- s)} 

co -sn -vz:; n k=l 
(11) l E{e n n}p = ---------

n=O N"' [l-pcf>(v) ][l-pcf> (v-s)] 

for Re(s) = O, Re(v) = 0 and IP! < 1 where 

(12) + k cf>k(v,s) = 1~{[cf>(s+v)] } 

variable s . 

Proof. If we apply (4) to the ranè.orn varia.bles -~1 , -~2 , .•. , -~n 

and if we replace v by -v , then we obtain that 

for Re (s) > 0 , Re ( v) = 0 and I p 1 < 1 • Accordingly we can- wr5.te 

that 

co -sn -vz:; 
(14)· l E{e n n}pn = exp{ 

n=O"""' 

co 
+ 

k -s[-z:; ] -vr; 
~ E{e k k}} 
k ""' l 

k=l 

for Re(s) > 0 , Re(v) = O and IP! < l • If we take into consideration that 

(15) 

for ia.nv s and real x , then we can write that 
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+ -s[-r; ] -vr, 
(16) E{e k k} = [~(v-s)]k- $~(v,- s) + [$(v)]k 

for Re(s) == 0 and Re(v) = O • If we put (16) into (14), then we 

obtain ( 11) :which was to be proved •. 

'Ihe left-hand sid.e of ( 11) is a regula.r function of s in the domai.n 

Re(s) > 0 and continuous for Re(s) > 0 whenever Re(v) = 0 and !PI < 1 • 

'Ihus the right-hand side of (11) uniquely determines (11) for Re(s) > 0 

by analytical continuation. 

we note that (11) can also be e:l\.-pressed in the following Nay 

m -sn -vr; e~(v,-s,p) 
l E{e n n}pn = ----------

n=O"""' [l-p</>(v)][l-p$(v-s)] 

for Re(s) = 0 > Re(v) = 0 and IPI < 1 where 

(18) $(v,s,p) = T{log[l-p~(s+v)]} • 

Discrete Random Variables. If, in particular, the random variables 

ç;1, ç;2, ••• , ç;n,··· are mutually independent and identically distributed 

discrete random variables taking on integers only, then each result which 

we proved in this chapter has a discrete counterpart. In the case of 

discrete random variables it i.s convenient to introduce generating f'uncti.ons 

instead of La.place-Stieltjes transforms and to replace the transformation 

T by II • By using the theorems of Sections 8-12 we can easily obtain 
,v-.,_ ,.,,._ 

all the theorems analogous to that of Sections 15-17. A .few examples for 

discrete random variables will be considered in the next section. 
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18. Exarnples. In what follows we shall give three examples for 

finding nn(s) and <I>n(s) (n = 0,1,2, •.• ) in the case where .;1 , i; 2,.",sn,." 

is a sequence of rnutually independent and identically distributed random 

varia.bles for which 

(1) 
-si; 

E{e n} = <l>(s) 
""""' 

First Example. Suppose that 

(2) 1.. 
<t>(s) = ijJ(s) >-. _ s 

for \Re(s) = 0 where ijJ(s) is the laplace-Stieltjes tra.'1Sform of a non-· 
1 

i 
negaÎive random variable and À is a positive constant. 

/ 
By Rouche's theorem we can show that 

(3) À - s - ÀP 1/J Cs ) = o 

bas exactly one root s = y(~) in the dormi.!1 Re(s) > O if 1P1 < l • 

For (3) cannot have a root in the doma.in 1 s-À 1 > À This follows 

from the inequality IÀP1/J (s)I < Àp < À if Re(s) > 0 • If IÀ -s 1 = À, 

then IÀpijJ(s) 1 <IÀ -s 1 and by Rouché's theorem we can conclude that (3) 

rias the same nurnber of roots in the domain Is-À 1 < À as s-À = 0 , that 

is exactly one root. We can apply Rouché'1 s theorem because ~(s) is 

regular in the domain Re ( s) > 0 and continuous in Re ( s) > 0 • 

Accordingly we can write that 

( 4) + -1-pi~ s) = 4> ( s' p) <I> ( s' p) 

for Re(s) = 0 and IP 1 < 1 where 
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(5) 

for Re(s) ~ O and 

(6) ~-(s,p) - y(p)-s 
- À-S 

for Re(s) < O . The functions (5) and (6) satisfy the requirements 

A1, A2, A
3 

and B1, B2, B
3 

respectively in Section 6. By 'l"heorern 16.3 

we obtain that 

(7) 
"" ( )_ (;\-s)110 (s) 
\ ~ (s) n y p, s T { __ . } = 
l "'n P = 1..-s-).pijl(s),.,.... -(fo )-s 

n=O 

(;\-s)n
0

(s) s[J.-y(p)]~l0 (y(p)) 
= -À--S--À-P-ijJ~(s ..... ) - y(p)[À-S-ÀPijJ(s)] 

for Re(s) ~ O and lol <l. For obviously 1/1>-(s,p) s R if !PI < 1 

(see Theorem 6.1) and by formu.la (5.8) we obtain that 

_s_ f (À-z)no(z) dz 
2ni + z(s-z)[y(p)-z] 

ce: 

(8) 
(À-s)n

0
(s) 

,! { y(p )-s } = 

for Re(s) > 0 whenever e: is a sufficiently small positive number. The 

integral on the right-hand side of ( 8) is equal to · -2ni ti.>nes the suril 

of the residues of the integrand at the poles z = s and z = y(p) • 

Thus we obtain (7). 

Second Example. Suppose that 

( 9) <I> Cs 1 = ijl (s 2a C-s 2 

for Re(s) = O where ijl(s) and a(s) are Iaplace-3tieltjes transforms 
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of nonnegative ra.Yidom vari.ables and a (s) is a rational function of s • 

Then we can write that 

(10) 
1Trn-l(s) 

a(s) = 
m 
II (a.+s) 

i=l l 

for Re(s) ~ O where m is a positive integer, 1Trn-l (s) is a polynomial 

of degre ~ m-1 and Re(ai) > 0 for i = 1,2, ••• ,m. The last statement 

f ollows- from the fact that necessarily 1 a ( s) 1 ~ 1 if Re ( s) > O • 

If !PI < 1, then the equation 

m 
(11) II (a.-s) - p1T 1 (-s)~(s) = O 

i=l l rn-

has exactly m roots s = r1 (p), r 2 (p), •.• , ym(p) in the domain He(s) 2'... 0 • 

Th.is can be proved by using Rouchè 1 s theorem. We shall show that 

(12) 

if either Re(s) = 0 or !si > R , Re(s) ~ O and R is large enough. 

If Re(s) = 0, then jp~(s)a(-s)I < p < 1 which implies (12) for Re(s) = O. 

If Re(s) ~ 0 and if we divide (12) by lslm and let lsl + ~ , then the 

left-hand side tends to 0 , while the right-hand sj_de tends to l • Thus 

the inequality (12) holds if Re(s) ~O, !si ~R and R is large enou.g.~. 

Accordingly, (12) cannot have a root in the region {s:Re(s) 2'... 0 , Is 1 -~ R} 

if R large is enough. Since ~ ( s ) j_s regi llar in the domain Re ( s ) > 0 

and continuous for Re(s) ~ 0 , we can conclude by Rouch~'s theorem that 

(11) has the sarne mmiber of roots in the domain {s:Re(s) > 0, lsl < R} as 
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m 
Il 

i=l 
(a.- s) = 0 . 

l 
If R is large enough, then the latter equation has 

exactly rn roots in this domain. This proves the statement. 

Accordingly, we can write that 

(13) 

for Re(s) = 0 and 1 where 
m 

(14) 

II (a.-s)-pw 1(-s)$(s) 
l m-i = l + 

~ (s ,P) = ---------m 
i~l (yi(p)- s) 

for Re(s) > 0 and 

(15) 
m y (p)-s 

- i ~ (s,p) = II (---::--) 
i=l ai s 

for Re(s) < O • These functions satisfy the requirements A
1

, A.
2

, A
3 

and B1, B2, B3 respect.ively in Section 6. 

By formula (15.10) we can write that 

(16) [l - p$(s)a(-s)] ~ ~ (s)pn = ~-(s,p) = 
n=O n ~-(O,p) 

m s s -1 
i~l {(l- yi(p))(l- ai) } 

for Re(s) = 0 and IPI < 1 • If we express (16) in the form 

(17) 
m 00 m 

[II (a.-s)-p$(s)n 1(-s)] I ~ (s)pn = IT {a.(1- ~ ))} , 
i=l 1 m- n=O n i=l 1 Y i P J 

then ( 17) becomes valid for Re ( s) > 0 avid 1 p 1 < 1 which follows 

imnediately by analytic continuation. 



II-22 

Third Example. Let us consider the ~revious example with the 

modif'ication that 

(18) <j>(s) = a(s)1f;(-s) 

for Re(s) = 0, that is, the sequence of random variables t;1, ~2 , ••• , t;n,··· 

in the previous example is replaced by the sequence -t;l' -t;2,"., -t;n'... • 

By using the results of the previous example we can write that 

for Re(s) = 0 and IP 1 < 1 where now 

(20) + ~ (s ,P) 
m y. (p )+s 

= Il ( l ) 

i=l ai+s 

for Re(s) ~ O and 

(21) 

m 
rr (a.+s)-pTI 1 (s)~(-s) i=l l m-

~-( s ,p) = ---------m 
Il 

i=l 
(y. (p )+s) 

l 

for Re(s) .::_ 0 • These functions satisfy the requirements A1, A2, t...
3 

and B1, B2, B3 respectively of Section 6. 

By fornru.la (15.9) we can write that 

(22) 
co + m _ 

(l-p) l ~ (s)pn = ~ (O,p) = Il {(l+ s )(l+ ~) l} 
n=O n ~+(s,p) i=l yi(p) ai 

for Re(s) > 0 and IPI < 1 • 
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Next we shall give two examples for finding the generating function 

of the maxim.al partial sum of discrete random variables. 

Fourth Example. Let us assume that ç; 1 , ç; 2,.", ç;n'". are mutually 

independent and identically distributed random variables tak:Ing on integers 

only. Write çn = ç;1+ ••• + ;n for n = 1,2, ••• and ç0 = 0 • Our aim is 
' 

to find the generating function of nn ~ rna.x(ç0, ç1 , ... , çn) • Let us 

write 

(23) 

for n:: 0,1,2, .•• , and !si < l • 

In what fellows we suppose that 

(24) 

for !si = l where a(s) a.~d b(s) are generating functions of' non

negative discrete random v&i'ables/and b(s) is a rational function of 

s • Then we can write that 

(25) 
1Tm-l(s) 

b(s) = m 
II (1-S s) 

r=l r 

for !si~ l where ~m-l(s) is a polynomial of degree <m-1. Since 

lb(s)I 2.1 for !si < 1, it fellows that Ier! < l for r = 1,2, ... , m. 

In this case we have u
0

(s) = l and un(s) = II { u 
1

(s)a(s)b(!)} /"'- n- s 

for n = 1,2, ••• , and Is! = 1 • If for Re(s) = 0 and for IP! < l 

we have 

!' taking on integers only 
A 
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(26) 

where + g (s,p) and g-(s,p) satisfy the requirements 

(b1), (b
2
), (b

3
) respectively in Section 12, then by Theorem 12.2 we 

obtain that 

"" 
(27) \ u (s)pn = ,_l __ _ 

l n + -n=O g (s,p)g (l,p) 

for 1 s 1 < 1 &'1d 1 P 1 < 1 • 

If IP 1 < 1 ,then 

m 1 m 
!Ps n 1 (-)a(s)I < I IT (s-8 )! 

m- s r--=l r 
(28) 

f or !si = 1 " and hence by Rouche's theorem we can conclude that 

(29) 
m m 1 
IT (s-8 )-ps n (-)a(s) = 0 

1 
r m-1 s r= 

has exactly m roots s = or(p) (r =1,2, .•• , m) in the unit circle 

!si < 1 • Thus we can easily see that in (26) we can choose 

m 1 
Il (s-8 )-psmn 1(-)a(s) 

(30) + r=l r m- s 
g (s,p) -- m 

rr (s-o (p)) 
r--=l r 

f or !si < 1 and = 

m s-o (p) 
(31) g-(s,p) == IT ( s~a ) 

r=l r 
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f or 

(32) 

f or 

lsl > 1 • Finally, by (27) we obtain that 

m 1 
00 m (1-S )(s-ó (p)) 

m n r r \. [ n (s-Sr)-ps lTm-l (s)a(s)J l un(s)p = n {- l-ó ( ) J 
r=l n=O r=l r P 

lsl < 1 and 1 p 1 < 1 • The distribution of n is un..i.quely n 

determined by un(s) • 

Fifth Example. Let us consider the previous example with the 

modification that 

(33) 

f or lsl = 1 , that is, the sequence of ra~dom variables 

in the previous example is replaced by the sequence -F.1, -F. 2, ... , -Çn,··· • 

By using the results of the previous e:xample we can write that 

(34) (1 + -1-pa s)b(s) = g (s,p)g (s,p) 

for 1 s 1 = l and 1 p 1 < 1 where now 

(35) 

for 1 s 1 < 1 and 

(36) 

+ g (s,p) 

m 1 
Il (1-S s)-plT 1Cs)a(-) 

r=l r m- s 
g-(s,p) = ---·------m 

IT (s-ó (p)) 
r=l r 

for !si > 1 • These functions satisfy the requirements (a1), Ca2) and 



Finally, by (27) we obtain that 

(37) 
00 m 1-S s 1-ó (p) 

(l-p) I un(s)pn = n {(1-Sr )(s-ór'":"T)} 
n=O r=l r r'P 1 

for 1 s I ~ 1 and 1 P 1 < 1 . 
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19. The Method of Ladder Indices. In this section we shal l present·· 

another rnethod for finding the distribution of the rnaximal partial su:in of 

mutually independent and identically distributed real random variables. 

This rnethod is called the rnethod of ladder indices a1îd is due to 

W. Feller [19]. 

First we shall forrnulate a simple cornbinatorial theorem, then we shall 

deduce ~everal consequences of this theorem and finally we shall provide 

a new proof for the fonnula of Pollaczek and Spitzer which has already been 

prov~d in Section 15. 

Let x1, x2, ••• , xn be n real nurnbers. Consider their partial 

sums s0 =o, sk=x1+ ••• +xk (k=l,2, ••• ,n). Wesaythat i 

(i = 1,2, ••• , n) is a ladder index of (s0 , s1 , ••• , sn) if si> s0 , 

Consider the n cyclic permutations of x ) : 
n 

c0 = (x1 , ... , x ) . n 

Denote by s~v) (k = 0,1, ••• , n) 

perrrn.ltation c\) ' that is, 

(1) 

Theorem 1. Let s > 0 • n 

x 1) • n-

the partial sums in the cyclic 

for k ~ 1,2, ••• , n-v , 

for k = n-v+l, ••• , n • 

Let us consider all those cyclic 

~rmutati_s:ms among c0, c1, ••• , Cn-l in which n is a larlder index. 
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If the ml111ber of such cyclic permutat)-ons is r , then r ~ 1 , aYld 

each such permutation has exactly r ladder indices. 

Proof. First we shall prove that r > 1 . Choose \l such that 
= 

s > sl, ••• , s > C• s v > 3v+l'•••' s > s Then in c the '" v-1 ' \) \) "= n \) 

partial sum 
( \)) 

= s is rnaxima.l and so n is a ladder index in c s n n \) 

Without loss of generality we may assume that n is a ladder index 

in c0 ·' that is, in the origif'..al arrangement of the n elements 

xl' x2,"., xn • Then we have sn > si for i = 0,1" ••• , n-1 Now 

n is a ladder index in Cv if and only if sv > s0 = O, s" > s1 , ... , 

s > \ s 
1 

. For J sk(" ) = s - s + sk + < s f or k = n-v-1-1, ••• , n-1 and v 1 v- r n \) -n \) n 

S (v)I = f k 1 2 k sv+k- s" < sv+k < sn or = , , ••• , n-v , and the converse is also true. 

That is n is a ladder index in C 
\) 

if and only if v is a ladder 

index in the original arrangement c0 • Thus the nurnber of perrfllltations 

co, cl, ••• , cn-1 in which n is a ladde~ index is equal to the number 

of ladder indices in c0 Hence the theorem follows. 

For exam:ple, let x1 = -1 , x2 = l X3 = 2 ' X4 = 1 Then 
' 

co = (-1, 1, 2, 1) , c1 = ei, 2, 1, -1) c2 = (2, 1, -1, 1) ' C..., = ' 5 

(1, -1, 1, 2) and the partial sums in co are (0, -1, O, ~' 3) , in cl 

are (0, 1, 3, 4, 3) ' i.11 c2 are (O, 2, 3, 2, 3) 
' 

and in c3 are 

(O, 1, O, 1, }) • There are two cyclic permutations c0 and c
3 

in 

which 3 is a ladder index and both c0 and c
3 

contain exactly 2 ladder 

indices which are underlined in the above examples. 

Ä these condi tions imply that 
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We note that an analogous theorem can be f ormulated f or the so-called 

weak ladder indi.ces. We say that i. (i = 1,2, •.• , n) is a weak ladder 

if s. ~ so, ••• , s. ~ s. 1 . 
l - l - l-

Theorem 2. Let s > 0 . Let us consider all those cyclic 
·- - n = 

pernru.ta.tions amü.!:l_g co, cl, ••• ' en .?-n which n is a weak ladder index. 

If the number of such cyclic perrmltations is r , thEii r > 1 , and each 
-- = 

such perrmltation has exactly __ r ladder indices. 

Proof. We can prove this theorem in exactly the sarne wa~/ as we 

proved the previous theorem. 

Now let us a.ssume that i;1 , i;2, ... , ç:n,··· is a sequence of 

nutu.ally independent &~d identically distributed real random variabJes. 

De fine ?; = 0 and 
0 

r,; = ~1+ ••• + i; for n > 1 . n n - Denote by p 
n 

(n = 1,2, ••• ) the probability that the first ladder index is n in the 

Let 

(3) 
00 

1T(Z) = l pnzn 
n=l 

for lzl < 1 • Denote by p~r) (n = r, r+l, ••• ; r = 1,2, •.• ) the 

probability that the r-th ladder ir1dex is n in the sequence ~O' r,;1, ... , 

Then we have 

(4) = n~l (r-1) 
l P.t Pn_; 

j=r-1 J r.1 

for r = 2,3, ••• and n = r, r+l, ••• where p(l) = p • 
n n 

It follows i"'rcm 

.. ":.. 



(4) that 

(5) 

for r = 1,2, ••• and lzl < 1 • 

(6) 

'11heorem 3 • If 1 z 1 < 1 , then 

ir(z) = 1 - e 

"" n - l ~P{r;; >0} 
1 n """' n n= 

Proof. Le+v c(n) = ( !'." (k) c (l<)) (k 1 ? ) b th --- k "'1 , • • • , "'n = , - , ••• , n e e n 

cyc~ic permutations of (ç;
1

, ••. , ç;n) • For each C~n) let us define the 
.i (k) (k) (k) . partüal sums as 1;:

0 
, r;;1 , ••• , r;;n • Fix an integer r (r ::.: 1,2, ••• , n) 

and define xk = 1 .if n is the r-th ladder index of C~n) and xk:::; O 

otherwise. We have ,!{Xk = l} = p~r) • On the other hand by 'I'heorern l 

(7) 

He nee 

(8) 
n p(r) 
\ n 1 l -- = - P{ r; > 0} 
1 

r n,..,.. n 
r= 

for n = 1,2, •••• Let us multiply (8) by zn and add for n = 1,2, •••• 

Then we obtain that 

CIO n 
l ~P{r; > 0} 

n=l n ""' n 
(9) 

CIO r 
= [·rr ( z)] = lo 1 l r g 1-ir(z) 

r=l 
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for 1z1 < 1 • This completes the ?roof of the theorem. 

In what follows we shall rrention a few corollaries of Theorem 3. 

We have 
"" n l ~ P{z; <0} 

n=l n ,..,..,. n= 
(10) f or n 

0 ~ r .S n}z = e 

for lzl < 1 • For (10) can also be expressed as 

(11) 

_ l-1T(Z) _ -----e 1-z 

co n co n 
l ~ P{ z;; >O} + I ~ 

n=l n """ n n=l n 

for lzl < 1 • 'Ihis proves (10). 

We have also 

co n 
l ~ P{ï; >0} 

co n n=l n ,.,._ n 
1 + l P{i;. < z;;n for j = 0,1, .•• ,n-l}z = e 

n=l""' J 
(12) 

for lzl < 1 . For 

(13) P{ç. < ç for j = 0,1, ••• ,n-l} = Ï p(r) 
,_ J n r=l n 

and hence (12) can also be expressed as 

co n ( ) m 

1 + l l p r,zn = 1 + L 
n n=l r=l r=l 

(14) 

r 1 = 1 + l [if(Z)] :;: --~ 
r=l l-1T\ZJ 
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for lzl < i . This proves (12). 

Finally we note that 

cis) 1 + l P{r;;. 
n=i Nv- J 

oo n 
l_ ~ !U;n > O} 

n n=.L 
< r;;n for j = o,i, ••• ,n}z = e 

for lzl < 1 • ~his foliows inrnediateiy from (io) if we apply it to 

the random varj_ables -~i' -~2 , ••• , -ç;n' • · · • 

'"t''-=- roe-<:=- ·l:' h -= 
Denote by P1 ,"p1+ p 2 , ••• , Pi+ .•. + p1 >... the successive ladder 

A A ~ 

indices in the sequence i;0 , S:i, ••. , r;;n,··· • It is easy to see that 

{pk } is a sequence of mu.tualiy independent and identicaiiy distributed 

random variabies for which 

(16) P{p . = n} = p 
rw.. k n 

for n = i,2, ••• a.~d k = i,2, •••• 

Furthèrmore, r;; , r;; + - r;; , ••• , r;; + + - r;; + + , ••• 
pl pl p2 Pi Pi "•" pk Pi • • • pk-i 

are also mutualiy independent and identicaiiy distributed rar1dora variables. 

Next we shali be interested in finding the expectation 

(17) 

for Re(s) ?_0 and lzl < 1 Here o(p1= n) is the indil!ator variabie 

of the event { p
1
= n}, that is, o(p

1
::.: n) = 1 if p

1
= n and o(p 1= n) = O 

if p1 -1 n • Knowing (17), the joint distribution of r;; and p" can 
Pl .L 

be obtained by invers ion. If z = 1 in ( 17) , then we obtain the 
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-sz; 
p 

Laplace-Stieltjes transform E{e 1} for Re(s) ~ 0, which determines 

the distribution of z;; • If s = 0 in (17), then we obtain the 
pl p 

generating function rr(z) = E{z 1
} for lzl 2_ 1 , which determines the 

distribution of p1 . The following result has been found by 9. Baxter (4 J " 

· ·Theörem 4. If lz! < l and R~(s) ~ 0 , then 

, Proof. 1-- Let I be a subinterval of (0, 00 ) • Denote by (r)c~-) p _L 
n 

T 
..L • In the ~robability that the r-th ladder index is n and r. E: 

1 n 
exactly the sarne way as we proved (8), we can prove that 

(19) 

for n = 1,2, ..•. For if we add the condition z;;n E: I to the conditions 

in (7), then each equation rem3.ins valid. By (19) it fellows that 

(20) 
oo oo oo n 
I ! ( l p(r)(I)zn) = I ~ P{z;; E: I} 

1 
r n 

1 
n ,..,,,. n r= n=r n=. 

f or 1 zl < 1 . 

Now let us suppose that, in particular, I = (0, x] where 0 ~x < 00 

and in this case let us use the notation 

(21) G~r)(x) = p~r)(I) =,!{the r-th ladder index is n and r,
11 
~ x} 

f or x ~ O and 

G (x) , that is, n 

1 < r < n = = 
In particular, we shall write G(l) (x) -

n 
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(22) Gn(x) = pn(l)(I) =-~{ç1 ~o, ... , ç 1 ~o, o < ç ~x} 
,~ n- ·- n -

for n = 1,2, ••• and x ~ 0 . 

Evidently we have 

(23) 
n-1 x 

G(r)(x) = l f G~r:l) (x-y)dGJ.(y) 
n j=l 0 n-J 

for r = 2,3, .•• and n = r, r+l, •••. Let 

(24) 

and 

(25) 

for Re(s) > 0 and l ~ r 2_ n • _ By (23) we obtain that 

(26) 

for r = 1,2, ••• and Re(s) > O and lzl < 1 • 

By (19) 

(27) 
n 1 ( ) 1 l - G r (x) = - P{O < ç ~ x} 

1 
r n n,..,... n -

r= 

for x > 0 and n = 1,2, .••• Thus by (26) and (27) we get 
co n co 

- l ~ f e-sxd P{O<ç <x} 
co n n=l n 0 x- n= l yn(s)z = 1 - e 

n=l 
(28) 
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for Re(s) > 0 and lzl < 1 • This completes the proof of Theorem 4. 

We note that 

CX1 CXI 

(29) 1 + \, zn J e-sxdx P{ç. < ç < x for j = 0,1, ••• , n-1} = 
n~l 0 ""'" J n = 

CC> n CXI 

I ~ J e-sxd P{O < çn < x} 
n=l n O x-

= e 

for Re·( s) ~ 0 and 1 z 1 < 1 • Tl:üs fellows from the following relatlon 

(30) P{ r; • < ç ~ x for J. = 0,1, ... , rt-1} = 
""" J n-

for x > O and n = 1,2, •••• By (30) we have 

00 00 

Ï G(r) (x) 

1 
n r= 

(31) 1 + I zn J e-sx~ P{ç. < çn _::. x for j = 0,1, ••• , n-1} = 
n=l 0 ""'" ,J 

1 =------
"" 

1- I yn(s)zn 
n=l 

for Re(s) ~ 0 and lzl <l which is exactly (29). 

Now we are in the position to provide another proof for the theorem 

of Pollaczek and Spitzer (Theorem 15.1). 

(32) 
-sn 

~ (s) = E{ e n} 
n 

for Re(s) ~ 0 and n = 0,1,2, •••. _If Re(s) > O, and 1 z! < 1 , then 

we have 



IT-32 

oo n co 

(33) 

'\' ~ f -sx p l e dx,_{ ç <x} 
co n rr= n n=l -0 l tP (s)z = e 
-o n n- co n oo 

l ~ J (e-sx_l)d P{ ç <x} 
1 n= 1 n O X"" rr= 

= 1-z e 

= 

Proof. We can write that 

n 

(34) 
P{ n ~ x} = l P{ ç. < ç . for 0 ~ i < j , z;J._ .::_ çJ. for j < i ~ n 
~ n - j=O""" 1 J 

and ç. < x} = 
J = 

n 

. o""" i J= I
~ l P{ç_. < çJ. for 0 ~ i ~ j} P{ç ~ 0 for r = 0,1, .•• , n-j} - - ,,,,.,.. r-

for n = 1,2, ••• and x > 0 • For the event {n < x} n= can occvr in 

several tnutually exclusi ve wa.ys. In the sequence the 

first maximal elerrent is Obviously P{ ç . ~ ç . 
""""- 1 - J 

f or 

j < i ~ n} = ,!,{ çr .::_ 0 for r = 0,1, ••• , n-j} • If we form the Laplace

Stieltjes transform of (34), rnultiply it by zn,a.1d add for n = 0,1,2, •.• 

then we obtain the product of the following two expressions. 

(35) 

The first expression is 

co 

1 + l 
j=l 

co 

zj f e-sxd P{ç. < ç. < x for 0 < i _< j} = ___ ::i.._• --- = 
0 x- 1 J "" 

1 - l y (s)zn 
n=l n 

oo n oo 

l ~ f e-sxd P{O<ç ~x} 
n=l n 0 x- n-

= e 

which is exactly (29), and the second expression is 
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(36) 

1 + 
"" 
I Znp{r < 0 f 0 l n} = l-n(zJ. = ..,, or r = ' . : ••• ' 1-z ,.,.__ r = 

n=l 

(lO n 
l ~ P{ çn _-:._ 0} 

n=l ;w= e 

(lO zn 
- l - P{ç > 0} 

n=l n ,.,....... n 
e =---------1-z 

which is exactly (10). This completes the proof of (33). 
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20. Cornbinatorial Methods. In some particular cases we can use 

special methods for finding the distribution of 

for n = 1,2, •••• In what follows we shall show that if ~l' ~2 , ••. , ~n 

are either mutually independent and iàentically distributed discrete random 

variables taking on the integers -l,0,1,2, ••• (or l,0,-1,-2, ••• ))or inter

changeaple discrete random variables taking on the integers -1,0,l,2 (or 

1,0,-1,-2, ••• ), then we can find the distribution of (1) in a very simple way 

by using the following auxiliary theorem. 

1 

1 Lemma 1. Let k1, k2, ••• , kn be nonnegatj. ve integers wi th sum 

k1 + k2 + ••• + kn = k < n • Among the n cyclic ..1'.errnutntions of (k, , k/' ... 'k ) 
..L - n 

there are exactl~ n-k for which the sum of the first r elements is 

less than r for all r = 1,2, ••• , n • 

Proof. Let kr+n = kr for r = 1,2, ••• , and set 

for r = 1,2, ••• and o0 = O. Define 

(2) 

and 

( 3) 

[

l if i-oi>r-or 

ö = r 

0 otherwise, 

f or r < i < r+n , 

1jJ = rnin{i-o. r i 
for r < i < r+n} 

= 

(J = kl+ ••• + k r r 

fm• r = 0,1,... • Evidently êr = tjlr+ 1- ij;r for r = 0,1,... • Since 

or+n = crr+ on for r = 0,1, ••• , we have ör+n = ör and ijJr+n = ijir+ n-k 
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for r = 0,1,... • By us:i.ng the above notation, we can state that arnong 

the n cyclic permutations of (k1, k 2, ••• , kn) there are exactly 

(4) 

perrnutations for which the sum of the first r elements is less than r 

for r = 1,2, ••• , n. Tnis cornpletes. the proof of Lemna. 1. 

A Corollary. It fellows imnediately from Lenrna 1 that among the n! 

permutations of Oc1, k2, ••• , kn) there are exactly (n-1) ! (n-k) for 

which the r-th partial sum is less than r for all r == 1,2, ••• , n . 

1 

\ It might be interesting to mention briefly the historical background 
1 

of Lenrna 1. If we assume that each ki (i = 1,2, ••• , n) is either 0 

or 2 , then the above corollary of Lermna 1 reduces to the classical 

ballot theorem which was first formulated in 1887 by J. Bert_:Eand [ 5 ] and 

/ 
proved in the same year by D. Andre [2 ]. It should be noted, however, 

that this particular case can also be deduced from a result of duration 

of plays which was found in 1708 by A. De Moivre [ 14 p. 262] and in a 

different version in 1718 also by A. De Moivre [15 p. 121]. A. De Moivre 

did not give proofs of his results. Proofs for De Moivre's result were 

given only in 1'773 by P. S. La.place [39 pp. 188-193] and in 1776 by !G_ 

L. Lagr'8I1ge [ 38 pp. 230-238]. See also W. A. Whitworth [70], [71 ]. 

If we aasume tbat each ~ (i = 1, 2, ••• , n ) is either o or 

µ+l where µ is a positive integer, then the above rnentioned corollar<J 

reduces to a generalization of the classi.cal ballot theorem, which was 
/ 

fonnulated jn 1887 by E. Barb_ier [ 3 ] and proved in 1924 by .A... Aep;Qli [ 1 J. 



See also A. Dvoretzh."Y and r:I'h. Motzkin [l?J, H. D. Grossman [25], ~~ 

Mohanty and T. V. Nara.vana [ 4 6], and the author [ 57], [ 5 8]. 

Now we shall prove the corolla..ry of Lemna 1 in a slightly more 

general form which we shall use in what follows. 

Lerrrna 2. Let. v1 v 2, •• , vn be. interchangeable random variables 

taking on nonnegative integers. 

r = 1,2, ••• , n. Then we have 

Set N = v1+ v
2
+ ..• + v for 

- r r --

(5) P{N < r for r = 1,2, ••• , nlN = k} 
~ r n 

= r -~ ,if_ k = 0, 1, ••• ,n' 

l 0 otherwise, 

where the conditional probability is defined up to an equivalence. 

Proof. We can easily deduce Lemna 2 from Le:rnt11él l; however, in what 

follows we shall give a separate proof. We ca..~ prove (5) easily by 

mathematical induction. If n = 1 , then (5) is evidently true. Suppose 

that (5) is true when n is replaced by n - 1 (n = 2,3, •.. ). We sha.11 

prove that it is true for n too. Hence by mathematical induction it 

fellows that (5) is true for all n = 1,2, •••• If k > n, then (5) 

is obviously true. Let k < n • By assumption 

(6) 
{

l - _j_ if 
n-1 

P{N < r for r = 1,2, ••• , n-l)N 1= j} = 
.,,." r n- O if 

O ~ j ,;;, n-1 , 

j > n-1 • 

Thus by the theorem of total probabllity 



n-1 
P{N < r 

r."' r 
for r = 1,2, ... , n!N = k} = l (1- ..L)P{N = j IN= k} = n n-1 [V._ n-1 n j=O 

(7) 
= 1-_l,E{N 1 !N = k} 

n-..L ('vY n- n 
= 1 _ 1 (n-l)k = 1 _ k 

(n-ïY n n 

for k = 0,1, ... , n-1 • For ~{Nn_1 1Nn = k} = (n-l)k/n. 

(8) 

w'here 

It follows imrnediately from (5) that 

N + 
P{N < r for r = 1,2, ..• , n} = E{[l- ....!!.] } 

,~ ...... r """"' n 

[x]+ = max(O, x) • Jwe note that (5) and (8) remain valid under 

the slightly weaker assumption that v
1

, v2 , ••• , vn are cyclically 

interchangeable random variables taking on nonnegative integers only. 

It wil.l be convenient to express Lemm3. 2 in the following equivalent 

way. 

Lemma 3. Let v1 v
2

, ••• , vn be interchangeable random variables 

taking on nonnegative integers. Set N = v1+ ••• + v for r = 1,2, ••• , n -- r r --

and N0 = O • Define p(k) (k = 0,1, •.• , n) as the smallest r = 0,1, ••• ,n 

f or which r-N = k if such an r 
-- r 

exists. We have 

(9) P{p(k) = j} = ~ P{N. = j - k} ,,..,. J ,_ J 

f'or 1 < k .:s_ j ~- n , and P{ p ( O) = 0} = 1 . 

Proof. We can i.nterpret p(k) as the first passage time of r - Nr 

(r = 0,1, ••• , n) through k (if any). Obviously P{p(O) = O} = 1 . 
r.,._ 

F.'or 1 ~k ~ j :.;,, n we can write that 



II-38 

P{p(k) = j} = P{r-N < k for l~r < j and j - N. == k} = 
~ ~ r J 

(10) = P{N .- N < j-r for l < r < j and j - N. = k} = ,.,._. J r J 

= P{N. < i for l ~ i < j and NJ. = j-k} = ~ P{N = j-k} 
,,.._ l J tv- j 

where the last equality follows from Le:mma. 2. 

An ldenti ty. We have the following obvious relation for 

(11) 
j-1 
l P{p(s) = i, p(k)-p(s) ~ j-i} = P{p(k) = j} . 

i=l ;v--. l'V-

If we take L.1to consideration that p(k)-p(s) has the same distribution 

as p(k-s) , then (11) can also be expressed as follows: 

(12) J;l _s(k-s) P{N = k l i77 . ) . i-s, N ,::; j-k} = - P{N. = j - k} • 
i=l \J-l ·"" l J j MA J 

Interchangeable random variables. By using Lemma 2 we can easily 

find the distribution of (2) if sl' s2, ••• , sn are interchangeable 

random variables wb.ich can be expressed either as s. = v.-1 (i = 1,2, ••• ,n) 
l l 

or as s. = 1-v. (i = 1,2, ••• , n) where v1, v
2

, ••• , v are inter-
l l n 

changeable discrete random varia.bles ta.king on nonnegative inte:gers only. 

Theorem 1. Let v1, v
2

, ••• , v
11 

be intercha.ngeable random variables 

tak1_..!}g__on_DonneE5ê:_tive integers only. Let Nr = v1+ v
2
+ •• • + vr for 

r = 1,2, ••• ,n and N0 = O. We have 

P{ max (Nr- r) < k} = P{N < n + k} -
N-.. f"'- n J.<r<n == 

(13) 
n-1 n-j 

- l l 
j=l i=--0 

i 
(1- -. )P{N. = j+k N = j+k+i} 

r.-J """' J ~ ' n 

for k = O, +1, +2, .• ~ • If k < 0 , then both sides of (13)_a;rs.L 0 • 
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Proof. We shall prove a slig,htly more general formu1a from which 

(13) fellows. If i = 1,2, ••• , n-1 , and. k = O, +l, +2, ••• , then 

P{N < r+k for r = 1,2 ••••• n and N < n+k-i} = ,.,....,. r ' ' n= 

(14) 
n-i n-i-j 

= P{N ~ n+k-i}·- l l (1- ~)P{N .= j+k , N = j+k+.Q.} • 
,..., n - j=l .Q.=O n-J "":' J n 

It is sufficient to prove that the subtrahend on the right-hand side of 

(14) is the probability that Nr?.. r+k for sorne r = 1,2, ••• , n-1 and 

N < i1+k-i • This event can occur in the following mutually exc:i.usive n= 

ways: 

Then! 
i 
1 

Nr- Nj 

(15) 

the greatest r for whi.ch Nr ~- r+k is r = j (j = 1,2, ... , n-i). 

Nj= j+k and Nr < r+k for r = j+l, ••• , n, or equivalently, 

< r-j for r = j+l, ••• , n By Lemna 2 

P{N -· N < r-J· for r = J·+1, ••• ,nlNJ .. = J·+k N = J"+k+.Q.} = 1 - ~-:-
,.,...,. r j ' n n-J 

if O < .Q, ~n-j and if the left-hand side is defined. If we IIRlltiply (15) 

by P{N. = j+k , Nn = j+k+.Q.} and add for all (j, .Q,) satisfying i .::= j -::_ 
;'V-,.. J 

~ j + .Q, 91-i , then we obtain the subtrahend on the right-hand si.de cf 

(14). If i = 1 in (14), then we obtain (13) which was to be proved. 

If, in particular, k = O , then by Lenrna. 1 we can write also tr1at 

(16) P{N < r 
"""" r 

for r = 1,2, ••• ,n 

for i = 0,1, ••• , n-1 • 

n-i . 
a"ld Nn < n-i} = l (l·- il)P{N = j } 

j=l n M.-.. n 

Tneorem 2. Let "l' v2 , ••• , "n be intercbangeable random yaria.bles_ 

taking on nonnegative integer!3 only. Let N = v1+ v">+ ••• + v for r '- r --

r = 1,2, ••• , n and N0= O • We have 
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(17) P{ max 
/""- l<r~p 

(r-N ) < k} 
r 

for k = 1,2, ••.• 

n k . = i - r T P{N. = J - k} 
j=k J ,.,,,. J 

Proof. We shall find the probability of the cornplementary event of 

{ max (r-Nr) < k} , that is, the pro?ability that 
l<r<n 

N < r-k f or some r= 

r-;; 1,2, .•• , n. This latter event can occur in the f ollowing rnutually 

exclusive ways: the smallest r such that N = r-k is r=j (j=k, ••• ,n). Then r 

N.=j-k a...vid N >r-k for r=l, ••• ,j-1, or equivalently, N.-N < j-r for 
J r J r 

r=l, ••• ,j-1 • By Iemrra l 

(18) P{N.- N < j-r for l' = l, ••• ,J-l!N. = j-k} = ~ 
""""' J r J J 

for 0 < k < j where the conditional probability is defined up to an 

equivalence. If we rnultiply (18) by _!{N.j = j-k} and add for k 2. j ,~ n , 

then we get the probability of the complimenté:II'Y event. This proves (17). 

In a similar way as (17) we can prove the following mJre general 

f ornrula 

(19) 
P{r-N < k for ,,,..... r r = 1,2, ••• , n and n-N < k-i} = 

n 

n k . = P{N > n+i-k} - l -::- P{N. = J-k , N > n+i-ld 
,.,,_ n j =k J ,_,.,_ J n 

for n = 1,2, ••• , k = 1,2, ••• and i = O, ::!:,l, +2, •••• 
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Independent Random Variables. If we suppose, in pa.rticular, th.'lt 

v
1

, ,,
2

, ••• , "n are mutually independent and identically distributed 

random variables taking on nonnegative integers only, then 'J'heore:!TI 1 and 

Theorem 2 can be expressed in somewhat simpler fo.rms. 

As previously, let us write N = v,+ v
2
+ ... + v for r = 1,2, ••• , n r ...... r . 

and N
0 

= O • Furthermore, let us introduce the notation 

(20) Pik(n) = P{N - r < k for r =1,2, ••• , n ar1d N - n < k-i} 
~ r n 

for n = 1,2, ••• , i = O, +l, +2, ••• a."ld k = O, .:!:_l, +2, ••.• Let Pik(O) = l 

if' ~ > i and P ik(O) = O if k < i • Obviously Pik(n). = 0 if k < O. We note 
! 

alsoithat P0k(n) = Plk(n) if n .::_ 1. 

Iet us introduce also the notation 

(21) Q.k(n) = P{r-N < k for r = 0,1, ••• ,n and n-N
11 

< k-i} 
i. ""' r 

for n = 1,2, ••• , i = O, +l, +2, ••• and k = 1!12, •••• Iet ~(O) = 1 

if k > i = 

i < 0 • 

and Q. , ( O) = O if k < i . 
lK Obviously Qik(n) = ~k(n) if 

In case of independent random variables Theorem 1 or more generally 

formula (14) reduces to the following one. 

Theorem 3. If vl' v 2 , ••• , "n are mutually independent a.'1d 

identically distributed discrete random variables taking on nonnegative_ 

int~ers only, then we have 

n-1 
- l: P.

0
(n-j)P{N. = j+k} 

"-1 l ,.,..,... J J-

for n = 1,2, ••• , i = 0,1,2, ••• and k = O, .±_l, +2, ••• , and 
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(23) 
n-i 

P10(n) = l (l- j )P{N = j} 
j=O n ,..__ n 

for n = 1,2, ••• and i = 0,1,2, •••• We hav~ P10(o) = 1 for 

i = 0,1,2, ••• 

Proof. If we take into consideration that in (14) 

(24) P{N. == j+k , N = ,j+k+R.} = F{N. = j+k}P{N . = R.} 
,,__ J n ....,..,. J tv... n-J 

and if' we use (16), then we obtain (22) for i ~ 1 . If we define 

P10(0) = 1 for i > 0 , then we can easily see that (22) rerr.ains valid 

for i = 0 too. Forrnula (23) is exactly (16). 

In case of independent random variables Theorem 2 or more generally 

forrnula (19) reduces to the following one. 

Theorem 4. If v1, v2, ••• , vn are rnutually independent and 

identically distributed discrete random variables taking on normegative 

integers only, then we have 

(25) 
n k . 

Cl •• (n) = P{N > n+i-k} - l -.- P{N. = J-k} P{N . > n-j+jJ 
"'ik rvv n j =k J IVv J ,.,.__ n-J 

for n = 1,2, ••• , k = 1,2, ••• and i = O, :t_l, !_2, •••• 

Proof. Since in this case 

(26) P{N. = j-k , N > n+i-k} = P{N. = j-k}P{N . > n-j+i} , 
"""' J n ,...._ J ,.,,_ n-J 

we obtain (25) by (19). 
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An Infini te SequeEce of Indep~11dent _ Rmdom Variables. Now let us 

suppose that "l' v2 , ••• , "n' .•• is an :Lnf:Lnite sequence of mutually 

independent and identically distributed dJscrete random variables ta.king 

on nonnegative integers only. In this case we can define Pik(n) and 

Qik(n) for every n = 0,1,2, •.• , and our next aim is to find the generating 

funct:ions 

(27) 

and 
00 00 

(28) 

for ! z 1 < 1 and 1w1 < 1 • 

We shall introduce the notation 

(29) P{v = j} :::: h. 
MA n J 

for j = 0,1,2, ••• and 

(30) 
"n "" E{z } = h(z) = l h.zj 

j=O J 

for 1 z 1 ~ 1 • The generating function h ( z) is regular in the circle 

lzl <. 1, a.11d continuous in lzl ~l. Obviously, lh(z)I < 1 for !z! .::_1.. 

By (30) we ca.11 write that 

(31) 
N 

E{z k} = [h(z)]k 

for k = 0,1,2, •• - • 

We shall need the following aUJd.liar.Y theorern. 
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Lemma 4. If lzl < 1 , then the equation 

(32) w = z h(w) 

has exactly one root w = ó(z) in the unit circle lwl < 1 , and 

00 

[ó(z)]k = l 
n=k 

(33) 
k n 
- P{N = n-k}z 
n""" n 

for k = 1, 2, .•• , and 1 z 1 < 1 • 

PrOof. If 1w1 == 1 , then i z h ( w) 1 ~ 1 z 1 < 1 and thus by Eouché' s 

theorem it follows that (32) has the same number of roots in the domain 

1w1 f 1 as the equation w = 0 , that is, exactly one root. We slIB.11 
! 

denote this root by ó(z) . 

If f(w) is a regular function of w in the doma.in lwl < 1 ,then 

by Lagrange's expansion we obtain that 

(34) 
oo n n-1 '( )[ ( )]n 

f[o(z)] = f(O) + l ~[d f x hx ] 
n=l n! dxn-l x=O 

for 1 zl < 1 . 
k If we apply (34) to the function f(x) = x (k = 1,2, ... ), 

then we obtain (33). 

Furtherm::ire, we note that 

for 1 z h(w) 1 < lwl < 1 . This c.an be seen as follows. 

By ( 31) we obtain that 
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(36) 

for j = 0,1,2, ••• and 0 < lwl 2_ 1 . If we nru.ltiply (36) by z:Î and 

add for j = 1,2, ••. , then we get (35). 

fueorem 5. If v1 , v 2 , ••• , vn,. • • is a s~uence of n~tually_ 

independent and identically distributed discrete random variables taking 

on nonnegative inte~rs orb!:,y) then we have 

(37) ~ ~ n k [1-o(z)]h(w)wi - (1-w)h(w)[o(z)]i 
l l pik(n)z w = z (1-wIT1-7s(z)J[w-i h(w)J 

n=l k=O -

f or lzl < 1, lwl < 1 and l = 0,1,2, •••• 

Proq_f. Since P ik(n) = 0 if k < 0 , we can extend the sec~md 

sumnation in (37) to -"" < k < "" without changing the sum. 'l'hen oy 

(22) and (36) we obtain that 

(38) 

for 0 < lwl < 1 , n = 1,2, ••• and i = 0,1,2, .••• If n = 0 , then (38) 

is equal to w1/Cl-w) for lwl < 1 • 

By (23) it follows that 

(39) 

for lzl < 1 and i = 0,1,2, •••• This can be proved as follows. By 

(23) and (33) we have 
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(1- j)P{N = "} n(V',- n J 

ro n 
= l zn l J_ P{N = n-j} -

n=i j=i n""' 11 

(40) 

= ~ ~ j n ~ [~(z)]j _ [ê(z)]i 
l l - P{N = n-j}z = l u - ~"ITZl'-n n l··ó z j=i n=j ""' j=i 

for lzl < 1 and i = 0,1,2, •••• If" i = 0 ,then (40) rernains true 

because PO'.)(n) = P10(n) if n > 1 and PCXJ(O) = 1 • 

Since Pi0 (n) = O if O < n < i , it follows from (38) and (40) trat 

(41) 

for 1 z h( w) 1 < 1w1 < 1 • By analytical continuation we can extend the 

definition of the right-hand side of (41) to the domain lzl < 1 , lwl < 1 

and thus we obtain (37). 

Theorem 6. If "l' v2 , ••• , "n'··· is a sequence of mutually 

indeoendent and identically distributed discrete random varia.bles taking 

on nonnegative integers only, then we rave 

~ ~ (n)znwi _ z-[ó(z)]k zw~(w)-w[ó(z)]k 
C
42 ) 

11
; 1 i~ Qik - (1-w)(l-z) - (1-w)[w-zh(w)] 

f or 1 z [ < l , 1w1 < 1 and k = 1, 2, • • • • 

Proof'. By Theorem 2 we have 

!} k . 
CL(n)=l- l-:- P{N.=J-k} 
IJk j =k J (V.- J 

(43) 

for i~ k 2. n • Hence by (33) we obtain that 
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(44) 

f or lzl < 1 • This proves (42) for w = O • 

By (25) and (43) it follows that 

(45) 
n 

C:Lk(n)- Q.k(n) = P{N _:::__ n+i-k} - l ~ P{N. = j-k]P{N . < n-j+i} 
"U i NV' n - j=k J "'"" J ,.,.... n-J -

f or n ·= 1,2, •.• , k = 1,2, ••• and i = o, _:!:;t, :!:_2, •••• If i < O, tl1er1 

(45) is 0 becau.se by (21) we have ~k(n) = Q0k(n) for i 5_ 0. 

If we take into consideration that 

(46) 
w k-n n 
\ P{N < n+i-k}w1 = w [h(w)] 
l ,..,., n = 1-w 

i= - 00 

for 0 < 1 wl < 1 , then by (!!3) we obtain that 

(47) 
00 • k-n n n · l [Q_ (n)-Q. (n) ]wl = w [h(w)] - i_ l ~ P{N .= j-k}[9(w) ]n-J 

i=O \Jk ""ik 1-w 1-w j=k J ,..,,._ J w 

for O < lwl < 1 . If we rnultiply (47) by n z , add for n = 1,2, ••• , and 

use (33) and (44), then we obtain that 

k 00 00 k k 
(4S) z-[ó(z)] \ \ 0 __ ( ) n i _ zw·11(w) - w[ó(z)J 

(1-w)(l-z) - n~l 1~ "'ik n z w - (1-w)[w-zh(w)] 

for 0 < 1 wl < 1 émd 1zh(w)1 < lwl • By analytical continuation we 

can extend the definition of the right-hand side of (48) f'or lwl < 1 

and lzl < 1 , and thus we obtain (42). 
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The Use of Markov Chains. Finally, we note that Theorem 5 and 

Theorem 6 can also be proved by using the theory of Iv'farkov ehains. 

First, we observe tha.t if we define a sequence of random variables 

nn (n = 0,1, ••• ) by the recurrence formula 

(49) 

for n = 1,2, ••• , then 

(50) "~{ nn < ki n0= i} = !{Nr < r+k for r = 1,2, ••• , n and Nn ~ n+k-i} 

wne~ Nr = v1+ ••• + vr for r = 1,2, ••• , n and N0 = O • 

1 Accordingly, 1f v1, v2, ••• , "n'''' is a sequence of !Tllltually 

independent and identically distributed discrete random variables taizing 

on nonnegative integers only, then by (20) we can write trlB.t 

If n
0 

is a discrete random variable taking on nonnegative integers 

only and if n0 and the sequence {vn} are independent, then the 

sequence of random variables {nn} forms a homogeneous Markov chair1 with 

state space I = {0,1,2, ••• } and transition probabilities 

~ if i = 0 and k > 0 , = 

(52) pik = ~-i+l if i > 1 and l{ > i-1 
' = = 

0 if i ~= 1 and k < i-1 

where we u..sed the notation (29). 



Jf we denote by pk) (n = 0,1,2, ••• ) the n-step transition 

probabilities, that is, p1~nk) ~ P{n =kin = i} , then we have 
M- n 0 

(53) 
k 

= I P~r:) 
j=O lJ 

for n > O , i > O and k > O • 

Theorem 7. We have 

(54) 
00 00 i+l i l l P(n) n k _ [1-o(z)]w -· z(l-w)h(w)[o(z)] 

n=O k=O ik z w - Ll..-o(z)][w-zh(w)] 

for 1 zl < 1 and lwl ~ 1 where o(z) is def'ined in Le~ 

• 

Proof. If h0=- 0 or z = 0 , then o (z) = O and (Sif) is obviousl,y 

true. Let us suppose that h
0 

> O and z f 0 • In this case o(z) t O • 

Let 

(55) U .(w) = E{w~ln = i} = I p~n)jc 
m ,..,.,. 0 k=Oik 

f or lwl < 1 . By (49) we have 

(56) 
U (w) (n-1) 

Uni(w) = h(w)[ n-1,i w - P10 + Pig-1)] 

for lwl < 1 and clearly u0i (w) = wi • Hence 

wi+l_ z(l-w)h(w) ~ P~n)zn 
00 l lÜ 
\ U rw)zn - . __ n_=O _____ _ 
n~ ni ~ - - w-zl"îtw) (57) 

for i w I ~ 1 and [ z 1 < 1 • If I z 1 < l , then the left-hand side of 

(57) is a bounded f'unction of w in the circle !wl < 1 • Obviously 
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the absolute value of (5'7) is ~ lfll-·lzl) if lwl ~ 1 • If lzi < 1 , 

then the denominator of the r.ight-h9..nd. side uf (57) has exactly one root 

w :: ó(z) in the w1it circle lwl < 1 . This must be a root of the 

nwnerator too. T'nus 1t follows that 

00 i I p(n) n = [ó(z)] 
n=O io z [1-ó(z)] (58) 

for lzl < 1 . Putting (58) into (57) we obtain that 

(59) 
00 00 [ (']i+l r-. i \' \' P(n) n k = 1-8 z, w -z(l-w)h(w)Ló (z)] 
l l ··ik z w [l-8 (z) ][w-zh(w)] n=O k=O 

for 1 z 1 < l and ! w 1 < 1 . This proves ( 54) • 

By ( 53) and (54) we can obtain ( 37) • If we subtract w1 from ( 59) a."1d 

multiply the clifference by 1/(1-w) , then we obtain (37). 

Second, we observe that if we define a sequence of random variables 

n
11 

(n = 0,1,2, ••• ) by the recurrence f ormula 

(60) - - + 
n~ = [n + 1-v ] n n-1 n 

for n = 1,2, ••• , then 

(61) P{n < k!n0 = i} = P{r-N < k for 
;v.. n Nv- r r = 0,1, ••• " n and 

where Nr = v1+ ••• + vr for r = 1,2, ••• , n and N0 = O • 

n-N < k-1} n 

Accorclingly, if "'l' -..> 2 , ••• , vn , • • • is a sequence of rrn.itually 

independent and identically distributed discrete random variables taking 

on nonnegative integers only, then by (21) we can write that 
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for i = 0,1, ••• , k = 1,2, ••• and n = 0,1,2, •••• 

If n0 is a discrete random variable taking on nonnegat:i.ve integers 

only and if no and the sequence {v } are independent, then the n 

sequence of random variables { ~ } f'orms a homogeneous Markov chain wi th 

state space I = {0,1,2, ••• ,} and transition probabilities 

(63) if k = 1, .•. , i+l, 

1 

0 if k > i+l ' 

where we used the notation (29). 

If' we denote by qi~) (n = 0,1,2, ••• ) the n-step transition 

probabilities, that is, q~n) = P{n = kin = i} , then we have ik ,,..,... n 0 

(64) 
k-1 

Q __ (n) = l q~~) 
"'ik j =O lJ 

f or n > O , i > O and k > 1 • 

Theorem 8. We have 

(65) 
~ ~ (n) n i _ (1-w)(l-z)wk+l+ z[w-h(w) ][1-o (z) ][o (z) ]k 
l l q. z w - ----------· 

n=O k=O ik (1-w)(l-z)[w-zh(w)] 

for 1 z 1 < l and 1w1 < 1 , where .s( z) is defined in Lemma 4. 

Proef. If h0 = O or z = O ,then o(z) = o and (65) is 
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obviously true. In what follows we assurne that h0 > O and z 1 O , 

in which case o(z) 1 0 • 

(66) 

Let us introduce the generating function 

_ ~ (n) i 
Vnk(w) - l .q.k w 

i=O l 

for [w[ < 1 • If we take into consideration that 

(67) 
( ) - i+l (n-1) 

qi~ - l q .. a "k 
j=O lJ ~J 

for n = 1,2, ••• , i = 0,1,2, ••• and k = 0,1,2, ••• , then we obtain that 

(68) w V (w)-h(w)V (w) = w-h(w) a~n-l) 
nk n-1,k 1-w "'Uk 

for n = 1,2, ••• and !wl < 1 , and clearly v0k(w) = w1
c • Prom (68) it 

follows that 

(69) 
m (1-w)wk+l+ z[w-h(w)] r ~~)zn 

n n=O 
n~ v ru/ w) z = ---(..--1--w-)~[-w--z-h~(-w~)]-----

for [w[ < 1 and 1 z [ < l • If [ z [ < 1 , then the left-hand side of 

(69) is a bounded function of w in the circle [wl < 1-i:: where E is 

an arbitrar'Y sma.J.l positive nurnbe:r. Obviously the absolute value of (69) 

is < 1/(1--[z[ )(1-[w[) • If lzl < l , then the denominator of' the right-

hand side of (69) has exactly one root w = ê(z) in the unit circle 

lwl < 1 • Tb.is mu..5t be a root of the numerator too. Thus it follows that 



(70) 

for lzl < 1 • Putting (70) into (69) we obtain that 

(71) 
~ ~ (n) n i _ (1-w)(l-z)wk+l+ z[w-h(w)][l-o(z)][ó(z)]k 
l qik z w - (1-w) (1-z) [w-·zh(w)] 

n=O i=O 

. 
f or lzl <l and lwl < 1 which proves (65). 

By (64) and (65) we obtain that 

(72) ~ ~ Q(n)
2
nwi = (1-z)w(l-wk)+ z[w-h(w) ]{1-[o (z)]~;:} 

n'::o i;O ik (1-w)(l-z) [w-zh(w)] 

for 1 z 1 < 1 , 1w1 < 1 and k = 1, 2, • • • • If we subtract ( 1-wk) / ( 1-w) 

from (72), then we obtain (42). 
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21. PROBLEMS 

21.1. Let sl' s2' ..• , sn,··· be mu.tually independent and identically 

distributed real random variables having a continuous and symmetrie 

distribution. Denote by v the number of ladder indices among 1,2, ... , n. 
n 

Prove that 

P{v = k} 
"""' n 

= (2nn-k)_1 
22n-k 

for k = 0,1, ... , n. 

21.2. Let sl' s2, ..• , sn,··· be mutually independent and ide~tically 

distributed random variables for which P{ s = l} = p and P{ s = -1} = q 
"""" n ""'"' n 

where p > 0 'q > 0 and p+q = 1 . Let sn = sl+ ~2+ •.. + sn for 

n = 1,2, •.. and so = 0. Denote by 'k (k = 1,2, .•. ) the k-th ladder 

index in the sequence 

t 
r; , •• I' • 

n Find the distribution of Tk . 

21.4. Let sl' ~2'"""' sn,··· be mu.tually independent random variables 

having the same stable distribution function Roc.(x) for which 

00 

~ (w) = f eiwx dR (x) 
(). (). 

-co 

is determined by 

o( 
log ~ (w) = -clwl (l-i8 sgn w tan o.;:) 

(). ~ 

where c > 0 '0 < (). < 2' (). t 1' -1 ~ s < 1. Let çn = ~l+ ~2+ ... + sn 

for n = 1,2, ... , and ç0 = 0 • Denote by "tk the k-th ladder index in 

the sequence so' çl, ••• , çn,··· • Find the distribution of Tk for 

k=l,2, .•.• 

In Problem 21.2 write 

Determine ~('J\i ~ k} for k = 1,2, •••• 
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21.5. Let v
1

, v
2

, ••• , v
11 

be interchangeable random variables taking 

on nonnegative integers only. Set Nr = v1+ v
2
+ ... + vr for r = 1,2, ... , n 

nnd N0 = 0 • Prove that 

E{ max 
"""'" Og~n 

(N - r)} 
r 

n 1 + = l -;- E{[N.- j] } 
j=l J ~ J 

2i.6·. Let vl' v
2

, ... , vn be interchangeable random variables taking on 

nonnegative integers only. 

and N0 = O • Prove that 

= v_
1 

+ v~+ ••• + v for r = 1,2, ••. , n 
c:. r 

n 
E{ max (r-N ) } = l ~ E{ [j-N. ]+} • 

!'<"- 0.::_r~n r j=l J !""' J 

21"1?.· Let ç1, ç2, ••• , ç:n' ••• be a sequence of mutually independent 

and identically distributed real random va.ria.bles. Set çn = ~1+ c; 2+ ... + ç:n 

for n = 1,2, ••• and Find the expectation of n = maxCs0 , r,1, ... ,ç ) n 11 

for n = 1,2, •••• 

21.f. Let ç = x - e for n = 1,2, .•. where {xn} n n n aJ1d {e } 
n 

are 

independent sequences of rnutually independent nonnegative rand01n variables. 

Let us suppose, in particular, that P{e ~ x} = l - e-ÀX for x > O 
- n- -

where À is a positive constant. Find the distribution function of the 

21.9. 
!' 

and {e } are 
n 

independent sequences of' nrutually jr;depende:nt and identically distributed 

nonnegative random Vffi"'iables. Let us suppcse, in pa.rticular, that 
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P{e < x} 
n= !""-

= 
-/..X (ÀX)j 

e . 1 for 
J . 

f or x < 0 ' 

where À is a positive constant and m is a posltlve LYiteger. Find the 

distribution function of the random variable nn = max(O, ~l' ~1+ ~ 2 , ... , 

ç:l+. · .+ i;n) • 

21.~0. A box contains n cards rnarked kl' k2, .•. , kn where k1, k2, •.. , 

kn are nonnegutive integers with surn k1+ k2+ ... + kn = k . We draw all 

the n cards without replacement from the box. Let us suppose that all the 

n! results are equally probable. Find the probability that for every r = 

1,2, ... , n the sum of the first r numbers drawn is less than r . ($ ee 

the Corollary to Le.rnma 20.1.) 
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