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CHAPTER IT
MAXTMAL, PARTTAL SUMS

14, 'The Distribution of the Moximal Partial Sum. Throughout this

chapter we shall assume that 51’ g2,..., En"" is a sequence of
mutually independent and identically distributed real random varizhles.

ILet us denote by F(x) the distribution function of g, : that is,

(1) . F(x) = P{in:; x}

for =< x <= . For such random variables the expectation

_Sgn
$(s) =M§{e }

i

exists for Re(s) = O . The function ¢(s) is the Laplace-Stiel:ijes

transform of F(x) , that is,

0

(3) 0(s) = [ e *aF(x)

-0

for Re(s) =0.

Define Ly = £1+ £2+..,+ En for n=1,2,... and &y = Q. We
shall say that &z (n =0,1,2,...) is the n-th partial sum of the

random variables gl, 52,..,, En,... . Let us write
) F (x) = P{z < x}
for n=0,1,2,... . The distribution function Fr(x) is the n-th
1
iterated convolution of F(x) with itself. Obviously
1 if x>0,

(®) Fy(x) = {

0 if x< 0.,
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The distribution functions Fn(x) (n=1,2,...) can be obtained by the

following recurrence fcrmula

o

[ F_q(x=y)dF(y)

i
I

(6) F (%)
for n = 1;2,;.. .

The expectation

(M

-5
L]
mn
N
i
3
A
®

| -i e"SXan(x)

exists for Re(s) =0 and n =1,2,... . Obviously, we have
|

(8) ’ ¢, (s)

[4(s)1"
for n=0,1,2,... .

Iet us write also

+
n

(9) o = [z,1" = max(0, )

for n=0,1,2,... and let

+ T -
(10) ¢p(s) = Ele "} = F_(0)+ +(J; e aF_(x)

which exists if Re(s) 20 and n = 0,1,2,... . The function ¢;(s)

is regular in the domain Re(s) > C and continuous for Re(s) > O .

In what follows we shall be interested in studying the distribution

of the random variahle

(11) TLZ = maX(co, Liseves cn)

for n=01,2,... . Let us define



II- 3
%

(12) ¢ (s) =Efe )
The expectation (12) exists if Re(s) 20 . If we
can be obtained by inversion.

for n=0,1,2,... .
%
know @n(s) for Re(s) > 0, then P{nn < x}

If x is a continuity point of P{nn < x} , then we have

c+iT sx

® . 1 e
(13) P{n_ < x} = lim == =— 9 (s)ds
PSR ¢! T > 2l CLiT n
*
¢c>0. If x 1s a discontinuity point of P{n n< x} , then the
"< x
n <X ],

where
| *
rig;h?:—hand side of (13) is equal to -32“— [P{nn < x} + P{n
| ~m AA~

|
rOur next aim is to find <I>n(s) fer n=0,1,2,... .
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15. A Theorem of Pollaczek and Spitzer. In 1952 F., Pollaczek [47]

and in 1956 F, Spitzer [54] proved the following result.

Theorem 1. If Re(s) >0 and |p| < 1,then

o ’ o k
(1) § oo (s)m=expl ] E-4i(s)) .
 n0 B =1 KK

Proof., For n =1,2,... we can write that
% -
) = ( = r_ - *
(2) n, = max(0,8,,8.+ Egsenesbytec tt ) = max(0,5 + n¥ )

; W: —* = =i =
wher? g 0 and n* 4 max(O,g2,52+£3,...,52+...an) for g 2535000
The #andom variable ﬁ%ﬁl has the same distribution as n:-l and is
independent of El . Since ¢(s) ENB , We can apply the results of

Section 7 or Section 4. By (2) we can write that

(3) 0,(s) = To(s)e, ()

for R(s) 20 and n=1,2,... where ¢,(s) =1 . Evidently Holl =1 .

Thus Theorem 1 follows from Theorem 7.1 or from Theorem 4.2 .

We can express @n(s) (n=1,2,...) explicitly with the aid of
¢I(s), ¢Z(s),..., ¢;(s) if we introduce the following polynomials. For

n=1,2,..,. let

(Ll) Qn(Xl’XZ""’Xn) =

1 1.4, %50
G=) TG .
[} 1 1
K, b2k t.. otk e F1tRpteeckt L2
1 772 n

Xn k‘ﬂ
e
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1
—

where kl s k2,. cey K n are nommegative infegers. Write QO =

Theorem 2. We have

(5) 2,(5) = Q(87(8), #5(5),unny 67(s))

for Re(;);o and n=1,2,... and @O(S)EQOE]_.

Proof. This follows from Theorem 4.3 or from Theorem 7.2 .

We can express the generating function (1) in a compact form too.

Theorem 3. If Re(s) 20 and |e| < 1, then we have

(6) cf o (s)p" = e7lt1osll-pe(s) ]}
n=0 "

Proof, If we take into consideration that ¢(s) e R and [[¢]=1 ,
then (6) follows from Theorem 4.1 . Also (6) follows from (1) if refer

to Lemma 3.2 or, in particular, to formula (3.17).

The generating function (1) can also be obtained by using the method

of factorization developed in Section 6.
Theorem 4. If |p| <1 and
+ -
(7) 1 -p¢(s) =0 (s,0)2 (5,p)

for Re(s) = O where <I>+(s,p) satisfies the requirements Ay, A2, A3

of Section 6 and & (s,p) satisfies the requirements Bl’ BQ, B3 of

Section 6, then




G

(8) I o (s)" = 2
nso " 2" (5,0)87(0,0)

for Re(s) 20 and |o]| <1.
‘Proof. The theorem is a particular case of Theorem 6.2 .

By (8) we can write that

co }-(O
@ (1-p) ] o (s)p" = L{%0)
: n=0 ¢ (s,p)

for Re(s) >0 and |p] <1 . Furthermore, we can also write that

(20) » [1-p8(s)] ] o (s)p = &(5a0)
n=0 " 27(0,0)

for Re(s) =0 and |ep| < 1. Fofmula (10) determines the generating
function (1) for Re(s) =0 and |p] <1 . Since the generating function
(1) is a regular function of s in the domain Re(s) > 0 and continucus
for Re(s) > O , we can extend the definition of (1) for ’Re(s)‘;zo by

analytic continuation.

Note. By using Theorem 1 we can find also the distribution of the
random variable ﬁh = ~-min(zy, yse..5 &) for every n =0,1,2,... .

We can write that

(ll) ?{n = max(—CO, —Cl’...’ —Cn)

for n=0,1,2,... .



Theorem 5. We have

oo -sn. o k
n, n _ 1 p .t
a1 He o= mmyringeey e 00 Lk ks

for Re(s) =0 and |o] <1 .

Proof. . If we apply Theorem 1 to the random variables —gl, ~g2,...,

-En,..., then we get

o -sn, o k -s[-z ]+
(13) } Ele o™ = exp{ ] %— E{e LS
n=0"" k=1 o~

for Re(s) > 0 and Ipl <1 . If we take into consideration that

(14) esb-nl _ gox_ slx1",

e

for any s and real x , then we can write that

-sl-¢, 1"
(15)  Ele 3 =[e(=s)T gr(-s) +1

for Re(s) = 0 and hence we obtain (12) by (13).

The left-hand side of (12) is a regular function of s in the
domain Re(s) > O and continuous for Re(s) > O . Thus the right-hand
side of (12) uniquely determines (12) for Re(s) > O by analytical

continuation.

A more general problem is to find the distribution of Nk »

(n=0,1,2,... 3 k =0,1,2,...) , the k-th ordered partial sum of

gl, 52,..., gn if we arrange the partial sums CO’ Cyseces gn in
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%
increasing order of magnitude. Then n,=n = max(co, Tyseens ?;n)

nm

and n, = Mg = -mln(co, Tyseees ‘;n) . This problem will be studied

in Chapter 1IV.
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16. A Generalization of the Previous Results. 1In 1948 A, Wald [68]

% §
observed that the problem of finding ﬁP{nn <x} for n=0,1,2,... can
be reduced to a problem in the theory of Markov sequences. A. Wald

observed that if we define a sequence of random variables Nys Nyseses Mosees

by the recurrence formiia

(1) ny = [n g+ g7

for n=1,2,... where [x]+ = max(0, x) and we suppose that

#
then U has the same distribution as n, -

|

| If N is a nonnegative random variable and o and the sequance

nO=O‘,

{gn}' are independent, then the random variables Ngs Nysenes Ny oee form .

a homogeneous Markov sequence.

*
Now let us prove that N and N, have the same distribution if

N, = 0 . By (1) it follows that

= \
(2) T\n max(O, En: En—l+ En:--°s €2+~--+ Ens no+ g].+“.+ gl’l/

for n=1,2,,... .« If in (2) we replace £ Bpogseees & bV

El’ g2,..., En respectively, then we obtain a new random variable which
has exactly the same distribution as n, . In the particular case when
ng = 0 , this new random variable is precisely n;,. This proves the
statement.

Wald's observation makes it possible to solve a more general problem,

*
namely, the problem of finding the joint distribution of n, and Ly
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By (2) we obtain that
*
(3) Pln, <%,z 2y} =Pln, <%}
. +
provided that nn, = [x-y] .

In what follows we shall discuss the problem of finding the
distribution of n, if N is a non;'legative random variable and if e
and the sequence {En} are independent. This problem was solved in 1952
by F.Pollaczek [47], [48 ] . Pollaczek made certain restrictions on the
distributicn of En and he obtained the generating function of the
Lapl%ace—Stieltjes transform of Ny, in the case where n,. 1s a constant

0
by S‘L)lving a singular integral equation.

Iet us introduce the notation

=Sn
() Q (s) =Ble ™

o~

for Re(s) 20 and n =0,1,2,... . The Laplace-Stieltjes transform
Qo(s) is given by the distribution of ny , and for n = 1,2,... the
Laplace-Stieltjes transform Qn(s) can be obtained by the recurrence

formula
(5) 2 (s) = Te(s)2,_;(s))

for Re(s) 20 and n=1,2,... . Here ¢(s) eNP}O and Qo(s) Efo and

we can apply the results of Section 7.

Theorem 1, or Re(s) 20 and n = 0,1,2,... we have
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n , %
kzo ¢, (8T, (s)q, (s)]

(6) Qn(s)

where @k(s) (k = 0,1,2,...) 1is given by (14.5), Qg(s) =1 ; and

(7) Q) = Qe ()81 (),0x(8)43(5), oy ()b (5))

for k = 1,2,...,n where the polynomial Qk(xl’ Xpsenes Xk) for

k=1,2,... is defined by (15.4) .

Proof. This theorem follows from Theorem 7.1 or from Theorem 4.2 .

We can express the generating function of Qn(s) in a compact form

given by the following theorem.

Theorem 2. If Re(s) 20 and |e| <1, then

(8) nzo Qn(s)pn =‘e—g{log[l"p(b(S)]];?{QO(S)e—lOg[l—pq)(s)]+glog[l_p¢<s)]}}.

Proof. If we take into consideration that ¢(s) e R, o] =1
and Qo(s) e R, then (8) follows from Theorem 4.1 . Also, if we multiply
(6) by pn and add for n = 0,1,2,... and we make use of Lemma 3.2 or,

in particular, formulas (3.14) and (3.17), then we obtain (8).

The generating function (8) can clso be obtained by using the method

of factorization developed in Section 6.
Theorem 3. If [e| <1 and

(9) 1-p(s) = ¢ (s,0)07(s,p)
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23 By

+
for Re(s) = O where @ (s,p) satisfies the requirements Al’ A

of Section 6 and ¢ (s,p) satisfies the requirements B,, B2, B, of

3

Section 6, then

© A Q.(s)
(10) ] 9 (s)p = b { -2}
n=0 o (s,0) " ¢ (s,0)

for Re(s) 20 and |p] <1.
Proof. The theorem is a particular case of Theorem 6.2 .
By {(10) we can write that

s n - QO(S)
(11) [1-p4(s)] } . ()" = ¢ (5,0)T { ———
n=0 ™ @ (s,p)

}

for Re(s) =0 and |p| <1 . Formula (11) determines the generating
function (8) for Re(s) =0 and |p|<1 . Since 2 (s) 1s regular in
the domain Re(s) > O and continuous for Re(s) > O , we can extend the

definition of (8) for Re(s) > O by analytic continuation.
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17. Joint Distributions. Our next aim is to give a method of

finding the joint distribufion of N, and T for n=0,1,2,... .

Iet us Introduce the expectation

' ~SnyVen
(1) 2 (s,v) = Efe }

for n=0,1,2,..., Re(s) 20, and Re(v) = 0. If, in particular,
P{no =0} =1, then (1) can also be expressed in the following form

*
-sn_~vz
(2) . QH(S,V) =Fe P

}
for n=0,1,2,..., Re(s) >0, and Re(v) =0 .

Theorem 1. We have

(3) T a(s,v)el = e T110el1-p(s+V) lqy o (g -loall-pe (V) 1#T{1ogl1-pe (s+v) 1},
n=0 n=? ~ 0

for Re(s) >0, Re(v) =0 and |p] <1.

If, in particular, P{no= 0} = 1, that is, Qo(s) =1, then (3)

reduces to

® 7 o (o0 = o T0EIw0 (5 )
n=0 o

for Re(s) 20, Re(v) =0 and |p]<1.

Here T operates on the variable s , and v and ¢ are parameters.,

N
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PI"OOf. SlI’lCe ;n = {:" T g a_nd T]n = [nn__l+ En]

for n=1,2,..., it follows that

(5) | 2 (s, v) =£{¢(s-+v)ﬂn_l(s,V)}

for n=1,2,...,Re(s) 20 and Re(v) =0 . Here Qo(s,v) = ﬂo(s) .

Since for Re(v) = 0 we have ¢(s+v) e R and Qo(s) e R and H¢(s+v)” =1,

we can apply Theorem 4.1 to obtain (3) and the particular case (U4).

Formula (4) was found in 1956 by F. Spitzer [54] in a scmewhat

different form.

The generating functions (3) and (4) can also be cobtained by using the

method of factorization developed in Section 6.

Theorem 2, Let |p|<1 and Re(v) = O . Let us suppose that

(6) 1-p¢(s+v) = ¢ (s,v,0)87(s,v,p)

+ . s s
for Re(s) =0 where ¢ (s,v,p) as a function of s satisfies the

requirements Al’ AZ’ A3 of Section 6 and ¢ (s,v,p) as a function of s

satisfies the requirements Bl’ B2, B3 of Section 6 . Then we have

© - Q (S)
N I a(s,w)o’ =t p 2~

=0 ¢ (S,V,D)W o (S,V,p)
and
(8) I og(s,0p" = o———

n=0 ¢ (s,V,p)@ (O,V,p)

for Re(s) >0, Re(v) =0 and |o| <l .
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Proof. This theorem is a particular case of Theorem 6.2 .

By (8) we can write that

(9) (06 ()] T 6 (s, ) = £ 0aT0)
n=0 " ® (S,V,p)

for Re(s) >0, Re(v) =0 and |p| <1 . Furthermore, we can also write
that
(10) [(1-p¢ (s+v)] "z" <I>n(s,v)pn = @_:(_%Jm.l

n=0 ¢ (0,v,p)
for Re(s) =0, Re(v) =0 and |po| <1 ; This formula determines the
generating function (8) for Re(s) = 0 . Since the generating function
(8) is a regular function of s in the domain Re(s) ¥ 0 and continuous
for Re(s) > O whenever Re(v) =0 and |p] < 1, we can extend the

definition of (8) for Re(s) > O by analytic continuation.
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Note. By using Theorem 1 we can find also the joint distribution of
the random variables Z, and n, = -mm(;o, Zysenes ;n) = max(—co, “Tyseees —:n)
for every n = 0,1,2,... .

" Theorem 3. We have

o k +
- ST vt exp{- Z ' 5{— ¢, (V,— 8)}
(11) ] Ele T Mpt= kel

n=0"" [1-p¢(v)1[1-p¢(v-s)]

for Re(s) =0, Re(v) =0 and |p| <1 where

(12) 0 (v58) = (Lo (5+0) )

for Re(s) 20 , Re(v) =0 and k =1,2,... and T operates on the

variable s .

Proof. If we apply (4) to the random variables =Eqs “Eoseees B

and if we replace v by -v , then we obtain that

(13) E E{e—snn_vgn}pn = o7T{logl1-p¢(v-s)]}

-

=
for Re(s) >0 , Re(v) =0 and lo] < 1. Accordingly we can write
that

-sn_—Vg © k  -s[-

® [
@) J e ® Mpleexpl | R X
n=0" k=1

for Re(s) > 0, Re(v) =0 and ol <1 . If we take into consideration that

) omslxT" | sx_ slxT",

for any s and real x , then we can write that
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+

(16)  Efe } = [ov-8)T% o (v,- 8) + [o() S

for Re(s) =0 and Re(v) =0 . If we put (16) into (14), then we

obtain (11) which was to be proved.

The left-hand side of (11) is a regular function of s in the domain
Re(s) > O and continuous for Re(s) > O whenever Re(v) =0 and |p| <1 .
Thus the right-hand side of (11) uniquely determines (11) for Re(s) > 0

by analytical continuation.

Finally, we note that (11) can also be expressed in the following way

1
|
|

o -8n_~Vg $(v,=5,p)
ar) I Ee Tlott = =
n=0 [1-p¢ (v) [ 1-p¢p(v-8)]

for Re(s) =0, Re(v) =0 and |p| <1 where

(18) ¢$(v,5,0) = T{log[l-p¢(s+v)]} .

Discrete Random Variables. If, in particular, the random variables

El, 62,..., &n,... are mutually independent and identically distributed
discrete random variables taking on integers only, then each result which
we proved in this chapter has a discrete counterpart. In the case of
discrete random variables it is convenient to introduce generating functions
instead of Laplace-Stieltjes transforms and to replace the transformation
El by I . By using the theorems of Secticns 8-12 we can easily obtain

all the theorems analogous to that of Sections 15-17. A few examples for

discrete random variables will be considered in the next section,
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18, Examples. In what follows we shall give three examples for

finding Qn(s) and @n(s) (n =0,1,2,...) 1in the case where El, g g

2,09., n,otu

is a sequence of mutually independent and identically distributed random
variables for which

' —sf;n
(1) E{e } = ¢(s) .

‘First Exanple. Suppose that

@ | 3(s) = y(s) 7

S

for |Re(s) = 0 where y{s) is the Laplace-Stieltjes transform of & non-'
!

nega‘?ive random variable and A 1s a positive constant.
By Rouché's theorem we can show that
(3) A=8s=12 y(s) =0
has exattly one root s = y(g) in the domain Re(s) 20 if o] < 1.

For (3) camnot have a root in the domain | s-A| 2 A ., This follows
from the inequality [Apw (s)|< Ao < A if Re(s) 20 . If |A-s| =1,

and by Rouché's theorem we can conclude that (3)

then |xpy(s)| <jr-s
has the same rumber of roots in the domain [s-A| < Aas s-A =0, that
is exactly one rooct. We can apply Rouché's theorem because ¥(s) is

regular in the domain Re(s) > O and continuous in Re(s) 20 .
Accordingly we can write that
A . - + -
(43 1-p§(s) = 0 (5,0)¢ (5,p)

for Re(s) =0 and |p] <1 where
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A-s=rp$(s)

I

|

-}_/ _ \S/)
(5) ¢ (8,0) = — 75705 |
for Re(s) >0 and
(6) 6 (s,0) = YRIE

for Re(s) £ O . The functions (5) and (6) satisfy the requirements

Al, A2, A3 and By, Bg, B3 respectively in Section 6. By Theorem 16.3
we obtain that
o (A-s)0. (s)
n_ _y()-s : 0 -
o ) Qn(s)p k—s—xpw(s)iz{ (p)-s

n=0

|
| (-s)2(s)  s[a=y(p) 10, (¥(p))
~ Xsxew(s) ~ Y(p)[A-s-Ap¥(s)]

for Re(s) 20 and |o] <1l . For obviously 1/¢ (s,e) e R if |po| <1

(see Theorem 6.1) and by formula (5.8) we obtain that

(A—S)QO(S) < (A-z)ﬂo(Z)
(8) E{ (0)-s U { z(s-z)[y(p)-2z] dz

c
for Re(s) > O whenever ¢ is a sufficiently small positive number. The
integral on the right-hand side of (8) is equal to -27i times the sum
of the residues of the integrand at the poles z =s and z = y(p) .

Thus we obtain (7).

Second Example., Suppose that

(9) . $(s) = y(s)al-s)

for Re(s) = 0 where y(s) and a(s) are Laplace-Stieltjes transforms
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of nonnegative random variables ard o(g) is a rational function of s .

Then we can write that

T_r__m-l(s)
m
I (a.+s)
i=1 *

(10) a(s) =

for Re(s) > O where m is a positive integer, nm_l(s) is a polynomial
of degre < m-1 and Re(ai) >0 for 1i=1,2,...,m . The last statement

follows from the fact that necessarily |a(s)| <1 if Re(s) 2 0 .

If |p| < 1, then the equation

| m
I .
| I (a;-8) = pm__,(~s)¥(s) =0
i=1

has exactly m roots s = yl(p), Y2(p),..., Ym(p) in the domain Re(s) 20 .

This can be proved by using Rouche’ 's theorem. We shall show that

m
(12) lon_1 (8)u(s)] < |i-21 (a;-s)]

if either Re(s) =0 or |s| 2R, Re(s) 20 and R is large enough.

If Re(s)

If Re(s) ™ and let |s] » = , then the

v

0 and if we divide (12) by |s
left-hand side tends to O , while the right-hand side tends to 1 . Thus
the inequality (12) holds if Re(s) >0, Is| 2R and R is large enough.
Accordingly, (12) camnot have a root in the region {s:Re(s) 20, |s| 2R}
if R 1large is enough., Since (s) is regilar in the domain Re(s) > O
and continuous for Re(s) > O , we can conclude by Rouch€'s theorem that

(11) has the same number of roots in the domain {s:Re(s) > 0, |s| <R} as

O, then |oy(s)a(-s)| < p < 1 which implies (12) for Re(s) = G .
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m
1H1 (ai~ s) = 0.. If R is large enough, then the latter equation has
exactly m roots in this domain. This proves the statement.

Accordingly, we can write that

+ -
(13) 1-py(s)a(-s) = ¢ (5,p)0 (s,p)
for Re(s) =0 and |p| < 1 where
m
| igl (a;-8)-pm _, (-s)¥(s)
+ -
(14) ¢ (s,p) = —
I (Yi(p)— s)
i=1
for Re(s) > O and
) - m v,(p)-s
(15) ¢ (s,p) = T s
i=1
for Re(s) < O . These functions satisfy the requirements Ais By A3
and B)s By, B3 respectively in Section 6.

By formuila (15.10) we can write that

(16) [1 - ev(s)a(-s)] E 5 (s)p" = 2 (s20) .
n=0 n Q—(O,p)

1 ((- —S0- 597
i=1 ¥;(°) 4

for Re(s) =0 and |p| <1 . If we express (16) in the form

m

v n_ 0 S\
(17) [.El(ai-s)_pw(s)ﬁmrl(-s)] nﬁo ? (s)o” = izl{ai(l— ?;TET)Ka

then (17) beccmes valid for Re(s) > O and |p| < 1 which follows

immediately by analytic continuatiorn.
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Third Example. Let us consider the previous example with the

modification that
(18) ¢(s) = a(s)y(-s)

for Re(s) = 0, that is, the sequence of random variables Eqs Epsenes Esens

in the previous example 1s replaced by the sequence —51, -52,;.., —En,... .

By using the results of the previous example we can write that

+ -
(19) - 1-pa(s)v(-s) = @ (5,p)® (s,p)
for Re(s) =0 and |p| < 1 where now
m y.(p)t+s
+
(20) 2 (s,0) = N (F=z—)
i=1 1
for Re(s) z 0 and
m
) izl(ai+8)-onmfl(5)w(—8)
(21) ¢ (s,0) = —
i (Yi(p)+S)
i=1
for Re(s) £ O . These functions satisfy the requirements Al, A2, A3
and By, B, B3 respectively of Section 6.
By formula (15.9) we can write that
o + m
. . C ¢ (0,p) S 2, 8 371
(22) (1-p) [ e (s)o” = =p=2B) = 1 {(I+ —=5)(1+ 2=) 7}
= n o (s,0) 1=l Y110 8y

for Re(s) >0 and |p| < 1.
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Next we shall give two examples for finding the generating function

of the maximal partial sum of discrete random variables.

Fourth Example., Let us assume that €15 Epseees & . are mutually

n’oc

independent and identically distributed randem variables taking on integers
K1 3 4 == = = 3 e
only. w;’lte T El+. oot En for n=1,2,... and 29 0 . Our aim is

to find the generating function of n;l = max(;o, Cl”"’ cn) . Let us

write

: n
(23) u,(s) =E{s "}
for n=0,1,2,..., and |s| <1 .

In what follows we suppose that
En 1

(24) E{S } = a(s)b(-é-)
for |s| =1 where a(s) and b(s) are generating functions of non-

negative discrete random variables/and b(s) is a rational function of

s . Then we can write that

(25) b(s) = L

for |s| <1 where m1(s) is a polynomial of degree sm-1 . Since

lb(s)|] <1 for |s| <1, it follows that le.l <1 for r=1,2,...,m.

. - 1
2 . a) = - - ’ (L
In this case we have Uo(b) =1 and un(s) If un_l(s)a\s)b\s)}
for n=1,2,..., and |s| =1 . If for Re(s) = 0 and for lo] <1

we have

4

/\/ taking on integers only
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(26) 1-0a(s)b(2) = g' (5,0)8 (5,0)

where g+(S,o) and g (s,p) satisfy the requirements (al) s (az) and

(bl)’ (bg), (b3) respectively in Section 12, then by Theorem 12.2 we
obtaln that
@) [ ou (s)e” = >

T —
n=0 g (s,0)g (1,0)
for |s| <1 and |p| <1.

1If o] <1 ,then

|

m 1 m
(28) los™n _, (Slals)| < Iril(s—er)l

for |s| =1 and hence by Rouché's theorem we can conclude that
m m 1
(29) I (=8 )-esm ,(S)als) =0
r=1
has exactly m roots s = Gr(p) (r =1,2,..., m) in the unit circle

|s| < 1. Thus we can easily see that in (26) we can choose

m

m 1
. ] Iil(s—lsr,)—ps -1 (5als)
(30) g (S,D) - m
I (s=6_(p))
r=1 r
for |s| <1 and
, _ m s-6_(p)
(31) g (Ssp) = I (—S"B )
r=1 r
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for |s| > 1 . Finally, by (27) we obtain that

m n 1 = w1805 ()
() [T ()  ©a@] T u ()" = 1y — ]

for |s| <1 and |e| <1 . The distribution of n  1is uniquely

determined by un(s) .

Fifth Example. ILet us consider the previcus example with the

modification that

| 3
(33)} E{s Ty = a(-qs‘—)b(s)
for |s| =1, that is, the sequence of random variables £, Eoyeces Eseee

in the previous example is replaced by the sequence -F,l, —52,.. .y —gn,... .

By using the results of the previous example we can write that

(34) 1-pa(b(s) = g (5,0)g7(5,0)
for |s| =1 and |p| <1 where now

m s-8_(p)
(35) g (s,0) = 1 (55

r=1 r

for |s| <l and

n 1
I (-8 s)-pm 4 (s)a(3)
(36) £ (s,0) = T
T (s=6(p))
r=1

for |s| > 1 . These functions satisfy the requirements (al), (a2) and

A
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(bl), (b2), (b3) respectively in Section 12.
Finally, by (27) we obtain that

© n m l—BPS l‘dr(p)
(37)  (1-p) nzo u (s)e™ = r_f_l{(l-sr )(s—ér,(p))}

for |s] <1 and |e] < 1.
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19, The Method of Ladder Indices. In this section we shall present:

another method for finding the distribution of the maximal partial sum of
mutually independent and identically distributed real random variabies.
This method is called the method of ladder indices and is due to

W. Feller fhol.

First we shall formulate a simple combinatorial theorem, then we shall
deduce several consequences of this theorem and finally we shall provide
a new proof for the formula cf Pollaczek and Spitzer which has already been

proved in Section 15,

‘Let Xys Xpseens X be n real numbers. Consider their partial
sums 55 =0, s = xto.tx, k =1,2,...,1) . We say that 1
(1 =1,2,..., n) 1is a ladder index of (so, Sqseees sn) if s;> 54 »

. > Sseees S. > S,
S 02 2 71 i-1

Consider the n cyclic permutations of (xl, X5seees Xn) :

Co = (xl,..., xn) > g ='(x2,..., xl),..., Crag = (Xseves X 1) -
Denote by Sév) (k = 0,1,..., n) the partial sums in the cyclic

permutation C, , that 1is,

o) (Sv+k_sv for k=1,25¢e0., D~v ,
(1) s, =l
S —Sv+ Syt for k =n-v+tl,..., n .
Theorem 1. ILet S > O . T us consider all those cyclic
permutations among CO’ C]"""Cn—l in which n 1s a ladder index.
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If the number of such cyclic permutaticns is r , then r > 1 , and

each such permutation has exactly r ladder indices.

" 'Proof. PFirst we shall prove that r > 1 . Choose v such that

> >'s >s

Sy > Syseees S, . Then in Cv the

S(v)
n

F‘ S ’” 0 e S
“v-1 2 Py vHl2°2 Py

= sn is maximal and sc n is a ladder index in Cv .

n

partial sum

Without loss of generality we may assume that n is a ladder index

in CO P that 1s, in the original arrangement of the n elements

X Xgseeve X o 'Then we have s_>s, for 1i=0,1,,..., =1 , Now
1’ 2’ ] n n i 3-+-3> 3

n is a ladder index in C if and only 1f s > s, =0 , 8 > S.,...
v v \ 1 ?

o)

. (v) _ = .
s > s\)_1 . For/(sk = S, - Sv+ S <8, for k = n-v+#l,..., n-1 and

v k-ntv

(v .
S, )i= Syt~ Sy < Syek < Sp for k=1,2,..., n-v , and the converse is also true.

That 1s n 1is a ladder index in Cv if and only if v is a ladder

index in the original arrangement C Thus the number of permutations

9 -
CO, Cl""’ Cn—l in which n 1s a ladder index 1s equal to the number
of ladder indices in C. . Hence the theorem follows.

0]

For example, let X = -1, X, = 1, X3 = 2, Xy = 1. Then
CO = (-1, 1,2, 1), Cl =(1, 2,1, -1) , C2 = (2,1, -1, 1) , C3 =

(1, -1, 1, 2) and the partial sums in C, are (0, -1, 0, 2, 3) , in C

0
are (0, 2, 3, 2, 3) , and in C3 are

1

are (0, 1, 3, 4, 3) , in C,

(0, 1, 0, 1, 3) . There are two cyclic permutations Cy and C3 in

which 3 is a ladder index and both C. and C, contain exactly 2 ladder

0 3
indices which are underlined in the above examples.

/('these conditions imply that
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We note that an analogous thecrem can be formulated for the so-called
weak ladder indices. We say that i (i = 1,2,..., n) 1is a weak ladder

index of (SO, Sqseees sn) if s

‘Theorem 2. let s > 0 . let us consider all those cyclic

n

permutations among CO, Cl’”' R Cn in which n 1s a weak ladder index.

If the number of such cyclic permutations is r , t_h_@_i_i r>1, and each

such permutation has exactly r ladder indices.

Proof. We can prove this theorem in exactly the same way as we

proved the rrevious theorem.

Now let us assume that F’l’ 52,..., 3 is a sequence of -

,rl, LN )
rutually independent and identically distributed real random variables.
; | . = 3 = +. LN 3 " > - I8

Define Z’O 0 and ;n E"l + En for n>1 Denote by o,

(n=1,2,...) the probability that the first ladder index is n in the

SEQUENCe Ty Lyseces Cpppeees that is,

(2) P

N Nlj{;l;o s ;25__0,..., ;n_léo,, L, > 0t .

Let

s n
gl Pn®

(3) 7(z)

for |z| <1 . Denote by pr(lr) (n=r, r+l,... 3 r=1,2,...) the

probability that the r-th ladder index is n in the sequence Zgs Gyseres

(’n”“ . Then we have

. - n-1 _
(1) péf) = 1 p{T Ly

jep-1 4 e

(1)

= 1 Yoy
n P - It follows from

for r=2,3,... aad n=r, r+l,... where p
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(1) that

(5) y 05" = () I

n=r

for v =1,2,...and |z] <1.

Theorem 3. If |z| <1, then

Z Plz >0}
1-e n=1

6y . w(z)

Proof. Let (n) = (;(k) ees s(k)) (k = 1,2,..., n) be the n

cyclic permutations of (&l,..., E ) . For each Cl({n) let us define the
parfthd sums as ?;(k), Cik),..., Q(k) . PFix an integer r (r = 1,2,..., 0}

and define x, =1 .if n 1is the r-th ladder index of C(n) and X, =0
k k k

otherwise. We have NE{XK =1} = pr(lr) . On the other hand by Theorem 1

- _r _
(7) /\E{Xk 1} = E{X } H«E{Xl.'-“'-l- xn} = H»E{Xl-h“-‘- Xp = r} .
Hence
(r)
n p
n_ _1

for n=1,2,... . Let us multiply (8) by 2" and add for n = 1,2,... .

Then we obtain that

(r)
© n © n p <o o«
- 1 ¢ (®)n
J Zpg >0y= ) ] Se—=1 21z =
=1 B 0 =1 r=1 r r=1 Fp=r O
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for |z| <1 . This completes the proof of the theorem.

In what follows we shall mention a few corollaries of Theorem 3.

We have
I £
— P{z <0}
o n n:]_n e IS
(10) Y P{c_ <0 for O<r<nlz =e
n=0"
for |z| <1 . For (10) can also be expressed as
- v 1 T n
1+ §J (Q-P-e.=p )z = === = ¥ (p,+...4P )2 =
i n=1 1 n 1-z =1 1 n
(11)! ® n ® .n
J Zopg 0y + J Z-
=l o 0 n=1 "
_lal)
1-z
for |z| <1 . This proves (10).
We have also
w ) no ey 0
(12) 1+ Zﬁ{ﬁj <, for j=0,1,...,n-1}2" = ¢ L |
n=1 ,
for |z| <1 . For
7 ()
(13) Pz, <z for j=0,l,...,n-1} = § bp
o~ ] n pep D

and hence (12) can also be expressed as

- n (r) n ° < (r) n
1+ § I piiz=1+] ] pllz =
n=l r=1 r=1l n=r I

(14)
- v Rt
=1+ rzl [TF(Z)] = -I-_TTTH
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for |z| <1 . This proves (12).

Finally we note that

(15) 1+ ) P{;j <t for j= O,l,...,n}zn = e

n
n=1 "

for |z| < 1. This follows immediately from (10) if we apply it to
the random variables —£1, —£2,..., «En,... .

T= T,= Te=
Denote by/\pl’Apl+ p25...,/pl+...+ Preseee the successive ladder
AN £

indices in the sequence Zpys Gyaeens Cppeee It is easy to see that
{ok } is a sequence of mutually independent and identically distributed

random variables for which
(16) Ploy =nl =p,
for n=1,2,... and k=1,2,... .

Furthermore, ¢ , ¢ 4o ~ T seees T =T .
pl pl p2 pl pl+o.o+ pk pl+.oo+r‘k_l

are also mutually independent and identically distributed random variables.

C

860

Next we shall be interested in finding the expectation

-1
17 ?{e

} = ) Ee 8(py= 1)}z
n=l N

1 Py
z

for Re(s) > 0 and |z| <1 . Here 8(p;=n) is the indicator variable
of the event { p1= 1 }, that is, é(plﬂ n =1 if p{= N and 6(p1= n) =0
if oy #n . Knowing (17), the joint distribution of ¢ — and oy can

1
be obtained by inversion. If z =1 in (17), then we obtain the
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=S
p :
Laplace-Stieltjes transform E{e L for Re(s) 2 0, which determines

N

the distribution of cp . If s=0 1in (17), then we obtain the
1 P
generating function w(z) = E{z l} for |[z| <1 , which determines the

distribution of eq - The following result has been found by G. Baxter [4{],

" Theorem 4. If |z| <1 and Re(s) 20 , then

8

n
Z -3SX ..

~8C - ) =1} e "™ P{O < < x}

plzpl n=1" X one 1T

}=1-2 .

O~ 8

i t~1

(18)  E{e

" Proof. let I be a subinterval of (0, «) . Denote by pér)(I)

|

the brobability that the r~-th ladder index is n and &y € I. In
| .

exactly the same way as we proved (8), we can prove that

n pér)(l)

(19) =P e T}

=1 r

for n=1,2,... . For if we add the condition Z, € I to the conditions
in (7), then each equation remains valid. By (19) it follows that
n

n vz
= ] =Pz eI}
1 n=r = 0o~ n

H3
—~
o~ 8
o
—
3
~—
—~
}_l
~
N
~
|

(20) )
r’:
for |z] < 1.

Now let us suppose that, in particular, I = (0, x] where O X<
and in this case let us use the notation
(r) _ . (r) _ ) . . ;
(21) Gn (x) = P, (I) = P {the r-th ladder index iz n and L, < x}

for x20 and 1 <r<n. Inparticular, we shall write Gél)(x) =

G (x) , that is,
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\ N G) 5
(22) Cn(x) =D, (1) °£{Cl £0500058,720,0<¢ 2%}
for n=1,2,... and x> 0.
Evidently we have

n-1 x
Gf*fl)

A (r) _
(23) G (x) jzl é hej

for r=2,3,... and n=r, r+l,... . Let

00

(r), .\ . -sx .(7)
(24)“ v, (8) = é e dg" (x)
and }
@5) Ya(®) = [ ™ ag (0

for Re(s) 20 and 1 <r <¢n . By (23) we obtaln that

[- o} [+ 2]

(26) I v = 0] v ()BT
n=r n=1

for r=1,2,... and Re(s) >0 and |z]| <1 .
By (19)
s x}

n
(21) I LaP=Lr0<e

for x>0 and n=1,2,... . Thus by (26) and (27) we get
n [+

- -3 r—zl—f e—sxdxlij[an;:x}
(28) T y.(s)zl=1-e n=1 O
n
n=1
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for Re(s) 20 and |z| <1 . This completes the proof of Theorem 4.

We note that

(29) 1+ § 2% e_sxdxﬂlj{cj <t <x for §=0,1,..., n-1} =
0

n=1

n
z_ ¢ ~5X
n

e dxa{o <z, < x}

oO— 8

)
_ _n=1
=e

for Re(s) >0 and |z| <1 . This follows from the following reiation

(30), - Pz, <

n [+
. _ _ (r)
3 n <X for j=0,1,..., n-1} = gl G (x)

|

for ix;O and n=1,2,... . By (30) we have

(31) 1+ 7§ - é e’sxdiwlf{z;]. <g sx for j=0,1,..., n-1} =
n= ‘ \

1

1

1- z Y (S)Zn
=7 n
for Re(s) 2 0 and |z| <1 which is exactly (29).

Now we are in the position to provide another proof for the theorem

of Pollaczek and Spitzer (Theorem 15.1).

Theorem 5. Let n = max(co, Cyseees Cn) and
(32) ¢ (s) =Ele

for Re(s) > 0 and n=0,1,2,... . If Re(s) >0, and |z| <1 , then

we have



. ) rZT' [ e agkic <x)
(33) o ()2t =TT T -
n=0 ©w n w
Z SX .y
. n=z=1 Té (e ~"-1)d Plz <x}
1z |

Proof.  We can write that

n
P{n_=<x} = XNIj{ci<;j for Of__i;j,cj;a;jfor J2izn

an " j=

<0 for r=20,1,..., n=j}

for n=1,2,... and x 2 0 . For the event {nn < X} can occur in

several mutually exclusive ways. In the sequerice Lo Cyseses T the

first maximal element is 2 and gy L% Coviously Plg; <z, for
A~ - J

J£1zn} =N§{cr <0 for r=0,1,..., n=j} . If we form the Laplace-

Stieltjes transform of (34), multiply it by zn, and add for n = 0,1,2,...

then we obtain the product of the following two expressions.

The first expression is

(35) 1+ § 2z [e™*aPlz, <z, <x for O0<iz<j}=
10 LR - -

-
4

v n
1 - Elyn(s)z

o n -]
z -sX
Z — [ e d P{O<c_<x}
S e

which is exactly (29), and the second expressicn is
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T n 1-n(z
1+ Z zP{z, <0 for r=0,l,..., n}=—T}T_—§——)—=

(36)

which is exactly (10). This completes the proof of (33).
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20. Combinatorial Methods., 1In some particular cases we can use

special methods for finding the distribution of

(1) n, = max(0, £y, EqF Ensenny Bt Eotult £ )

for n=1,2,... . In what follows we shall show that if 2L 52,..., &
are either mutually indeperndent and identically distributed discrete random
variables taking on the integers -1,0,1,2,... (or 1,0,-1,—2,...)3or inter-
changeable discrete random variables taking on the integers -1,0,1,2 (or
1,0,-1,-2,...), then we can find the distribution of (1) in a very simple way

by using the fellowing auxiliary theorem.

‘Lemma 1. let kl, k2,..., kn be nomnegative integers with sum

kit kytoot k) =k <n . Among the n cyclic permutations of (kl’ kg,,.i,kn)

there are exactly n-k for which the sum of the first »r elements is

less than r for all r=1,2,..., n.

Proof. Let kr+n = kr for r = 1,2,...,’and set o, = kl+...+ kr

for r=1,2,... and o = O . Define

1 if i—oi>r'-or for r<i<rin,

(2) 8, =
O otherwise,
and
(3) v, = mn{i-o, for r <1 g rn}

for r=20,1,... . Evidently Gr for r=20,1,... . Since

= Ve Vp

= = = = + n-k
o} cr+ 9, for r =0,1,..., we have 6r+n sr and Yoy = Yo
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for r=0,1,... . By using the above notation, we can state that among
the n cyclic permutations of (kl, Koseres kn) there are exactly

(4 L8

permutations for which the sum of the first r elements is less than r

for r =.1;2,..., n . This completes the proof of Lemma 1.

A Corollary. It follows immediately from Lemma 1 that among the n!

permutations of (kl, kg,..., kn) there are exactly (n-1)!(n-k) for

which the r-th partial sum is less than r for all r = 1,2,..., n .

It might be interesting to mention briefly the historical background

of Lenma 1. If we assume that each kj (i=1,2,..., n) 1is either O
or 2 , then the above corcllary of Lemma 1 reduces to the classical
ballot theorem which was first formulated in 1887 by J. Bertrand [ 5] and
proved in the same year by D. André [2 ]. It should be noted, however,
that this particular case can also be deduced from a result of duration

of plays which was found in 1708 by A. De Moivre [ 14 p. 262] and in a

different version in 1718 also by A. De Moivre [15 p. 121]. A. De Moivre

did not give proofs of his results. Proofs for De Moivre's result were

given only in 1773 by P. S. Laplace [39 pp. 188-193] and in 1776 by J.

L, Legrange [ 38 pp. 230-238]. See also W. A. Whitworth [70], [71 1.

If we assume that each ki @A=1,2, ..., n) is either 0 or
utl where wu 1is a positive integer, then the above mentioned corollary
reduces to a generalization of the classical ballot theorem, which was

, A
formulated in 1887 by E. Barbier [ 3 ] and proved in 1924 by A, Aeppli [ 1 1.
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See also A. Dvoretzky and Th. Motzkin [17], H. D. Grossman [25], S. G.

Mohenty and T. V. Narayana [46], and the author [ 57], [ 58l.

Now we shall prove the corollary of Lemma 1 in a slightly more

general form which we shall use in what follows.

lemma 2. let Vi1 Vosees Vo be, interchangeable random variables

taking on nonnegative integers. Set Nr = \)1+ \)2+...+ v, for

r=1,2,..., n . Then we have

S

if k= 0,1,...,0,

{1 .“
(5) PN, <» for r=1,2,..., nan =k} =
~ LO otherwise,

where the conditional probability is defined up to an eguivalence.

Proof. We can easily deduce Lemma 2 from Lemma 1; however, in what
follows we shall give a separate proof. We can prove (5) easily by\‘
mathematical induction. If n =1, then (5) is evidently true. Suppose
that (5) is true when n is replaced by n-1 (n=2,3,...). We shall
prove that it is true for n too. Hence by mathematical induction it
follows that (5) is true for all n =1,2,... . If k2>n , then (5)

is obviously true. Iet k < n . By assumption

l/‘\

1--d—if 0<]

n-1i
n-1 4

6) E‘{Nr <r for r=1,2,..., n—l%Nn_f jt = .
Al 0 if J

fiv

n-1 .

Thus by the theorem of total probability
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n-1 .
1 = IN = 11 = — ..g__ ] T = 9 = =
PN, <r for r=1,2,..., n|N=k} o1 PN JIN =k}

=0
(7)
1 (n-1)k _
(n-1) n

1 -

=1- =5 E(N _[N=kl=1-

S

for k=0,1,..., n=1 . For NEJ{Nn_1|Nn =k} = (n-1)k/n .

It follows immediately from (5) that

(8) PN, <r for r=1,2,..., n} = E{[1- =]

where [x]+ = max(0, x) ._Xﬁé note that (5) and (8) remair valid under
the slightly weaker assumption that Vis Voseees Vo are cyclically

interchangeable random variables taking on nonnegative integers only.

It will be convenient to express Lemma 2 in the following equivalent

Wa.y.

Lemma 3. Let V] Voseees V) be interchangeable random variables

taking on nonnegative integers. Set Nr = v1+...+ v, for r=1,2,..0.,

and No =Q . Define pk) (k=0,l,..., n) as the smallest r = 0,1,...,Nn

for which r-N, =k if such an r exists. We have

(9) Plo(k) = 3} = $PON, = 5 - k)

for 1<kzj<n,eand P{p(0)=0=1,

Proof. We can interpret p(k) as the first passage time of r - N,

(r = 0,1,..., n) through k (if any). Obviously Nf{p(o) =0} =1.

For 1<k 2 J <n we can write that




I1-38

Plo(k) = j} =A§{r—Nr <k for 1<r<j and j - Nj =k} =
(10) = B{Nj- Nr < Jj-r for lir<j and j - Nj = Kk} =
. . . : . k .
=»E{Ni <i for 1<1i<J and Nj = j-k} = jﬂwﬁNj j-k}

where the last equality follows from Lemma 2.

An Ldertwtv. We have the following obvious relation for

lss<kzjzn
Jl
(11) Z Plo(s) =1, p(k)-p(s) = = Plp(k) = j} .
i=1"" =

If we take into consideration that p(k)-p(s) has the same distribution

as p(k-s) , then (11) can also be expressed as follows:

J=1 )
(12) D3R Poys ies, Np= gk = SR, =g -k
151 1

J N

Interchangeable random variables, By using Lemma 2 we can easily

find the distribution of (2) if gl, 52,..., gn are interchangeable

random variables which can be expressed either as Ei = vi-l (1 =1,2,...,n)

or as &; = l—vi (1 =1,2,..., n) where Vis Voseees v, aTE inter-

changeable discrete random variables taking on nomnegative integers only.

Theorem 1. Let Vis Vyseees Vo be interchangeable random variables

taking on nonnegative integers only. Let Nr = vl+ v2+...+ V., for

r=1,2,...,n and Ny =0 . We have

P{ma.x (N—I‘)(k}:P{N <n+k}—
AN r o~ 1
1grn
(13)
n:l n-j
- (- F:“AP{N = j+k , Nn = j+k+e}
J=1 2=0 =g

for k=0, +1, i?,..? . If k <0, then both sides of (13)_are. O .
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Proof. We shall prove a slightly more general formula from which

(13) follows. If i =1,2,...,n-1 , and k =0, +1, +2,..., then
P{Nr <rtk for r=1,2,..., n and N < ntk-1} =

(1)
- n-1i n-i-j .
= Kl } o= - =) = i = i
Flly = et J’«El zzo ( n-J PPWNy= e, Wy JHeHL)

v

It is sufficient to prove that the subtrahend on the right-hand side of
(14) is the probability that N, 2 rtk for some r=1,2,..., n-1 and

Nn < iotk=-1 . This event can occur in the following mutually exciusive

~

ways: the greatest r for which N,zrtk is r = (j = 1,2,..., n-1).

|

Then, NJ.= Jtk  ard Nr' <rtk for r = j+l,..., n , or equivalently,

|
Nr— Nj

<r-j for r=j+l,..., n . By Lema 2

. _ g - 3 = it} = ] - —%o
(15) NI:{NI,—- Nj <r-j for r= J+l,...,n}Nj = jtk, N = jtkte} = 1 e

if 0 < %2<n-j and if the left-hand side is defined. If we multiply (15)
by P{NJ. =J+k , N = Jtk+2} and add for all (j, ¢) satisfying 1<€j &
2 J+ 2 sn-i, then we obtain the subtrahend on the right-hand side cf

(14), If 1 =1 1in (14), then we obtain (13) which was to be proved.

If, in particular, k = O , then by Lemma 1 we can write also that

n~-i

(16) AE{NI, <r for r=1,2,...,n and Nn < n-i} = j-z:l(lm %)NE{N; Jj}

fOl" i = O,l’oo', n_l .

Theorem 2. Let Vis Voseees V) be interchangeable random varizbles

taking on nonnegative integers only. Let Nr' = vl+ Vateeot Ve, for
~

r=1,2,..., n and NO=O. We have
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r
(17) P{ max (r—Nr) <kl}=1- 73
™ lzrsn =

for k=1,2,... .

Proof. We shall find the probabllity of the complementary event of

{ max (P_Nr) < k} , that is, the probability that N L Tk for some
1gr<n '
r=1,2,..., n . This latter event can occur in the following mutually

exclusive ways: the smallest r such that Nr = r-k 18 r=] (J=k,...,n). Then

N j=j -k and Nr >r-k for r=1,...,Jj-1, or equivalently, Nj—Nr' < j-r for
r=l,...,J=1 . By Lemma 1

(18), NIj{NJ.- N, < Jj-r for r= l,...,J—lle = j-k} = JE
for |0 < k £ J where the conditional probability is defined up to an
equivalence. If we multiply (18) by P{N y = J=k} and add for k< j<n,

then we get the probability of the complimentary event. This proves (17).

In a similar way as (17) we can prove the following more general

formula

le’{r—Nr <k for r=1,2,..., n and n-N_ < k-i}
(19)

= ,E{Nn > nti-k} - : {Nj =J-k , N, > nti-k}

Ce -
If &1
e

for n=1,2,..., k=1,2,...and 1 =0, +1, +2,... .
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Independent Random Variables., If we suppose, in particular, that

Vis Voseess Y are mutually independent and identically distributed

random variables taking on nonnegative integers only, then Theorem 1 and

Theorem 2 can be expressed in somewhat simpler forms.

As previously, let us write Nr = vt vt ot Vo, for r=1,2,..., n

1 72

and NO = 0 . Furthermore, let us introduce the notation

(20) Pik(n) =,EﬁNr— r<k for r=1,2,...,nand N-n<k-i}

for n=1,2,..., 1 =0, +1, +2,... and k =0, +1, +2,... . Llet Pik(o) =1
£ kzi and P, (0) =0if k<i. Obviously B, (n) =0 if k<O, We note
l . -

alsoathat POk(n) lk(n) if n>1.
Iet us 1ntroduce also the notation

(21) { Q(n) = Plr-N, <k for r=0,1,...,n and n-N_ < k-i}

for n=1,2,,.., 1 =0, 4, #¥2,... and k=1,2,... . Let @, (0) =
if k2> i and Q (O) 0O if k< i . Obviously Q QOk(n) if

i<0,

In case of independent random variables Theorem 1 or more generally

formula (14) reduces to the following one.

Theorem 3. If Vis Voseess V2T mutually independent and

identically distributed discrete random variables taking on ncnnegative

integers only, then we have

n-1
= I } - - { = 9
(22) Pik(n) Ng{xn < ntk-i} j£1 Pio(n JZEfNj j+k}

for n=1,2,..., 1 =0,1,2,... and k =0, +1, +2,..., and
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n-i X
b = {7~ ‘.:'_ = 3
(23) Pio(n) Z (1- 2PN, = J}
Jj=C
for n=1,2,... and i =0,1,2,... . We have PiO(O) =1 for

1=0,1,2,c00

Proof. If we take into consideration that in (14)

‘ A o= 4 = {4 = F , = il < L=
(24) Nlj{Nj J+k Nn JHk+e} E{NJ J+1r}A}z{Nn_J L}

and if we use (16), then we obtain (22) for i > 1 . If we define

PiO(O) =1 for 1 >0, then we can easily see that (22) remains valid

for 1 =0 too. Formula (23) is exactly (16).

|

‘In case of independent random variables Theorem 2 or more generally

formula (19) reduces to the following one.

Theorem 4. If Vis Vpsees, v, BTE mutually independent and

identically distributed discrete random variables taking on nommegative

integers only, then we have

n
. k . : \ s
(25) Q) (n) = PN, > ntik} - jgk T P{NJ. = J—k}E{Nn_J. > n-j+i}

for n=1,2,..., k=1,2,...and 1=0, 41, +2,... .
" "Proof. Since in this case
(26) AE{NJ = J-k , Nn > n+i-k} =h?{Nj = j_k%EﬁNh’j > n=j+i} ,

we obtain (25) by (19).
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An Infinite Sequerce of Independent Random Variables. Now let us

suppose that Vis Voseees Vosees is an infinite sequence cof mutually
independent and identically distributed discrete random varisbles taking
on nonnegative integers only. In this case we can define Pik(n) and

Qik(n) for every n = 0,1,2,..., and our next aim is to find the generating

functions
(27) ) %ﬁm#&
n=0 k=0 ,
and
(28) I 1 quzw
n=0 i=0 -
for |z| <1l and |w| < 1.
We shall introduce the notation
(29) Ply, =3} = hj
for j =0,1,2,... and
\)n o .
(30) E{z "} =h(z) = | h,z
~ j=o J

for |z| <1 . The generating function h(z) is regular in the circle
lz] <1, and continuous in |[z| ¢ 1 . Obviously, |h(z)| £1 for lz] <1 .
By (30) we can write that

N
(31) E(z Y = [n(2)]F

for k =0,1,2,... «

We shall need the following auxiliary theorem.
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Lemma 4. If |z| <1, then the equation

(32) w = z h(w)

has exactly one root w = §(z) in the unit circle J|w| <1 , and

(33) 6 = [ Epm = noie?
: n=k ™ .

for k=1,2,..., and |z|<1,

Proof. If |w| =1, then |z h(w)| < |z|] <1 and thus by Rouché's
thecrem it follows that (32) has the same number of roots in the domain
lwl| ¥ 1 as the equation w = O , that is, exactly one root. We shall

dens#e this root by §8(z) .

If f(w) is a regular function of w in the domain lw{ < 1 ,then
by Lagrange's expansion we obtain that

D g% Lo () [h(x) T

v Z
() e = £(0) + [ A RO

=0
for |z| <1 . If we apply (34) to the function f£(x) = x° (k = 1,2,...),

then we obtain (33).

Purthermore, we note that

YooK T = 4}l = . 2h(w)
G I W Jiyg{NJ’ g = 2

for |z h(w)| < |w] £ 1 . This can be seen as follows.

By (31) we cbtain that
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1 PN, = JHchE = [E(—V,V—)-]j
(36) k= -5 "

.

for j =0,1,2,... and 0 < |w| <1 . If we multiply (36) by =z’ and

add for j = 1,2,..., then we get (35).

Theorem 5. If Vis Voseees Vpsene is a sequence of nutually

independent and identlically distributed discrete rahdom variables taking

on nomnegative integers only, then we have

I Nk [1=8(z)InGws ~ (=m)h(w)[6(z) T
O A R 6= = AN =R IO

n=1 k=0

for | [zl <1, [wl <1 and 1=0,1,2,... .

Proof. 3ince Pik(n) =0 if k < 0, we can extend the second
summation in (37) to -« < k < « without changing the sum. Then by

(22) and (36) we obtain that

py i n-i J'
(38) kj__fikmwk - o B - L P, o (n-3) 27

for 0< |w] <1,n=1,2,...and 1i=0,1,2,... . If n=0, then (38)

is equal to w/(1-w) for |w| <1 .

By (23) it follows that

o

, n_ [s(z)1
(39) Z IiO(n)Z -T_:m‘

n=i

for |z| <1 and i =0,1,2,... . This can be proved as follows. By

(23) and (33) we have
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0 <o n~i o n
3 . . con J s .
F P, m)zt=§ 27§ (-DPiN=31= § 2% 7 LPIN=n-j)=
£ 1 nei j= N 11 nei 321 Na N
(4o)
_ v v 4 N i [
= I I gPNs=nglzt = § [8(2)] = sy

for |zl <1 and 1i=0,1,2,... . If i=0 ,then (40) remains true

because Pyy(n) = Pio(n) if nz1 and P (0) =1 .

Since PiO(n) =0 if O0<n<i, it follows from (38) and (40) that
ot v nk _ wj’z h(w) .[6(2)]1 , 2 h(w)
A i =0 =) Rl = A= ol

for |z h(w)| <|lw|] <1 . By analytical continuation we can extend the
definition of the right-hand side of (41) to the domain |z} < 1, |w| <1

and thus we obtain (37).

" Theorem 6. If Vis Voseess V... 18 3 sequence of mutually

independent and identically distributed discrete random variables taking

on nonnegative integers only, then we have

5oy ni_z-[6(z2)1° _ zwh(o-wls(z)]
(42) nzl i£0 Q2 = s - Tl ole)

for |z| <1, |wl <1 and k=1,2,... .

" Proof’. By Theorem 2 we have

(13) Q) =1 -

k
5=k 9

: P{NJ. = j-k}

1R 3na b’

for 1< k < n . Hence by (33) we obtain that
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(44) 2~ 6(z )lm

E QOk(n)Z R

for |z| <1 . This proves (42) for w=0 .

By (25) and (43) it follows that

(45)  Qy ()= Qg (n) = PIN < nti-k} - Z
J:

= J-KIP{N_ . < n-j+i
. J 3 /N{ ] < n-j+i}

for n=1,2,..., kK =1,2,... and 1 =0, +1, +2,... . If 1 <0, then

is ecau (2 AR Y = s 4

(45) is O because by (21) we have Qlk(n, QOk(n) for 1 < O.
|
|
| If we take into consideration that

n= 1-w

@ k-n n
(i6) ] B0y < bt = £

for 0 < |w| <1, then by (!3) we obtain that

o . k-n n n
i _w “[h(w)] l k h{w) 1=J
(47) i£0 [QOk(n)—Qik(n)]“ = o Z 3" = J-k} [—-VT—]

for 0 < |w] <1 . Ifwe miltiply (47) by 2", add for n =1,2,..., and

use (33) and (44), then we obtain that

| Kk
- K - wlé(z)]
48y 2 [o(Z)] Z Z ()2t = 2 (w) = wl ]
Tow Lk S (T=w)w=zn() ]
for O0< |w| <1 and |zh(w)| < |w| . By analytical contirnuation we
can extend the definition of the right-hand side of (U48) for |w] < 1

and |z| < 1, and thus we obtain (42).
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The Use of Markov Chains. Finally, we note that Theorem 5 and

Theorem 6 can also be proved by using the theory of Markov chains,

First, we observe that if we define a sequence of random variables

n. (n=0,1,...) by the recurrence formula

n
» -
(49) n, = [nn_l—'l] + v,

for n=1,2,..., then
(50) Pl < k]no= i} = PN, < r+k for r=1,2,..., n and N g ntk-i}

wher% Nr = vl+...+ Vp, for r=1,2,..., n and NO =0 .,

' Accordingly, if Vis Vossees Vosees is a sequence of mutually
independent and identically distributed discrete random varizbles taking

on nonregative integers only, then by (20) we can write that

(51) Py (n) =Pln, < klno =i} .

n

It N is a discrete random variable taking on nonnegative integers
only and if o and the sequence {vn} are independent, then the
sequence of random variables {nn} forms a homogeneous Markov chain with

state space I = {0,1,2,...} and transition probabilities

It

0 and k>0,

hk if i

(52) Py = dbh gy iF 121 and kzi-l,

v

0 if 1>1 and k < i-1

where we used the notation (29).
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(n)

I'we denote by p (n =0,1,2,...) the n-step transition

(n) _

probabilities, that 1is, D, ik P{n = k[no i} , then we have

(53) P, (n) = Z p{)
for n>20,1>0 and k>20.

Theorem 7. We have

_ . o (n) e k [1~<S(z)]wl+l - z(l—w)h(w)[é(z)]i
G L k§o °n -3 (z) TTwzh () ]

for ‘ lz] <1 and |w] <1 where &(z) is defined in ILemma A4.

Proof. If h=0 or z =0 , tThen ¢6(z) =0 and (54) 1s obviously

0
true. lLet us suppose that ho >0 and z #0 . In this case 6§(z) #0 .
Let
. n . v (n)k
(55) U (W) = B{w Mfny =4} = § pihK
ni .. 0 K=0 ik
for |w| <1 . By (49) we have
(n-l)
U (w) - p.
- _ n-1,1 i0 - (n 1)
(56) U_, () = hGo)l . ]

for |w| <1 and clearly Up; 1 (W) = wb . Hence

) W 2 () T o
no_ n=0
(5T) n£O U.wz = )

(n) N
O

for {w] <1 and |zl <1 . If |z| <1, then the left-hand side of

(57) is a bounded function of w in the circle |w| <1 . Obviously
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the absolute value of (57) is 1/(1-~iz|) ir Jwlg1. If zfj <1,
then the denominator of the right-hand side of (57) has exactly one root
w = &§(z) in the unit circle |w| <1 . This rust be a root of the

numerator too. Thus it follows that

| oo _ [8(z)1F
(58) néo Pig'2 ~ [1-5(z)]

for |z| <1 . Putting (58) into (57) we obtain that

2 () nk_ [1-6@wr ez (l-nnens(z) 1
(59) n-z-o kzo Pic % 7 TT1=8 () Tw-zh(w) ]

|

for ‘ lz] <1 and |w| 21 . This proves (54).

By (53) and (54) we can obtain (37). If we subtract W' from (59) and

multiply the difference by 1/(1-w) , then we obtain (37).

Second, we observe that if we define a sequence of random variables

N, (n = 0,1,2,...) Dby the recurrence formula

(60) m =+ 1 1

1

for n=1,2,..., then

(61) Ag{“n‘n < k[?{o =1} = P{r-N, <k for r=0,1,..., n and n-N_ < k-i}

where Nr=v+...+ v, for r=1,2,..., n and N, =0.

1 o -

Accordingly, if Vis Voseees Vo yees 18 a sequence of mutually
independent and identically distributed discrete random variables taking

on nonnegative integers only, then by (21) we can write that
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for 1=0,1,..., k=1,2,... and n =0,1,2,... .

If is a discrete random variable taking on nonnegative integers

o
only and if ?‘—o

sequence of random variables { ﬁh } forms a homogeneous Markov chain with

and the sequence {vn} are independent, then the

state space I = {0,1,2,...,} and transition probabilities

l - (ho+aog+ hi) j_f k - o s
. - 1 .
(63) qj_k = hi+l_k 1f K = Lygevey l+13
| O if k > i+l ,

|

where we used the notation (29).

If we denote by q(n) (n = 0,1,2,...) the n-step transition

probabilities, that is, q(ﬁ) P{ﬁh = k[ﬁb =i} , then we have

(64) Q) = ] af

for n>20,1>0 and k2>21.

" 'Theorem 8. We have

A

) I 7 @t Qe 2lw-n(w) 1016 (2) L8 (2) ¥

n=0 k=0 ¥ (1-w) (1-2) [w-2h () ]

for |z| <1 and |w] <1, where $(z) is defined in Lemms 4.

" Proof. If hy =0 or z =0 ,then 6§(z) =0 and (65) is
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obviously true. In what fellows we assume that ho >0 and z #0 ,

in which case 6&(z) # 0 .

let us introduce the generating function

(66) v ) = z (Mt

for |w| <1 . If we take into consideration that

{ (n) _ (n-1)

(67) iy J.ZO 9 3%k

for n=1,2,..., 1 =0,1,2,... and k = 0,1,2,..., then we obtain that
_w-h(w) (n-1)

(68) (w) h(w)V 1 k(w) = o Yy

for n=1,2,... and |w| <1, and clearly Vo, (W) = WS . From (68) it

follows that

(1-w)w 4 Zlw-n(w) ] Z qéﬁ) N
(1~w) Lw-zh(w) ]

(69) z V (W)Z
n=0

for |wl <1 and |z| <1 . If |z| <1 ,then the left~hand side of

(69) is a bounded function of w in the circle |w| < 1-e where e is
an arbitrary small positive number. Obviously the absolute value of (69)
is < 1/(1~|z|)(~{w]) . If |z] <1, then the denominator of the right-
hand side of (69) has exactly one root w = §(z) in the unit circle

lw| <1 . This must be a root of the numerator too. Thus it follows that
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® ’ , Nk
(10 Lot = BT

for |z| <1 . Putting (70) into (69) we obtain that

> % : k+]. k
- () ni _ (1-w)(A-z)w + zlw=h(w)1[1-8(z)][s(z)]
m)$ﬁ%”" SED L EAIT= N 2

for |z| <1 and |w| <1 which proves (65).
By (64) and (65) we obtain that

a2 [ ] At - (-z)w(=)+ alu-h() 101-[5(2) 1)

n=0 =0 B (T-w) (1-z) Tw=zh(w) ]

for |z| <1, |w] <1 and k =1,2,... . If we subtract (1) / (1=w)

from (72), then we obtain (42).
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21. PROBLEMS

21.1. Let &l, 52, cees gn"" be mutually independent and identically
distributed real random variables having a continuous and symmetric
distribution. Denote by v the number of ladder indices among 1,2,..., n .

Prove that

H
h
K
ja] |
~
bl
;

P{v_ = k}

PN ¢
for k=0,1,..., n.

21.2. Let gl’ 52,..., gn,... be mutually independent and identically

-

distributed random variables for which AE{gn =1} =p and Ag{gn =-1}=q

where p>0,q>0 and ptgq=1. IlLet g, = EF et v B for

1

n=1,2,... and ¢ = O . Denoteby 1, (k=1,2,...) the k-th ladder

k
index in the sequence Zys Gyseces ;h,... . Find the distribution of Ty -

21.4. let €1 EZ,..., B e be mutually independent random variables

having the same stable distribution function Roéx) for which

o () = ["F @R (x)

-0

is determined by

T\

&£
-Clwl (l—iB sgn w tan —2,

log ¢a(w)

where ¢ >0 ,0<a<2,a#1l, -1 ;:8 <1. Let L, = gl+ 52

the k-=th ladder index in

P gn

Tk

the sequence CO’ gl,..., Tpoter o Find the distribution of Ty for

k=1,2,... .

.
/{l
;

21.3. In Problem 21,2 write M, = max(go,gl,...,gn) for n=1,2,... .

Determine P[’ﬂn >k} for k=1,2,,,. . ' '1
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21.5. ILet Vis Vogseees V. be interchangeable random variables taking

on nonnegative integers only. Set Nr = v1+ v2+...+ Vo for r=1,2,..., n

and NO =0 . Prove that

T -
E{ max (N~71)}= ] S-E{[Nj— i1t .
=1 I~

" Q<r<n

216. Let Vis V be interchangeable random variables taking on

cs e v
2? > "n

nonnegative integers oniy. Set Nf = v,

+ \,2+...+ V., for r=1,2,..., 1n

and NO = 0 . Prove that

-

E{ max (r—Nr)} =
4 ™ 0<r<n 3

21yl Let £1> Epseevs Ese.. De @ sequence of mutually indespendent

L

E([3-N Ty .
l M

and jdentically distributed real random variables. Set cn = £l+ £2+...+ gn

1,2,... and g = O . Find the expectation of n, = max(;o, Tyseeest )

for n

for n=1,2,... .

8
21.*.

independent sequences of mutually independent norinegative random variables.

let En = X" en for n=1,2,... where {xn} and {en} are

Let us suppose, in particular, that P{ep <x}=1- e_xx for x>0

4

where A 1s a positive constant. Find the distribution function of the

random variable n, = max (0, gl, £l+ 52,..., Eqte..t gn) .

21.?. Let & =x; 6, for n=1,2,... vhere {x,} and {6} are

independent sequences of nutually independent and identically distributed

nonnegative random variables. Let us suppcse, in particular, that
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for x>0,

1]
\ﬁ-
O

ﬁ{en < X}

0] for x <0,

where A 1is a positive constant and m is a positive infeger. Find the

distribution function of the random variable n, = max (0, gl’ £1+ 62,...,

*1 n
21.}0. A box contains n cards marked Kk, k2,..., k, where Xk, k2,..,,
kn are nonnegative integers with sum k1+ k2+...+ kn =k . We draw all

the n cards without replacement from the box. Let us suppose that all the
n! results are equally probable. Find the probability that for every r =
1,2,..., n the sum of the first r numbers drawn is less than r . (See

the Corollary to Lemma 20.1.)
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