CHAPTER X

QUEUING, RISK AND STORAGE FROCESSES

62. Single Server Queues. The theory of queues deals with the

mathematical studies of random mass service phenoinena. Such phenomena appear
in physics, engineering, industry, transportation, commerce, business, and
several other filelds. The theory of queueé developed in the twentieth century
with the investigation of telephone traffic problems. The pioneer work has

been dope by A, K. Erlang [ 82 1, [ 83 1, [ 81 ] who studied the stochastic:

l
law of Fhe delay of calls in a telephone exchange. The mathematical theory

of queués made considerable progress in the 1930's through the work of F.

.E‘?.B.%E%@f:[ 2231, [ 225l, A. N. Kolmogorov [ 1811, A. Ya. Khintchine [ 1671,
[168 1, and others. At present there is a hugé liferature on the theory of
A._q.ueuesb and it»s.‘applicatidns. See, for example, A. Doig [75 1, T. L. Saaty
[262 ], [263 ] and H. O. A.‘ Wold [ 346 1.

. Many processes arising in the theory of mass service can be described
by the following queuing model: In the time interval [O, @) customers
arrive at a counter at random times Tge Tys Toseees Tpseee and are served

.

by one or more servers. The successive service times Xg2 X1s Xoseees Xpooeeo
are random variables. The initial state is determined by the initial queue

-size and-by the initial occupation times of the servers.

- The-most important problems are connected with the investigation of the -

.- stochastie ?behavidr of the waiting time, the queue size, the busy periods and
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t he occupation times of the servers.

In this section we shall be concerned exclusively with single server
queues. One of thé most important models of single server queues is the
following: In the time interval [0, =) customersarrive at a counter at
timés 9 =0, Ty 12,;.;, tn;...~ahd are served by one server in the order
of-arrival. The server is busy if there is at least one customer at the
counter; Dénote by Xp the éervice time of the customer arriving at timé

size

T, - Denote by- £(C) the initial queu?Aand ng the initial occupation

time of the server at time t =0 . It is assumed that the interarrival

times 1rnf Tl (n=1,2,...3 9 = 0) and the service times Xﬁ .(h = 0,1,2,000)
[

are‘in&ependent sequences .of mutually independent and identically distributed

positive random variables and they are independent of &(0) and "o too,
let

(1) Pl -t 2% =Fx)

for n=1,2,... and

(@ | x

Jdor n=0,1,2,...

Denote by n n the actual walting time of the customer arriving at

) PR, n. . . - . L R =

Denote by n(t) the virtuél walting time at time ¢t . ,The%yir@ggl
waiting time at time t 1s defined as the time which a customer would have

A

to wait if he arrived at time t .



Denote by &(t) the queue size at time t , that is, the total number

of custamers in the system at time € .

Deriote by 81’ 62 sees en,.,, the lengths of the successive idle periods

and Ts Ooseees Tpsene the lengths of' the successive busy periods of the
server, Idle pertods and busy periods are successive time intervals during
which there is no customer in the system or there is at least one custamer

in the system.

Denote by 6(t) the total idle time of the server in the time interval
(0, t) , and o(t) , the total occupation time of the server in the time

interval (O, t) .

In what follows we shall deal .with the pr*oblém of determining the
distributions of the random variables o n{t), (%), en, o e(t) , and
o(t) . If we want to design efficient gueuing systems, then it i1s necessary

to know these distributions.

pe distribution of the waiting {ime.  Our first aim 1s to determine

the distribution of n, (n = 0,1,2,...) , the waiting time of the customer

arriving at time T, - Obviously Ny is the initial cccupation time

'of the server at time t =0 . We can easily see that the random variables

U (n = 0,1,2,...) satisfy the following recurrence relation

o . _ . +.
(3) Ny = Dot x- (Tm—l" )]

for n = 0,1,2,... where [x]+ = ma"x(-O,'VX)- .



Iet us introduce the notation

(4) o(s) = [ ™% am(x)

0
and ’ ‘ .
(5) » ¥(s) = Cf) e @H(x)

for Re(s) >0 . Furthermore, let
_-sny
(6) , Qn(s) = Efe }

P~

~for Re(s) >0 .

Th%a distribution function P{n n < x} is uniquely determined by Qn(s) .
The Laplace-Stieltjes transforms Qn(s) (n=1,2,...) are determined by

the following theorem. See F. Pollaczek [229 1.

Mgorem 1. If Re(s) 20 and |o| <1, then

o geltlogll-p¢(-s)¥(s))1}

~T{log[1l-p¢(-3)9(s)]} 0
€ o~ Ry T-p¢(-8)u(s) ;

(7 ngo nn<s>gn =

where T operates bn the variable s .

" 'Proof., If R denotes the space which we introduced in Secticn 2, then
it is evident that Qo(s) e R, E{QO(S)} = Qo(s) and vy(s) = ¢(-s)u(s) e R

and |ly||=1 . PFurthermore, by (3) it follows that

(8) Qn-l-l(s') =N'£{Qn(s)¢(-s_)¢(s)}
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for n=0,1,2,... and Re(s) » O . Hence (7) follows by Theorem 4.1 .
In finding (7) we can also use Theorem 6.2 .

If we introduce the notation

9) € = X1 — (T Tq)

for n=1,2,... and ey = £1+- £2+...+ En for n= 1,2,.;., and ¢, =0C,
then by (3) we can write that

(10). | on = max(0, £, £ gt Eoseees Estelit £, mgE Eptelt g )

for nLI,Z,... . If in (10) we replace En, Ep1senes &1 by iy Egrenes B

i

respectivély, then we obtaln a new rardom variable
(A1) n = max(Eys Tos Loseers Ly qs Mgt G)

for n=1,2,..., which has exactly the same distribution as. Ny e Thus we -

can write that

(12) Ng{nn < x} = P{ max

2 P z, <x and n.t ¢ < x}
O;k;nk 0O “n

for n=0,1,2,... and all x .

The relation (12) makes it possible to find the limiting behavior of

P{n_ <x} as n-e=. SeeD.V. Lindley [ 187] .

Theorem 2. If P{g =0} <1, then

(13) lim P{n_ 2 x} = W(x)
n - £~ n
exists and is independent ¢of the distribution of Ny Let
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(1 M=) R

JIf P{g =0} <1 and M<e, then W(x) is a proper distribution

.

function and

o0
oo = [

L (210 (-8)(s) 1™ ]
(15) o(s) = [ X aW(x) = e =l o~

for Re(s) >0 .
If Plg, =0} <1 and M=, then W(x) =0 for all x .

"Pny?O’Of. If £{£n =0} < 1, then by (12) we can conclude that
i

aey lim P{n_ < x} = lﬂn}i{max;k;x}=l>{ SUp Z;k;}:}
n->« o n -+ o G<k<n "™ O<ikces T

for all x . Thds can be proved by the inequality

(17) P{ max ¢, < x} - P{n, +¢_> x} < P{n

which holds for all x and which follows from (12).

If P{En =0} <1 and M < « , then by Theorem 43.12 we have

(18) P{ sup Ty < w} =1,

7 Ogk<

‘This implies that 1im P{nj + g > x} =0 for x 20 in (17) . For if
n-> o ‘
X 20 , then
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9 C

(19) ‘ Blng *+ gy > X} PO+ =

o 1’1>O}

and by (18) the right-hand side of (19) tends to O as n -+« . If we let
n+e in (17), then we obtain (16) for x >0 . For x <O (16) is obvious.
Thus (16) is valid and W(x) 1is a proper distribution function. We note that

W) = e,

If E{En =0} <1 and M= « , then by Theorem 43.12 we have

(20) P{ sup Ty = w} = 1 ,
Thus: byI| (17) lmf{nn < x} =0 for all x regardless of the distribution

n - e«

This proves (16) and that W(x) =0 for all x .

of no:.
We note that if
(21) a = [ xdP(x)
0
and
(22) ' b = [ xa(x)
0

are finite and b < a , then M < «» | whereas if b > a and £{€n=0} <1,

then M= =,
The Laplace-Stieltjes transform Q(s) can be obtained by Theorem 43,13,

The Laplace?-Stieltj es transform Q(s) can alsc be obtained by the

method of factorization.



Theorem 3. Lef us suppose that E{gn =0} <1 and M <~ where M is
‘defined by (14). If ‘

- | | -

(23) 1-¢(~s)y(s) = ¢ (5)¢ (s)

’

for Re(g) =0 where <I>+(s) is a regular function of s in the domain

Re(s) » 0 , continuous and free from zeros in Re(s) >0 , and lim [1og@+(s)]/s =
. _ IS > 0
O whenever Re(s) > 0 , furthermore, ¢ (s) 1is a regular function of s in

the domain Re(s) < O , continuous in ‘Re(s) £0 , free from zeros in Re(s) < O,

and lim [ldg@p(s)]/s = 0 whenever Re(s) < O , then we have
S‘l-r @ '

.
2) as) = {2
% (s)

for Rels) > 0.
" Proof. The theorem follows immediately from Theorem 43.15 .
Example. Let us suppose that

‘1-e for x>0,
(25) ‘ F(x) = : _
’ 0 for x<0.

Then a = 1/ 4, and ¢(s) = »/(A+s) for Re(s) > =1 .

If Mo < 1, then by Theorem 3 we cbtain that

1061 | 1-2b
' Te, 12UAS (s)

for Re(s) >0 where Q(0) =1 . This 1s the celebrated formula which was
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found in 1930 by F. Pollaczek [ 223 ] and in 1932 by A. Ya. Khintchine [ 167 1.

Next we shall be concerned with the distribution of the virtual walting
time n(t) . First, however, we shall consider a deterministic single~server
queue and deduce a fundamental identity which makes it possible to find the

distribution of n(t) for t > 0.

Let us consider the mathematical model of a deterministic (non-random)
quendng process which satisfies the following assumptions: In the time interval

[0, =) customers arrive at a counter at times 1, Tl""" Tpsee+ Where T, =

Q< Ty Sese < T, Sees and 1im T, = - The customers are served by one server
’ n-> o

in the order of arrival. The server is busy if there is at least one customer.
in the system. At time t = 0 the server has an initial occupation time
n'(og O. .. . The service time of the custamer arriving at time 7_ is a

positive quantity Xp - Here 1 (n= 0,1,2,00.) 5 Xp, (n=0,1,2,...) and

ny are nunerical (non-random) quantities.

Let us define the following functions for O <t <« . Let n{t) be
the virtual waiting time at time t . Let y(t) be the total secvice time

of all those customers who arrive in the interval [0, t] plus n Let

O L
‘\9(1:) - be the time difference between t and the time of the first arrival
in the time interval [t, «) . Dencte by v(t) the number of custamers

arriving in the time interval [0, t] .

- Let us define also the following quantities for n = 0,1,2,... . Let.

N be the waiting time of the custumer arriving at time T We have n, =

n\(rn- 0) for n = 1,2,0¢. and o is the initial occupation time of the

l". H = + .no+ == ) ) i = : © > A;.s'.»
serve Let Y, T Ng xo+ Xpe1 for n = 1,2, and vy = g We have
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= 'Y‘(Tnu— O) fOI’ 1’1 = 1,2,-00 .

19'(1:) =i‘

We note that if Ty < t <t

ntl? then Y (t) +13 n+1 -t and
. R ) R - - - + -
- = - — 1
(27) n(t) [n* X~ (=t )1 .
Fll.v:r*theimore s we have
- : +

for n = O,Vlv,%,_.,. -

The following theorem contains the fundamental identity which expresses
a relation between the functions n(t), y(t), E), v(t) (0 <t < =) and '
the sequences s Yps Ths Xu (n=0,1,2,...). See also the author [ 320 ],

(321 1..

Theorem 4. If Re(q) > 0, Re(v) > O, Re(s+v) > O, Re(w) > O, Re(q+v—-w) >0,

q#w and |o] 21 , then we have

’qt—ST] (t)"VY(t)-Wﬁ(t) ‘)(t) dt =

(s+w -q) f e
0
(29) © '
- U1 e 9SS Wt Y na
= ) [e -e ] e 0
n=0
© =-{g-w) e { Q] - Q= o .
e io [e - P
—_ — n R
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o m_o_f_'_ We can write that

-

[ e—qt—sn(t)-\f“((t)—w‘g(t)p\f (t)dt =

C
(30).
LA Tn+].“ .a»(
- T e nt+l pn-i-l i eﬂt—sn(t)-—w st .
n=0 T

If we take into consideration that ¥(t) = Ty - b oand n(t) 1is given

by (27) for T, < t <1 then by (54.17) we obtain that

n+l ?

' ol e — -qt_, - —Sn -qt_-sn_-sy ~w(t_,,~T_)
(st-q) | e qt-sn(t) W’ﬁ(t)dt S[e Wl omHl_ Uikl ity
n
(31) |
s L L L N v ~(g-win ~(q-w)x ~w(t ;-7 )
T - e 1.

If we put (31) into (30), then we get (29) which was to be proved.

If we suppose that {Tn} , {xn} and n,, are random variables and

0
N*r:{ljm, T, = w} = 1 , then n(t), y(,t),’i?’(t), vw(t) for O0<t <« and s
n-> «x
Y for 0 <n <« are also random variables and the identity (29) holds

for almost all realizations of {n(t), y(t), Ht), v(t) 3 0 <t <=} and
‘{nn, Yoo T Xy 3 0Sn< »} , The great advantage of the identity (29) is

that it is valid for any singlerserver queue.

- -Now let us suppose that - {fgnz Tn-l} Cand {xn} are independent
sequences of mutually independent and identically distributed positive random

variables for which Ng{tn— LI x} = F(x) and P{xn < x} = H(x) , and that
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A n-—Tn__l} . {xn} and Ny are independent too. In this case we have the

following result.

Theorem 5. If Re(q) > O , Re(v) >0, Re(s+v) 20 , Re(w) 20 ,

Re(gtv—w) 2Q , g Zw, and |p| <1 , then we have

(stw-q)f emab E{e_sn(t)'W(t)-‘Vﬁ(t)pv(t')}dt -
O A

(32) |

= {[1'"995(W)ll’(s"’V)]U(q,S,V,-D)"QO(S'*'V)} -

-l a% {[1~p¢ Wy (qtv-w) 1U(q,q-w,v,p)-0 (q+v-w)}
where

: o ~qQT_—-S1__=VY
(33) U(q,s‘,V,P) = ZOE{G n n Il}pn
s -S'no\

(34) Qo(s) =E{e - Yy,

Virggg_f_:. Now the identity (29) holds for almost all realizations of

n(t), v(8), VT8), v(B)} and {n, v, T

n s xn} . If we form the expecta-

n
tion of (29), then we obtain (32). It remains to determine U(q,s,v,p)

which we shall find in the next théorem. :

. . Ifweput v=0,w=0,andp =1 in (32), then we obtain that . : . -
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(- &% 5™ P yat = [1-4(s)10(q,s,0,1) -
4 =2
(35)
- (s) = F {1-9(@)10(a,a,0,1) ~ 8y(@)] ,
for Re(g) >0 and Re(s) >0 . By (35) we can find the probability

Pin(t) £x} .

If o(t) denotes the total occupation time of the server in the time
interval (Q, t) , then we have obviously

. .
(363 o(t) = y(£) = n(®)

for £t20. Ifweput s=-v,w=0 and p =1 in (32), then we obtain

that
o] _ l\ R
(37) (q+V)cf> &% 5V Pygp = 1 - 7 (0=4(a) 10(e,0,v,1) - 95(av v)}

~for Re(q) >0 and Re(v) 20 . By (37) we can find the probability

P{o(t) < x} .

- Theorem 6. The generating function

hod -Qqt_—8Sn_=VYy
(38) v - U(g,s,v,e) = Z E{e non g

}o

is convergent for Re(gq) > O , Re(s+v) 2 0, Re(v) 2 0 and lo] <1, and

" ‘'weé have



(42) Efe
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T{log[1~p¢{q-s)y(s+v) 1}
AY Q + A= *..,A
~I{logl1-eo(a-s)p(s+v) L plstve

. Tp¢(q=S) Y{stv) ’

(39) U(g,s,vse) =€

where T operates on the varisble s .

N~

If, in particular, P{n, =0} =1, then ,(s) =1 and (39) reduces to

- b (s -
(40) U(Q,s,v,0) = e iiogli-péla-slvistv) ]}

'Proof. If we take into consideration (28) and that

(Al'll) Y+l =y
for n=0,1,2,..., where Yo = Mg > then we obtain that

~qT_=-Sn_=V
A5~V

-qT -Sn -VyY ’
nkl okl Tty e (oos)u(sv)ECe )

for n=0,1,2,... and

~QT ~=SN~=VY, : :
(43) Ee 9 0 0% =g (stv)

where T operates on the variable s and Re(q) > 0, Re(s+v) > 0 and
Re(v) 2 0 . Since [l¢(a-s)y(s+v)| <1 for Re(q) >0 and Re(v) 20,

we obtain (39) and (UO) by Theorem 4.1 for |p]| <1 .

Tn (39) and in (40) we can determine
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Chly | T{log[1l - p¢(q-s)¥(s+v)]}

for Re(s+v) 2 0 , Re{(q) > 0 , Re(v) 20 and |p]| 21 by the method of
factorization. For in this case Theorem 5.1 is applicable and for Re(s) =0

we can write that -
(45) 1 -pd(g-s)¥(stv) = ©+(s+v, q+v, p)¢ (s+v, g+v, p)

+ . . . \
where ¢ (s+v, gtv, p) 1is a regular function of s in the domain Re(s) > O ,

continuous and free from zeros in Re(s) 2 0 , and 1im [log<p+(s+v, atv, p)1/s = 0

whenever Re(s) 2 0 , furthermore ¢ (s+v, gqtv, p) is a regular function
of s in the domain Re(s) <O , continuous and free from zercs in Re(s) < O ,
and | lim [log o (s+v, qtV, p)1/s = O whenever Re(s) < O . Thus by (6.6)

i S{ -
we obtain that

(46) T{log[l-pé(q-s)y(stv)1} = 1og<i>+(s+v, q+v, p) + logd (v,q+v,p)

for Re(s) 20, Re{q) >0 , Re(v) 20 and |p] 21 .

We observe that 1 - p¢(g-s)¥(s+v) 1is a regular function of s in

the domain -Re(v) < Re(s) < Re(q) and in this domain |p¢(g-s)v(st+v)| <1 .
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Accordingly, l-p¢(g-s)p(s+v) has no zeros in the domain -Re(v) < Re(s) <

Re (q)

T..hus by analytical continuation we can extend the definition of ¢+(s+v,
q‘"i-v;p) to the domain Re (s) > = Re(v) in such way that the function remains
regular in the domain Re(s) > -Re(v) ‘and continuous and free from zeros in
’Ré (s) ; Ré ('v). Similarly, by analytical continuation we can extend the
défj;rlition of ¢ (stv, q+v,p) to the domain Rev(s) <€ Re(q) 1in such a way
that thé, function remains regular in the domain Re(s) < Ré(q) and continucus

and free from zeros in Re(s) < Re(q) .

Finally, by analytical continuation we can conclude that (46) also holds

- for Ré(.s) > = Re(v) .

Examples. First, let us assume that ¢(s) , the Laplace-Stieltjes
transform of the distribution function of the interarrival times , 1s a rational
function of s . Then we can wrifte that.

T (Sj
o ale) =
| R (ai+ s)

i=1

for Re(s) > O where 1rm__l(s) is a polynomial of degree < m-1 . Since

»iq)(s)l <1 for Re(s) >0 , it follows that Re(ai) >0 for 1i=1,2,..., m.

If Re(q) > 0, Re(v) 20 and |p| <1, then the equation
m

iiil(af g-s) - .pnm_l(q—s)w(s+v) =0

ey



%=-16

b4

has exactly m roots s = yi(q+v,p)-v (1 =1,2,..., m) In the domain

Ré(s-) >0 . We shall show that
m- B

1 (a + q-s)
1-1 *

(49) o lom, l(q—S)w(s+v)l<

if either O < Re(s) < Re(q) or |s| =R, Re(s) 20 and R is‘sufficiently
lwge I 0 _;= Re(s) < Re(q) , then (49) holds because |o| <1, |u(s+v)| <1
and |¢(g-s)| <1 . If |s| =R and Re(s) >0, and if we divide both

Q:Ld.es of (49) by Rm and 1f we let R » « , then the left-hand side tends

to O whereas the right-hand side tends to 1 . Thus (49) holds if R is
suff‘iciently large. Therefore we can conclude that (49) cérmot have a root
either in the domain O < Re(s) < Re(g) or in the domain |s| » R, Re(s) > O
if R is suf ficiently large. On the other hand, by Rouché's theorem it follows
" that ‘(148) has the same number of roots as

m

(50) : I (a;+ g-s) =0
: l“l

in the domain Isl R, Re(s) >0 if R is large enough. If R is

sufficiently 1 arge, then (50) has exactly m roots in this domain. Consequent-

1y,(48) has also m roots in the domain Re(s) > O .

Now in (45) we can write that
‘m
, I (a + g-s) - pm__;(a-s)p(stv)
- + oo i=1
(51) e (s+v,qtv,p) =

m

I LY (q+v,o )~s-v]
i=1



X-17

for Re(s) > - Re(v) and

- ,_ (vi(q+v,p)~s—v"
(52) ¢ (stv,gtv,p) = 1 . el
=1 YT @S

for Re(s) 2 Re(q) -.

If, in particular, P{ny = 0} =1 , then by {(4O) and (46) we obtain
A~

that
 [lepd(ams)e(st)TU(a,s,v,0) = S{EHYaATVa0)
(53) | o (v,q+v,p)
5 ' -
1- S
-om Ty (grvgp)-v
= (
i=1 . s
=1, ~
ai+ q

"for Re(s+v) >0 , Re(q) >0 , Re(v) 20 and |p| < 1.

As a second example, let us assume that p(s) , the Laplace-Stieltjes
transform of the distribution function of the service times is a rational

f\mctibn of s, that is, we assume that

\
‘H'm_l(S/

m .
I (a,+ s)
i=1

(sl) Y(s) =

. where the right-hand side has the same properties as (47)..

- In‘a similar ways as before we can show that if Re(g) > 0, Re(v) 2.0

and |p| < 1 , then the equation
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(55)

=8

(ai+s+v) - p’;‘rmgl(s-!—v)dj(q_s) = Q.

i=1

has exactly m roots s =8,(qtv,e) - v (1= 1,254+, m) in the domain
Re(s) 20 .
n this case in (45) we can write that

(56) o (stv,qtv,p) = ]11;1 (5i(q+V:P)"S"V )
: 2 ? =1 ai+ s +.v

for Re(s) > ~Re(v) and i .

m .
! o (aifs+v) - pwm?l(S+V)¢(Q-S)
(57) ¢ (s+v,qtv,p) = == o
1[4, (qrv,e) ~ 5 - v]

i=1

for Re(s) < Re(q) .

If, in particular, le{no =0} = 1 , then by {(U40) and (U46) we obtain that

+ .
[1-p6(Q)¥(V)1U{q,5,v,0) = ¢+(VsQfV>o)
¢ (s+v,q+v,p)

(58)
m Gi(q+v,o) -V

S
= I (1+ ) (
=1 ATV

8,(qtv,e) ~ s - 7

for Re(stv) > 0, Re(q) >0 , Re(v) 20 and |p] <1 .

- The ‘following theorem has been fourd by thé author [309 J.. v .0
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Theorem 7. If b <a <~ and if F(x) 1is not a lattice distribution

function, then the limiting distributlon

(59) - 1im P{n(t) < x} =W (x) g
£t > o
%
exists, and W (x) does not depend on the distribution of n 5 " The

%
function W (x) is a proper distribution function and we have

(50 W=D uw rE

" S
for x };O and W (x) =0 for x <0 where W(x) 1is given in Theorem 2

ama |

X
[ [1-H(u)Idu for x>0,

i

(61) Hox) =4 O
Q for x< Q.

* 0% ¥
Proof. Denote by Tys Toseess Tpsees all those arrival times in the

time interval (0, =) when the arriving customer firds the server idle at

* *
his arrival. It is easy to see that T i -t (n=1,2,...) are mutually
independent and identically distributed positive random variables. Let

Y =T <x}=R(x) for n=1 |

IE{ l-n+l - Tn é Xf - R(X or n-= ,2,... .

If b<a<w, then R(«) =1 and

[e ]

62) [ xR = [ [1R()]dx = &
62) e, é, x) = [ DR )
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- ¥ %
where  W(0) = e i is given in Theorem 2. For T4 ~ T C©an be represented

as a sum of a random number of interarrival times. Since 1im£{nn =0} =

W(0) = e'M > 0 , we can conclude that the number of terms in the above

’

mentioned representation of tl*f 1 r; is a proper random variable with a finite

expectation 1/W(0) . Each interarrival time has a finite expectation a

*

A

3% %
- Thus by Thecrem 6,1 in the Appendix, it follows that E{tnﬂ - tn} = a/W(C) .

Furthermore, it is easy to see that if b < a < « , then Mlz{ti <a} =1
regardless of the distribution of niy . We observe that if F(x) is not
a ‘latti‘ce distribution function, then ’E{fzﬂ - 1:: ; x} is neither_"a lattice
‘disftrib}Ation f‘qnction-.

|

* ) % J_ . ‘
If we denote by v (t) the number of arrivals in the time interval
(@, t] when the arriving customer finds the server idle, then {v (t) ,
0 <t < w} 1is a general recurrent process as we defined in Section 49. (See

Note 49.1.) Let
(63) m*<£> = E{v (£))
f&r | t ;O .

Let us introduce the notgtion

(64) Q'(t, x) = P(n(t) £x and (t) = 0}

for the general queuing process and let us use the notation @f{t, x) for

* h . L. v
- Q (t, x) ~in-the particular case when MPi{n-o =0} =1.
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If we take into consideration that the event n(t) < x can occur in

such.a way that v (t) = 0,1,2,..., then we can write that

’

65 Pn(t) =% = QF(t, x) + [ Qlt-u, x)am (W) .
- 0

Since Q (t, x) é,}fhl >t} for any x , it follows that if b < a,

then
: *
( 66) : lim Q (t, x) =0
. t > >
fOl‘ any\ X F.A

Now we shall show that for any x the function Q(u, x) 1is of bounded

variation in any finite interval [0, t] . The following proof is based on

an idea of W. L. Smith [279 J. Denote by v(t) the number of arrivals in

the interval (Q, t] . Let us suppose that no =0 , and let 6 =1 if

' #
n(t) £ x and v (t) =0, and <S,C = () otherwise. Then we can write that
(67) Qt, x) - Q(u, x) = B{6.~ § } = P(s =0, 8 =1} - B{s_=1, &_=
for Oxugt . Hence

(68) att, %) - Qu, x)| L B8 - 8.} + 2P{s, =1, 8 = O}

and obviously -

“(69)  Bls, =1, =0} < P{(t) - v(w) 2 1} £ E(v(5) - vw} .

P A~

Accordingly, we have the following inequality
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(70) QCt, %) = Qu, 1] B8~ 6} + (L) - v(w)}

for C<u<t . By (70) we obtain that for any subdivision By =0 <ty < .u <

< tn~.= t of thé intér*val [0, t] we have

(71) [Q(tk, x) - Qt el? x) 1 ; {6,~ 84} + ,_E{v(t)} l+2E{v(t)}

t

A e~ars

=1

Stnce E{v(t)} -is finite for any t > 0 , it follows that Q(u, x) is of

bounded variation in any finite interval [0, t] .

If b < a, then for any x the function Q(u, x) 1s integrable over

[0, ») . This follows from (62) and from the inequality
(ray 05 Q, x) £1-R .

Pinaily, by Theorem 49.8 we can conclude that if b < a < » and if

P(x] 1is not a lattice distribution function, then the limit

o

{73) 1im P{n(t) <3} =W (x) = WEO) ] Qu, x)du
£t > Foad a 0
exist gardle<s of the dlstmbutlon of n': 0 .

Since obvicusly Q(u, x) is a nondecreasing function of x and
O 1im Q(u, x) = 1 - R(w)
X > @

. .«»7 - ) ’ R . . . * LT
for u > 0 , it follows from (62) and (73) that 1Im W (x) = 1 .
X =3 o



Tt remains to prove {60) . Let
# ® s %
(75) e =AW ()
0
fer Re(s) > O . By an Abelian theorem of Laplace transforms (Theorem 9,30

in the Appendix) we cbtain that

* P —sn(t
(76) Q(s)=1im qJ e at E{e S"’(t)}dtv
' q>+0 0O e

“for Re(s) > 0 where the right-hand side can be obtained by (35). Since

11m L]Tl,; (1)1/qa = b we obtain that
* - N
(77 . 2 (s) = 1-b iim q U(q,q,0,1) + 1 z(bj lim g U(Q:Ssuall
g~ +0 q ~+0

*
for Re(s) 20 . In (77) & (s) does not depend on the distribution of
n/é ' therefore we may assume without loss of generality that E{”@ =0} =1,

If P/ =0} =1, then by (40) we have
~5No

T{[¢(q-5)v(s)]™

e

Hes8

S

(1) Ula,s,0,0) = eBloel=e(@ @)D T

for Re(q) > O and Re(s) > 0 , and thus we can write that

il o~ 8
o |-

[9(@)17= Tl4(a-s)¥(s)I™
(79)  dU(a,s,0,1) = e 7 | .

If b<a<= andif we let q~>+0 1in (79) then we can form the limit term
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by term in the exponent because the series is uniformly convergent in q for

Re(q) 20 . Since lim [1-¢(q)]}/q = a , by (15) we obtain that
q -~ 10

(80) ~ 1lim q U(Q3S:O;l) = Q(S)/a g
q > +0

for Re(s) >0 . If we use (80), then (77) can be expressed as

-p(s)]

bs

oo
+
plo

f'—|

(81) 9*(5) =1- a(s)

for Re(s) 2 O where the right-hand side is 1 for s = 0 , we obtain (60).

by (81). This completes the proof of the theorem.

We observe that by (60) we have

*‘ _ b
(83) W(0)=1-z2.

We note that if a £ b <= and P{En =Q} <1, then lim P{n(t) <x} =0
~ £ > o -
for every x regardless of the distribution of no . This can be deduced

from the second part of Theorem 2.

‘Example.- If we suppose that F(x) ‘is given by . (25) and that Ab < 1-,
then by (26) we obtain that

(84) | 2(s) = (1-1b) HL-l:‘g-(E’-)-- a(s) .
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Since a = 1/x , by (81) we get

(85) | 2 (s) = a(s)

for Re(s) > O and hence ‘
(86) | W(x) = W(x)

for ‘a.ll X .

In this particular case & (s) was found in 1930 by H. Cramér [ 365 ]

in eonnlection with a problem of insurance risk.

AJFL the results which we obtained in this section can be proved in a
simpler way if we restrict ourself to discrete queues in which the inter-
arrival times and the service times are discrete random varisbles taking on '

positivé integers only. See the author [ 3227].

Now denote by £(t) the queue size at time t and let gn = 'c;(‘cn_ 0)
for n=0,1,2,..., that is, the custamer arriving at time T finds exactiy
gn custamners in-the system. If we know the limiting distribution of n, as -
" n+ o , then we can easily find the limiting distribution of £, a5 n=>e=.,

We have the following result..
Theorem 8. If P{xy=rty} <1 and

wiﬁa{xo+...+ X.h—‘l > Tn}

It

87 M= )
: n=1 n

A

- is finite, then  lim P{£_

N+ «

k} = Qk (k =0,1,2,...) exists, Is independent .
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of thé distribution of the initial queue size, and we have

(88) Qe =[ T3 = Fiy (91N * 5 ()]

’

where Fkﬂ(x) denotes the kt+l-st "convolution of E(x) ‘with itself and

W(x) is given by Theorem 2. If P{XO =1,} <1, and M=o, then

limg{an <k} =0 forall k=0,1,2,... regardless of the distribution cf
n->

the initial queue size.

" Proof. The event Entlct] = k occurs if and only if the customer who

arrives at time T departs before = that is, if and only if the

ntk+1l ?

queue size immediately after the departure of the customer arriving at time-

T, is £ k . Thus for arbitrary initial queue size s;o we have

(<]

(89) Ble g 2K = é [1-F, , (x)]alW (x) * H(x)]
where
) W =P 2 x)

For the queue size immediately after the departure of the customer arriving
at time T, is equal to the number of arrivals dufing the waiting time and
the service time of this custamer, that 1s, the number of customers arriving
in the intefval (Tn, Tn+ nn+ xn] .- Thus we obtain (89), | If we let n~

‘ in (89}, then by Theorem 2 we -obtain Theorem 8.

We note that if b <a <= and if F(x) dis not a lattice distribution
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. SRR ’ % : .
function, then IM£{g(t) <k} = Qk: (k = 0,1,2,...) exists, is independent
t +» o

of the distributlion of the initial queue size, and we have

(=]

[ [1 - B (x))dW(x) * B (x)]
O .

+

plo
o

®
(91) Q. =1-

where Fk(x) denotes the k-th iterated convolution of F(x) with itself,
%
W(x) 1s given by Theorem 2 and H (x) is defined by (61). If a <Db < = and
Plxg=1yd <1 , then tlmg{g(t) <k} =0 forall k=0,1,2,... regardless
>

of the distribution of £(0) . The proof of this last result can be found

in reference [ 309].

The Stochastic Law of the Busy Periods, Let us suppose that in the

queuing process defined at the begimning of this section the initial state is

oiven by P{g(0) =0} =1 and NE{nO =0} =1 . Dencte by

the lengths of the successive busy periods and by el, 62 sevwy O Nt the

01, 02’.0&’ Un,uﬁi

lengths of the successive idle periods. We can easily see that (cn, en)
(n=1,2,...) 1s a sequence of mitually independent and identically distributed

vector random variables.

g6, follows we shali be concerned with the problem of finding the |

distribution function

-,

(92) | P{Gl <X, 61 <yt =Gx, ¥) .
We can write that

(93) Gx, ¥) = [ G (x, ¥
: =1

where Gn{x, y) 1is the probability that 9, 3% 87 27 and the first busy
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period consists of n services.

Let us introduce the following notation

(oh) CT(w, ) = [ [ e g4 a6z, )
00 £y

and

(95) r_(w, s) (f) é T a 4.6 (x, y)

for Re(s) >0 and Re(w) 20 .
Lj‘t
for n = '1,2,.-.. and vy =0 . Furthermore, let us derote by 3(A) the

indicator variable of any event A , that is,

1 if A occurs,
(97) §(A) =
0 1f A does not occur.

The following result was found in 1952 by F. Pollaczek [ 227 1.

Theorem 9. We have

® oy sl
- n—g-l note Sty 2 vy)d
(98) r(w, s) =1l-e

for Re(s) 20 and Re(w) 20 .

Proof. By definition we have
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(99) Gn(x’ y) =£{Yn 2 X, Tl s Yl""’ Tn—l = Yl’l—-l’ Yn < Tn 2 Yl’l+ v}

(T - Tn—l) fOT' n= 1,2’.-.,

n-1 "~ ‘'n

for n=1,2,... . Ifwewrite £ =

Ty = gl-!_— g2+..,+ En for n=1,2,..., and o = 0 , then we can also express

(99) as follows:

(100) Gy(x, ¥) = Pl <%, £y 20,50u0, L, 150, 0<z 27} .
By using the terminology of ladder indices, which we defined in Section 19,
|
we can [interpret G, (x, y) as the probability that in the sequence Tos Lyseees

Lppeee the first ladder index is n and Yn

Denote by Gr(lr)(x, y) the probability that in the sequence ., Zis.svy

O 12
I - ] 3 (5] 1(1 < hY
Lpoees the r-th ladder index is n and Y, £ X and ¢, 2y . Then G ) (x, ¥l
Gn(x, v) .
let
(r) o —Wx-sy ()
(101) T, (w, s) = é é e dxdy G, (x, ¥)

for Re(s) 20 and Re(w) ;O Then Pfll)(w, s) =_1‘n(w, s) .

We can easlily see that

e © @© L p
(102) I, 9™ = (1T (w, 8)™
n=r n=1 o

for Re(s) 20 , Re(w) 20 and J|p] <1.
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In a similar way as (19.8) cr (16.19) we can prove that

2) A T -
(103) rzl r nﬁ‘?‘n Ko Yy < ThEv t v}
for n=1,2,... . Hence it follows that
(r)
n r>’(w,s) - ~wy_=s(t_~y_)
(10l zlll__-f’__-=§t1_w{e n-"n'n s(r 2. v,))
r=

for n=1,2,... . If we multiply (104) by o" and add for n = 1,2,...,

then we get,
(105) L =01 T (w,s)"] = ] 5Ele §(rp 2 v )},
r=1 n=1 n=1 s
or equivalently,
© n -wy_-s(t -y )
- I B2Ee P Mo, 2y )
n=1 e

. ® n
(106) Y r.(w, s =1-e
n=i .

for Re(s) >0 , Re(w) >0 and |p| <1 . Ifweput p =1 in (106), then

we obtain I'(w, s) and this proves (98).

In many cases the Laplace-Stieltjes transform I'(w, s) can easily be

obtained by using the method of factorization.

We shall use the following relations. Let ¥(s) = E{;e—sr'} e R and
[aad LAV
: —snt - ws[=nTt
- write ‘¥+{s) = T{¥(s)} = E{ze ™"} and ¥ (s8) = T{¥(~-s8)} = E{ze sL-n] }

~for Re(s) > 0 . Then we have -

(107) B(ze™" 5(n > 0)} = ¥7(s) - ¥ (=)
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for I:{e(s) > 0 and

(108) E(ze™™" 8(n 2,00} = ¥'(s) - ¥7(0) + ¥7(=)
for Re(s) ;__O . )

Theorem 10. If |e| <1, Re(w) >0, and

(109) 1 - p¢(=s)y(wts) = ¢+(W+S, W,0)% (whs,w,p)

for Re(s) = 0 where <I>+(w+s sWop) and ¢ (wks,w,p) are defined for Re(s) » O

and Re(s) < O respectively and satisfy the requirements stated after formula

(45), then we have

- ,
n + -
Y P (wysde = 1 = @ (=,w,p)e (w-5,W,0)

(110)
: n=1

for Re(s) 20 , Re(w) >0 and |p] 1.

" Proof. First we note that the factorization (_109) always exists.  Let

us define

(111) ¥(s,w,p) = logll - po(~s)p(wts)]

and write ¥ (s,w,0) = T{¥(s,w,0)} and ¥ (s,w,p) = T{¥(-s,w,p)} for

Re(s) > O where T operates on the variable s .

By (106) and (108) we can write that



X~32

) ) . .
(112)°  § T (w,s)ol = 1 - ef (55Wsp)=¥ (0sw,p)H (=00,
(W8 )s
At

for  Re(s) 2.0 . Now by (46) we have

+ | + -
(113) ¥ (s,w,p) = logd (wts,w,p) + logd {(w,w,p)
for Re(s) >0 and

(114) ¥ (s,w,0) = loge (w-s,W,0) + logd® (w,w,0)

for Re(s) > O .
Finally, by (112), (113) and (114) we get (110) which was to be proved.
Example. Let us suppose that F(x) is given by (25), that is.

. . A

M15 = e

(115) o(s) s

for Re(s) > - X .

If Re(w) >0 and |p] <1 , then the equation

(116) A=s = Ap P(wts)

has a single root

(117 )v S

A1 - y(w,0)]

in the domain Re(s) > 0 where z = 'Y(W,p) is the only root of the equation
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(118) - z = pp(w + A = Az)

in the circle |z| <1 . For (116) carmot have a root in the domain
‘{s: |»=-s| > and Re(s) 2 O} and by Rouché's theorem it follows that
(116) has exactly one root in the circle |A - s| <A which can be expressed

n théf form, (117). Now,wé can choose

. + , A =5 = Ap Y(wts)
+ = :
(119) | @ (whs,W,0) = T——— o)
and
. - . _ - /
( 120) ¥ (ks ,p) = 2= S = Arlise)
in (109) and by (110) we obtain that
. 4 . A
(121) ) Fn'\wss)pn = 135 Y(Ws0)

n=1
for Re(w) > O , Re(s) >0 and |p| <1 . By expanding vy(w,p) into

Lagrange's series we get

-1 e — n
(1) lxn lpn e l[y’)(wﬂ)] }

y(W,p) = ) —
n=1 ’ awn—l
(122) |
® n-1 n o
= A e g e~ (HX 0=l o oy
=l %0 n

for Re(w) >0 and lp| <1 where H (x) denotes the n-th iterated

AN

convoiution of H(x) with itself,
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If we jnterpr*et v(w,0) as that root in z of the equation (118) which
has the smallest absolute value, then (121) is also valid for Re(w) =>__ o,
Re(s) >0 and |p]| =1 , and Y(W,vp) is given by (122) for Re(w) >0
and |p| <1 . If Db is defined by (22) and if b <1, then {0, 1) =1,
whéféa& if »hb>1, thén y(iO; 1) = o where z = 1Is the only root of the

eguation

(123) z = y(A - Az)

in the unit circle |z <1 . The root w is real and satisfies O < w < 1

(See the author [ 306 1.)
In a similar way as (122) we obtain by Lagrange's expansion that

’ bt n"'r I oo
(128 [y(w,0) 15 = ngr' "('n_ﬂTf e~ HIX =0 gy (%)

for r=1,2,..., Re(w) 20 and J|o}| <1 .

By (121) and (122) we have

E c n-1
(125) - r (w’s) }\iS é e“.(Hw)X (AXBI! dHn(X)

for n=1,2,e.., Re(w) >0 and Re(s) > 0. Hence it follows that
 (226) | a5 9) = 6,() Fiy)

for x>0 and y 2 O where-

(127) - G (0 =1 [ M @ ()
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. 1 s the probability that a busy period has length. £ x and consists of n

services, and

(128) | Ry =1-eN

1s the probability that and idle period has length <7y .

The probability that a busy has length < x is given by

v ool X -w n-1
(129) G(x) = ] G (x)= Z A ™" aH, (u)
n=1 n=1 0
for xp 0. If
| . o
(130) yw) = [ e aa(x)
‘ 0

for Re(w) >0, then by (122) we have

o  n-1
13 v =y, = ] AT [N T gy (g
‘ n=1 =" O

for Re(w) >0 , and z = y(w) can also be interpreted as that root of the

équation
(132) z =YW+ A - Az)
which has the smallest absoclute value.

If Ab <1, then G(=) =y(0) = y(0, 1) = 1 , that 1s, G(x) is a
proper distribution function. If 2b > 1 ; then  G(e) = y(0) = y(0, 1) =w < 1

‘that is, the length of a busy period may be infinite with probability 1 - & .
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If G(rf) (x) denotes the r—th iterated convolution of G(x) with
itself, then we have
3 (v _ v r o =u Q)
(133) G (x) = Z nf e WGHH(U)
. n=r 0 _
for x>0 and r =1,2,... . This follows from (124) by inversion. (See

also Probelm 65. 5,)

We note that if ¢(s) is given by (47), then in Theorem 10, " (=,w,0)
‘and <I>_(w_—-s ,W,p) can be obtained by (51) and (52) respectively, and if ¢(s)
~1s given by (54), then in Theorem 10, <I>+(°°,W,p) and ¢ (w-s,w,p) can be

obtain%d by (56) and (57) respectively.
l

I_ﬁ the theory of queues it has some im?ortance to find the distribution
of the maximal queue size during a busy periocd and the distribution of the
ma;dm?l waiting time during a busy period. In what follows we shall consider
only single~server queues with Poisson input and general service times. See

the author [310 1, [ 324].

Co’ntrary‘ to our préviou.s definition we assume here that no customer
arrives at time 9 = 0 1in the gqueing process. We assume that customers
arrive at a counter in the time interval (O,«=) in accordance with a Poisson
process of density A and are ser*ved by a single server in the order of
arrival. The service times are mutually independent and identically distributed
pc»sitivev randam variables with distribution f‘anction H(x) and Andependent

of the a{riyal times..
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.The initial state of the process is given either by £(0) , the initial

queue size, or by n , the initial occupation time of the server at time

0
t =0 . We suppose either that £(0) = i where 1 1s a nonnegative integer

’

or that n’ = ¢ where ¢ is g nonnegative constant.

‘We denote by 9 the length of the initial busy period. If £(0) =0

or n 0 =0, then o, =0 . Otherwise % is a pcsitive random variable

0
which may be « with a positive probability.

In what follows we shall determine the probabilities

(134) P(k,y|1) = B{ sup £(£) <k 3 oy 2 y[e(0) = i}
| ' O<t<o ’
=%
for 0<1<k and
(135)- G(x,yle) = PL swp n(t)ex;05 £ vng = c}
O;tf__oo -

for 0<c<x.

In (134) P(k,y|i) is the probability that the maximal queue size ’
during the initial busy period is < k and the initial busy period has
length < y ‘given that the initial queue size is 1 , and in (135")' _
G(x,ylc) is the probablility that the maximal virtual waiting time during |
the initial busy period is < x and the initiai busy period has length <y

- given that the initial occupation-time of. the server is c ..

< If we know these probabilities for the initial busy period, then we:can. .

obtain immediately the corresponding probabilitiés for any othe‘r-busy ‘.peir’iod. '
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For the probability that the maximal queue size during any busy period other
than the initial one is < k and the length of the busy pericd iz <y is

evidently
(136) - Pk, ¥) = POoy|D)

and the probability that the maximal virtual waiting time during any busy
period other than the initial one is < x and the length of the busy period
is <y is evidently |
o X
(137 Gz, v =] a(xyyle)dtle) .o
| - 0o . A
ByJ: knowing (134) and (135) we can easily determine the corresponding

probabilities for the initial busy vper'iod of the queujng procsss -defined at

the beginning of this section.

In what follows we shall determine the Laplace-Stieltjes transfoims

(138) - n(k,s]i) = fme"sy 4, P(k,yl1)
| 0

 for 0<i<k and Re(s) >0, and

(139) T(x,uwle) = [ e dy G(x,yle)
. 0]

for O

i

c <x and Re(w) 20 .

We introduce the notation
‘ (1&0) o ¢(s) = f e—SX'IdH.'(X)‘
o | 0

for Re(s) >0 and
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- QD

() e =37 [ et
- 3 'y

for Re(s) >0 and j = 0,1,2,... .

.

The generating function of nj(s) (j =0,1,2,...) 1is given by

| (142) f s (s)zJ = fme~sx-k(1;z)x dH(x) = y(s+tr-Az)
0

for Re(s) >0 and |z] <1 .

Denote by z = y(s) that root of the equation

(143) | p(s + 1 = 2z) =

which has the smallest absolute value. We have [v(s)] <1 fbf Re(q) 20

and |y(s)] <1 for Re(s) > O .

Theorem 11. If 0 <1 <k and Re(s) > 0 , then we have

(s)
. kﬁl
(lm&) H(k,SII Qk<—5‘
where
, i kK _u(s + A = 2Az)
(145) k_EO-Qk(S)Z TY(s FA-Az) -2

for Re(s) 20 and |z|<|y(s)]

Proof. First, we observe that
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y .
(146) . P(k,y|k-1) =é P(k,y-u|k=3)d  P(J,ulJ-1)

for 0ciz<Jj<k and y20. If J=1, then (146) is obvious because
P(j,ul0) =1 for u>0. Let j>1. In (146), P(k,y|k-1) is the
probability that the maximal queue size during the initial busy period is.

; k- and the initial busy period has ].éngth < ¥ given that the initial

queue size is k-i . This latter event can occur in several mutually exclusive
ways: The queue size decreases from k-j+l to k-j for the first time at
time u where O <u <y . The probability that the first transition

k=j+1 +~ k-j occurs in the inter"fal (0, ul is P(j,u|j-i) . For obviously
this pr*q%:bability 1s the same as the probability that in a queuing prccess the
maximal! Queue size during the initial busy period is < J and the initial
busy veriod has length < u  given that the~initial queue size is j-i . O
the oizher hand if we measure time from a transition k-j+l + k-j , then the
future behavior of the queuing process is indeperdent of the past and is the

same as that of a queudng process with initial queue size k-j . On account

of these considerations we obtain (146).
If we form the Laplace~ Stieltjes transform‘of(l%) » then we obtain that
- M(k,s|k-1) = n(k,s|k=3) TM(3,s]3-1)

for 0<i<j<k and Re(s) > O . We note that n(k,s|0) =1 . Since
I(k,sli) #0 for 0 < i<k and Re(s) > 0, it follows from (147) that

N(k,s|i) can be expressed in the following form

' S .(s)
(148) - I(k,s|1) = %‘%55‘
k
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1

for 0<i1s<k and Re(s) > O where QO(S) 1 and Qk(s)'?fo for k>0

and Re(s) >0 .

If we take into consideration that during the first service time in the

initial busy period the number of arrivals may be J = 0,1,2,..., thep we can

write that
(149) n(k+i,s|i) = ) nj(s)n(k+i,sii+j-l)
j=0

for 1>1 and k >0 . If we multiply (149) by Qk+i(s) , and if we use

(148), tthen we get the following recurrence formula:

«jx'

7.{(8) @

. ()
j%‘] Jkﬂ_a(s,

(150) Q. (s) =

for k =0,1,2,... and Re(s) 20 . If we introduce generating functions,..
then by (142) we obtain (145) for Re(s) 20 and |z{ < |y(s)| . We can
express Qk(s) explicitly as a polynomial of l/no(s) and’ nj(s) (G =1,2,.04,

k=1) . Knowing Qk(s) , we can determine P(k,v|i) by inversion..

Theorem 12. If O <c <x and Re(w) > O , then we have

o Wixec,w)
(151) T(xwle) = e
where
, ® sx _ S
- (52) o e ditem = s =)

for Re(s) > Relw + A[1—y ()]} .
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Proof. In this case the process {n{t) , 0 £t < «} is a homogenecus

Markov process and thus we obtain easily that
(153) - Tx ,WIX—C) = I'(y,wl;y—c)‘l‘(x,wlx_y)

for 0zgec ;y <x and Re(w) 20 . Since I’(x,wlc)# O for O<ec <X
and Re(w) > O , 1t follows that r(x,w|c) can be represented in the following

form:

W{x-—c, w)

(154) F(X,WIC) = W

<c <x and Re(w) >0 where W(O, W) =1, and W(x, w) #0 for

If we take into consideration that in the time interval (0, u) one
customer arrives with probability iu +o(u) , and more than one customer

arrives with probapility o(u) , where lim o(u)/u = 0 , then we can write
u->0
for x>0 and y >0 that

' X
(155) T(x+y,wly) = (l—Au)e_Wl"(x+y,wiy—u)ﬂu [ r(xty,w|y+z)dH(z)+ o (u) .
0

If we multiply (155) by W(x+y,w) , then we obtain that

%
(156) W{x,w) = (1-2uw)e™™ W(xtu,w)+ru [ W(x—z,w)dH(z)+ o(u)

0

for x>0 and Re(w) >0 . From (156) it follows that

. X
aspy I - Gu) WGxw) -2 [ Wz w)aH(z)

0]
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for x>0 and Re(w) >0 . Let

- (158) Q(s,w) = [ ™% d W(x, W)

5 _
for Re(w) > 0 . If we form the Laplace-Stieltjes transform of (157), then
we obtain that

1
(159) s[a(s,w) = WO,w)] = (AMw)a(s,w) = A(s,w)y(s)

it

for Re(w) >0 and Re(s) > Re{wtA[l-y(w)]} . In (159), W(O,w) = 1 , and
this implies that Q(s,w) is equal to the right-hand side of (152). This
campletes the proof of the theorem. Theorem 12 makes it possible tc determine

the probability G(x,y|c) .

By using Theorem 12 we can also determine G(x, y) defined by (137).
Ilet

( 160) T(x,w) = [ e ¢ G‘(x,y)
0 I

for x>0 and Re(w) > 0 . By (137), (151), and (157) we obtain easily

that

(161) r@m)=1+¥-%

3 log W(x,w)
oX

for x>0 and Re(w) >0 .

The Distribution of the Occupation Time. We shall consider the queuing

process defined at the beginning of this section, and we shall give some
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mé’chods for finding the distribution and the asymptotic distribution of

the total occupation time of the server in the time interval (0, t) . See
references f201 1, [ 314 1, [321 1, [469 ]; Accordingly,‘ we suppose that
in the time interval [0, =) custamers arrive at a counter at times

Ts Tyseess Tpsees where 3 =0 cand 1 (n=1,2,...) are mtually

n ‘n-1
indepéndent and identically distributed positive random variables with
distribution function F(x) . rI-‘he customers are served by a single server.
’Dénoté by xg thé sérvi‘ce time of the customer arriving at time Ty o We
assume that Xgs Xps+e+s Xpoees 2T mutually independent and identically

independent of { 1.} . The initial state is given by n , the occupation
[ .

0

time of the server at time t =0 , where no is a nonnegative random

variable which is independent of {Tn} and '_{'xn} .

Denote by o(t) the total cccupation time of the server in the time
interval (0, ) and by e(t)‘ the total idle time of the server in the
time interval (0, t) . We have o(t) + 6(t) =t forall t >0 . We are
- JAnterested in determining the Vdistribution and the asymptotic distribution

of o(t) .

If ng is an arbitrary nonnegative random variable, then

(162) - [ eat 50 () yq¢
A Ry ,

s given by (37) for Re(a) >0 and Re(v) 20 . Henee P(o(t) x) can

be obtained by inversion.
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The probability P{o(t) < x} = P{e(t) 2 t-x} can also be obtained by

Theorem 56.1 for O <x <t .

Denote BY 1, Gppenss Oppeee @A 81, Bo5uary O ,c.. the lergths of

thé successive busy periods and idle periods respectively. If Mlj{no =0}=1,

then (on, en) (n=1,2,...) are mually independent and identically
distributed vector random variables whose distribution function Mg{cn %,

en <yl = G(x, y) can be obtained by Theorem 9. In this case the probability

P{o{t) < x} 1is completely determined by G(x, y) as it can be seen from

Theorem .59.1 . .

If P{ng =0} =1 and if G(x, y) belongs to the domain of attraction
of a nondegenerate, two—dimensional, stable distribution function, then there
exist a nondegenerate distribution function R(x) and normalizing functions

M, (t). and M,(t) such that My(t) »= as t >« , and

o(t) - M, (t)
(163) 1im P{

- < x} = R(x)
£ s e 1\12(1:)

in every contj'nui%y-pojﬂt of R(x) . In many important cases R(x) can be
obtained by Theorem 59.2 . We can easily prove that (163) remains valid

unchangeably if n 0 has an arbitrary distribution function.

The limiting distribution (1.63) can be determined in a simple way if

o

(164) N a=[ xdF(x)v.. _
' .0

and” I

( 165) | b = (f) xdH(x)

exist and b < a .
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let us define

(166) &) = 7 x

O<t, <t T
l——.

for £t >0 . Then {x(t) , 0t <=} 1is a compound recurrent process as
we defined in Section 49 (Definition 2).

Now we can write that

(167) S o(6) =y + x5t x(£) = n(t)

for t;O.

F‘rlom (167) we can conclude that if b < a and if
x(t) - Ml(t)
M2<'t) < x} = R(x)

e Hm L

t > ™
in every continuity point of R{x) where Ml(t) and Mé(t) are appropriate

normalizing functions for which MZ(t) +® ags t -+« , then

(169) Lin B o(t) - Ml(t)
169 im ' 3
N MZ(‘C)

LA

x} = R(x)

I

also holds in every continuity point of R(x) . This follows from the fact
that if a and b exist and b < a , then n(t)/Mg(t)—.-——> O as t o when-

ever 1\12(‘6) +>o as t +o ., (See Theorem 2 and Theorem 7.)

In mary cases the limiting distribution (168) can be obtained by Theorem
45.2°. See also formula (49.205).
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(170)

and

(171)

in all continuity points of the limiting distribution functions where t 1

1im P{

n->ox

1im P{

n-o>®

Xl+o . -+Xn"' I'lb )

3 <x} =Plx 2 x}
b2n

i

x are independent random variables, then

(172)

1lim P{

t > &

o(t) - Mlt

M tH

= R(x) -

2

in every continuity point of R(x) where R(x), M, M, and u are given in

Table I .
TABLE I
(ets f3) My M, H R(x)
x> ‘b/a ba2/a1+°‘ a : P{-t < x}
x=(5 b/a 1 B P{b a x ~ba,a (1+‘3)
x<f b/a b2/a.B B P{x < x}
Proof. If (170) and (171) are satisfied, then the asymptotic

. -distribution of x(t) as t - «

is given by (19.205) where the ﬁormalizing
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functions and 2(x) are glven in Table II. Thus we get (168) whence (163)

E=)

immediately fciiows.

" Example. Let us suppose that a and b are finite positi'\;e numbers

satisfying the inequallty b < a and let

(173) 0f = [ (x - 2)%aF(x)
0
and
(174) S o= (x - p)PaHE)
! .

be firlite nurters for which og + Ug >0 .

In this case (170) and (171) are satisfied with 8, = 0, b2 =0 s

a =8 =%~ and P{t £ x} = P{x £ x} = ¢(x) where ¢(x) is the normal

¥

distribution function. Thus by Theorem 13 we obtain that

. o(t) - Mt
ar LM P (e < X} = 0(x)
, ' . s M, t -
where
(176) wo=2
and
Q. M, = /(a%oé. + b?og)jas’.,,, e -

© We'note that if we know either Ffo <x , en__i vi =06, y) or

E{on} ’E{an} ,Xir{on} s Xag{en} and ggy{on, 911} , then (175) can also

be obtained ty Theorem 59.2 . {See Problem 65.9.)
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Now we shall mention another approach for finding the limiting

distribution (163) in the case when the expectations a and b are finite

4

positive numbers and a = b .

Write g = (-cn - Tn-nl) -x, for n=1,2,..., =0, and ¢ =
_1 +E. bt g, for n=1,2,... . In Section 4L we proved that if

(=

o

E.

P{T{n < x}  belongs to the domain of attraction of a stable distribution
function R(x) of type S(o,B8,¢,0) where 1 <a <2, -l <B<1 and

¢ > O , then there exists a positive function o(%) defined for t > C such

" that

< . ?"
(178) 1im P{ -—7-—————n < x} = R(x)
and -
. plowt) _
(179) tlil;m.wm = 1

"for a1l w > 0 . The function p(t) can be chosen by Theorem 44,6 and
 Theorem 44.8 .

If «T(n) = max(fo, EJ.’ Eé,..., Zn) for n=1,2,..., then by Theorem
45,10 it follows that

- (180). Tim P { 2B < x) = Q)

- where
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(181) Q(x) = P{ sup &(u) < x}
™ 0sugl
and {g(u) , 0 <u <1} 1is a separable stable process of type S(«,8,c,0) -

By the above results we can easily find the asymptotic distribution

of e(t) =t -o0(t) as t o,

Theorem 14, If a =Db 1s a finite positive nurber and Nlj{(r o Tn_i)._ -

S Xp & x} belongs to the domain of attraction of a stable distribution

function of type S(a,8,c,0) where 1 <o <2 ,-1 <8<l and ¢c>0,

then tﬂer'e existga positive function p(t) defined for t > O which

|
satisfies (179) such that

1/a _
(182) lim P{ al/ae(—t-)- < %} = Q(x)
' t e 7 7(t)
" where Q(x) 1s defined by (181).
Proof., First we observe that
(183) 8(t) = sup{0O and u - y(u) - "o~ Xg for 0 <u <t}

for t > O where x(u) is defined by (166). Hence we can easily see that
8(t) has the same asymptotic distribution as
(184) - sup [u - x(w]
O<ut
regardless of the distribution of ~n o - ‘On the other hand il we denote :
. by ,v()-- the number of arrivals in the time interval (0, t] , then (184) .-

has the same asymptotic distribution as n(v(t)) . Since by the weak law
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of laf-ge nurnbers

85 ) =y 1

as §t > =, (Problem.53.]._ ), it follows from (180) that

(186) Lim B{ l/a CA0GD o . ]
£t > o p(t/a ) '

’ the same method as we used in proving :

To prove (186) we can use Theorem 45.4 . Ry {179) p(t)/p(t/a) + 1 as

t > » , and hence (1i86) implies (182).

" Exarples. First, let us suppose that 'a =b 1is a finite positive

rumber and O < 02 + og < » where 02 and og are defined by (173) and (174)

respectively. 1In this case (178) is satisfied with « =2 , p(n) =

/2 P

Vo toy , and R(x) = ¢(x) where ¢(x) is the nonmmaldistribucion function,
that is, R(x) dis a stable distribution function of type S(2,0, %,O . Now

by Theorem 45,6 or by (45,220) we can conclude that (180) holds with

28(x) -1 for x20,

(187) QUx) =

0 for x <0 .
Thus by Theorem 14 it follows that
(188) um B 28R s

£t > /2+0)t

where Q(x) 1s g1VPn by (187).
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Second let us suppose that a =1b 1is a finite positive number,
(189)

lim x*[1 - H(x)] = h
X > o

(1907

where h 1is a positive number, 1 < o < 2 , and

lim x*1 -F&x)]1 =0 .
X - @
In this case

o na-(X1+ooo+x ) |

o (1el) 1im P{ :
: i

whére !

n-+ e

- < x} = R(x) o S
R(x) 1s a stable distribution function of type S(o,-1,I'(1-a)cos %530) .
Since by (190)

(192}

T .
L

-

na
proaide

as n -+ o, it follows from (191) that (178) is satisfied with p(n) = hl/aj
with the above o ,and with the above R(x) . Consequently, (180) alsc holds
and '
1-R(x) 5
l—m for
(193) Qx) =

.

x>0,
0

for x <0,

where R(0) = (o=1)/c . This follows from (45.223) or from (56.38). Thus
by Theorem 14 we obtain that

(194)

Tim P {al/a"(t:‘
t > g...

- < x} = Qx)
(tn) V@
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-whéré Q(x) - is given by (193) and R(x) is a stable distribution function

of type S(a,-1,I(l-a)cos =~ 0) . We note that we can also write that
2

1/a ( > 1/a )
(-T(1-c))

1) =0

wh,ére the distribution function Ga(x) is defined by (42.178) for 0 < a < 1 .

According to (42,178) we have

- -, 1
(196) G re(®) =1 - R(x «. =5 1, cos %0—‘ . O)

for x %_2__ 0 and o > 1 where on the right-hand side we have a stable

e g P . a a1l ] N
distribution function of type b<§ 5 -1, cos %-&-,’ 0) . The representation

(195) foliows from (42.184) and (42.192). For by these formulas we have

am

(197)" Gl/a(x) = a[R(x ; a,-1,~cos 5~ 0 -

for x>0 and 1 < a <2 where on the right-hand side we have a stable
distribution function of type S(a,-1,-cos %1,' 0) ..
We note that if in the last example instead of (189) we assume that

(198) %1 - Hx)T = hix)

-where 1 <a < 2 and
(199) ‘ 1im

for w> 0, then we have
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(200) - - - 1im P{ < x} = R(x)

where R(x) has the same meaning as in (191) and p(t) can be chosen in

such a way that

(201) 1im t[1 - BEY %)) = 1 .

ft >

In a similar way as in the last example7(200) implies that

(202) 1im P{

where IiQ(fX') is given by (193).

i
In cenclusion, we shall mention same results for single-server queues
with Poisson input and general service times. For simpiici‘ty we assume t;hat‘
the imitial occupation time of the server is 0O ad no customer arrives at
tJ.me £t =0 7. We assume that customers arrive at a counter in the time
interval (0, @) in accor;ance with a Poisson process of denisty A and
are served by a single sefver, ~The éer*vice times are mutually independent

and identically distributed positive random varisbles with distribution

function H(x) and independent of the arrival times.

In this case the lerigths of the successive idle periods, 6 8.

15 Opseees B aees
and the successive busy periods, Oys Onseses O aeee 8T independent sequenices
of mutually independent and identically dis.tributed. positive random variables.
We have - |

1-e™  for x>0,

(203) P{en < x} =
0 for x <0,
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and

< x} = (%)

( 20kL) P{o
where G(x) 1is given by (129).
Now by (59.9) we obtain that

[+-]

e

§ emMtx) IL(T_;f_)_Ji G(r)(X)
=0 .

(205) P{o(t) < x} =

for 0 <X <t 'where G(r)(x)' denotes the r-th iterated convolution of
6(x) with 1tself and ¢(%°(x) =1 for x>0 . For r 21 the distribution

function G(r)(x) is given by (133).

The distribution function (205) can also be obtained in the fcllowing
way. Denote by y(u) the ftotal service time of all those customers who
arrive in the time interval (O, u]v. Then {x(u) , 0<u<w~} 1isa

compound Polsson process for which

-\U ()\u)r1
e —
ni

(206) P{x(u) < x} = 7§ H, ()
where Hh(x) denctes thé n~th iterated convolution of H(x) with itself and

Hb(x) =1 for x>0 and Ho(x) =0 for x <0 . OSince in this case

(207) 8(t) = sup [u ~ x(w)]
Ozust
for t > O by Theorem 55.9 we obtain that

Tt .
(208) P{o(t) <x} =1~ -E—duf{x(u) <u - x}



for 0 <x <t . Ifwe take into consideration that o(t) =t - 8(t) for

t > 0 , then (205) can be obtained by (208).

Now let us deterinine the asymptotic distribution of o(t) in various

cases.

First, let us suppose that Ab < 1 and that

(209) o2 = [ (x - 0)2@(x)
: 0

is finite. Then G(») =1,
o1 =D
(210) | RACK L v

- (og + Ab3)
(21x) Var{o } = —

, ~ 1~ Xb)
- (212)

2

and obviously E{en} = 1/» and var{en} = 1/A ._Jin this case by the 1l-th

statement of Theorem 59.2 we obtain that

a(t) - Abt

(213) 1im P {

T > ®

< x} = &(x)
W—
/@ + o)t
b
where ¢(x) is the normal distribution function. (See also the author [ 291 1.)
. ~ X )
The same result cen be obtained by (175) if we put a = 1/x and cg = 1/A7

in (176) and in (177).

Second,let us suppose that b = 1 and that cg < ® ., Then we have
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o]

1/2

( 211) 1im x° [1 - G(x)] = ( 2”)
X > be+b

This result is due to S. M. Brodi [ 39 1. If we take into consideration
 that y(s) , the Laplace-Stieltjes transform of G(x) , can be obtained for

Re(s) > 0 as the only root in 2z of the équation
(215) -z =9(s + A - Az)
in the unit circle |z| <1, and that

2
(oZ +b° )s
b 2 +o (52)

(216) : 1-y(s) =bs -

as s » +0 , then we can easily prove that

1

| -1 N V-
(217) . lim s [1 - Y(S)] = (—?—_2—‘”_2—-)
s+ +0 )\"(ob + b )
and this implies (214).
Now
el+.oo+ 9 - er'
(218) 1im P{ = < x} = o(x)
, n-+ e v/
and by (214) ‘
‘ 01+..,+ o
(219) 1lim P{ 3 < x} = R(x)
: n—+« n /A (o + .)

where R(x) is a stable distribution function of type S(-:ZL, 1,1, ©), that

is,
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p2[1—<1>(-1—)] for x>0,
: X
(220) R(x) =

0 for x 0.

In this case by the 7-th statement of Theorem 59.2 we obtain that

(221) | mpl —28) - R()
R
t /}\(cg + )t X

for x>0 . Here b = 1/A and hence

(222) 1m pp 2R oy 2 p(x)-1
| b /‘(1+A2o§)t

for x'> O . The same result can be obtained by (188) if we put 2 = 1/

and o = 1/X in it.
Third, let us suppose that Ab =.1 and that

(223) Cx[1 - H(x)] = h(x)

where 1 < g < 2 and

In this case G(x) belongs to the domain of attraction of a nondegenerate
stable distribution function of type S(]a'-,_ 1, ¢, O) where ¢ >0 . (See

D. L. Igiehart [ 133 ].) Indeed we have

. : » 1/a ; : - Dla, A)
(225) x7T[1 - G - 2
] l:1,1(}(1/@.)]1/(:%.
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a8 X = © Where

1
T T -
AT - H[-r(1-0)1 F

(226) D(a, A) =
For in this case we have

1-y(s) = bs - 5 [(1 - eF)h(x)x %dx =
(227) 0

= bs + T(1 - a)s® () +0(s%)

as s +|O and if we take into consideration that =z = y(s) satisfies (215)

for R%(s) > O , then we obtain easily that
l)sl/a

o

Dla, AIT(1-

(228) 1-y(s) ~
: 1 \-l/a
[h(;m)]
as s = 40 . Hence by a Tauberian theorem (Theorem 9.14 . in the Appendix)

it follows that (225) holds.

 Im the particular case where limh(x) =h and h is a positive number

X > @
by (225) we have
(229) lim x%[1-6(x)] = g
X - o
where
_ D(a, 2
(230) | g = ';;Eﬁg"- .

Thus it follows that



. ci+ o2+...+ G
(231) 1im P{ —F
o n-> (g]) Y

< x} = R(x)

where R{x) is a stable distribution function of type S( %?, 1, r(i- %)COS %—a-,

Since in this case (218) holds, by the 7-th statement of Theorem 59.2 we

obtain that

(232) 1m pg 28 5y -1 R
t>w /T x*
fer x > 0 , or equivalently,
' S, 0(8)D(a, ) - n 1
(233) fl_éfngli{ (;';)—173— <X} = J_,:(F(l—- =)x)
. v (x

where D¢, 1) is given by (226) and Gl/a(.x) is defined by (42.178). (See
also (196) and (197).) This result is a particular case of (194). If we
put a = 1/x in (194), then we get

. 8(t) - X
(3 umE(—Eimox= g )

E (Aht) T [(-r(1~-a)]

which i%ﬁgreement with (233).

In the general case when H(x) satisfies (223) with (224), we can find

*
a function p (t) such that

(235) lim ¢t [1 ~ G(t“;;_*(,t))j =1

t %> o
and
e 00+..,+ lo]

(236) 1im P{
n>e 0% (n)

2 < x} = R(x)

0)

“
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where, R(x) is a stable distribution function of type -S( %3 1, (1~ %Qcos L

2u’

Since (218) holds, in exactly the same way as we proved (232) we can conclude

that
: /o
- ¥ 1/a,-
t »+ o tl/OL E o

If we put a = 1/2 in (202), then we obtain that

o U 8(t) X
(238) 1im P{ <x} =G, ( - ).
£ & )Y %) L [r(1-) 37"

where p(t) should be chosen in such a way that (201) is satisfied. A

~ camparison of (237) and (238) shows that

a
(238 o' (5) = [l
¥ p(t7)

is an appropriate choice in (235). This can be vergfied by using the fact

that

p(wt

p(t =1

(2L0) 1im

t—>oo

SN

for all w > O . (See Problem 46, 12 .) For by (223) and (201) it follcws

that
’ a
(241) (e % (6))~ [p(8)]
as % -« and by (225) and (229) we have

* ) 2 .
(242) n(tle” ()17 % (£) ~ [D(a, 1)1

0) .
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as t>w ., Ifweput (239) in (242), and if we replace t by AT

(242), then we obtain that

1/a

(243) REY @D ()T

as t » « , and this is indeed true by (240) and (241).

Finally, we note that if b > 1 , then

. *
(244) Lm Ple(t) £x} =1-e"%

t-—)m

. the .
*
for x 20 where w 1s largest real root of the equation

_i

(245) AEL - v )T = .

In this case the distributicn of 6(t) is given by (208)., If we let t + «

in _(’2’()8), then by Thecrem 55,10 we get (244).

63. Risk Processes. One of the most important tasks in the mathematical

E pr;éory\ of insurance risk is to study the fluctuations of the risk reserve .
procéss. The first results concerning risk reserve processes were obtained
in 1903 by F. Lundberg [373 1, [374 1. The theory was further developed
between 1926 and 1955 by ‘F: Lundverg [ 375 1, [376 1, [ 377 1, H. Cramée

[3641, [365 1, [ 3661, [367 1, P, Escher [369 1,
©C.0. Segerdsnl [ 384 1, [385 1, [386 1, [387], S. THoklind [390 1,

T, Saxéln [382 1, [383]1, H. Ammeter [ 353 ], G. Arfwedson [ 355 ], [356 1, -

L 2571, 03581, [ 3591 and others. .Some recent results can be found in:the .

papers mentioned in the references.
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Let us suppose that a company deals with Insurance and amuities.. In the
timé intérval (o, m)..the comparyy continuously receives risk premiums from
thé policyholders at a constant rate, If a claim occurs, the company pays
thé'risk sun of thé claim to the policyholder. The company also pays annuities
cantinaoﬁsly to thé policyholdefs at a constant: rate. We may consider the
anmuities as negative risk premiums. If a policy terminates the corresponding
résérvé is placed at the disposal of the éompany, thus implying a payment
from thé policyhiolder to the company, or a payment of a negative amount by

thé'company-to the policyholder.

i .
AcFordingl , we shall assume that the company continuously receives risk
premiumgg which may be positive or negative, at a constant rate, and the
amount paid by the company in settlement of a claim may take positive or negative

values.

éuppose that the total risk premium received in the time interval (0, u)
is cu where .¢ is &g positive or negative constant. Suppose that in the
time interval (0, =) claims occur at random. times . Ty, Thaeess Tpsee. and
| ﬁhé:COfrésponding risk sums are Xqs Xoseeos Xpseos which are random variables
taking on positive or negative values. Suppose that at time u =0 the
campany has at its dispoéél a certain initial capital x > O which is available
for covering theklosses due to random fluctuations. In this case the size

of the risk reserve at time -u is

“tirrT,.fﬂiff* ’ L # teu~- ) ¥

‘ n
O<ry<u 7
=

for u > 0 . Let us introduce the notation
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2 . ) {i1) = . —
@) g{u) ! x,-cu
) O<t <u
=

for u>0.

One of the fundamental problems of the theory of insurance risk 1s to
find the probablllty tha,t in the time interval (0, t] the risk reserve does

not beco*nc negatlve , or in othev words that no ruin occurs in tbe time

interval (_O » £1 . This probability is evidently given by

.

(3) P{sup g(u) < x} .
: O<u<t

The probabllity that in the time interval (O, =) ruin never occurs is given
oy

(4) P{ sup £(u) < x} .
O<u<eo

In the mathematical theory of risk reserve processes it is important to

find the probabilities (3) and (&) for various processes {g(u) , 02 u < =},

General methods for finding the probabilities (3) and (4) were glven
in 1954 by H. Cramér [366 ] in the case where claims occur according to a
Poisson process and {xn} are mutually independent and identically distributed-
random variables; and in 1970 by the author [ 389 ] in the case where claims
oceur according to a recurrent process and {Xn} are mutually independent

and :'L‘déntically distributed random variables.

In what follows we shall consider the case where {£(u) , O <u < »} is

a genersal compound recurrent pr’ocess as we‘defined in Section 54 énd we shall
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give methods for finding the probabilities (3) and (4).

We suppose that T -~ 1, 4 n=1,2,00s 3 0= 0) 1s a sequence of _

- mutually independent and identically distribufed positive random variables
with distribution function P{r_ - Tl S x} = F(x) and X, (n= 1,2,...)
is a sequence of mutually idnependent and identically distributed random
variables with distribution function  P{ X, £ X = H(x) . We suppose also that

the twe sequences {fn} and { )&i} are indeperdent,

Let us introduce the following notation -

@«

Gy | o(s) = [ S @ (x)
0

for R;-:i(‘s} ; 0, and

(6) : vis) = [ ™% aH(x)

for Re (s) = Q.

We are interested in finding the distribution and the limiting distrj.bution

of the .raridom variable

T | o) = swp £(w)
Ozus<t

Wher*e g(u) 1is defined by (2) for u>0.

- Theorem 1. If ¢ >0, Re(q) >0 and Re(s) > O, then we have .




where T operates on the variable s .

" Proof. This theorem is a particular case of Theorem 54.1 . If we
p{lt v =5 in (B4.28), then we get (8). In the above form of (8) we have -

made use of a rather obvious fact, namely that if ¢(s) ¢ R , then
A=

[ [T{e(v-5)}] = T{e(s))

V=8

for Re(s) __>__.O .

Theorem 2. If ¢ 20, Re{q) > 0 and Re(s) 20, then we have

.T_____._
[o ] + ) - P ‘S LR
(10> g q é e'qvﬁ{e sn_(t)}dt = Q(s,s’q) + El-’-(—:_é-s_ Q(S - %, S, q_)
where
. ._. cy-_ —h{ - "‘) - Y]
(11) AE.va) = 1 - blgmev)TIL - w(v--s)]efg{lo"['l ¢{qtes—cv)v(v-s)]l,

for Re(s) > Re(v) >0 and T operates on the variable s . If ¢ =0 ,

then the second term on the right-hand side of (10) is O .

Proof. This theorem is a particular case of Theorem 54.2 . If we put

v=s in (54.36), then we get (10).

In both cases, 1f either ¢ >0, or ¢ <0 , we can use the method

of faéférization to obtain

o0

(@ - . qfeT NEj{e“_S“-(?:’}dt”ﬁ

0

for Re(q) >0 and Re(s) >0 .
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Let us suppose that
(13) 1 - ¢(g-csdu(s) = ¢+(s,q,6)<b‘(s,q,c_:)

for Re(s) =0 and Re(q) > O where <D+(s,q,c} and ¢ (s,q,c) sabisfy
the requirements stated after formula (54.51). Such a factorization always

exists and by (54.52) we have

(1h4) T{ldg[l-qs(qﬁ"cs,-cv)w(v-s)]} = logc1>+(v,q,c) + logd (v-s,q,c)
for Re(s) > Re(v) 20 and Re(q) > O.

Ifj} c _>__kO ,» Re(q) >0 and Re(s) > 0, then by (8) and (13) we obtain

chat |
(15) q j-me—qt gre s tlygp = L1 = 4(q)]

o ¥ - :
0 ¢ (s,q,c)? (C,q,c)

If ¢ 20 ;Re(q) >0 and Re(s) 2Re(v) 20, then in (10) we can

write that

(16) Qls,v,q) = 1 - —Hazev) o Lmvlvms)]
¢ (V,q,c) ® (Vhs,q,c)

By Theorem 54,4 it follows that

an . W(x) = P{ swp £(u) < x}

is a proper distribution function if and only if

~ ©

b . : ]. v
(18) n-—z-l HN]Z{X1+°"+X1'1 > ¢ tn} < ®
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If the series in (18) is divergent, then W(x) =0 for all x .

We note that if E{xl“ cfl} <O or P
proper distribution function, whereas if E{xl— cTq
~~

" then W{x) =0 for all X .

The Laplace-Stielfjes transform

(19) a(s) = [ ™ @i(x)
: 0

can be cbtained by Theorem 54.3 for Re(s) » O . We can also obtain

tnat (18) is satisfied, then we can write that

a2(s)

by the method of factorization. If we suppose that P{xl = crl} < 1 and
A

. _ + -
(20) 1~ ¢(~cs)y¥(s) = ¢ (s,2)¢ (8,¢)
for Re(s) = Q where @+(s,g) satisfies the requirements Al, A, Ag
% (3,c) satisfies the requirements Bys By, BQ after formula (43.131).

this case by Theorem 43.15 we obtain that for Re(s) > O

_+ .
(21) o ags) = £L08)

o (s,c)
whenever ¢ =0 and
(22) 2(s) = §(-o) L10:2) L(CRI]

¢ (-5,C)

whenever ¢ < QC ,
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Note. If we suppose in Theorem 2 that the random variables 3(1, Xoseees
Ypys e oo GTE nonpositive with probability 1 , then (10) can be simplified.

In this case T{¥(v-s)} = ¥(v-s) for Re(s) > Re(v) and (11) reduces to

(23) ) Q(:S:an), =1~ ¢(Q"‘CV)[]-"lP(V—S)]V(S,V,q)
where
(e4) V{s,v,q) = e:’]\.‘_ﬂog[l—¢(q+cs-cv)¢(v—s)]‘}

for Re(s) 2 Re(v) >0 . By (9) it follows immediately that

o~ T{logli~¢(q-cs)¥is Y1}

|
|
{
(25) i V(S:S:q)
I
for Re(s) 2 0 , and by (24) we can eaSily prove that

iy q ~T{1logl{ 1~¢ (~cs)y(s+ %-)]}
(6) V(s,st = q) = e '

for Re(s) >0 . Thus (1C) reduces to the following form

o~ \ ® € -3 t c3 ’ d _— Y
9) q 6[) eI Efe n(t)yge = a%—c—s— ~ ?Iz'c? #(aes) 1D Wis- 2, 5, @)
where V(s- %—, S, q) 1is determined by (28) s being replaced by s - %— in
it.

In this particular case (16) reduces to
(28 Qs .v.q) = 1 - 2@en1=p(v=s)]
> sV '

+, ) o
¢ (v,q,c)o (v-3,q,c)

and by (10) we cobtain that
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<«

dy - [ ~at pe-sn(t)y s o g
29) -4 0 © /E{e fat g-cs

es[1-4(2) 1o (g-cs)

. - + ‘
(q—CSj@ <%’:Q3C‘)@ (Ssq)c)

for Re(g) > 0O and Re(s) >0 .

The above results make it possible to find the probabilities ’(3) and
(4) for every x if {g(u) , 0 < u < »} is a general campound recurrent
process. If we know these probabilities, then we may decide which precautions
(reinsurance, etc.) should be taken in order to make the probability of ruin

80 small that in practice no ruin is to be expected.

In the particular case when {g(u) , 0 < u < «} is a compourd Poisson
processf we can use the results of Section 54 to find the probabilities (3)
and ( ’-i)!a If we suppose that {g(u) , O < u < «} is a compound Poisson process
and that either only positive risk sums of oniy negative risk suns occur,
then the probabilities (3) and (4) can be determined éxplicitly by Theorems
6, 7, 9, 10 in Section 54. In thestheorems ¢ =1 or c = -1 which can

always be achieved by choosing a sultable monetary unit. See also the author

[ 316 pp. 147-161.]

64. Storage and Dam Processes. The first mathematical investigations

of the theory of storage and dam processes started in 1954 by P. A. P. Moran

(445 ]. In the past two decades the theory developed tremendously. Nﬁme‘fous
papers have been published on this subject some of which are mentioned in the

references.

' In what follows we shall study the mathematical laws governing the

Tluctuations of the stock level in a store-or. the content of a dam. We
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_suppose that we know the stochastic properties of the Input (supply) and the
‘stochastic propefties cf the demand, and we want to determine the mathematical
laws gpverning the fluctuations of the stock level or the content of the

dam. It is ﬁnportantvto know these laws if we want to provide efficierit

service which satisfy the demand consistently with high probability.

. . We shall consider various mathematical models for stores and dams and
~give methods for finding the distribution of the stock level or the content
of the dam , and the distribution of the total empty time in a given time

interval.

Dams of Unlimited Capacity. First, webshall consider the case of water
storage (dams, reservoirs), liquid storage.(oil, gasoline), or gas storage
(natural. gas, compressed air). In what follows we shall use”the_tenninology
of damsi however, the results can be applied for general storage processes

too.

let us consider the following mathematical model-of Infinite dams. In
the time interval (0, «) water.is flowing into a dam (reservoir). Dencte
by x(u) thé total quantity of water flowing Into the dam in the time
interval (0, ul . Denote by n(0) the initial content of the dam at time
us=Q ;A Let us suppose that in the time interval (0, ») there is a

continuous release at & constant unit rate when the dam-is not empty.

If we denote by n(t) the conteﬁt of the dam at time t , then we can

write that -~ -

@ n) = swin(0) + x(€) =t and x(t) = x(w) ~ (b-u) for O <u <t
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for § >0 This formula can be proved as follows: If In thé “Interval
(©, t] the dam never becomes empty, then n(t)-= n(@) + x(t) -t and (1)
holds, TIf in the fnterval (0, t] the dam becames empty and u is the
last time when the dam is empty, then n(t) = x(t) - x() - (t-u) 5 and (1)

helds in this case too.

" The total time in the interval (0, t) during wiich the dam is empty

is gi,vén. by
(2) 8(t) = sup{0 and u - y(u) - n(@) for O <u <t}

for t L{__O . This can be proved directly, or it can be deduced from (1) by

ﬁﬁng; t&le obvious relation
€33 - e®) = k) +t - x(t) - n(0)
which holds for all t > O .

Define aliso oy @s the time of the first emptiness in time interval
©, =) , that Is,
(4) cro=inf‘{u:n(0)+x(u)—u§__0 and 0 <u < =}
and oy =« if n(0) + x(u) ~u>0 forall ux0.

We note that for any input process {x(u) , 0 £ u <=} we have "~

(5)- - Ple(t) = 0|n(0) = ¢} =Ploy 2 ¢ in(0) = ¢}

for £t >0 and ¢ 20, and



6)  Plo(e) 2x|n(0) = o} = Plog < t[n(0) = ¢ * x)

Por O<x<t and c 20, rIhese relations immediately follow from (2)

and- (4).

Our aim is to give methods for finding the distributions of the random

variables n(t) , 6(t) and % - for yarious input processes {x(u) , 0 s u < =},

W_é observe that 1f we consider a single server queue in which the initial
virtual waiting ‘time (immediately after u=C) is n(0) and the total
_S.érVice-‘ time of éll those customers who arrive in the time interval (.0, ul
s x(u) , then n(t) can be interpreted as the virtual waiting time at
time t‘ , provided that service is in order of arrival, 6(t) can be |
interpreted as the total idle time of the server in the time interval (0, 1)

and- 0y a3 the length of the initial busy period.

If we suppose that {x(u) , 0 cu < «} is a compound recurrent process,
that is,

@ xw = I %,
v O<t _<u
=

for u > 0 where Tys ToT Tyseees Ty= T 9seee and X x?_,...,. Xpoe e are
independent sequences of mutually independent and idnetically distributed
positive random variables, and that n(0) is a nommegative random varisble
v:lf_iich is_ _,independent of the process {x(u) , 0 <u < =}, then we cén‘app-ly
thev resiilts of Section 62 to find the distributions and the limiting

distributions of n(t) and o(t) .
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Actually, in the queuing process discussed in Sectlon 62 we assumed

that there is an arrival at time 1, = 0 and the service time of the

0
 custamer arriving at time T, =0 1s ;. Thus the initial virtual waiting
time in the queuing process is n(0) = ) + Xo where "o is the }Lni'tial
occupation time of the server. If we consider a dam process with initial
' contént ~n(0) where n(0) is the same as the initial virtual wailting time

in the queuing process, then the queuing process {n(t) , 0 <t < «} and

the dam praocess: {n{t) , 0 <t < =} become identical.

o 7Iff"_ we suppose that n(0): - is & nonnegative random variable which is .-
independent of the process {x(u) 5 O < u < =} defined by (7), then the
distribution of a(t) can bte obtained by the following theorem. We use
the following notation e C e
® up(s) = Be™=")

for v'Re(sv) >0,

. =S
(9) Ws) = Ele ™)
and | ( B )
=S -
(10) : ¢(s) =Ele T -1 }

e

for Re(s) 20 and n = 1,2,... (To =0) .

. Theorem 1. If Re(q) > O and Re(s) ».0 , then we have

(s-a)f €T Ee™ jar = ([1 - w(8) 10" (a,5,0) - U(s)} -
_ ) E
(11) -
¥
- % {1 - ¥(a)JU (q,q,0) - U:(q)}
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where .
U*(Q,S:V) - eﬁ}ﬂlog[1—¢(q—s)¢(s+v)]}.
(12) |
_ E{U;(s+v)¢(q-s)}et?{log[l-¢(q—S)w(s+v)]}
e TH )

~ 1 ~¢(g-s)y(st+v)

“‘for Re(q) > O , Re(s+v) > 0 and Re(v) > 0 . If, in particular, P{n(0) = 0} =1,
P
*
then Uy(s) #1 and (12) reduces to

a3 Uas) = een ioelimelesuisl

Q}Ioof_. Let us defire y; = n(0) and y_ = n(O)4xg*...ty, ; for
+

n=2,3,... and ny = [n(0)-1,1" and
n

.\ ) o +
(14) N [nnel+xn~l (Tn Tn-l)]

for n=2,3,... . Then by Theorem 62.4 for almost all realizations of the

process {n(t) , 0 <t <=} we have

(5-q) | &GS (EIT()-vn(0) o
5 .
(15) . (s+v)
-3 e—an—SnanYn - oF v Xn) - o (stvin(0)
=1
. §_{ cf e_an—qnn—Vyn(l ) e—(CH'V)Xn) _ e_(q+v)n(0) }
q Ly IR T : i L

. where Re(q) >0 , Re(v) 20 and Re(stv) >0 . Ifweput w=0, p =1
and ﬁo+, Xg = n{0) 1in (62.29), then we obtain (14). By forming the

expectation of (15) we get
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(s q)f -qt E{e ~sn(t)-vx(t)-m{0)y o .

(16) % * :
= {[1 - ¢{(s+v)JU (q,s,Vv) - Uo(s+‘«')} -

- 2— {[1 = v(gtv) U (q,q,v) - U;<Q+V>}

for Re(g) > 0, Re(v) 20 and Re(s{v) > 0 where

L s ~GT_-Sn -VY
(17 U (q,s,v) = ) Efe nonom oy
' n=1
TP we write
| o
: * —qT_~Sn_=VY 4
(18) : 7Un(q,s,v) =£{e n n el } ,

' * %
then Ul(q,s,v) = T{Uo(s+v)¢(q—s)} and

(19) 1(q,s V) = T{U (qu V)¢ {g-s)¢(s+v)}

n+

for n=1,2,... . In exactly the same way as we proved Theorem 62.6 we

*
obtain that U (q,s,v) can be expressed by (12). “we put v=0 in (16},

then we obtain (11) which was to be proved.

% % ’ '
Ir Uo(s) =1, then Ul(q,s,v) = ¢(q) , and thus in this case (12)

reduces to (13).

" In a similar way as in Section 62 we can alsc use the method of

factorization in finding the distribution of n(t) .

Theorem 62,7 is valid unchangeably for the limiting distribution of

n(t)
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as to>e,

By (16) we can also determine the distribution of 6(t) . If we replace

s

q by g+s and v by =-s in (16), then we obtain that

: | ® —qt ~-s6(t) - s % N
(20) a é e " Efe }d? =1 - a¥§'UQ(Q) .

*
+ 5 (1 - w0 (ars, grs, -5)

for Re(g) >0 and -Re(qg) < Re(s) <0 . By analy‘tj'.cal continuation we can
extend lthe definition of U (gts, gts, -s) for Re(q) » 0 and Re(gts) > O,

and thu:s (20) will be valid for Re(g) 20 and Re(gts) > 0 .
In the particular case when Uo(s.) = 1 we obtain from (13) that
%
(21) - U (gts, gts, =-8) = ¢(aq+s)V(g+s, Q)

for Re(q} >0 and Re(gts) > QO where

(22) T V(s,q) = enttlogll~e(s)vla-s)]}

*
for Re(s) 20 and Re(q) > 0 . Thus if U (s) = 1, then

[+ -]

@) af e Be™ e = v 211 - y(@dn(@re)ats, @)

for Re(s) > 0 “and Re(q) > 0 where V(s,q) is given b}}' (22). This last
resilt -can also be cbtained from (63.26) if put_ c = -1 in it and if we

replace _w(s) by w(-s)
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The 1imiting distribution and the asymptotic distribution of 6(t) as
t > @« can be studied in a similar way as in the case of the corresponding
queulng process.

s

Finally, the distribution of o5 can be determined by the relations

(5) and (6).

If' we suppose that {x(u) , O 2 u < =} is a‘compound Poisson process,
or more genera;l..;l.y , & separable homogeneous process with independent increments
whose sample functions are nondecreasing step ’i‘tmctions which vanish at the
c:tfigin with probability 1 , then the distributions of the random variables

n(t) , 6(t) and o, can be determined explicitly.

C

If ix(w) , 0= u < »} is a homogeneous stochastic process with independent
increments for which P{x(0) =0}= 1, then for every t > QO the processes

{x(u) ,0su st and {x(t) - x(t-u) , 0 £ u <t} have identical finite

A

fu< e} is

dimensional distributions. Thus if the process {x(u) , O

separable, then by (1) we can write that
(2b) P{n(t) <x} =P{x(uw) —us<x for O<u<t and n(0) + x(t) ~ t < x}
and by (3) we have

(25)  P{e(t) = x} =P{u-x(u -n(0) £x for O0zugt}

be
for x > O . The probabilities (24) and (25) can easj.lonbtained by using
Theorem 51.8 . In the particular case wherfewlz{n(O) =0} =1 these
probabilitles are given by Theorem 55.6 and by Theorem 55.9 for a compound

Posson process and by Theorem 56.5 and by Theorem 56.7 for a separable
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hdﬁogéneous process {x(u) , O £ u < =} having independent increments and
nondecreasing sample- functions. which increase only in jumps and which vanish -

‘at the origin with probability 1 .

" Dams of Finite Capacity. We shall use again the terminology of dams;

however, the resuits can be applied for general storage processes-too.

Lét us consider the following mathematical model of finite dams. In
the time interval (0, =) water is flowing into a dam (reservoir). Denote
by: x@i)j the total quantity of water flowing into the dam in the time interval
@, W1, The capacity of the dam is a finite positive mmber m . If the =~ =~
dam béqomés- full, the excess water overflows. Denote by n*(O) the initial -
content of the dam at time u =0 . Ilet us suppose that in the time interval

(0, =) there is a continuous release at a constant unit rate when the dam .~ -

Is not empty.

Derote by n (£) the content of the dam at time t . Our aim is to
give methods for finding the distribution and the limiting distribution. of -
* .
n (t) for various input processes {x(u) , O < u < =} . See references [ 463 ],

Cusy .

If m== , that is, if the dam has unlimited capacity, denote by n(%t)

%
the content of the dam at time t . We assume that n(0) =n (0) and we. .

% _
- “..shall consider the two processes - {n (£) 02t <=}and {n(t) , 0t < L

 simulfaneously.

* Pirst, let us suppose that the inmput process {x(u) , O < u < =} is a’
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U ;
_compound Poisson process and NE:«{“ (0) =m}=1.
In this case.

26) W= T x o :

O<1t <u n
=

for u > O where Tt

n = el (n=1,2,40., T =-0) - are mutually-independent

and Identically distributed random variables with distribution function

-AX

. 1-e for x>0,

@7 F(x) = | -

. o 0 for x<O0,
and )(n (n=1,2,...) are mutually independent and identically distributed

- positive random variebles with distribution function P{x < x} = H(x) and

the two sequences {t } and {x } are independent too. Let
(28) b(s) = [ &7 aH(x)
0

for Re{s) >0 .

If P{n(0) =m} =1, then by Theorem 1 we can prove that

® —qt o, -sn(t), 4, se ™) _ y(q)e™™
) é e " Efe Yot = S Tegmw(s)]

for Re(g) > 0 and Re(s) >0 where 2z = w(qg) is the only root of the _

equation . o S .

(30) : Ca s g w ALl - p(2)]

in the domain Re(z) > O . We can write that
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(31) © | w(q@) = q+ Al - y(@)]
wheré z = y(g) 1s the only root of the equation
C3-25 ' | z=9(q+ 1 - 2z)
in the unit‘ circle -|z] < 1. We already considered the function v(g)  in

Section 62. See formula (62.130). We note that the limit 1im w(q) =
g ~+0

>0 if )\E{xn}>l._

0

exists and . =0 if AE{x.} <1, and w

In exactly the same way as we provedr'Iheor'em 55.6 we can obtain
P{n(t) < x} explicitly. If we use the ‘répresentation (24) and if Prn(O )=
mi} = 1 » then we have

‘ ] - t-m .
(33) P{n(t) = 0} = [ (1 -Dd Plx(t) £y}

for t>m and E{n(rt) =0} =0 for t<m, and

(34) P{n(t) < X} = P{x(t) < ttx=m} - f P{n(t—u) = 0}d P{x(u) < u+x}
: +0 "
foral”l x and t;_O.
*
By using the above results we can determine the distribution of n (t)

by the following theorem.

- Theorem 2, If P{q (O) = m} 1 and P{n(O) =mt =1, then

& q P{n( ) < x}dt

(35) QI -at P{n (£) < x}at =

f
0
i e-qt‘ P{n(t) < m}dt
O O
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for déx;nl‘ and Re(q) > 0.

Proof. Denote by m (t) the expected number of transitions m->m - O .

. occurring in the interval. [0, t] 1in the process {n (t) , 0 <t < «} , and

by m(t) the same expectation for the process {n(t) , 0 <t <=} . Let

g * , ' %

(36) G (t,x) = P{n*(u} <m for O<u<t and n (t) £ x}b
and

(37 G(t,x) =P{n(w) <m for O<u<t and n(t) < x}

|
|

*
for % }> 0. Obviously G (t,x) = G(t,x) .

I
For 0 < X <m we have

t

(38) . Pin (t) £} = | Glt-u,x)dn (u)
~ : -0
and
t
(39) P{n(t) < x} = [ G(t-u,x)dm(u) .
o~ : -0
Let
(40) M) = [ e ant )
-Q
and
(41) w(g) = [ &9 dm(t‘)_:
- -0

for Re(q) > 0.

- If we form: the Laplace transforms of (38) and (39) and form their ratio,
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t hen we get

[+~

¥ -
‘qt * v = H ( ) _—qt o \
(42) é e = Pn (£) 2 x}dt 7—?5(}; e Ef”(t’ < X}dt

for Re(q) > O and Ocgx<m. Ifweput x=m in (42}, then le{n (t) =
- m} =1 and theréfore
* w

Iy =~ 1 3} (Q) _qt /
¢ . e
(43) a- @) f’)e Ml?_{n\t) < midt

for Re(g) > O . If we divide (42) by (43), then we get (35) which was to
be’ prox*?ed.
|
| .
By Theorem 2 we can determine the limiting distribution of n (t) as

4
T > oo

‘Theorem 3. If {x(w) , O <u<<} isa compound Polsson process

_ *
defined by (26), if {x(u) , O <u <=} and n (0) are independent and

E{n(:o} <m} =1, then

(hl) | 1:'Llii{n*(t) <x}= %

t >

exists for O < x <m and is independent of the distribution of = 0) .

We have W(x) =0 for x <O, W(x) 1s nondecreasing and continuous &n

Cthe. . _interval (0, ») and .

Lo ® -SX - _ S
(“5) —(,g e - »dW(X).— ‘s—:)t'[-]-:vws ]

for Re(s) > 'wo .



X-84

Proof. The process {n*(t) , 0 <t < «} is a Markov process and we can
easily prove that the limiting distribution function limf{n* (t) ; x} exists
and is independent of the distribution of n*( 0) . T;u; ;n finding the limit
(k) we may assume without loss of generality that E{n*(o) =m}=1. If

P{n(0) =m} = 1 , then by (29) it follows that

® gt ., =sn(t) 0w
_ ) A —-sn(t _ se -0
(46) ql—J;mOw(Q) é e =" Efe ot = ST =]

for Re(s) > w Hence by (45) we can conclude that

O 3

= gt | -Twg X=m
(47) 1im w(q) [ e P{n(t) < x}dt = e W(x) = wy [ W(u)du .
iq~+0 0 ~ : 0

L]

Thus if O < x <m , then

(48) lim w{q) f.e—qt P{n(t) g x}dt
) q-+0 o v

.
e 2u(x) .

If we multiply both the numerator and denominator on the right-hand

side of (35) by w(q) and let q =+ 0 , then by (48) we obtain that

(49) lim q e'thg{n*(t) _<_= x}dt = g—((;%

q->+0 O

for 0 <x <m . Hence (44) follows by an Abelian theorem for Laplace

transforms. (See Theorem 9.10 in the Appendix).
(50) b = [ x dH(x)
0

and X <1, then oy =0 and if Ab>1, then wj> 0 in the above
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If Ab # 1 , then we have

wOX o

(51) | W(x) = ﬁw— %dua{x(u) < uhx} .
for every X .

If b 1is a finite positive mumber, and if we define -

X
[ [1-H(u)]du
0

(52) CH(®) =

O~

]

: *
- for x>0 and H{x) =0 for x < O, then we have

I ()", (%)
Y

(53) W(x) -

for every x where Hn(x) denotes the n-th iterated convolution of H (x)

% % .
with itself, and HO(X) =1 for x>0 and HO(X) =0 for <O .

Next let us suppose that {x(u) , O < u < «} is a separable, homogeneous
process with Independent increments almost all of whose sample functions are

nondecreasing step functions vamishing at u =0 ., Then we have

(54) o | gre=Sx(u)y o g~usls)

for uw>0 and Re(s) >~ O where

5y es) = (1 -am
_ Ja-<

and N(x) (0 < x < =) 1is a nondecreasing function for which 1im N(x) = 0
X - &

and
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1

(56) [ xaN(x) < =,

+0

If we approximate the process {x{u) , 0 g u < =} by a sequence of
’ . -8 8 .

suitably chosen campound Poisson process, In such a way that the finite
dimensional distribution functions of the approximating processes converge
to the corresponding finife dimensional distribufion functions of the process

Ax() , 0 < u < «=} , then by Theorem 52.3 we can conclude that Théorem 2 -

Yemains valid for the more general process {x(u) , 0 <u < «} defined above.

If N_P{n(O) =m} = 1 , then by (29) we can conclude that now we have

vw»-qt an(t),., _ se™@ w(g)e ™™
(57) ée Ele Yt = S @Ts =g = o(s)]

for Re(q) » © ‘and Re(s) >0 and z = w(q) is the only root of the equation
(58) . z - q = ¢(z)

in the domain Re(z) > O . Formlas (34) and (35) remain valid unchangeably

for the more general process {x{u) , 0 <u < =},

Theorem 3 remains also valid for the more general process f{x(u)

3

0 < u < »} with the modification that now :

o

-SX S
(59) ‘é e dW(X) = m

for Re(g) > w. where w =>lj';n w(g) . If E{x(1)} <1 , then

whereas, if E{x(1)} > 1 , then wO~>'O .

U =0
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We note that if E{x(l)} # 1 , then we have
woX

.

(60) W(x) = Ty - +£ dlli{x(u) <u+ %}

o]

Por every x .
If E{x(1)} = p is a finite positive number, then there exists a

: %
distribution function H (x) of a nonnegative random variable such that

(61) [ e™S* @ (x) = 2(s).
0 08
- - L : %
for Re(s) » O . By the aid of H (x) we can write that

-1 2

(62) Woo = ] oM H ()
‘ =0 .

. . . .. . . % % - -
Por every x where H‘n(x) denotes the n-th iterated convolution of H (x)

with itself, and Ho(x) =1 for x>0 and Hy(x) =0 for x<0..
Examples,  First, let us suppose that {x(u) , O <u < =} is a

gamma Input, that ls,

(63) Ply(u) < x} = == ?X Y gl
3 FPix < WO e’y y

for x > O where u is a positive constant. In this case

(61) o(s) = log(l + 55)

and g = E{x(1)} = l/;: .
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if u > 1 , then

(65) Wx) = oy f nlytx) LuGrrx

0 Y

for x>0 and if u <1 , then

¥ (p-u)x w —y-1
. N T _ —u(y+x) [u(ydx) P~ o
(60) V\T(X) u*— 1 Ué e ———Tz:—y‘j d'_\]
: ® ¥~y -~}
for x»0 where 4 >»1 and ue = ue .

chond, let us suppose that {x(u) , O < u < «} is a stable process of

t,ypé 'S:‘C&, l',v 1, 0) where O < @ <1 . Inthis case
&7) , 8(s) = s°

Por Bé(s) >0 and p = E{x(1)} = =, By (59) we obtain that

. ' ' ® ,,Xn(l-a)'
@) W@ = ) g

for x>0, that 1s W(x) = El_a(xl—a) for x 20 where E, (z) 1isthe
Mittag-Leffler function defined by (42.18C) for C <a <1 . |

We note that we can prove dir’ectly'that

(69) lmg{n*(t) < x} =£{x(u) su+tx for O0<ugolmx)}

t >

for 0 <x<m where

(70) o(m-x) = inf{u : x(u) ~u < x=m for 0 < u < =}
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and o(m-x) == if ¥@W) -u>x-m for all u2 0. Se reference [463 1.

Note. Finally, we mention a further generalization of Theorem 3. Let
uS sﬁpposé that {z(u) , 0 < u < =} is a separable, homogeneous process with
indepéndent Increments for which the sample functions have no negative jumps and
vanish at u =0 with probability 1 . Then
d’L) ' R E{e—sg(u)} = eu‘i’(s)

exists for Re(s) >0 and

[

72) T w(s) mas +E0%% + [ (7% - 1+ SEoan(x)
5 3
0 , 1+x

whepre a 1s a real constant, o is a normegative constant, N(x) , 0 < X < o
is a i'iondécre-as-i;ng fﬁnction of x satisfying the requirements 1im N(x) = Q
and
-
(73) J O XTAN®R) < =,
: 0
To exclude sane trivial cases we suppose that eithei" 02 >0 or a>0 and

NGx) 20 .

Now let us consider a dam in which the level of the dam may vary in the
interval (~, =) and let n(t) = n(0) + £(t) Dbe the level of the dam at
time t where m(0) 1s a random \)az'iable which is independent of {g(u) ,
0 < u <=} and for which P{O < n(0) cm} =1 . Let us also define another
dam process 4n which the initial content i.s n* (0) = n(0) and in which the

level varies according to the process {g(u) , O £ u <=}, only in the



X--90

interval [0, m] where m is a positive constant. That is, the dam has
capacity m , and the excess water overflows, and if necessary auxiliary
wabter is ﬁsed to ensure that the level never decrease below O . Denocte

% v
by n (t) the level of the finite dam at time ¢t . .

n référénce [ 464 ] we proved that the limiting distribution

W(x)

: s
CTh) llmwri{ﬂ (t) <X} = Wy

t > e

- : : _ %
exists for O < x 2m and is independent of the distribution of n (0) .
W havéI W(}i) =0 for x <O, W) is nondecreasing and continuous on - = - -

. i . . .
the right in the interval (0, =) and

for Re(s) > wg where W 1s the largest nonnegative real root of V¥(s) =0 .

Examples.  First, let us suppose that {g(u) , O < u < «} is a separable

Brownianvmoti‘on,: process for which E{£(u)} =ou and v@r{g(u) 1 = c2u where

02 >0 , Then

(76) - prEWoon o1 T 2
A
_ G u
g o ¢ e
o W(s) = - as + L o2 |

Now ug =0 1f a <O and uy=2s/c° if a>0. Since



X-G1

(78)~ . o R f,e_sx.dw(x) - . 2
0 ' s(0“s-2a)

for Re (s) » Wy 5 W get by inversion that for x > O

[+1

| 2
9 W) = E e -
Whenéver a 70 , and

(80) W(x) = =

whenever o = 0,

A4 a second »ekarrrple, let us suppose that {&(u) , 0 < u < =} is a.

- : : o
separable stable process of type S(1, 1, -2"-,

s Fuler's constant. In this case

2

(61) y(s) =as t f(e_'sx—l + 32 ) L. (a,-nl+C+log;‘s);:7
0 I+x- x

_ 1-C-a
(’.UO =e .

for Re(s) » 0 and
By (73) we obtain that
(82) W) = J(mo X)

for i_z_.o where

bid o
utl du

- (83) - J(x) = [ 3

1-C-a) where C = 0.5772157.

for x >0 . By aresult of G, H. Hardy [ 428 p. 196] we can also write that

(84) J(x) = & - fm. . ée—-ux 5— du
: O ulv™+ (log u)“]J

for x>0,
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65. Problems

65.1. Let us consider a single server queue with recurrent input and
general service times. Denote by 8(t) the total idle time of the server
in the time interval (O, t) . Give a method for finding the distribution

of o(t) .

65.2. Let us consider a single-server queue with recurrent input and
general service .tjme's. Let us suppose that g{no =0} =1 and Xn (n=

0,1,2,...) and T - T (n=1,2,...3 5 = 0) are independent sequences -

n
- of mutually independent and identically distributed positive random variables.
Denote by 6(t) the total idle time of the server in the time interval (O, t)..-
Find the limiting distribution of 6(t) as t + = in the case when

E{Tn— Tn—l} = a and N@{xn} =b exist and a<b .

65.3. Let us consider a single-server queue with recurrent input and

general service times. Denote by' T~=0, 15, T . the arrival times,
0 1

53
Xg? X72 Xgoeoe the service times, and Ny the initial occupation time of the
- server.. Let us suppose that service is in order of arrival and denote by’ ”r.l.
the waiting time of the cust'omer* arriving at time T . Let

x) = )

O<t_<u-
IF

for u>0 . Prove that if Nlj{rl = xl} <1, then

1im P{n < x} = P{ sup [x(u) - ul < x}
n-+ . A O__<;ll<“’ - . N
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65.4. Let us consider a singlew-server queue in which service Is in
order of arrival. Denote by 9 = 0, Tys Tosees the arrival times, Xqs Xpo«e-
the service times, and N, the waiti_rg time of the customer arriving at time
Tn . Define the inverse queue as a single server queue in which the arrival
times are O, X XO+ Xpseees the service timeg are Tys Ty~ Tyseee and

- ¥ %

the initial occupation time of the server is no Denote by °o the number~
of customers served in the initial busy period in the inverse queue. Prove

that

¥ %
g el =01 =1 - Heg sl =2

“for x>0 amd n=0,1,2,...
|

65.5. Prove formula (62.133) .

65.6. Let us consider a single server queue with recur'rem; input and
éenéral éervice t:'mes‘. Denbte by a the expectation and 02 th;“\»rgria.-l;lcé |
of the ihterarr’ival times, and b the expectation and cg ,tmhe vai'iahce of
the service times. Denote bf] n, the waiting time .of the nfth customer
‘and by n(t) the virtual waiting time at time t . Let us suppose that

" _
a=>b 1is a finite positive number and O < 054—02 <o, Pind the asymptotic

b
distribution of n, & n»>e and the asymptotic distribution of n(t)

as t - . (See S. M. Brodi [ 39 1.)

65.7. Let us consider a single/server queue with recurrent input and
general service times. Denote by F(x) the distribution function of the .
interarrival times, and H(x) the distribution function of the séfvice tines.

Let us suppose that
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x*[1-H(x)] = h(x) and 1im x“[1-Fx)] =

X

where 1 <a <2 and. lim h(wx)/h(x) =1 for any w > 0 , furthermore

X > @

that
[ xdH(x) = [ xdF(x) =
0 0

is aipositiife nwnber. 'F:'md the esﬁnpéotic lc-:'iis;:ributioh of N, s the ywaiting -
time of the n-th customer, and the asymptotic distribution of n(t) , the

virtual waiting time at time t .

- 65.8: Let us consider a singles server queue with recurrent input and -
generall service times. Denote by F(x) the distribution function of the
inter-arfival times, and H(x) the distribution function of the service tines.
Let us suppose that

cx' : OL

1im [l—F(x)]x = and lim [l—»H( )] =
Pt al._ xe T T %

where al and a2 are finite positive numbers and O < a2 < ozl <1 . Determine

' as t »+ =
65.9. Prove (62.175) by using Theorem 59.3 .

'65.10. Let us consider a singlerserver queue with recurrent input and.
i general ser'VJ_ce t:unes Denote by .a the expectation and "Z .the variance.

of ’che interar’rlval tlmes, and b the expectation and 02 ’_che variance offf

,,,,,,, b
 the service times. Let us suppose that. a =b  1s a finite positive nunber:
and O < 0221 + cs < o , Find the asymptotic distribution of 6(t) , the total

idle time of the server in the time interval (O, t) , as t » « .

65.11. Prove (62.194) by using Theorem 59.3 .
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