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CHAPTER I

BASIC THEORY

1. The Topic of this Chapter, The mathematical methods used in

this book are largely based on the varicus solutions of a general
recurrence relation. These solutions. have some interest of their own
and can be used in solving many problems in the theory of probability
and stochastic processes. In this chapter we shall develop the basic
theory for finding these solutions and in the following chapters we

shall deal with its applications in fluctuation theory.

To describe it briefly, the basic theory is concerned with various
solutions of the problem of finding a sequence of functions Pn(s)

(n=1,2,...) defined for Re(s) = O by a recurrence relation

(1) r (s) = Tly(s)r _,(s)}

where y(s) and Fo(s) are elements of a commutative Banach algebra

R, and NTF is a projection. We shall define R in such a way that on

AN

the one hand R 1is large enough to contain all the important functions

A,

arising in fluctuation theory and on the other hand R is small enough

to allow an explicit representation of the transformation T , which is
A~

suitable for calculations.

First we shall give explicit expressions for Fn(s) (n=1,2,...) in

the cases where Po(s) z 1 and where T{Fo(s)} = Fo(s) .



Second, we shall give closed expressions for the generating function

(2) U(s, p) = [ T (s)”
- n=0 "

in the cases where T.(s) =1 and where T{T.(s)} = I'.(s) .
O A O O

Third, we shall show how the generating fuention U(s, p) can be

obtained by using the method of factorization.

Afterwards, we shall show that the above results can also be obtained
in a simpler way if we restrict ourself to the case where vy(s) and

FO(SF beleng to a suitably chosen subspace of R .
- . AN

%inally,we shall obtain analogous results for the case where y({s)
and Fo(s) belong to a space A which is isomorphic to a subspace of

R,and T 1s replaced by a corresponding transformation I .,

ARAA

The method developed in this chapter is coampletely elementary and
self-contained. The only auxiliary theorem which we use is Cauchy's

integral formula,

The mentioned problems have been solved in a particular case by

F. Pollaczek [2g]l, [27] . In his studies F. Pollaczek considered a

smaller class of functions than ~§ . For this smaller class he gave an
explicit representation of NE and found the generating function U(s, ¢)
as the solution of a singular integral equation. Pollaczek's method has
the advantage that it yields U(s, p) in a closed form, but it has also
the disadvantage that some restrictions should be imposed on the functions

y(s) and Po(s). Our method can be considered as an extension of
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Pollaczek's method to the general case. The general method presented in
this chapter does not require to impose any unnecessary restrictions on

the functions considered.

In solving the mentioned problems we can use also algebraic methods

(G Baxter r 6];. (71, [8]1, J. G. Wendel [46], [47], J. F. C. Kingman

[19], [20, G.-C. Rota [31] ), combinatorial methods (E. S. Andersen [ 1],

[21], F. Spitzer [35], W. Feller [13], the author [ 38]) and analytic

methods (I. J. Good [14], J. H. B. Kemperman [ 18, A. A. Borovkov [11] ).

The glgebraic methods are mostly descriptive, and even in the particular
case!of To(s) = 1, the solution does not appear in a closed form. In
general, combinatorial methods do not provide the solution in a closed
form either, but fortunately, in some particular cases We can obtain
explicit results. (See the author [3g].). The most useful analytic
method is the method of factorization which yields simple sclutions in
many cases; however, this method has been applied only in particular cases

in the past. The method of factorization has been introduced by N. Wiener

and E. Hopf [49] for solving integral equations. (See also F. Smithies

[(33], H. Widom [48], N, I. Muskhelishvili 22] and M. G. Krein [21].)

The results presented in this chapter have been developed by the
author [391, @ol, [11], [42], [uz].
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2, A Space R . Denote by R the space of all those functions
aopace o
¢(s) defined for Re(s) = O on the complex plane, which can be represented

in the form

) 8(s) = E{ze ™"}

, o
where ¢ is a complex (or real) random variable with ,E‘”;l} <o and
n 1s a real random variable. The function ¢(s) is uniquely determined
by the joint distribution of z and n . However, there are infinitely
many possible distributions which yield the same @¢(s) . It follows from
(1) that [e(s)] ;/Eﬂ;[} for Re(s) =0 . It can easily be seen that

A i
o(s) 1is a continuous function of s for Re (s) =0 .
Let us define the norm of ¢(s) by

(2) © lell = e Bjeh)
z

where the infimum . is taken for all admissible g , that is,for ail

those z for which (1) holds. Obviously |e(s)| < || ¢|]] for Re(s) =0.

We have || ¢||>20, and |le]]=0 if and only if &(s) = 0. If «
is a complex (or real) number and o(s)eR , then a#(s) ¢ R and

llaoll= la]| || ]|+ Furthermore, if 2,(s)eR and ¢,(s)eR , then

0,(s) + o,(s) eR and |{<I>l+<1>2|l < ||¢l|| +| @21 . This last statement can

be proved as follows:
—Snl
For any e >0 let ¢,(s) =E{gje ~} where E{|c |} < [lo)]+e

-Sn
and let ¢,(s) = E{c,e 2} where E{|r,2}} < |l <1>2“+e . Iet v bea
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random variable which is independent of (z;l, nl) and (c2, n2) and

for which P{v=1}=P{v=2}=l. Let us define ¢ =2; and n =n .
Ay -

N

Then
(3) Elze™"} = o (s)+0,(s) and E{|z|} = B{|z; |3+ Elfyl} < = .

Thus ¢, (s)+o,(s) e R, and !|<I>1+ o 5__|l¢l|| + |[<I>2|l +2 . Since >0

|
is arbitrary, this proves the statement. Accordingly, R 1s a normed li-
near space., In what follows we shall not meke use of the completeness

of R . However, we can prove that MR: is complete, and hence it follows

that R 1s a Banach space. (See Problem 13.1.)

Next we observe that if ¢,(s) ¢ R and ¢,(s) € R, then

| laa%S AN~
¢, (s)e,(s) ¢ R and leo Il < o]l e ]l . To prove this let us define
<I>l(s) and <I>2(s) in exactly the same way as above. However, let us
assume now that (cl, nl) and (gz, n2) are independent and define

L= Tq8y and n=nl+ UPEE Then

(1) E{ce_sn} = o (s)es(s) and E{c|} = E{[z,IE{[z,]} < = .

Thus ¢, (s)e,(s) e R and H<I>1<I>2H < (]l ®l||+e)(|| CI>2|| +e) . Since € >0

is arbitrary, this proves the statement.

Accordingly, R can be characterized as a commutative Banach algebra.
~-



3. A Linear Transformation ;2.. Let us define a transformation ;2
in the following way. If &(s) a,ﬁ. and ¢(s) is given by (2.1), then
let |

+
(1) T(a(s)} = o' (s) = B{ze™" )
for Re(s) = O where n+ = max(0, n) . It can easily be seen that the

function ®+(s) is independent of the particular representation (2.1).

It depends solely on ¢(s) . If ¢(s) € R, then obviously ¢+(s) e R.

Ao

If o is a complex (or real) number and ¢(s) ¢ R, then T{at¢(s)}=
- R Ve
I~

aT{e(s)} . If @1(5) e R and @2(5) e R, then T{@l(s)Fk@Z(s)} = /(
i . o~ A Ann
i .

This| follows immediately from the representation (2.3). Obviously

ITll=1. (T = supthTell : ¢ eR and || || <1} .) Accordingly, T is
e A lae A "

a bounded linear transformation. Since T2 =T, therefore T is a

ey A

projection.

Lemma 1. If ¢,(s) e R and ¢,(s) ¢ R, then

E{@ (s)@z(s)} =E{<bl(s)g¢2(vs)} +E{¢2(s)Eq>l(s)} -

(2)
(T, (s)(Te,(s)) .

Proof, For any real x and y we have the ldentity

+ +.+ +, o+ + +
- ~slx - ~s( 7
(3) e shxtyl _ mshxy ] | mslxayls | -s(xidy )

where we used the notation [x]+ =x = max(0, x) .

-sny ~8n,
Let us suppose that ¢.(s) = E{z,e } and ¢,(s) = E{z.e }
| l o l 2 - 2

/(E{QlCSZ} +n${@2(s)} .
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where (;l, nl) and (cg, n2) are independent. If we put x = ny and
y=n, in (3), multiply it by Z1%5 and form its expectation, then we

obtain (2).

We note that (2) is equivalent to the following relation. If

v (s) = ¢,(s) _E{qsl(s)} and ¥,(s) = 8,(s) - Tle,(s)} , then

() 0oy (sNuy(s)} = 0,

which can easily be seen to be true.

We mention two particular cases of (2), which will frequently be used
|
in this book. If T{@l(s)} = @l(s)' and T{@Z(s)} = @2(3) , then
;E{@lls)éz(s)} = @l(s)¢2(s) . If JE{Ql(S)} =c; and ~?‘{@2(5)} = ¢, , where

c. and c, are complex (or real) constants, then T{@l(s)®2(s)} = ¢.C

1 172 °

These statements can easily be proved directly.

In what follows we shall make some general observations concerning
¢+(s) and @(s) - ¢+(s) . If &(s) e R, then ¢(s) can be represented

in the form (2.1) and

+
(5) ot (s) = E{ze™" )

for Re(s) = 0. If we extend the definition of ®+(s) for Re(s) >0
by (5), then ¢+(s) becomes regular in the domain Re(s) > O and
continuous for Re(s) > O . Furthermore, [®+(s)| <|le|l for Re(s) 2 0.

If #(s)e R, then ®(s) can be represented in the form (2.1) and

+
(6) 0()-6"(s) = E(ze®t M 1o 5(1)

for Re(s) = 0 . This follows from the following identity



-SX —sx+ B SE-—X]+
(7) =e -1

which holds for any real x . If weput x =n 1in (7), multiply it by
r and form its expectation, then we cbtain (6)., If we extend the
definition of ¢(s) - <I>+(s) for Re(s) < O by (6), then #(s) - @ *(s)
becomes regular in the domain Re(s) < O and continuous for Re(s) <O .

Obviously [e(s) - © (S)I 2|| ¢|| for Re(s) <O .

We. note that if’E{@('s)}= o(s) , then o(s) = <I>+(s) =A§{§e_sn+} ,
that is, ¢(s) can be represented as NF:{ z;e—Sn} where n 1s a nonnegative
randql>m variable. If T{e(s)}= O then 97(s) =0 and ¢(0) = ¢t(0) =0
and é)y (6) we have ¢(s) = E{r,es[ n] } , that is, ¢(s) can be represented

-5 . . s .
as FE{ze n} where n is a nonpositive random variable.
s

The last remark implies, for example, that (4) is true. For, if
T{‘i'l(s-)} =0 and T{\Pz(s)} = 0 , then we may assume that ‘Pl(s) =
~ -sny e ~sn,
= r , g 41 1
E{ z,€ } and ‘Yz(s) NTZ{C2e }  where N and n, are nonpositive
random variables. If (z;l, nl) and (cz, "2) are chosen to be independent,

then it follows immediately that T{‘Pl(s)‘i’z(s)} E{;lc =y (O)‘P (0)y =0.

This proves Lemma 1 once again.
We shall also need the following auxiliary theorem.

Lemma 2. Let cbn(s) e R for n=C,1,2,... and let a, (n=0,1,2,...)

be complex (or real) mumbers. If

(8) ngqlaml e ll <=,



"t hen
(9) ¥(s) = nzo a¢ (s)eR,
(10) Cele L lal el
- and
(11) T{¥(s)}= ] a T{e (s)} .

n=0 "~

Proof.  If we refer to the facts that R 1s complete and T is
contFnuous, then Lemma 2 follows immediately. However, we are not making
use bf the completeness of ﬂg» and therefore a separate proof is required.

-sn
For n=0,1,2,... let ¢ (s) = E{z e "} where 'E{lcnl} <wle /K(
Iet v be a discrete random variable which is independent of the sequence
(;n, nn) (n=0,1,2,...) and which takes on nonnegative integral values
with some probabilities hE{v =n} = P, > O for n=0,1,2,... & For
example, we may choose p_ = 1/(n+l)(n+2) for n =0,1,2,... . Define

g = avcv/pv and n = n,. Then

and

a
I

(13) E{|¢]|} = P{v = n} E{jz |} 2 ® la | lle || < = .
o nzow o~ n n_zo n n

n

Accordingly, Y¥(s) = E{ce™"} and ¥(s) ¢ R . The inequality (13) implies

~

that (10) holds. Now we have

/< and w is an arbitrary positivé number grester than 1 .
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+
+ -3n

[++] a o
m = =sn = =’ ﬁ = n -
(14)  T{¥(s)} E{ce } n}=:0 E{v-n} 5 f{cne } nZO an:l:f@n(S)}

A

which is in agreement with (11). This completes the proof of Lemma 2.

In particular, it follows from Lemma 2 that if &(s) € R, then
Faa

'epcb(s) e R for any p and

© n
(15) P31 = 7 L pre(s) 1™,
o~ n=Q 1~

furthermore [1-p8(s)]™  eR and log [1-p#(s)] € R , whenever o] le]l < 1

ard a
|
(16)| T([1-00(s)T71 = § 0" T([a(s) T
- n= i
and
© n n
(17) - T{log [1-pe(s)]} = - Zl S~ T(le(s)T}

for ol lle)l<1. The function logll -Saé(s)] is defined by

@
(18) logfl ~e3()] = -5 & (3]
n=1

for \g’ @(S)\< 1.
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L, A Recurrence Relation. Many problems in the theory of probability

and stochastic processes can be reduced to the problem of finding a sequence
>
of functions Pn(s) (n=1,2,...) defined for Re(s) = 0 by the recurrence

relation
(1) ' | r (s) = Tly(s)r,_,(s)}

where n=1,2,..., Y(s) e R, Fo(s) e R and T{Fo(s)} = ro(s) . Obviously
Fn(s) e R for all n=1,2,..., and Pn(s) is a regular function of s in
the domain Re(s) > O and continuous for Re(s) >0.

Theorem 1. Let us suppose that v(s) e R, ro(s) e R and
| . Pt

T{ry(s)} = Ty(s) . Define T (s) for n=1,2,... by the following

recurrence relation

(@) ry(s) = Ty(s)r _;(s)} .

It o] llvll < 1, then

@ 1 r_(s)e” = e 2 10BLPY(S) gy (g)omIoallpy(s) HTlIogll-ey (s) ]},
n=0 ~

for Re(s) 20 . If, in particular, Fo(s) = 1, then (3) reduces to
. n
& T([y(s)1™
M

| ™ 8

1

[

W) I 1 ()" = o Tileller($)] _  n
n=0 o

where ol [lv[[< 1.

Proof. Let us denote the right hand side of (3) by U(s,p) .

Obviously, U(s,p) € R and T{U(s,p)} = U(s,p) . Now we shall show that
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U(s,p) satisfies the following equation

(5) U(s,p)- PE{Y(S)U(S,D)} = PO(S) .

This can be proved as follows. Let

) : h(s,0) = elog[l—py(s)]:E{log[l-pY(S)]}

for Re(s) =0, and |p| |lyll< 1 . Evidently h(s,e) e R, 1/h(s,p) € R

and I‘d(s)/h(S,o) e R. We can see immediately that

(7) | T{h(s,e)} =1
and.E

I'y(s) I'o(s)
(8 I Rty - T Aty -

By Lemma 3.1 it follows from (7) and (8) that

T (s) r (s)
(9) T{h(s’p)[h(s, ) M NE p)]}
that is,
(10) NTV{[l—pY(S)]U(S,o)} = Ty(s)

whence (5) follows.

Iet us expand U(s,p) in a power series as follows

(11) U(s,p) = Z U <s)p
n=0
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This series is convergent if |p] ||¥]l < 1 and evidently U(s) e R for
n=0,1,2,... . If we put (11) into (5) and form the coefficient of o' ,

then we obtain that UO(S) = Fo(s) and

(12) U (s) = Ty (8)U, 4 (s))

for n=1,2,... . Accordingly, the sequence {Un(s)} satisfies the same
recurrence relation, and the same initial condition as the sequence

A{r(s)} . Tus U(s) =T (s) for n=0,1,2,... which was to be proved.

|In the particular case of FO(S)E 1 the proof of (4) is much simpler.
Ir rui)w U(s,p) denotes the right-hand side of (4), then it follows

immediately that
(13) E{[l—pY(S)]U(s,p)} =1

and therefore (5) holds with Fo(s) = 1 . The remainder of the proof

follows as in the general case.

The usefulness of formulas (3) and (4) depends on the applicability
of the transformation E . In the following two sections we shall give a
method for finding E{Q(s)} for ¢(s) € R, and, in particular, for

finding T{logll-py(s)]} if v(s) e R and |e| |ly]l< 1 . First, how-

ever, we shall give some alternative proofs for (3) and (4).
Theorem 2. - If vy(s) e R, I'O(s) =1 and

(14) T (5) = T{y(s)T_

" l(S)}

for n=1,2,..., then
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-] © k
(15) I (s =expl [ &-v)(s))
n=0 k=1 <K

for Re(s) 20 amd |[o| fyil <1 where v, (s) = [v(s)T* and

(16) Yi(s) = MIv()T
for k=1,2,... .

Proof.  Starting from I‘O(s) we can obtain Pn(s) for every
n=1,2,... by the recurrence formula (14). We observe, however, that
I‘n(s) (n=1,2,...) can also be obtained by the following recurrence

reiation

a P sy =L T 4Rer (s)
@ 'n(s _Hk=i Yk(s n-k'"

which holds if Re(s) >0 and n=1,2,... .

We shall prove by mathematical inductidn that (17) holds for
n=1,2,... . If n=1 , then (17) reduces to Fl(s) = y'{(s) which is
obviously true. Let us assume that (17) is true for 1,2,000,0,

We shall prove that it is true for nt+l too. Hence it follows that (17)
is true for every n (n=1,2,...) . If (17) holds for n (n=1,2,...) ,

then by (14) it follows that

3

(18)  r_, () = T{y(s)r (53} = %kzl Tly(s)hv(s)T__ ()}

for Re(s) > 0 . If we apply Lemma 3.1 to d>](s) = Y(s)rn_k(s) and
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@2(8) = yk(s) , then we obtain that

(19) T (Sh(8)T (81} = Tlyyq (T, ()} +
F (ST, 41 (8) = Thyy ()T, o (8))
for k=1,2,...,n .

If we put (19) into (18), then we obtain that

1n-!-l + 1
(20) 1) = F L NI pn (8) - 5T (8)
that!is,
1 ntl
= e )
(1) Toe1(s) = kzl Ve (80T g4 ()

for Re(s) > O . Accordingly, (17) is true if n is replaced by n+l .

Thus we can conclude that (17) is true for every n=1,2,... .

If we introduce the generating function

(22) U(s,e) = [ T (s
‘ n=0

for Re(s) >0 and |p| l¥|l< 1 , then by (17) we obtain that

(23) BU(Z’pp) = U(s,p) '-Z-l wr:;(s)pk—l .

Since U(s,0) =1 , it follows that
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(24) log U(s,e) = } y YK(S)
=1 “

for Re(s) 20 and |e| [ly |l <21 . This completes the proof of the

theorem. Obviously (4) and (15) are equivalent.

We can express T (s) explicitly by Y (S)’YZ(S)’ *» Tn Ts) 1
we introduce the following polynomlals. For n=1,2 ,3 sees 1et us deflne

the polynomials

(25) Qn(xl, Xyseees X)) =

1 '<}—<l)k1<f?->k2 fass
42K+ otk =0 kl kolesk b1 2 n

i
—

where kl’ k2,. ooy kn are nomegative integers, and let QQ

Theorem 3. If v(s) e R, Iy(s) =1 and

Ty ()T ()}

(26) r,(s)

for n=1,2,..., then

(27) L(s) = Qur1(); ¥3(3)se0es Y4())

for Re(s) >0 and n =1,2,... where Yk(s) = [Y(s)]k and y;(s) =

g{YK(S)} .

Proof. If =

which |x_]| < a"
nl &

15 Xpseees Xpee. arE complex (or real) numbers for

(n=1,2,...) where a is a positive real nunber and

Ioia < 1 , then we have
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© ] © k
(28) 1+ § (X1 3X peeesk Jo = expl § &=x 1.
L Saa%aee ¥y L

The proof of (28) is immediate. If we form the coefficient of pn in
the power series expansion of the right-hand side of (28), then we obtain
Q (X)s%p5eee5x ) for n=l,2,... . If we choose a = |y||, then the

relation (28) shows that Theorem 2 and Theorem 3 are equivalent.
In what follows, however, we shall give a direct proof for Theorem 3.

- First, we note that if ly| < a2, if we mltiply (28) by

1 s pk k
(29) | loy =exp{- | —V 1},
k=1

and if we form the coefficient of o , then we obtain the following

identity
(30) Qn(Xl,Xz,...,Xn) - an—l(Xl’X2’...’xn—l) =
2
Q (X5 XomF puens X V)
for n=1,2,... . Here QO =1.

Now let us suppose that Pn(s) for n=1,2,... 1is given by (27).
Since the right-hand side of (27) is a polynomial of y{(s), y;(s),..,y;(s)

+
and T{Yj(s)} = Y;(s) for J=1,2,...,n , it follows that

(31) T (s)} = T_(s)

for n=1,2,... and Re(s) > O.

On the other hand, by (30) we can write that
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(32)  T_(8)=r(s)T _1(8) = Q (¥} (8)=v, (8}, Ya(S)=Y5(S)suues Yh(8)my (5))
for n=1,2,... and Re(s) > O . Since the right-hand side of (32) is a
polyncmial of YI(S)—YI(S), Y;(S)-Y2(S),-ws Y;(S)—Yn(s) and
T{Y;(s)—yj(s)} =0 for j=1,2,...,n , it follows that

(33) I (8) - Y(8)T_1(s)} = O

for n=1,2,... and Re(s) 2 0. By (31) and (33) we obtain that

(34)‘ r (s) =E{Y(5)Pn_lks)}
for | rn=1,2,... and Re(s) > O where I‘O(s) = 1. This is in agreement

with (26) and therefore (27) is indeed correct.
Now we shall give an alternative proof for (3).
Theorem 4. If v(s) e R, Ty(s) e R, T{Iy(s)} =T,(s) and

(35) () = Ty (s)r _;(s)}

for n=1,2,..., then we have

n
(36) XORN Q (S)TUT (), ()}

for Re(s) 20 and n=0,1,2,... where

(37) Q(8) = Q (1(8), ¥5(8)senns V,(S))

for k=1,2,...,n and Qo(s) z QO =1, and



I-19

(38)  @(s) = Q (v, ()11 (8),7,(8)r5(8)seun sy, (S)v(5))

. ) *
_f_O_I: k=l,2,- esssll 4 _iaﬂ(_i_ QO(S) QO

1 . The polynomial

Qlxys Xoseee, ) for k=1,2,... is defined by (25).

Proof. Suppose that Fn(s) is given by (36) for n=0,1,2,... .
For n=0 formula (36) reduces to PG(S) = ro(s) . We shall prove that
(35) holds for n=1,2,... . Thus it follows that (36) is indeed the

correct formula.

By (36)
n %
(39) T{y(s)r_(s)} = T{y(s) (s)T{r (s)Q (s)}}
Liy(sory kEOMY Qx(8)TTH(s)Q, (s) 1)

If we apply Lerma 3.1 to the functions ¢l(s) = Y(S)Qn—k(s) and

%
@2(5) = ro(s)Qk(s) , where k=0,1,...,n , then we obtain that

(50)  TUy(s)Q_ (SITT()Q ()1} = Tiy(s)Q _, (s)To(s)Q ()} +
¥
- Qe (BTG ()G, ()} —;E{Qn—k+l(s)PO(S)Q§(S)} .
If we put (U0) into (39) and take into consideration that

n
(M) T G, (8) - v(Q ()] + Q. (s) =0
k=0 ‘ : ,
for n=1,2,..., then we obtain that

n
(82) Ty = | Qi1 (SIHT(BIQ(S)) + TET ()G, ()}

for n=0,1,2,... and Re(s) > O . By (36) the right-hand side of (42)
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can be written as Pn+1(s) . This proves that (35) holds for n=1,2,... .
It remains to show that (41) is true. If we multiply the left-hand side
of (41) by o" where |po| ||v||< 1 and add for n=1,2,..., then we

obtain

’ o k oo" k
43) e { ] [y (s)=vi(s)]+ § & [yi(s)=y, (s)]h-1 =0
kél kLY S/ kzl K LYR\SITYAS

whence (41) follows.

Ir PO(S) = 1 , then (36) reduces to Pn(s) = Qn(s) (n=0,1,2,...)

which is in agreement with (27).

If we multiply (36) by o? and add for n = 0,1,25+4., then we

obtain (3) for |e| Jv|l< 1 .



5. A Representation of T . If we know ¢(s) e R for Re(s) =0,
N~ AAn

then <I>+(s) = T{e(s)} 1is uniquely determined by ¢(s) for Re(s) 20 .
(a2

The function <I>+(s) is regular in the domain Re(s) > O and continuous

for Re(s) > 0 . We can obtain <I>+(s) explicitly by the following

theorem,

Theorem 1. If ¢(s) e R, then for Re(s) > O we have

(1) <I>+(S)=%-<I>(O)+lim = | %%dz

e~>0 L
€

wher¢ L_ (e > O) the path of integration consists of the imaginary

axis from z = -i» to 2z = -ie and again from z =ic to 2z = i» .

Proof. 1Iet C: (e

\%

0) Dbe the path which consists of the imaginary

axis from z = -i» to z = -le , the semicircle {z:z

u
)
4]

I

L T
3 .é— 0;= é—}

and again the imaginary axis from z =ie to z = ie . Let O; (e > 0)

be the path which consists of the imaginary axis from z = -i» to z = -ie,
the semicircle {z:z = —e™® , - % ;a;-g-} , and again the imaginary axis

+

from z=1¢ to z=31x . ILet G_(R) (0 < e < R) Dbe the path taken

m

in the negative (clockwise) sense and containing C‘: from z = -iR to

z = iR and the semicircle {z:z = Re ¢ y - g—-;a;—g-} . let C;(R)
(0O < € < R) be the path taken in the positive (counter-clockwise) sense

and containing C; from z = -iR to gz = iR and the semicircle

Since @+(z) is regular inside C:(R) and continuous on the boundary,

it follows by Cauchy's integral formula (see e.g. W. F. Osgood [23] p. 112)




that
s <I>+(Z) +
(2) 5;—5 f A2l dz = ¢ (s)

+
¢_(R)
€
for O < e <Re(s) and {s| <R . Ifwe let R~ in (2), then we

aobtain that

+
(3 el 2 (2) 55 = 6% (s)
¢

3
for O < ¢ <Re(s) . If €~ 0, then in (3) the integral taken along the

semicircle of radius e tends to <I>+(_O)/2 = ¢(0)/2 and thus by (3)

+
, 3 (z)
(4) 1lim - f ~=s
e >0 2Tl Le: z(s~2)

S

dz + .‘5- 5(0) = o7 (s)
for Re(s) > O .

If we extend the definition of o(s) - ¢'(s) for Re(s) <O by
(3.6), then &(s) - o' (s) becomes regular in the domain Re(s) < O ,
continuous for Re(s) <O and |e(s) - o7(s)| < 2||e || for Re(s) <O .

Then by Cauchy's integral theorem (see e.g. W. F. Osgood [23] p. 105)

it follows that

+
(5) = | 2=t ® g -0
C®)

for Re(s) > 0. If we let R - « in (5), then we obtain that
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+
(6) el Mi%ﬁzgm dz =0

4
€

for Re(s) >0 . If e~ 0, then in (6) the integral taken along the

semicircle of radius e tends to [®+(O) - ¢(0)1/2 = 0 , and thus by (5)

(7) | lim
e >0

s 2(2)-0"(z) o _

2ni Le z(s-2)

for Re(s) » O .

If we add (4) and (7), then we obtain (1) for Re(s) > O which was
to b% proved, For Re(s) = O the functicn ®+(s) can be obtained by

cont%nuiﬁy or by an integral representation similar to (1).

We note that if o(s) =A§{;e-sn}‘ exists for some s =¢ > 0, that

1s, if E{|ze™"|} <=, then

+ _: S ¢(z)
(6) 0 (8) = 53 { Z(5-2) 9%
c
€

for Re(s) > € > 0 . For in this case (6) remains valid if Cg is

replaced by C: , and hence (8) follows by (3).

If o(s) = E{ce ™"} exists for some s = ~¢ < O , that is, if

E{|ze""|} < = , then we have

(9) o*(s) = 0(0) + 52 [ 2as
CE

we - )
for Re(s) > 0 . For in this case igNreplace C: by Ce in (3), then

the right-hand side becomes o (s) - ¢ (0) . If we add (6) to this

equation, then we obtain (9).
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6. The Method of Factorization. If y(s) e R and |p]|lyl] <1,
then log[l-py(s)] € R and we can determine T{log[l-py(s)]} by Theorem

5.1 . We can use also the expansion

n

n
%r- {Iy(s)TH

Mo

(1) T{1logll-py{s)]} = - }
~ n=1

which is convenient if T{[y(s)]"} for n = 1,2,... can easily be
e

obtained. In what follows we shall mention another method, namely, the

method of factorization.
Iet o(s) e R, o] |llvll <1 and suppose that
| .

(@) | 1 - py(s) = I"(5,0)I 7 (s,0)
i

+ . o .
for Re(s) = 0 where I (s,p) satisfies the requirements:

O
“

A, : I’+(S,p) is a regular function of s in the domain Re(s) >

A2 : I'+(S,p) is continuous and free from zeros in Re(s) > O,

'A3 : ljjn[logr+(s,p )]/s = 0 whenever Re(s) >0,
|s]>
and T (s,p) satisfies the following requirements:

Bl : I (s,p) 1is a regular function of s in the domain Re(s) < O ,

B, : I'(s,p) 1is continuous and free from zeros in Re(s) < O ,

2

B

3" .lim\_logl“"(s,pi/s = 0 whenever Re(s) <O .

s>

Such a factorization always exists. For example,

(3) rf(s,e) = oI{logll-py(s) 1}

for Re(s) >0 and
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() F(s.0) - ologll-ov(s)]-T{logli~py(s)]}

S

for Re(s) £ 0 satisfy all the requirements., Actually, the above
requirements determine F+(s,p) and T (s,p) up to a multiplicative

factor depending only on p . This is the content of the next theorem,
Theorem 1. If y(s) e R s el ¥l <1 and
7 + -
(5) 1 - py(s) =T (5,0)T (s,p)

' + - . ,
for Re(s) =0 where T (s,p) and T (s,p) satisfy the requirements

A

A, and Bl’ B2, B3 respectively, then

12 72> 73

|
(6) |

T{log[1-py(s)]} = logl't (s,0) + logr™(0,0)

for Re(s) 20.

Proof. It is sufficient to prove (6) for Re(s) > 0 ., For Re(s) =0

+

(6) follows by continuity. Let us define the paths L, C.,

-+
oo, ctmy,
C;(R) in the same ways as in the proof of Theorem 5.1 . By Cauchy's

integral formula we ecan write that

+
S logl' (z,p) _ +
(7) 2_n_i { Z(S—Z) dz = 10gI' (S,p)

C
€

for O < e<Re(s) and by Cauchy's integral theorem we can write that

s logl (z,0) . _
(8) 2ni J 2(o-z) 2 =0

€
for Re{s) > O . We can prove (7) and (8) in a similar way as (5.3) and

(5.6) . First we integrate along the paths C:(R) and C;(R) in (7)
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and (8) respectively and then let R+« , If ¢ > 0 in (7) and (8),

then we get

s ¢ logl (z,0) 1.+ +
(9) lim Dl J’ é’ S—7, dz + ) logr (O3p) = lOgF (S,p)
g +~ 0 L
and
' . s logl (z,0) . 1 - _
(10) m 5 ooz~ 42 = 5 logl (0,0) = O
e >0 L

€
for Re(s) > 0. If we add (9) and (10), then we cbtain (6) for Re(s) > O .

This completes the proof of the theorem.

}By using Theorem 1 we can express Theorem 4.1 also in the following

way.

Theorem 2. Let us suppose that v(s) e R, Fo(s) e R and

T{ro(e)} = To(s) . Define 1 (s) for n=1,2,... by the following

recurrence relation

(11) Iy(s) = Tiy(s)T _(s)}
1 fol Jvll< 1 ana
(12) 1 —py(s) = I'(s,0)I (s,p)

+ -
for Re(s) =0 where T (s,p) and T (g,p) satisfy the requirements

Ays Bys Ay and By, By, By, then
o T (s)

(13) I r(s)et = (=2}
n=0 I'(s,p)™™ T (s,p)

for Re(s) >0 . If, in particular, Ib(s) =1, then
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(14) 71 (s)” = 1
=0 " I (s,0)r7(0,0)

for Re(s) 2 0.

Proof. If we put (6) into (4.3) and (4.4), then we obtaiﬁ (13)

and (lﬂ)vrespectively.
We note that by (13) we obtain that

© N - INE)
(15) [1-pv(s)] } T (8)e” = I (5,0)T{ ———r1}
n=0 ™ T (8,p)

for |[Re(s) =0 and |p| fyll< 1.

i
|
|

"By (14) we obtain that if Fo(s) = 1 then

- rf(o,0)
(16) [1-pv(0)] ] T (s)p" = 2Pl
n=0 I (s,p)

for Re(s) 20 and Jp| |l¥ll< 1 and

(17) [1-pv(s)] } I'n(s)pn = __,___r:(s p)
n=0 T (O,p)

for Re(s) =0 and Je| ||vll< 1.

In finding 1‘+(s,p) and T (s,p) we can usually utilize the

following theorem of Rouché :

If f(z) and g(z) are regular in a domain D (open connected set),

continuous on theclosure of D and satisfy |g(z)| <|f(z)] on the

boundary of D , then f(z) and f(z) + g(z) have the same number of

zeros in D .

For the proof of Rouché's theorem we refer to S. Saks and
A, Zyemund [ 32 ) p. 157.
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T. A Subspace ABO . There are several problems in fluctuation
theory which can be solved by considering a smaller class of functions
than the space Ji,' In this section we shall define a subspace ABO of
the space R and we shall show that if we restrict ourself to functions

belonging to NBO s then the problems discussed in the previous sections

can be solved in a simpler way.

Define NBO as the class of all those functions y(s) defined for

Re(s) = O on the complex plane which can be represented in the form
(1) . Y(s) = cq¥q(s) + cy,(s) + .ov + ey ()

|
wher% n 1is a positive integer) C1s Cpseee, C are complex (or real)
numbers and wl(s), wg(s),..., wn(s) are Larlace-Stieltjes transforme

of real random variables, that is,

-sn Kk
(2) wk(s) = E{e 1

fer Re(s) = 0 and k=1,2,...,n where Nys Nyseess N, are real random

variables.

If v(s) €~§O , then v(s) e R. For if y(s) 1is given by (1), then
wk(s) e R for k=l,2,...,nl and therefore vy(s) e R . Accordingly, Ry
i1s indeed a subspace Of,ji‘ We can easily see that ~§O is a linear
manifold.

R. can also be characterized as that subspace of R which contains
0 P R ]

all those functions vy(s) defined for Re(s) = 0 on the complex plane

which can be represented in the form
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(3) ¥(s) = Efze™ ")

where ¢ is a discrete complex random variable with a finite number of
possiblie values and n is a real random variable, We can easily see that
this definition of ABO and the previous one are equivalent. If vy(s)
is given by (1), then let us define v as a discrete random variable which
is independent of mn,, NAssessn. and for which P{v =k} = 1/n for

122 n A
k=1,2,...,n . If ¢g=nc and n=n_ , then (1) can be expressed in the

form of (). The converse implication is evident.

If vy(s) EABO and vy(s) is given by (1), then let us define the
norm of v(s) by

() Il = ety #lo . +]cy

where the infimum is taken for all admissible representations of v(s) in
the form (1) . This definition of |y|| is in agreement with that of

Section 2.

We have [v] 20, and |y]| =0 if and only if y(s) =0 . If o i

Ui

a complex (or real) number and vy(s) ¢ R, , then ay(s) ENBO and
lev|l =la| Jv|l . Furthermore, if yl(s) ENBO and YZ(S)«E*BO , then
v1(8) +vp() € Ry and vp(8) vp(s) e By and [y voll <llvyll+ihv, |l anc

”YlYglléJlYl“ |‘Y2” .

Let us define the transformation I in the following way. If

v(s) ENBO and y(s) is given by (1), then let
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(5) E{Y(S)} = Y+(S) = °1"’1(S) + c2¢;(8) + ...+ cnw;(S)

for Re(s) = O where

+
-3n
(6) #(s) = Ty ()} = Ble

and n; = max(0, nk) . It can easily be seen that the function Y+(s)
is independent of the particular representation (1). It depends solely
on y(s) . This definition of T{y(s)} is in agreement with that of

Section 3. If y(s) e R, , then obviously v'(s) e R, .

' If o is a complex (or real) number and vy(s) EM-R , then £{ay(s)} =
e : ¢ ( =
a,i{Y(S)} . If yl(s) cNIjO and y2(s) ENEJO then MT{\(l(s)+ Y2‘S)}

E{ yl'(s) } o+ :\1“‘{72(3)} which follows immediately from the definition (5).

‘Lema 1. If y;(s) e Ry and v,(s) e Ry , then we have

(7) Ty, (8)Ty,(s)} + T{y,(s)Ty,(s)} =
=£{YI(S)Y2(S)} + (EYl(S))(TYZ(S)) .

Proof. We can easlly see that for any two real random variables M

and Ny we have

(8) N?{max(o, nys Myt n,) £ x} + Plmax(0, ny, ny+ ny) < x} =

= P{max(0, n,+ n,) < x} + P{max(0, n,)+ max(0, n,) < x}
o P F 1 o) <

for all x . If we assume that Ny and n, are independent random
-5n -3N

variables for which E{e l} = Yl(s) and E{e 2} = yg(s) whenever

o~ o~

Re(s) = 0 , and if we form the Laplace-Stieltjes transform of (8), then
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we obtain (7) in this particular case. The general case can immediately

be reduced to this particular case by using the representation (1).

Finally we note that if y(s) e R, then y'(s) 1is a regular
Ara
functicn of s in the domain Re(s) > O , continuous for Re(s) > O and

ly(s)| < |Iv]l for Re(s) > O .

Noxlet us consider the recurrence relation studied in Section 4 in

the particular case when v(s) e R, and Tr.(s) € R
. w0 0 0

I‘O(s) . If we define T n(s) for n=1,2,... by the recurrence relation

and E{FO(S)} =

(9) | ro(s) = T{y(s)r, 1 (s)}

then’ I‘n(s) er_{o for n=1,2,... . First, we shall consider the particular
case when I‘O(s) = 1 , then the general case when Po(s) EMRO and

. Y =T (s
- Theorem 1. If y(s) e Ry, Ty(s) =1, and

(10) I‘n(s) =£{Y(S)Fn—l(s)}

for n=1,2,..., then

. [ < k
(11) J r (s =exp{ ¥ E—vyis):
n=0 n k=1 k 'k

for Re(s) 20 and o] [[v[i <1 where v, (s) = [v(s)1® and

(12) Yp(s) = Ty, ()} = T¥(s)T)

for k=1,2,... .
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Proof. The proof follows along the same lines as the proof of
Theorem 4.2 . First, by using Lemma 1 we can prove by mathematical

induction that

S

4 ooy
(13) r (s) = k—g-l Ty ()T, (s)

for Re(s) >0 and n=1,2,... . If we introduce the generating function

of the sequence {Pn(s)} , then we can easily obtain (11) from (13).

: T =1
Theorem 2. If vy(s) e Ry, Ty(s) =1 and

(14) I,(s) = Ty ()T, (s))

“for n=1,2,..., then

(15) r(s) = Q ((8), Y5(8),eers Yi(s))

for Re(s) 20 and n=1,2,... and I (s) =Q,=1. The polynomial

Qn(xl, Xys ey xn) is defined by (4.21).

Proof. The proof follows exactly along the same lines as the proof
of Theorem 4.3 .

Theorem 3. If +v(s) e Ry, Ty(s) ¢ Ry T{ry(s)} = Ty(s) and
(16) r (s) = Ty(s)r_,(s)}

for n=1,2,..., fhen we have

' n
(a7) SORNS Q4 ()TN (5)Q,(5)
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for Re(s) 20 and n =0,1,2,... where

(18) Q(8) = QY1 (5)5 V3()sunny (5D
for k=1,2,...,n, and Qy(s) 2Qy=1, and
(19)  Gs) = Qe ()= 1}(8), 1p(5)= Y5(8),ensy ()= 1i(s)]

11]

%
for k =1,2,...,n , and Qo(s) QO =1 . The polynomial

Qk(xl, Xyzenes xk) for k =1,2,... 1is defined by (4.21).

Proof. The proof follows exactly along the same lines as the proof

of Theorem 4.4 ,

If ro(s) z 1, then (17) reduces to Fn(s) = Qn(s) (n=0,1,2,...)

which is in agreement with (15).

If we restrict ourself to the consideration of the class RO only,
then from (15) and (17) we cannot deduce compact formulas analogous to
(4.4) and (4.3) . For if v(s) ¢ R, and lo] l¥ll <1 , then it does not

follow in general that log[l-py(s)] S&BO .



34

8. A Space A . There are many discrete type problems in
T A
fluctuation theory whose solutions do not require the use of the whole
space R but only a particular subspace of R . This subspace contains
o Faandd

all those functions ¢(s) defined for Re(s) = 0 on the complex plane

which can be represented in the form
(1) 8(s) = E{ze ™M}
A

where ¢ is a complex (or real) random variable for which AEfI;[} <
and n is a discrete real random variable taking on integral values only.
This subspace of ji has exactly the same properties as NE and all those
results which we deduced for R, remain valid for this subspace too.
However, it will be more convenient to introduce a new variable in ¢(s)

and replace ¢(s) defined for Re(s) =0 by

(2) | a(s) = E{zs"}
defined for [sl =1 . Thus we shall replace the mentioned subspace of

R by an isomorphic space A . For the space A we shall prove analogous
[ ~A~ P

theorems as we obtained for R .

A~

Let us denote by A the space of all those functions af(s) which
are defined for [s| =1 on the complex plane and which can be represented

in the form

. o K
() a(s) = s
k:z_ coal'

vhere a, (k =0, #1, +2,...) are complex (or real) numbers satisfying

the requirement
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©

(4) I laf <= .

k= -«

Let us define the norm of a(s) by

©

(5) lall= T lal .

= e O

We have |lal|> 0, and |lal|=0 if and only if a(s) =0 . If a
is a complex (or real) number and a(s) e A, then aa(s) e A and
loall =|a| |lall . Furthermore, if a(s) e A and ay(s) e A, then
a,(s) + ay(s) ¢ A and lla + a2H ;jalﬂ +Has . Accordingly, A is a
normed linear space. In What follows we shall not make use of the
completeness of Né . However, we can easlly prove that Aé’ is complete,

and hence it follows that A is a Banach space. (See Problem 13¢2.)
A

Next we observe that if al(s) e A and a2(s) e A, then
a)(s)ag(s) ¢ A and [la2, ] <l ll layll - Accordingly, A can be

characterized as a commutative Banach algebra.

Finally, we note that the space A can be defined in the following
equivalent way. The space A contains all those functions a(s) which
are defined for |s| = 1 on the complex plane and which can be represented

in the following form

(6) a(s) =N§{csn}

where ¢ is a complex (or real) random variable for which E{|z|} < » and
A

n 1s a discrete random variable taking on integral values only. It

follows from (6) that |a(s)| < E{|z|} for |s| =1.
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If a(s) is given by (6) for |s| = 1 , then evidently a(s) ¢ A
and HaH;E{[;H . Conversely, if a(s) e A and a(s) 1is given by
(3), then a(s) can also be expressed in the form (6). To see this let
n bé a discrete random variable taking on integral values only with some
probabilities Az{n'= k} =p, >0 forall k=0, #1, #2,... . Define
r = ak/pk if n =k . In this case "a(s) is given by (6) for |s| =1

and |lal| =£{Icl} .

We note that for |s| = 1 the function a(s) is uniguely determined
by the joint distribution of z and n . However, there are infinitely
l

manylpossible distributions which yield the same a(s) .
‘By using the representation (6) we can define the norm of a(s) by

(7 lall = inf Efjz|}
C laaal

where the infimum is taken for all admissible ¢ , that is, for all those &

for which (6) holds. Obviously, |a(s)| <|la]] for |s| =1.
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9., A Linear Transformation 1 . Iet us define a transformation I

Fa%ad AAA

in the following way. If a{s) ¢ A and a(s) is given by (8.3), then
N

let
(1) i{a(s)} = a'(s)
for |[s| =1 where
(2) = [ ar Jad
P e
If a(s) 1is given by (6), then
N +
(3) a' (s) =A§{csn }

|

|

|
for ; |s| =1 where n' =mex(0, n) . It can easily be seen that a'(s)
is independent of the particular represeritation of a(s) . It depends

solely on af(s) .

If a(s) eN% , then obviously a+(s) e/ﬁ . We observe that a+(s)
is a regular function of s in the domain |s| < 1 and continuous for
|s| £ 1 . PFurthermore, lat ()] <lal]l for |s| <1 . We notice that
a(s) - a+(s) eNI} and

+ 9 K
() a(s)-a (s) = lFZ-maK(s -1)

is a regular function of s 1n the domain Isl > 1, and continuous for

|s| > 1. Furthermore, |a(s) - a'(s)| < 2fa]| for |s] 1.

If o is & complex (or real) number and a(s) € A, then I{o a(s)} =
all{a(s)} . If a,(s) e A and a,(s) e A then I{a,(s) + a,(s)} =
Ia;(s)} + M{a,(s)} . Obviocusly |mfl =1 . (II’EH = sup{l|Iaf| : a A and

lall £11.) Accordingly, I is a bounded linear transformation. Since
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H2 =1 , therefore 1 1s a projection.

The foliowing remarks are obvious. ILet al(s) e A and a2(s) e A .
If /E{al(s)} = al(s) and hg{aZ(s;} = a2(s) , then hg{al(s)az(s)} =
Q ) = t =
al(y)a2(s, . If Ny{al(s)} c; and /E{az(s)} c, where c; and c,

are complex (or real) constants, then 1n{a,(s)a,(s)} = c.c, .
_ - 81803 1%2
Lemma 1. If a.(s) e A and a,(s) ¢ A, then

(5) lT{al(sz!hTag(S)} +E{a2(S)ATIa1(S)} =

=IT{a1(S)a2(S)} + fal(S))ga;,(S)) .

| .
| Proof, Let ai(s) = al(s) - a{(s) and a;(s) = a2(s) - a;(s) .

We can express (5) in the following equivalent form
* %
(6) THa (s)ay(3)} = 0 .
— )
% , L
This is however true, because TT{al(s)} =0 and 1T{a2(s)} =0.
We shall also need the following auxiliary theorem.

Lemma 2. Let a (s)eA for n=0,1,2,... and let c_ (n=0,1,2,...
N~

be complex (or real) numbers. If

o«

M T legllgl< -

then

(8) a(s) = ) cnan(s) e A,
n=C e

(©) CBals T olegl Nl
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[+

(10) Ng{a(s)} = nzo cnﬁian(s)} .

" Proof. If we would refer to the fact that A 1is complete, then
Lemma 2 would follow immediately, However, we are not making use of the
completeness of A , and therefore a separate proof is required. In

proving (8), (9) and (10) we shall use the representation (8.6) . Let

n

(11) a(s) = Elogs 3

for |s| =1 and n =0,1,2,... where E{Icnl} ;mHanH/( Let vV be

a discrete random variable which is independent of the sequence (Cn, nn)
(n =; 0,1,2,...) and which takes on only nonnegative integers with

n} =p >0 for n=0,1,2,... . Define ¢ =cz /p,

i
prob;abilities P{ v N ;

and n = n,e Then

n E °n "n E
(12) E{zs'} = Plv=n} —Ezs "} = c a (s)
o~ n=0" n o~ 0 n=0 "0
and
, ® )| =
(13) E(|z]} = [ Plv =n} Blle 1t s oI dedllall<=
- n=0 n ™ n=0

Accordingly, we have a(s) = E{zs"} and a(s) ¢ A . The inequality (13)
A Vaa "
implies (9). Furthermore, we have

+ +

© C n ©
(14) n{a(s)} = E{zs" } = § P{v=n} == E{z.s '} = } c n{a (s)}
~ - n=0" Phm 1 n=0 m 0

which is in agreement with (10). This completes the proof of Lemma 2.

In particular, it follows from Lemma 2 that if a(s) € A , then
AN

epa(s)eA for any p and
-

/< and w is an arbitrary positive number greater than 1 .
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© n
(15) 1?3y = ] e nfai) )™
N : _O M
furthermore [l—pa(s)]" e A and log [1-pa(s)] e A whenever

ol flall < 2 and

(16)  mll-pa(s)T™ = zl o'n{fa(s) 1™
o n= ladal
and
_ o n
(17) Mlogll-pa(s)]} = - [ Z-u{la(s)1™
= ' n=1 e

for |o| flaff< 1.
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JO. A Recurrence Relation., Many problems in the theory of

probability and stochastic rrocesses can be reduced to the problem of
finding a sequence of functions gn(s) (n=1,2,...] defined for |s| =1

by the recurrence relation
(1) ‘ g,(s) = i{y(s)g _,(s)}

where n = 1,2,..., v(8) e,ﬁ s go(s) ej& and Ng{go(s)} = go(s) . Obviously
gn(s) ewé for all n=1,2,... and gn(s) is a regular function of s in

the domain Is| <1 and continuous for |s] <1 .

Theorem 1. ILet us suppose that vy(s) ¢ A, go(s) e A and
P M T

M{gn(s)} = gy(s) . Define g (s) for n=1,2,... by the following

recurrence relation

(2) g,(s) =£{Y(S)g’ﬂ—l(s)} .
If el llvil < 1, then

[+ ]

(3) (s)o" =
L

n=

e—MH{lngl—pY(S) ] }H{go(s)e—logfl—pY(S) ]ﬂ{lngl—pv(S Y11

lad

for |s| <1 . If, in particular, g.(s) =1 , then (3) reduces to
== = €

() I g (s)o" = o~ {logl1-pv(s)]}
where |of [|lv[[<1 and |s] <1 .

Proof. ILet us denote the right-hand side of (3) by U(s,p) .

Obviously, U(s,p) ¢ A and 1{ U(s,p)}= U(s,p) . Now we shall show that
o~ .
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U(s,p) satisfies the following equation

(5) U(s,p)-pl{y(s)U(s,pl} = go(s) .
» M~

This can be proved as follows. ILet

(6) . h(s,p) = elog[l"’Y(S)]-E{log[le(S)]}

for |s] =1 and |p||l¥]l< 1 . Evidently h(s,p)e A, L/h(s,p]l e A

and gO(s)/h(s) € A . We can see immediately that

7 Tin(s,0)) = 1
and '
gO(S) gO(S)
(8) M ms,0) _,ﬁh(s,p}}: 0.

Now (7) and (8) imply that

_ Bo(s) &)
@ Jne)lgreey - I Aty < O
that 1is,
(10) M{[1-py(s) JU(s,0)} = gy(s)

whence (5) follows.
Let us expand U(s,p) In a power series as follows

(11) Uls,e) = | w(sde’ .
n=0
This series is convergent if |p| Jv]| < 1 and evidently u (s) e A for

n=0,1,2,... . If we put (11) into (5) and form the coefficient of o™ s

then we obtain that uo(s) = go(s) and
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(12) uy(s) = My(s)u,_4(s)}

for n=1,2,... . Accordingly, the sequence {un(s)} satisfies the
same recurrence relation and the same Initial condition as the sequence
'{gn(s)} . Thus u,(s) =g (s) for n=0,1,2,... which was to be

proved.

In the particular case of go(s) = 1 the proof of (4) is much
simpler. If now U(s,p) denotes the right hand side of (4), then it

follows immediately that
(13) M{[1-py(s)JU(s,p)} = 1

and therefore (5) holds with go(s) = 1 . The remainder of the procf

follows as in the general case.

The following theorems follow immediately from Theorem 1. Alternately,
we can prove the following theorems directly by using the same methods

as we used in Section 4.
Theorem 2. If v(s) e A, gy(s) =1 and
(14) g,(s) = My (s)g,_(s)}

for n=1,2,..., then

© o k
(15) I g (s)™ =expl | &yl (s)
, neo P k=1 & K
for {s| <1 and. || Ivll <1 where v, (s) = [v(s)T* and

SN 1(s) = My ()} = Ty(s)TY
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for k =1,2,... . Furthermore we can write that

(17) 8.(5) = QOI(S), 1a(S)sunns Yi(5))

for |s] £1 and n=1,2,... where the polynomial Q(Xys Xgseens %)

is defined by (4.21).

“'Proof.  We can prove this theorem in an analogous way as Theorem

4,2 and Theorem 4,3,

-~

Theorem 3. If v(s) e A, gy(s) e A, THgy(s)} = gy(s) and

| |
(18); g,(s) = I{y(s)g,_;(s)}

for n=1,2,..., then we have

. n %
(19) (s) = (e){g,(s)q, (s)}
Bn(3) = L G (IMey(s)a (s

“for |s] 21 and n=0,1,2,... where

(20) 4 (8) = Q(Y1(), ¥a(8)senes V(8))

for k =1,2,...,n and qo(s)zQOzl,a_iqg_

(21) 4 (8) = G (v1(8)= Y3(8), v,(8)= YA(8), sy ()= Yi()

*
for k =1,2,...,n and qo(s) = Qy=1. The polynomial Qk(xl, Xypeees X )

k

for k =1,2,... 1is defined by (4.21) .

Proof. 'The proof follows along the same lines as the proof of

Theorem 4.4 .

If go(s) = 1, then (19) reduces to g;n(s) = qn(s) (n=0,1,2,...)

which is in agreement with (17).
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If we multiply (17) by o7 and add for n

0,1,2,...) then we

obtain (4) or (15) for |o| [l¥ll< 1.

If we multiply (19) by o and add for n 0,1,2,..., then we

obtain (3) for |e| llv]l < 1 .

The usefulness of the results of this section depends on the
applicability of the transformation @I . In the following two sections
M . B
we shall give a method for finding Ini{a(s)} for a(s) € A, and, in
. A (V5N

particular, for finding N{log[l-py(s)]} if v(s) ¢ A and |of |l¥] <1 .
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11. A Representation of 1 . If we know
N

(1) a(s) = | asen

for |s| =1, then we have

1 a(z)
(2) = 5= dz
% T 2nf lzf=l K
for k=0, +1, +2,... and thus
(3) Ma(s)) = a's) = ] as [ as
3 Mas —as—=nwak k,;laks

+
for |s| <1 is uniquely determined by a(s) . The function a (s)
is regular in the disc |s| <1 and continuous in |s| <1 . We can

obtain a'(s) explicitly by the following theorem.

‘Theorem 1. If a(s) e A, then for |s| <1 we have

+ 1 . 1-s a(z)
4) a (s) =3a(l) + lim 5= | = dz
2 B oni i (1-z)(s~2)
where Le = {z:z = ele, € <0 <2r-e} for O<e < n/2.

Proof. For O < e < n/2 let C: and C; be closed paths of
integration taken in the positive (counter-clockwise) sense and defined

as follows: The path C: varies from z = €€ to z = e °° on the longer

-ie i ;
arc of the circle |z| =1 and from z =¢e - to z = e ° on the shorter
.- _ .+ E o« . _ ie
arc of the circle |z-1| = 2 sin 5 - The path C varies from z =e
_ ~ie X j o B Pl _ —le
to z=¢e on the longer arc of the circle |z| =1 and from z =
i . - .
to z =e'® also on the longer arc of the circle lz-1] = 2sin Since

'é" .
a+(z) is regular inside C: and contirwmous on the boundary, it follows
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by Cauchy's integral formula (see e.g. W. F. Osgood [23] p.112) that

Cem +
1-s a (z) .
©) 2ni { (I-2)(s-2 dz = a (s)

C.
€

for |s| <1 if e > O is small enough.

Since af(z) - a+(z) is regular outside (2; , continuous on the

boundary and |a(z) - a' (2)| < 2||a] for |z

v

1, it follows by Cauvchy's

integral theorem (see e.g. W. F. Osgood [23]p. 105) that

_ +
| 1-s a(z)-a (z) 5, =
(6) % ol { (1-2)(s-2) 2 = ©
C
€
for ’]s! <1 . For the integral in (6) remains unchanged if the path C7

is replaced by the circle |z| =R, where R>1+e . If R > », then the

latter integral tends to O .

Iet ¢ >0 in (5) anda (6). Then we obtain that

7 lim 22 MCIN La@) =a's)
>0 271 i (1=2z)(s=z) 2 /
and €
X 1-s a(z)—a+(z) _
(6) n s | W) @70

€
for |s| <1 . Here we used that a (1) = a(l) . If we add (7) and (8),

then we obtain a'(s) for |s| <1 . This proves (4). Since a'(s)

is continuous for |s| <1, (4) determines a (s) alsc for |s| =1 by
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continuity.

We note that if a(s) ¢ A is given by (1) and

(9) | T la | (1-e)® < w
for some O < e <1 , then

+ _ 1-8 ¢ a(z)

(10) 2 E ), T

€

dz

for |s| < 1-e. For in this case (6) remains valid if C is replaced

by k: and hence (10) follows by (5).

If a(s) e A is given by (1) and
[ X

(11) oi ianl(l-l-s)n < w

N= = o«

for some € > O , then we have

+ _ 1-s 2(z)
(12) a (s) = al) + 5= f_ ey @
C
for |s| <1 . For in this case if we replace C: by C; in (5), then

the right-hand side becomes a (s) - a'(1) . If we add (6) to this

equation, then we obtain (12).
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12. The Method of Factorization. If v(s) e A and |o| ||y} <1 .
then log[l-py(s)] € A and we can determine {log[l-py(s)}J1} by
FaSaad N

Theorem 11.1 . We can use also the expansion

oy pn -1

(1) 1{log[l-py(s)]} = -
o~ n=1

which is convenient if T{[y(s)]™} for n = 1,2,... can easlily be
obtained. In what follows we shall mention another method, namely, the

method of factorization.

let v(s) e A, lo| ll¥]l < 1 and suppose that

; + -
(2) 1 - pv(s) = g (s,0)g (s,p)
for |s| =1 where g+(S,o) satisfies the requirements:
(al) g+(s,p) is a regular function of s in the disc ls[ <1
(a2) g+(s,p) is  continuous and free from zeros in |s| <1,
and g_(s,p) satisfies the following requirements:
(b;) g (s,p) 1is a regular function of s in the domain |s| > 1
(b,) g (s,p) 1s continuous and fre from zeros in |[s| 21,
(b,) 1im [log g (s,els =0 .
3 sl

Such a factorization always exists. For example,

(3) gt(s,0) = eMIogli-ey(s)1}

for |s] <1 and
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() ¢ (5,0 = oLOBL1PY(8) 1-T{1og[1-pv(s) ]}

for |s| > 1 satisfy all the requirements. Actually, the above requirements
determine g+(S,D) and g (s,p) up to a multiplicative factor depending

only on p . This is the conterit of the next theorem.
Theorem 1. If vy(s) e A, |o| vl <1 and
+ -
(5) 1 - 0v(s) = g (s,p)g (s,p)

for |s| =1 where g (s,0) satisfies  (a;), (a,) and g (s,p)

séfisfies (bl), (b2), (b3) , then
(6) T{logllpv(s)]} = log g'(s,0) + log g (1,0)

for sl 1.

Proof. It is sufficient to prove (6) for |[s| <1 . For |[s| =1
(6) follows by continuity. Let us define the paths L, C:, C; in the
same way as in the proof of Theorem 11.1 . By Cauchy's integral formla
we can write that

(7 ==

+
1o (z,0) _ +
(i%g%%gjéj-' dz = log g (s,p)
C

for |s| <1 if € > O is small enough, and by Cauchy's integral theorem

M

we can write that

(8) 1-s

onri

log g (z,p) -
{ il—zé(s—z) dz =0
Ce
for |s| < 1. For the integral in (8) remains unchanged if instead of

C_ we integrate along the circle |z| =R where R>1+¢ . If R->w,
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then the latter integral tends to O .

If €+ 0 in (7) and (8), then we get

. + .
log g (s,0)

]

+
. 1-s 1o (z,p) 1 +-
(9) lm 5= [ yraay” dzt 5 log g (1,p)
e >0 Ls

and

I
@]

. 1-s log g (z,0) 1 -
(10) lim 5 f zj;gﬁzgjéj—'dz— 5 log g (1,0) =
e >0 Le
for |s] <1 . If we add (9) and (10), then we obtain (6) for |s]| <1 .

This completes the procf of the theorem.

,By using Theorem 1 we can express Thecrem 10.1 also in the following

Waya

Theorem 2. Let us suppose that y(s) ¢ A, go(s) e A, and
v~ [a"

Teg(s)} = gy(s) . Define g (s) for n=1,2,... by the following

recurrence formula

(11) g,(s) = Nixy(s)g,_;(s)} .
If |e| Hyll<1 and
(12) 1-pv(s) = g (s,0)e”(5,0)

for |s| =1 where g+(s,p) satisfies (a,), (a2) and g (s,p)

satisfies (by), (by), (b3), then

@ (s)
(13) I g (s = A M2
n=0 g (s,p) g (5,0)
for |s|{ <1 . If, in particular, gy(s) = 1, then
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1
g+CS,p)g’(1,p)

(14) 7 (s)o" =
L el

for [s| 2.

"Pf-cof. If we put (6) into (10.3) and (10.4), then we obtain (13)

and (14) respectively.

By (13) we obtain that

® (s)
(15) [1-pv(s)] ) gn(S)pn = g‘(s,pm{——_gO }
‘ n=0 g (8,0)
for !Is[ =1
By (lll)_ we obtain that if go(s) = 1 then
v n_ g (1,0)
(26) [10v(1)] I g (s)o" = BB
. n=0 g (s,p)
for |[s|<1, or
(17) [1-pv(s)] [ g (s)" = EL8a0)
n=0 g (1,p)

for |s| =1.

In finding g (s,p) and g (s,p) we can usually utilize the following

.
particular case of Rouche's theorem:

If f(z) and g(z) are regular in the disc lz| <1 , continuous

in |z| £1 and |g(@)! < |£(2)| if |z} =1, then f(z) and f{z)+z(z)

have the same number of zeros in the disc Jz| <1 .
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13. PROBLEMS

13.1. Prove that the space R 1is camplete, that is, if @n(s) e R
e Lo

for n=1,2,... and if 1lim H@m— %ll: O , then there exists a &(s) e R
m-> o *
n - 00
such that lim [é-¢ ||=0 .
T n o> n

13.2. Prove that the space ,\é is complete, that is, if an(s) € Nl}_ for
n = 1,2;... and if  1lim Ham— an|l= O , then there exists an a(s) ¢ A

n -
such that 1im |a-a [|=0 .

n-+ o

13.3. Let o(s)

[}

1/(1-s°) . Find & (s) = T{a(s)}

(pe®+ ™)™ where p >0,a2>20 and ptg =1 .

A

13.4,  Let o(s)
Prove that o(s) ¢ R and determine ¢ (s) = T{o(s)} .

2
13.5. Let &(s) = ° /2 for any complex s . Prove that ¢(s) € R

and determine ®+(s) = T{o(s)}

13.6. Let ¢(s) be the Laplace-Stieltjes transform of a nonnegative

Ao (s)
random variable and let A be a positive constant. Determine T{ %9:(_—8—} .
A

13.7. Let ¢(s) e R and Re(q) » 0 . Prove that
/N~

ces) 1 +,.y _ 8 .t
;E} s-d " 5.9 Lo (s) g ()]

if s#q and Re(s) > 0 where ¢+(s) = T{¢(s)}
P~
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13.8. Let ¢(s)

random variable and let

13.9. Let ¢(s)
ranfom variable and let

where m 1is a positive

13.10. Let ¢(s)
random variable and let

where m 3is a positive
1

|

=

|

13.11. ILet ¢(s)

be the Laplace-Stieltjes transform of a nonnegative

A be a positive constant. Determine T¢ i%%i%l }.
fa%ae

be the Laplace-Stieltjes transform of a nornegative
XA be a positive constant. Determine gg{¢(s)(x%§0m}

integer.

be the Laplace-Stieltjes transform of a nonnegative
A be a positive constant. Determine T{(X%50m¢(—s)}
Ma Y

integer.

and vy(s) be Laplace-Stieltjes transforms of non-

negative random variables and suppcse that y(s) 1s a rational function of

s . Find T{4¢{s)y(-s)}

13.12. Let 4(s)

e R and let vy(s) be the Laplace-Stieltjes trans-

form of a nonnegative random variable. Suppose that +y(s) 1is a rational

function of s . Find T{¢(s)y(-s)}
(A VN

13.13. Let ¢(s)

and vy(s) be Laplace-Stieltjes transforms of non-

negative random variables and uppose that v(s) is a rational function of

s . PFind T{y(s)¢(~s)}
Fa%,%

13.14. Let ¢ Dbe a discrete random variable taking on nonnegative

integers only. Denote by g(s) the generating function of ¢ , that is,

g(s) = E{sg} for |s| <1 . Determine Ag{psg(s)/(s«q)} where p > O ,

qg>0 and pg=1.
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13.15. Let & be a discrete random variable taking on nonnegative

integers only. Denote by g(s) the gererating function of g , that is,

g(s) = E{s*} for |s| < 1. Determine T0{ E%é%é§)} where p>0,q>0
(2% A~ ~

and ptq =1 .
13.16. Let & Dbe a discrete random variable taking on nomegative
integers. Denote by ’g(s) the generating function of g , that is,
g(s) = F{s®} for |s| <1 . Determine H{pmsm'g(s)/(s—q)m } where p >0,
faad A

q>0,pkg=1 and m is a positive integer.

13.17. Let £ be a discrete random variable teking on nonnegative
integers. Denote by g(s) the generating function of ¢ , that is,
g(s) =A§ﬁsg} for |s| <1 . Determine mip g(1/s)/(1-qgs)™ } where p > O ,

q>0,ptg=1 and m dis a positive integer.

13.18. Let a(s) and b(s) be generating functions of discrete
random variables taking on nomnegative integers only. Suppose that b(s)

is a rational function of s . Determine H{a(s)b(%d}
F

12.19. Let a(s) and b(s) be generating functions of discrete
random variables taking on nomnegative integers only. Suppose that b(s)

is a rational function of s . Determine H{a(%)b(s)}

13.20. Let {gn ;N = 0,1,2,.;. } be a homogeneous Markov chain with

state space I = {0,1,2,...} and transition propability matrix
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1 - 1’]0 s 1’10 ’ O Y O 3 ees
m = ]. - ho— hl 3 hl s s O s ecve

1-hy-h-h,, hy, by, By, -

.
e 8
® s
LR X}

where hO>O,hO+hl<l,£ohj=.l,and a=j£o,]hj<oo. Find
o

the distribution of gn (n=1,2,...) and the limiting distribution of

&, as n - o, (See reference (27 1.)
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