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CHAPI'ER I 

BASIC THEORY 

1. The Topic of this Chapter. The mathematical methods used in 

this book are largely based on the various solutions of a general 

recurrence relation. These solutions. have some interest of their own 

and can be used in solving rnany problems in the theory of probability 

and sto_chastic processes. In this chapter we shall develop the basic 

theory for finding these solutions and in the following chapters we 

shall deal with its applications in fluctuation theo:r"J. 

To describe it briefly, the basic theory is concerned with various 

solutions of the problem of finding a sequence of fu..~ctions rn(s) 

(n=l,2, .•. ) defined for Re(s) = O by a recurrence relation 

(1) r (s) = T{y(s)r 1Cs)} n ,.,,.,._ n-

where y(s) and r0(s) are elernents of a corrmutative Banach algebra 

R , and T is a projection. We shall define R in such a way that on 
...,.,_,. ...... ~.......,. ..........._ 

the one ha~d R is large enough to contain all the important fu..~ctions 
i'v\; ..... 

arising in fluctuation theory and on the other hand R is small enough 

to allow an explicit representation of the transfo:rniation T , which is .,.,._ 

suitable for calculations. 

First we shall give explicit expressions for r (s) (n=l,2, ••• ) ir1 n 

the cases where I' 0 ( s ) = 1 and where y{r 0 ( s)} = r 0 ( s) • 
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(2) 

Second, we shall give closed e:xpressions for the generating ~-l!lction 

00 

U(s, p) = l r (s)pn 
=O n n 

in the cases where 

Third, we shall show how the gene;r'ating f'ucntion U(s, p) can be 

obtained by using the rnethod of factorization. 

Afterwards, we shall show that the above results can also be obtained 

in a s:impler wey if we restrict ourself to the case where y(s) and 

r0csr belong to a suitably chosen subspace of~ • 

~lly,we shall obtain analogous results for the case where y(s) 

and r 0 ( s) be long to a space A which is isomorphic to a subspa.ce of' 

R , and T is replaced by a corresponding transf orrnation n • 
IV'-"' ,,,... ............ 

The method developed in this chapter is cornpletely elernentary &'îd 

self-contained. The only auxiliary theorem which we use is Cauchy's 

integral f ormula. 

The rnentioned problems have been solved in a particular case by 

F. Pollaczek [ 2&1, C27J • In his studies F. Pollaczek considered a 

smaller class of functions than R • For this smaller class he gave an 

e.:xplicit representation of T and found the generating function U(s, p) 
;vv-, 

as the solution of a singular integral equation. Pollaczek's method has 

the adva.ntage that it yields U(s, p) in a closed form, but it has also 

the disadvantage that some restrictions should be :imposed on the f'unctions 

y(s) and r0(s). O..:ir rnethod. can be considered as an extension of 
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Pollaczek' s method to the general case. Tn.e general rnethod presented in 

this chapter does not require to impose any unnecessary restrictions on 

the functions considered. 

In solv:i.ng the rnentioned problems we canuse also algebraic rnethods 

(G. Baxter [ 6], [ 7], [ 8], J. G. Wendel [%], [47), J. F. C. Y.ing;nan 

[ 19], [ 2QI, G. -C. Rota [ 3JJ ) , cornbinatorial methods (E. S. Andersen [ 1], 

[ 2 ] , F. Spitzer [35], W. Feller [13], the author [ 38]) and analytic 

methods (I. J. Good [14], J. H. B. Kempe~ [ là, A. A. Borovkov [lJJ ) • 

The algebraic methods are mostly descriptive, and even in the particular 

casel of r0 (s) = 1 , the solution does not appear in a closed form. In 

genlal, cornbinatorial methods do not provide the solution in a closed 

form either, but fortunately, in some particular cases we can obtain 

explicit results. (See the author• [3a].). The most useful analytic 

method is the method of factorization which yields simple solutions in 

many cases; however, this method has been applied only in particular cases 

in the past. The method of factorization has been introduced by N. Wiener 

and E. Hopf [49] for SQlving integral equations. (See also F. Srnitnies 

[33], H. Widom [48], N. I. Muskhelishvili [22] and M. G. Krein [2.\].) 

The results presented in this chapter have been developed by the 

author [39], [40], [41], [42J, [43}. 



I-4 

2. A Space R • Denote by R the space of' all those functions 

~(s) defined for Re(s) = 0 on the complex plane, which can be represented 

in the fonn 

(1.) ~(s) = E{çe-sn} 
f'#V 

where r.; is a complex (or real) ranqom variable with E{jr.;ll < 00 , and 
(W.. 

n is a real random variable. The function ~(s) is uniquely determineà 

by the joint distribution of r.; and n • However, there are infinitely 

many possible distributions vJhich yield the sarn.e ~ (s) • It follows from 

(l) that l~Cs)I ~ E{lz;:ll for Re(s) = 0 . It can easily be seen that 
1 N-

t(s)I is a continuous function of s for Re (s) = o . 

Let us define the norm of ~(s) by 

(2) 

where the infimllffi . is taken for all admissible r.; , that is, for all 

those r.; for which (1) holds. Obviously 1~(s)1 < 11 ~ 11 for Re(s) = 0 • 

We have Il ~ Il ~ 0 , and Il~ Il = O if and only if ~ ( s ) = 0 • If a 

is a complex (or real) number and ~ ( s) E R , then ei~ ( s) e: R and 
Nv ""-

Il a ~ Il = 1 a 1 11 ~ Il ~ Furtherrnore, if ~ 1 ( s) E ~ and ~ 2 ( s) E ~ , then 

~1 (s) + ~2 (s) E!: and 11~1+~2 11 < 11~ 1 11 +Il ~JI. This last statement can 

be proved as follows: 

-sn 
For any E > O let ~l (s) = !{r.;1e 

1
} where E{ 1 z:: 1 !} ;.. 11~1 11 +E 

"""" -sn 
and let ~2 (s) = E{r.; 2e 21 where E{lr.;2 ll < 11 ~2 11+E. Let v be a 

"'""".... ~ 
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random variable which is independent of Cz;;1 , n1 ) and (z;;2, n2) and 

1 for which 
1
:{ v = l} = ,!'{ v = 2} == 2 . Let us def:ine z;; = 2z;;v and n = ~ • 

Then 

Thus <P1(s)+<P2(s) e: ! , and !l<P1+ <I> 2 11. < ll<I>1 11 + ll<P 2 11 + 2e: • Since z > 0 

is arbitrary, this proves the statement. Accordingly, R is a normed li-,........ 

near space. In what follows we shall not make use of the completeness 

of R • However, we can prove that R is complete, and hence it follows 
"""' ,.,.... 

that R is a Banach space. (See Problem 13 .1. ) 
fV._,.., 

Next we observe that if <P1 (s) e: ! and <I> 2(s) e: !: , then 

<P1Cs)<I>2(s) e: !, and ll<I>1<I> 211 < ll<I>1 11 !l<P21l. 'Ïb prove this let us define 

<I>1 (s) and <I> 2(s) in exactly the same way as above. However, let us 

assurne now that (çl' n1) and (z;;2, n2) are independent and define 

z;; = z;;11;2 and n = n1+ n2 • Then 

is arbitrary, this proves the statement. 

Accordingly, R can be characterized as a cornmutative Banach algebra. ,.,._ 
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3. A Linear Transforrr.ation T • Let us define a transforma.tion 'r 
;VV- NV'> 

i.~ the following way. If <P(s) e: R and <P(s) is given by (2.1), then 

let 

(1) 
+ 

T{~(s)} = <P+(s) = E{çe-sn } 

+ for Re(s) = 0 where n = max(O, n) • It can easily be seen that the 

function <P+(s) is independent of the particular representation (2.1). 

It depends solely on <P(s) • If <P(s) e: R , then obviously <f>+(s) e: R • ,.,.._, 

If a. is a complex (or real) number and <P(s) e: R , then T{a<P(s)}= 
,..,._ !"'-. 

a.!_{<P~s)} • If <P1(s) E ! and ~2 (s) e: ~ , then ,'.E{<P1 (s)+<P2(s)} = ;( 
1 

Tb..i.sifollows immediately from the representation (2.3). Obviously 

llTll = 1 • CllTll = sup{MT<Ptl : <P e:R and Il <Pii < l} .) Accordingly, T is 
""" """" f'N.. ,,.,,,.,... ~ 

a bounded linear transforrnation. Since T2 = T theref ore T is a , 
,......_ ,........ ~ 

projection. 

(2) 

Proof. For any real x and y we have the identity 

+ ++ + + + + 
(3) e-s[x+y] = e-s[x+y ] + e-s[x +y] _ e-s(x +y ) 

where we used the notation + + [x] = x = max(O, x) • 

Let us supppse that <P
1 

(s) = ~{ç1e-sn1 } and <P
2

(s) = !:{z;
2
e-sn2} 

/ T{~l Csll + Ta2CsH • 
""' ,...,.,,. 
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If we put x :..: Tl- and 
J. 

y = n
2 

in (3), multiply it by ç1 i;; 2 
and fonn its expectation, then ·we 

obtain (2). 

Wè note that (2) is equivalent to the follow:ing relation. If 

'1'1 (s) = q)l Cs) - ;:{4\ (s)} and 'l'2 (s) = 4?2(s) - ,!_U2 (s)} , then 

(4) 

which can easily be seen to be true • 

. We mention two particular cases of (2), which will frequently be used 
i 
1 

in tljûs book. If ,!{ 4? 1 ( s) } = 4? 1 ( s ) and _!0 2 ( s )} = 4? 2 ( s) , then 

1U1 ts)4?2(s)} = 4?1 (s)4?2(s) • If :f'.{4?1 (s)} = c1 and _}{4?2(s)} = c2 , where 

c1 and c2 are complex (or real) constants, then _J{4?1(s)4?2(s)} = c1c2 • 

These statements can easily be proved directly. 

In what f ollows we shall make some general observations concerning 

+ + 
4? (s) and 4?(s) - 4? (s) • If 4?(s) e R , then 4?(s) can be represented ,,,..... 

in the fonn (2.1) and 

(5) 

for Re(s) = O • If we extend the definition of 4?+(s) for Re(s) ~ 0 

by (5), then 4?+ (s) becomes regular in the dornain Re(s) > O and 

+ continuous for Re ( s) ~- 0 • Furthennore, l 4? ( s) 1 ~ 11 4? 11 for Re ( s) ~- 0 . 

If 4?(s) e R, then 4?(s) can be represented in the form (2.1) and 

(6) 

for Re(s) = 0 • This fellows from the f'ollow-lng identity 
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(7) 

which holds for any real x • If we put x = n in (7), rrultiply it by 

z; and form its expectation, then we obtain (6). If we extend the 

definition of ~(s) - ~+(s) for Re(s) < 0 by (6), then ~(s) - ~+(s) 

becomes regular in the domain Re(s) < 0 and continuous for Re(s) ~ 0 

Obviously l~Cs) - ~+(s)I .:5.. 2il ~Il for Re(s) 2_ 0 • 

+ 
We. note that if T{1'1(s)}= ~(s) , then ~(s) = ~+(s) = E{çe-sn } 

~ ~ , 
that is, ~(s) can be represented as E{z;e-sn} where n is a nonnegative ,..,..,.. 

1 + + 
rand~m variable. If T{~(s)}= O , then ~ (s) = 0 and ~(O) = ~ (0) = 0 

i - + 
and iy (6) we have ~(s) = E{z;es[-n] } , that is, ~(s) can be represented 

as E{r,e-sn} where n is a nonpositive random variable. ,.,..., 

The last remark implies, for example, that (4) is true. For, if 

,!{'1'1 (s)} = 0 and 1'._{'l'2(s)} = O , then we may assume that 'l'
1 

(s) = 
-sn1 -sn2 

,~{z;1e } and 'l'2(s) = !{ç2e } where n1 and n2 are nonpositive 

random variables. If (z;1 , n1) and (ç2, n2) are chosen to be independent, 

then it follows imrnediately that ,21{'1'1 (s)'l'2(s)} = ~{z; 1 z; 2 } =.'l'1 (0)'1'2(0) = O • 

This proves Lemma 1 once again. 

We shall also need the following auxiliary theorem. 

Lemma 2. Let ~n(s) e: ~ for n=0,1,2,... and let an (n=0,1,2, ••. ) 

be complex (or real) rnnnbers. If 

co 

(8) 
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then 

00 

(9) ':l'(s) = l a 1 (s) e R ~ 
n=O n n tv"" 

00 

(10) 

and 

00 

( 11) T{':l'(s)}= l a T{i (s)} • 
N.-.. n=O n""' n 

·Proof. If we refer to the facts that R is complete and T is ...,..,, ,........ 

contd.nuous, then Lemma 2 follows immediately. However, we are not making 
1 

use pr the completeness of !. and therefore a separate proof is required. 

-Sr1 

For n=0,1,2, ••• let 1 (s) =E{z; e n} where E{li; Il <wil~ Il I n ~n ""-- n n(\ 

Let v be a discrete random variable which is independent of the sequence 

(z;n, nn) (n=0,1,2, ••• ) and which takes on nonnegative integral values 

with sorne probabilities P{v = n} = p > 0 for n = 0,1,2, •••• 
"""' n 

For 

example, we may choose pn = l/(n+l)(n+2) for n = 0,1,2, •••• Define 

z; = a z; /p and n = n • Then v v v v 

(12) 
oo a ~n oo 

E{z;e-sn} = l P{v = n} _.!!. E{ç e n} = l a 1 (s) 
w..- n=O """ Pn ,,,._ n n=O n n 

a."'ld 

( 13) 

Accordingly, 'll(s) = E{çe-sn} and ':l'(s) e R. The inequality(l3) implies 

that (10) holds. Now we have 

~ and w is an arbitrary positiv~ number greater than 1 • 



(14) 
+ + m a -sn m 

T{~(s)} = E{çe-sn } ~ l P{v=n} ...12. E{ç e n} = l a T{<fl (s)} 
,...... ,._,_ n=O ,..,..,, P n """' n n=O n"""- n 

which is in agree11Ent with (11). This cornpletes the proof of Lemma 2. 

In particular, it follows from Lemrn.a. 2 that if <t»i(s) e: R , then 
,..,.,.. 

ep<fl(s) e: R for any p and 

(15) 

furthermore [1-p<P(s)]-l e:R and log [l-p<fl(s)] e: R, whenever IP 1 l!<t»il! < 1 

and 

m 

T{[l-p<t»i(s)]-l} = l pn T{[<t»i(s)]n} (16) 
,_ n=l ,.,._ 

and 

(17) 
m n 

~r{log [l-p<t»i(s)]} = - I L T{[<t»i(s)Jn} 
,.,,.._ n=l n ,.,.,,.._ 

for 1 p 1 11 <I»i Il < 1 • The f'unction log [l - f ~( s)] is def ined by 

CD n 
(18) log(} -f ~(s)] _ -2: ~ [~(s)]n 

n=l 

f or \ ~ ~ ( s) \ < 1. 
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4. A Recurrence Relation. Many problerns in the theory of probability 

and stochastic processes can be reduced to the problem of finding a sequence 

of fu..~ctions r (s) (n=l,2, ••• ) defined for Re(s) ~ 0 by the recurrence n 

re lat ion 

(1) 

where n= 1, 2, ••• , y ( s) e:}: , r 0 ( s) e: ~ and ,!{ r 0 ( s ) } = r 0 ( s) • Obviously 

r (s) e: R for all n=l,2, ••• , and r (s) is a regular function of s in 
n ""'-- n 

the domain Re(s) > 0 and continuous for Re(s) > 0 . 

: Theorem 1. Let us suppose that y ( s ) e: 2l , r 
0 

( s) e: ! and 
1 ; -

J'{r0 fs)} = r0 (s) • Define rn(s) for n=l,2, ••• by the following 

recurrence relation 

(2) r (s) = T{y(s)r ,(s)} • 
n ~ n-.i. 

If IP! lhll < 1, then 

(3) 
co 

\ r ( , n _ -T{log[l-py(s)]}T{r ( , -log[l-py(s)]+T{log[l-py(s)]}} 
l s;p - e ,.,,_. 

0 
s 1 e ,.,..... 

=O n ~ n-

for Re(s) > 0 . If, in particular, r0 (s) :: 1 , then (3) reduces to 
co n 
E L T{[ y(s) ]n} 

(4) Ï rn(s)pn = e:'.E{log[l-py(s)]} = e n=l n /""' 
n=O 

where i P 1 lh Il < 1 • 

Proof. Let us denote the right hand side of (3) by U(s,p) • 

Obviously, U(s,p) e: R and T{U(s,p)} = U(s,p) • Now we shall show that 
IV\,- : "\,.... 
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U(s,p) satisfies the following equation 

(5) U(s,p)- p~{y(s)U(s,p)} = r0(s) • 

This can be proved as fellows. Let 

(6) h(s,p) = elog[l-py(s)]~{log[l-py(s)]} 

for Re ( s) = 0 , and 1 p 1 11 y 11 < 1 • Evident ly h ( s, p ) e: R , l/h ( s, p ) e: R 

and r ~(s )/h(s ,p) e: ,~- • We can see immediately that 

(7) 1 

1 

and 1 

1 

( 8) 

T{h(s,p)} = 1 ,........ 

By Lemma 3.1 it follows from (7) and (8) that 

(9) 

that is, 

(10) ~{[1-py(s)]U(s,p)} = r
0

(s) 

whence (5) fellows. 

Let us expand U(s,p) in a power series as follows 

(11) 

"""" M.-
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This series is convergent if 1P1 llY Il < 1 and evidently U (s) F.: R for n ,..,.._ 

n=0,1,2,... • If we put (11) into (5) and form the coefficient of pn , 

then we obtain that u
0

(s) = r0(s) and 

(12) 

for n=l,2, •••• Accordingly, the sequence {U (s)} satisfies the same n 

recurrence relation, and the same initial condition as the sequence 

{r (s)} • Thus U (s) = r (s) for n=0,1,2, ••• which was to be proved. n n n 

j In the particular case of r 0 ( s) = 1 the proof of ( 4) is rffilch simpler. 

If nrw U(s,p) denotes the right-hand side of (4), then it fellows 

inmediately that 

(13) T{[l-py(s)]U(s,p)} = 1 
,Nv-

and therefore (5) holds with ro(s) = 1 • The remainder of the proof 

fellows as in the general case. 

The usefulness of forrm.llas (3) and (4) depends on the applicability 

of the transf ormation T • In the following two sections we shall give a 

method for finding T{~(s)} for ~(s) E R , and, in particular, for 
fV- /Vv 

finding T{log[l-py(s)]} if y(s) ER and IPI llYll < 1 • First, how-
,,_. N-

ever, we shall give some alternative proofs for (3) and (4). 

Theorem 2. 

(14) rn(s) = T{y(s)r ,(s)} 
"--- n-.... 

for n=l,2, ••• , then 
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(15) 
~ ~ k 
l r ( s) p n ~ exp { I _kP yk+ ( s) } 

n=O n k=l 

for Re(s) > O and IP 1 llr il < 1 where 

(16) + k 
y k ( s ) = T{[ y ( s ) ] } . 

"""-

f or k=l,2, •••• 

Proof. Starting f'rom r 0 ( s) we can obtain r n ( s) for every 

n=l,2, ••• by the recurrence formula (14). We observe, however, that 

rn(s) (n=l,2, ••• ) can also be obtained by the following recurrence 

relation 

(17) 
l n + 

r (s) = - l yk(s)r k(s) 
n n k=l n-

which holds if Re(s) > 0 and n=l,2, •••• 

We shall prove by mathematical induction that (17) holds for 

n=l,2, •••• If n=l, then (17) reduces to r1(s) = y1(s) which is 

obviously true. Let us assume that (17) is true for 1,2, ••• ,n. 

We shall prove that it is true for n+l too. Hence it follows that (17) 

is true for every n (n=l,2, ••• ) • If (17) holds for n (n=l,2, ••. ) , 

then by (14) it follows that 

(18) 1 
n , 

rn+l(s) = T{y(s)r (s)} =...:. l T{y(s)yk'(s)r k(s)} 
rv-. n n k=l ,,,... n-

for Re(s) ~ O • If we apply Lemma 3.1 to ~1 (s) = y(s)rn-k(s) and 



I:..J.5 

~2 (s) = yk(s) , then we obtain that 

(19) 

for k=l,2, ••• ,n. 

If we put (19) into (18), then we obtain that 

(20) 
\ 

1 n+l + 1 
r +l (s) = - I yk(s)r 1 +l (s) - n rn+..L"' (s) , 

thatl is, 
1 

n n k=l n-K __ 

(21) 

for Re(s) .?:_ 0 • Accordingly, (17) is tru.e if n is replaced by n+l • 

Thus we can conclude that (17) is true for every n=l,2, •••• 

(22) 

If we introduce the generating function 

00 

U(s,p) = I rn(s)pn 
n=O 

for Re(s) > 0 and 1p1 h 11 < 1 , then by (17) we obtain that 

(23) 

(IC) 

au(s,p) = U( ) , +( ) k-1 a s,p l Yk s P 
p k-1 

Since U(s,O) = 1 , it fellows that 
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(24) log U(s,p) = l 
k=l 

i· 
l'\. + .e_ Y (s) 

k k 

for Re ( s) > 0 and 1 p 1 Il y Il < 1 • Thi,3 completes the proof of the 

theorem. Obviously (4) and ,(15) are equivalent. 

We can express rn(s) explicitly by Y~(s) ,y~(s), .•. , y~(s) if 

we introduce the following polynornials. For n = 1,2,3, ••• let us define 

the polynornials 

.. x k 
(....!!) n 
n 

where k1, k2, •.• , ~ are nonnegative integers, and let ~ = 1 . 

Theorem 3. If y ( s) E: ~ , r 0 ( s ) = 1 and 

for n = 1,2, ••• , then 

(27) 

( k +c ' for Re(s) > O and n = 1,2, ••• where yk s) = [y(s)] and yk s; = 

,1'{yk(s)} • 

Proof. If x1, x2, ... , xn," •• are complex (or real) numbers for 

which (n = 1,2, ••• ) where a is a positive real nurnber and 

!Pia< 1 , then we have 
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(28) 

The proof of (28) is irrnnediate. If we form the coefficient of n . 
p in 

the power series expansion of the right-hand side of (28),then we obtain 

~ Cx1 ,x2, ••• ,xn) for n=l,2,... • If we choose a = h Il , then the 

relation (28) shows that Theorern 2 ançl Theorern 3 are equivalent. 

In what follows, however, we shall give a direct proof for 1'heorern 3. 

First, we note that if IYI 2_ a , if we multiply (28) by 

(29) 
~ pk k 

l-py = exp { - l k Y } , 
k=l 

and if we form the coefficient of p
11 

, then we obtain the fol1owing 

identity 

(30) ~(xl,x2, ••• ,xn) - y~-l(xl,x2, ••• ,xn-l) = 

2 n 
~(x1-y, x2-y , ••• , xn-y) 

for n=l,2, •••• Here ~ = 1 • 

Now let us suppose that r n (s) .for n=l,2,... is given by (27). 

+ + + Since the right-hand side of (27) is a polynornial of y1(s), y2(s), •• ,yn(s) 
+ + 

and T{yj(s)} = y.(s) for j=l,2, ••• ,n, it follows that 
~ J 

(31) T{r (s)} = r (s) ,..,._ n n 

for n=l,2, ••• and Re(3) > O • 

On the other hand, by (30) we can write that 
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f'or n=l,2, ••• and Re(s) > 0 • Since the right-hand side of (32) is a 

+ + + polynomial of' y 1 ( s )-y 1 ( s) , y 2 ( s )-y 2 ( s) , ••• 3 y n ( s )-y n ( s) and 

T{y:(s)-y.(s)} = 0 for j=l,2, ••• ,n, it fellows that 
/''.- J J 

(33) T{r (s) - y(s)r 1(s)} = O 
tv- n n-

for n=:,1,2, ••• and Re(s) > 0 • By (31) and (33) we obtain that 

(34) r (s) = T{y(s)r 1(s)} 
n ""- n-

for 1 n=l,2,... and Re(s) > 0 Where r0 (s) " 1 • '!hls is fa agreement 

with (26) and therefore (27) is indeed correct. 

Now we shall give an alternative proof for (3). 

for n=l,2, ••• , then we have 

fcr Re(s) > O and n=0,1,2, ••• wher~ 

for k=l,2, ••• ,n and %(s) = % = 1 , and 
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* for k=l,2, ~ •• ,n , and Q0(s) = Q0 = 1 • fbe polynomial 

. Qk(x1 , x
2

, ••• , xk) for. k=l,2, ••• is defined by (25). 

Próof. Suppose that r (s) is given by (36) for n=0,1,2, •••• n 

For n=O formula (36) reduces to r
0
'(s) = r

0
(s) • We shall prove that 

(35) holds for n=l,2, •••• Thus it follows that (36) is indeed the 

coITect· f orrnula. 

By (36) 

(39) ;E{ y (s) r n (s) } 

If we apply Lemma 3.1 to the functions <V1 (s) = y(s)~-k(s) and 

* ~2 (s) = r0(s)~(s) , where k=O,l, ••• ,n, then we obtain that 

(40) 

If we put (40) into (39) and take in.to consideration that 

(41) n * * J-0 ~(s)[~-k+l (s) - y(s)%-k(s)] + ~+1(s) = 0 

for n=l,2, ••• , then we obtain that 

for n=0,1,2, ••• and Re(s) > 0. By (36) the right-hand side of (42) 
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can be written as r +1 (s) • Tr.is proves that (35) holds for n=l,2, ••.. n ~ 

It rema.ins to show that ( lü) is true. If we rrn.lltiply the left-hand side 

of (41) by pn where IPI llYll < 1 and add for n=l,2, .•• , then we 

obtain 

(43) 

whence .( 41) fellows. 

If r0 (s) :: 1 , then (36) reduces to rn(s) = ~/s) (n=0,1,2, •• .) 

whi.ch is in agreement wl th ( 27) • 

If we multiply (36) by pn and add for n = 0,1,2, ••• , then we 

obtain ( 3) f or 1 P 1 Il Y 11 < 1 · 
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5. A Representation of T • 
IV'-

If we know $(s) e R for Re(s) = 0 , 

+ then $ (s) = T{$(s)} is uniquely determined by ~(s) for Re(s) ~ 0 • 

The function $+(s) is regular in the domain Re(s) > 0 and continuous 

for Re(s) > O • We can obtain $+(s) explicitly by the following 

theorem. 

' Theorem 1. If $(s) e R , then for Re(s) > 0 we héi.ve 
""-

(1) +( ) 1 (0) + lim s f $ 8 = 2 $ 2ni 
e -+ 0 L 

e 

$(Z) dz 
z(s-z) 

wherè L 
---t- e 

(e > 0) the path of integration con~ists of the i:rraginar-y 
1 

axislfrom Z = -ioo to z = -ie and aga.in f'rom z = ie to z = ioo • 

Proof. Iet c+ (e > 0) be the path which consists of the ]lIE.ginary 
e 

ax:i.s from z = -i00 to z = -ie , the semicircle 

and again the im3.ginary axis from z = ie to z = ioo Iet C (E > 0) 
e 

be the path which consists of the im3.ginary axis frorn z = -ioo to z = -it:, 

ia the sewicircle {z:z = -ee 

from z = ie to z = ioo 

, - ; <a~ } , and again the irnaginary axis 

Let C·+ (R) (0 < e < R) be the path taken e: 

in the negative (clockwise) sense and containing c-; from z = -iR to 

z = iR and the semicircle -ia TI TI { z: z = Re , - 2 <a< 2 } . 

(0 < e < R) be the path taken in the positive (counter-clockwise) sense 

and containing C- from z = -iR to z = iR and the semictrcle 
e 

-ia TI TI 
{z:z = -Re , - 2 .::_a< 2} • 

+ Since $ (z) is regular inside C + (R) and continuous on the boundary, 
e 

it fellows by Cauchy's integral forrrrula (t:>ee e.g. W. F. Osgood [23] p. 112) 
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that 

(2) s f <I>+(z) +c ) 
2ni z(s-z) dz = <I> 8 

C+(R) 
e: 

for O < e: <Re(s) and isl < R • If we let R + ()Q in (2), then we 

obtam that 

+ 
(3) s f <I> (z) dz = <I>+(s) 

21Ti · z(s-z) 
c+ 

e: 
f<jI' 0 < i:: < Re(s) • If e: + 0 , then in (3) the integr-al taken along the 

semicircle of radius e: tends to 4>+(0)/2 = q,(0)/2 and thus by (3) 

(4) 
+ ( ) 1 

l:ïrn 2s· J C z) dz + -2 <I>(O) = <I>+(s) 
0 .ni L z s-z 

e: + e: 

for Re(s) > 0 • 

+ It we extend the definition of <I>(s) - <I> (s) for Re(s) < 0 by 

+ (3.6), then <I>(s) - <I> (s) becomes regular in the domain Re(s) < O , 

continuous f or Re ( s) < 0 and 1 <I> ( s) - <I> + ( s) 1 < 211 <I> Il for Re ( s) < 0 . 

Then by Cauchy's integr>al theorem (see e.g. W. F. Osgood [23] p. 105) 

i t follows that 

(5) 
+ 

<I>(z)-<I> (z) d - 0 -r:::--;;<ï- z -
Z\S-Z; 

for Re(s) > 0 • If we let R ->- 00 in (5), then we obtain that 



I-23 

(6) s 
2·rri J 

<I> ( z )-<I> + ( z) --.-----.---- dz = O z(s-z) 

for Re(s) > 0 • If e: + 0 , then in (6) the integral taken along the 

semicircle of radi.us e: tends to [ <I> + ( 0) - <P ( 0) ]/2 = 0 , and thus by ( 6) 

(7) 

for Re(s) > 0 . 

+ 
lirn ~ f <I>(z)-<I> {z) dz = 0 

e: + 0 2Til 1 z(s.:zy--
e: 

If we add ( 4) and (7), then we obtain (1) for Re(s) > O wbich was 

to bf proved. For Re(s) = 0 the function <I>+(s) can be obtained by 

contlnuity or by an integral representation similar to (1). 
1 

( , -sn We note that if <I> s; = E{ z;e } exists for some 
M.. 

:ls, if E{ 1 z;e -e:n 1 } < 00 , then 
tv--

(8) <I>+(s) = 2!i J z~~:~) dz 
c+ 

e: 

s = e: > 0 ' that 

for Re ( s) > e: > 0 • For L'î this case ( 6) rerna.ins valid if G- is 
e: 

replaced by c; ' and hence (8) follows by (3). 

If <r>(s) = E{z;e·-sn} exists for some s = -e: < 0 , that is, if 

E{lz;ee:nl} < 00 , then we have 
,...,...._ 

(9) . s <I>(z) dz <I>~(s) = <I>(O) + 2Tii f z(s-z) 
c-

we e: 
f'or Re ( s) > O • B'or in th.t.s case if A repla.ce C; by C~ in ( 3 ) , then 

the rig.~t-hand side becomes <I>+(s) - <I>+(O) • If we add (6) to this 

equation, then we obtain ( 9) • 
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6. The Method of Factorization. If y ( s) e: R and 1 p ! Il y Il < 1 , 

then log[l-py(s)] e: R and we can determine T{log[l-py(s)]} by Theorem 

5.1 • We can use also the e:x-pansion 

CD n 
(1) T{log[l-py(s)]} = - l .e._ T{[y(s)]n} 

""" n=l n ,..,.._ 

which is convenient if T{ [ y ( s) ]n } for n = 1, 2, • • • can easily be 
~ 

obtained. In what follows we shall rnention another rnethod, namely, the 

nethod of factorization. 

(2) 

f or 

Iet p (s) e: R , IP 1 lh Il < 1 and suppose that 

Re(s) = 0 

M.-. 

) + -1 - py(s = r (s,p)r (s,p) 

+ \'Jhere r ( s ,P) satisfies the requirements: 

+ r (s,p) is a regular function of s in the domain Re(s) > O , 

+ r (s,p) is contjnuous and free from zeros in Re(s) ~ 0 , 

limLlogr+(s,pWs = o whenever Re(s) > o, 
lsJ~ 

and r-(s,p) satisfies the following requirernents: 

(3) 

B1 r-(s,p) is a regular function of s in the domain Re(s) < O , 

r-(s,p) is continuous and free frorn zeros in Re(s) ~- 0 , 

,lirn[logr-(s,p1/s = 0 whenever Re(s) < 0. 
1sl+ CD • 

Such a factorization always exists. For example, 

r+c ) T{log[l-py(s)J} s,p = e-

for Re(s) > 0 and 
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(4) î'-( ·) _ log[l--py(s)]-rl'{log[l-py(s)]} • s ,p -· e ,..,._ 

for Re(s) ~ O satisfy all the requirernents. Actually, the above 

requirements determ.i.ne r+(s,p) and r-(s,p) up toa multiplicative 

factor depending only on p • This is the content of the next theorem. 

Theorem 1. If y ( s) e R , 1 P 1 l IY Il < 1 and - ,.,._,_ ' 

(5) 

for Re(s) = O w:here r+(s,p) and r-(s,p) satisfy the requirements 

(6) T{log[l-py(s)]} = logr+(s,p) + logr-(O,p) 
N\. 

for Re(s) > 0 • 

Proof. It is sufficient to prove (6) for Re(s) > 0 • For Re(s) = 0 

( 6 ) follows by continui ty. + - + Let us define the paths L , C , C , C (R), 
E E E ::; 

C-(R) in the same ways as in the proof of Theorern 5.1 • By Cauchy's 
e: 

integral formula we aan write that 

(7) s 
21Ti 

1 r+( ) + f og z)p dz = logr (s p) 
+ z(s-z ' 

c 
e: 

for O < e: < Re(s) and by Cauchy's integral theorern we can write that 

(S) s J logr-(z~p) dz = 0 2rri z(s-z 
c-

E 

for Re(s) > O • We can prove (7) and (8) in a sirnilar way as (5.3) and 

(5.6) . First we integrate along the paths C+(R) and c-(R) in (7) 
e: e: 
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and (8) respectively and then let R + ~ • If e + O in (7) and (8), 

then we get 

+ 
s f logr (z~p) 1 +c ) + (9) lim

0 2ni 
1 

z(s-z dz + 2 logr O,p = logr (s,p) 
€: + 

€: 

and 

(10) lim ~ f logr-(z~p) d · 1 1 r-(0 ) = o 
E + 

0 
2n1 

1 
z(s-z z - 2 og ,p 

e: 

for Re(s) > O . If we add (9) and (10), then we obtain (6) for Re(s) > O • 

This corrpletes the proof of the theorem. 

By using Theorem 1 we can express Theorem 4.1 also in the folJ.owing 

way. 

Theorem 2. Let US SUppose that y(s) €: !. , r
0

(s) e: ~ and 

}{r
0

(s)} = r0 Cs) • Define rn(s) for n=l,2, ••• b2 the following 

recurrence relation 

(11) r (s) = T{y(s)r 
1

Cs)} • 
n ~ n-

If IPI llYll < 1 and 

(12) 1 -py(s) + -= r (s,p)r (s,p) 

+ for Re(s) = 0 where r (s,p) and r-(s,p) satisfy the requirements 

A1, .A2, A
3 

and B1, B2, B
3
, then 

~ 1 ro(s) 
l rn(s)pn = T { } 

n=O r + ( s, p) /"'- r- ( s, p) 
(13) 

for Re(s) _?_ 0 • If, in particular, r0(s) ::: 1 , then 
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CX> 

(14) 2 r (s)pn = _l __ _ 
n=O n r+(s,p)f-(O,p) 

for Re(s) > O • 

Proof. If we put (6) into (4.3) and (4.4), then we obtain (13) 

and (14) respectively. 

We note that by (13) we obtain that 

(15) 

f or Re(s) = 0 and IPI hll < 1. 

By ( 14) we obtain that if r 
0 

( s) __ 1 then 

(16) 
CX> + 

[l-py(O)] 1 r (s)pn = _r (O,p) 
t... n + 

n=O r (s,p) 

for Re ( s) ~ O and 1 P 1 Il y 11 < 1 and 

(17) [l-py(s)] ~ r (s)pn = r-(s,p) 
l n -

n=O r (O,p) 

for Re(s) = 0 and !PI llYll < 1. 

In finding r+(s,p) and r-(s,p) we can usually utilize the 

" f'ollowing theorem of Rouche : 

If f(z) and g(z) are regu.lar in a dornain D (open connected set), 

continuous on theclosure of D and satisfy lg(z) 1 < 1f(z)1 on the 

boundary of D , ~ f(z) and f(z) + g(z) have the same number of 

zeros in D • 

li'or the proof of Rouché's theorem we refer to s. SaJ(s and 

~ Zygmund [ 32 -s P • 157 • 
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1. A Subspace R 
,.,..0 

'lhere are several problems in fluctuation 

theory which can be solved by considering a smaller class of functions 

than the space !_ . In this section we shall define a subspace ,..._R
0 

of 

the space R and we shall show that if we restrict ourself to functions 
IV'-

belonging to /V'-Ro , then the problems discussed in the previous sections 

can be sol ved in. a simpler way. 

Define N"-Ro as the class of all those functions y(s) defined for 

Re(s) = 0 on the complex plane which can be represented in the form 

(1) ~ 
1 
i 

whert n is a positive integer, c1, c2, ••• , en are corrplex (or .real) 

numbers and $
1 

(s), $2(s), ••• , $n(s) are Laplace-Stieltjes transforms 

of real random variables, that is, 

(2) 

for Re(s) = 0 and k=l,2, ••• ,n where n1, n2, ••• , nn are real random 

variables. 

If y(s) E ,.,,..Ra , then y(s) E ~ • For if y(s) is given by (1), then 

$k(s) E ! for k=l,2, ••• ,n and therefore y(s) E ! . Accordingly, .-.Ra 

is indeed a subspace of R • We can easily see that J_?.
0 

is a linear 

manifold. 

,..,~0 can also be characterized as that subspace of ,E. wtµ.ch contains 

all those functions y(s) defined for Re(s) = O on the corrplex plane 

which can be represented in the form 
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(3) y(s) = E{z;;e-sri} 
,..,._ 

where z;; is a discrete complex random var:lable wi th a fini te number of 

possible values and n is a real random variable. We can easily see that 

this Ciiefinition of /\"-Ra and the previous one are equivalent. If y(s) 

is gi ven by (1) , then let us define v as a discret,e random variable which 

is independent of n1 , n2 , ••• ,nn and for which ~{v = k} = l/n for 

k=l,2, •.• ,n . If z;; = nc and n = n , then (1) can be expressed in the 
\) \) 

form of (3). The converse implication is evident. 

If y(s) e: ,!o and y(s) is given by (1), then let us define the 

norm of y(s) by 

( 4) Il Y Il = inf{ i c1 1+1 c2 I + • · + 1en1} 
y 

where the infinrum is taken for all ad.rnissible representations of y (s) in 

the form (1) T'nis definition of hl! is in agPeem.ent with tri.at of' 

Section 2. 

We have hl!> 0 , and lhll = 0 if and only if y(s) = 0 • If a is 

a complex (or real) number and y ( s) e: J\o , then ay ( s) e: "'"'R0 and 

Il ay Il = 1a1 h 11 • Furtherrnore, if y 1 ( s) e: ~0 and y 2 ( s) , e: Jo , then 

y1 (s) + y2(s) e: Eo and Y1 (s) y2(s) e: !o and llY1+ Y2 11 ::_ lh111+ilY2 1! and 

lh 1 Y 2 11 < Il Y 1 11 11 Y 2 11 • 

Let us define the transformation T in the following way. If ,,..,._ ' 

y(s) e:,.,..Ra and y(s) is given by (1), then let 
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(5) 

for Re(s) = 0 where 

(6) 

+ + and nk = max(O, nk) • It can easily be seen that the function y (s) 

is independent of the particular representation (1). It depends solely 

on y(s) • This definition of ,!{y(s)} is in agreement with that of 

Section 3. If y(s) e:J,t
0

, then obviously y+(s) e:,....Ra. 

If a is a complex (or real) nurnber and y ( s) e: R
0 

, then 'I1{ ay ( s) } = 
1 ~ ~ 

a;E{yj<s)} • If y1 (s) cJ.10 and r 2(s) e:fo then J{y1 (s)+ r 2(s)} = 

_!{y1(s)} + :E{y2(s)} which fellows inrnediately from the definition (5). 

· Lerrrna 1. If r 1 (s) e: !o and y2(s) r.!o , then we have 

(7) ,11{y1 (s~Ty2 (s)} + _,!{y2(s),:Ey1 (s)} = 

= 1{y1 (s)y2(s)} + C:r1 (s))S.:.y2(s)) • 

Proof. We can easily see that for any two real random variables n
1 

and n2 we have 

= P{max(O, n1+ n2) < x} + P{max(O, n1)+ max(O, n2) ~ x} 
~ ,.,__ 

for all x . If we assume that n1 and n2 are independent random 
-sn -sn 

variables for which ~{e 1
} = y1 (s) and ~{e 2} = y2(s) whenever 

Re(s) = 0 , and if we form the La.place-Stieltjes transform of (8), then 
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we obtain (7) in this particular case. The general case can imrnediately 

be reduced to this pa..-rticular case by using the representation (1) • 

F'inally ,we note that if y(s) e.: R , then y+(s) is a reguJ.ar ,..,.._. 

function of s in the dorna.in Re(s) > 0 , continuous for Re(s) > 0 and 

ly(s) 1 < lhll for Re(s) ~ O • 

NOV'let us consider the recurTence relation studied in Section 4 in 

the pa.r:icular case when y ( s) e.: }o and r 0 ( s) e.: Jlo and ,!{r 
0 

( s) } = 

r0 (s) • If we define rn(s) for n=l,2, ••• by the recurrence relation 

(9) r (s) = T{y(s)r 
1

(s)} , 
n ,,,..._ n-

thenl r (s) e.: R0 for n=l,2, •••• First, we shall consider the particu1ar 
n ""' 

case when r0 ( s) = 1 , then the general case when r 0 ( s) e.: ,....R0 and 

,,!_{r
0

(s)} =r
0

(s) • 

Theorem 1. If y(s) e.: !o , r0 (s) = 1 , and 

(10) r (s) = T{y(s)r 1Cs)} n ,.,.._ n-

for n=l,2, ••• , then 

(11) 
CC> Q:) pk + 

n~O rn(s)pn = exp{ ~l ~ yk(s)} 

f or Re ( s) > 0 and 1 p 1 Il y 11 < 1 where y k ( s) = [ y ( s) ]k and 

(12) y~(s) : T{yk(s)} = T{[y(s)]k} 
tv- N-

for k=l,2,... • 
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Proof. The proof' follows along the sarne lines as the proof of 

'Iheorem 4.2 • First, by using Lemma l we can prove by mathematical 

induction that 

(13) 

for Re(s) _?'_ O and n=l,2,... • If we introduce the generating function 

of the sequence {rn(s)} , then we can easily obtain (11) frorn (13). 

Theorem 2. T_f ( ) R - ys e;.o' 

(14) r (s) = T{y(s)r 
1

Cs)} 
n N.... n-

for n=l,2, ••• , then 

(15) 

for Re(s) > O and n=l,2, ••• and r0(s) = % = 1 . The polynomia:l_:_ 

~(x1 , x2, ••• , xn) is defined by (4.21). 

Proof. The proof follows exactly along the same lines as the proof 

of Theorem 4.3 • 

(16) r (s) = T{y(s)r 
1

(s)} n ,._ n-

f or 

(17) 
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ror Re ( s) > 0 a.11d n = 0, 1, 2 ) • • • where 

(18) Qk(s) = ~(y~(s), r;(s), ••• , y~(s)) 

for k = 1,2, ••• ,n , and Q0(s) = % = 1 , and 

(19) 

* for k =1,2, ••• ,n, and %Cs) = % = 1 . The polynomial 

Qk(x1 , ~2 , ••• , ~) for k = 1,2, ••• is defined by (4.21). 

Proof. Tne proof fellows exaetly along the same l:ines as the proof 

of Theorem 4.4 • 

If r0(s) = 1 , then (17) reduces to rn(s) = ~(s) (n = 0,1,2, ••• ) 

which is.in agreement with (15). 

If we restrict ourself to the consideration of the class ~ only, 

then from (15) and (17) we cannot deduce compact forrrrulas analogous to 

(4.4) and (4.3) • For if y(s) EJto and IPI llrll < 1, then it does not 

follow in general that log[l-py(s)] EJ.10 • 



8. A Space A • There are rm.ny discrete type problems in ,...,., 

fluctuation theory whose solutions do not require the use or the whole 

space R but only a particular subspace of R • This subspace contains 
,..,_ IV'-

all those functions cp(s) defined for Re(s) = 0 on the complex plane 

which can be represented in the form 

(1) ( -sn ~.s) = E{z;e } ,.,.._. 

where ç is a complex (or real) random variable for which E{ 1z;1} < co 
r-

and n is a discrete real random variable taking on integral va.lues or1ly. 

This subspace of R has exactly the same properties as R and all those 
fV'- ,.,,._ 

results which we deduced for R , remain valid for this subspace too. ,..._ 

However, it will be more convenient to introduce a new variable in cti(s) 

and replace cp(s) defined for Re(s) = 0 by 

(2) 

defined for !si = 1 • Thus we shall replace the mentioned subspace of 

R by an isomorphic space A • For the space A we shall prove analogous 
(\,.._ ~ ~ 

theorems as we obtained f or R • 

Let us denote by A the space of all those functions a(s) which 

are defined for !si = 1 on the complex plane and which can be represented 

in the form 

(3) 
co 

( \ \ k a s, = l a. s 
K k= -co 

where ~ (k = O, +l, +2, ••• ) are complex (or real) numbers satisfying 

the requirement 
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00 

(4) I 1 ~I < 00 
• 

k= - GO 

Let us define the norm of a(s) by 

00 

(5) llall = I l~I . 
k= - <X> 

We have llall > 0 , and llall = 0 if and only if a(s) = 0 • If a 

is a complex (or real) nwnber and a(s) e: A , then aa(s) e: A and 
,.,,,,_ ;v-... 

!! a.a 11 = 1 a 1 Il a 11 • Furthermore, if a1 ( s ) e: f:,. and a2 ( s) e: ~ , then 

a1 (s) + a2(s) e: ! and lla1+ a2 11 ~lla1 11 +I! a2 11 • Accordingly, ~ is a 

normed linear space. In What follows we sha.11 not make use of the 

completeness of A • However, we can easily prove that A is complete, 
,..,._ AA, 

and hence it follows that A is a Banach space. (See Problem 12•2•) 
IV'-

Next we observe that if ~ ( s) e: A and a2 ( s) E: l~. , then 

a1 (s)a2(s) e: !_ and lla1a2 11 <ll~ll lla211. Accordingly, !_ can be 

characterized as a commutative Bana.ch algebra. 

Finally, we note that the space A can be defined in the followi.rig 
!'-""' 

equivalent way. The space A contains all those functions a ( s) which 

are defined for lsl = 1 on the complex plane and which can be represented 

in the f ollowing form 

(6) 

where r,;; is a complex (or real) random variable for which E{jr,;;I} < 00 and 
""'" 

n is a discrete random variable taking on integral values only. It 

follows from (6) that ia(s)I < E{lr,;;I} for !si = 1. 
""-



If a(s) is given by (6) for !si = 1 , then evidently a(s) 2 A 
Ar-

and Il all~ E{ 1r;;1} • Conversely, if a(s) E A and a(s) is given by 
- flM """' 

(3), then a(s) can also be expressed in the form (6). To see this let 

n be a discrete random variable taking on jntegral values only wlth some 

probabilities ~{n = k} =pk> 0 for all k = O, +l, ~2, •••• Define 

r;; =~pk if n =k. In this case 'a(s) is given by (6) for lsl = 1 

and Il all = E{ 1r;;1} • 
"""' 

We note that for !si = 1 the f'unction a(s) is uniquely dete:"ITlined 

by the joint distribution of r;; and n • However, there are infinitely 

many possible distributions which yield the same a(s) . 

By using the representation (6) we can define the norm of a(s) by 

(7) Il all = inf E{ Î <;; 1} 
r;; N-

\\1:here the infimum is taken for all admissible r;; , that is, for all those r;; 

for which ( 6) holds. Obviously, 1 a ( s) 1 2_ Il a.11 for 1 s 1 = 1 . 
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9. A Linear Transformation Il • Let us define a transformation IT 
Nv ""'"" 

in the following way. If a(s) c A and a(s) is given by (8.3), then 

let 

( 1) Il{a(s)} = a+(s) 
N'-

for 1 s 1 = 1 where 

(2) 
+ 0 co k 

a (s) = l ~+ l ~s 
k= - co k=l 

If a(s) is given by (6), then 

+ 
(3) a+(s) = E{çs~ } 

f or I s I == 1 where n + = max ( O, n ) • + It can easily be seen that a. (s) 

is independent of the particular representation of a(s) • It depends 

solely on a(s) • 

If a(s) € A , then obviously a+(s) c A . + We observe that a (s) 
N- !"" 

is a regular function of s in the domain !si < 1 and continuous for 

1 s 1 < 1 . Furtherrnore, 1 a + ( s) 1 .::_ Il a Il f or 1 s 1 < 1 . We notice that 

a(s) - a+(s) c A and 

(4) 
+ 0 k 

a(s)-a (s) = l ~(s -1) 
k= - co 

is a regular function of s in the domain 1 s 1 > 1 , and continuous for 

!si > 1 . Furtherrnore, la(s) - a+(s) 1 < 2llall for is! > 1 • 

If a. is ó. complex (or real) number and a(s) € A , then n{cx a(s)} = 
IV'-- -v... 

a.R_{a(s)} • If a1 (s) c ~ and a2(s) c ~ then !{a1 (s) + a2(s)} = 

~{a1 (s)} + E{a2(s)} • Obviously ll~ll = 1 . Cll~ll = sup{!l~a!! : a ~:~ and 

Il a 11 < 1}.) Accordingly, 11 is a bounded linear transfonna.tion. Since ,.,,._ 
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IT2 = IT , therefore IT is a projection. 
,....,.._ ,...,... r..,.,.,,,,,. 

The folJ.owing rema.rks are obvious. Let a
1 

( s) E ! and a
2 

( s) E ;_\ • 

If 3{a
1 

(s)} = a1 (s) and ,2I{a2 (s)} = a2 Cs) , then ,!{a
1 

(s)a
2

(s)} ~ 

a
1 

(s)a
2

(s) • If ,!1{a1 (s)} = c1 and ~{a2 (s)} = c
2 

where c
1 

and c
2 

are complex (or real) constants, then !1{a1(s)a2(s)} = c1c2 . 

( 5) 1T {al (sm a2 ( s ) } + 1î { a2 ( s )lfal ( s) } = 
/~ ,.,,..., tV..._ r.;.., 

= ~ { a
1 

( s ) a2 ( s ) } + (IT a1 ( s ) ) (\î.a.
2 

( s ) ) • 
t'- r--

i * + * + ,_Proof. Iet a1 (s) = a1(s) - a1(s) and a2(s) = a2(s) - a2(s) • 

We can express (5) in the following equivalent form 

(6) 

TI * *, This is however true, because {a1(s)} = 0 and 1\{a2ts)} = 0. 
,..,_ M.. 

We shall also need the following auxiliary theorern. 

Lerrnna 2. Let a (s) E A for n = 0,1,2, ••• and let en (n = 0,1,2, •.• ) 
- n ~ -

be complex (or real) numbers. If 

CX> 

(7) 

then 
CX> 

(8) a(s) = I c a (s) E A , 
n=O n n ,..,_,,, 

CX> 

(9) Ka 11 -~ l 
n=O 

Ic 1 !la Il n n 

and 
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(10) IT{a(s)} = l c TI{a (s)} • 
rv- n=O l~ n 

Proof. If we would refer to the fact that A is complete, then 
~ 

Lemma 2 would follow imnediately. However, we are not making use of the 

completeness of A , and therefore a separate proof is required. In 
t"" . 

proving (8), (9) and (10) we shall use the representation (8.6) . Let 

(11) 
nn 

an(s) = E{z; s } 
;vv n 

for 1 s·I = 1 and n = 0,1"2,... where E{ 1z;n1} ~ w Il ani Il Let v be 

a discrete random variable which is independent of the sequence 

( n =; 0, 1, 2, ••• ) and which takes on only nonnega.ti ve integers wi th 
! 
1 

(s , n ) n n 

probSbilities P{ v = n} = p > 0 for n = 0,1,2,... • Define z; = c i;; /p 
1 """" n vv" 

and 11 = n • Then ·v 

00 c n 00 

(12) E{z;sn} = l P{v = n} ___!}__ E{i;; s n} = l c a (s) 
n=O""" Pn ""' n n=O n n fV'-

and 
00 Ic ' 00 

(13) E{ l i; 1 } l P{v n' 
w l 'c ' !la Il < 00 = = n} -- E{ 1 z; 1 } < 

(""-. n=O,,,_. P n = n=O 
1 nl n n,....... 

Accordingly, we have a(s) = E{z;sn} and a(s) i:: P. • The inequality (13) 

implies (9). Furthermore, we have 

(14) 
+ 

IT{a(s)} = E{z;sn } 
+ 

oo . en nn "° 
= l P{v=n} ~p E{z;ns } = l c TI{a (s)} 

n=O ""- n w... n=O nf'iv. n 

which is in agreement with (10). TW.s cornpletes the proof of Lermna 2. 

In particular, it follows from Lemma 2 that if a(s) e: A , then 
M-

epa(s) i:: A for any p and 
/V'-

A and w is an arbitrary positive number greater than 1 . 
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furtherrnore -1 [1-pa(s)] E: A and log [l-pa(s)] E: A whenever 

IPI llall < 1 and 

00 

c16) n{ c1-pa(s) r 1 l = I p
11rrHaCs) Jnl 

"""' n=l tw< 

and 

( 17) TI{log[l-pa(s)]} I 
tv'- n=l 

for 1 P 1 Il a !! < 1 . 
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10. A Recurrence Helation. Many problems in the theory of 

probability and stochastic ~rocesses can be reduced to the problem of 

finding a sequence of functi.ons ~(s) Cn = 1,2, ••• J defined f'or !si = 1 

by the recurrence relation 

(1) ~(s) = Il{y(s)~_1 Cs)} 
fVV- ' 

where n = 1,2, ••• , y(s) e: !: , ~ls) 1:: !::_ and ,!{g'C/s)} = ~(s) • Obviously 

~ (s) e:-!._ for all n = 1,2,... and ~ (s) is a regular function of s in 

the doma...i.n 1 s 1 < 1 and continuous f or 1 s 1 2. 1 • 

T.heorem 1. Let us suppose that y ( s) e: !:. , ~ ( s) e: !... and 

Il{~(s)} = ~(s) • Define ~(s) for n = 1,2, •.• by the following 
""' 
recurrence relation 

(2) ~(s) = ll{y(s)~_1(s)} • 
~ 

If 1 p l 1 h Il < 1, then 

(3) ~ ( ) n _ -n{log[l-py(s)]}Il{ ( ) -log[l-py(s)]+IT{log[l-py(s)]} 
l ~sp -e,.,.., ~se ,..,._ 

n=O ~ 

for !si < 1 • If, in particular, ~(s) = 1 , then (3) reduces to 

(4) Ï ~(s)pn = e-E_{log[l-py(s)]} 
n=O 

where 1 p 1 11 y Il < 1 and 1 s 1 < 1 • 

Proef. Let us denote the right-hand side of (3) by U(s,p) • 

Obviously, U(s,p) e: A and Il{ U(s,p)}= U(s,p) • Now we shall show that 
rv-. !'-
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U(s,p) satisfies the following equation 

(5) U(s,p)-p~{y(s)U(s,p)} = ~(s) • 

This can be proved as follows. Let 

(6) h(s,p) = elog[l-py(s)]-,.!!:log[l-py(s)]} 

for lsl = 1 and IPI llYll < 1. Evidently h(s,p) e A, l/hCs,pJ e A 

and 9J.(s)/h(s) e A • We can see irnmediately that 
!'v'-

(7) Il{h(s,p )} = 1 ,.,..,,. 

and 

( 8) 
~(s) 

~{ hCs,p) 
~(s) 

- Tih(s l } = O • 
- ,p 

Now (7) and (8) imply that 

(9) 
. ~(s) ~(s) 

Il{h(s,p)[fiT~ -·II h( )J} = 0 , 
M 111.'=',PJ ,.,..... s,p 

that is, 

(10) ~{[l-py(s)]U(s,p)} = g
0

Cs) 

whence (5) fellows. 

Let us expand U(s,p) jn a power series as follows 

(11) 
00 

U(s,p) = l un(s)pn • 
n=O 

Tri.is seri.es is convergent if 1p1 11-Y Il < 1 and evidently u (s) e A for n ,.,,.._ 
r. 

n = 0,1,2,... • If we put (11) into (5) and form the coefficient of p·
1 

, 

then we obtain that u0(s) = ~(s) and 
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(12) u (s) = IT{y(s)un_1 (s)} n IV---

for n = 1,2, •••• Accordingly, the sequence {un(s)} satisfies the 

same recurrence relation and the sa.rre jxlitial condition as the sequence 

{g;/s)} • Thus un(s) = ~(s) for n = 0,1,2,... which was to be 

proved. 

In the particular case of ~(s) = 1 the proof of (4) is much 

sirr:pler: If now U(s,p) denotes the right hand side of (4), then it 

follows irrmediately that 

(13) IT{[l-py(s)]U(s,p)} = 1 
""' 

and therefore (5) holds with ~(s) = 1 • The remainder of the proef 

fellows as in the t:ireneral case. 

Th.e following theorems follow ii'TIITlediately from r.I'heorem 1. Alternately, 

we can prove the following theorems directly by using the same methods 

as we used in Section 4. 

Theorem 2. If y(s) e: ! , ~(s) = 1 and 

(14) ~ (s) = ,!_h (s)~-l (s)} 

for n = 1,2, ••• , then 

= ~ k 
(15) l ~ (s)pn = exp { l ~ y~(s)} 

n=O k=l 

f or 1 s 1 2 .. 1 and . 1 P 1 ilY Il < 1 where y k ( s ) = [ y ( s ) ]k and 

(16) 
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for k = 1,2,... • F'urthermore we ca."1 write that 

(17) 

for !si ,:;.. 1 and n = 1,2, ••• where the polynomal ~Cx1 , x2, •.• , :xn) 

is defined by (4.21). 

· · Pröóf. We can prove this theorem in an analogous way as Theorem 

4.2 and Theorem 4.3 . 

Theorem 3 • If y ( s ) e: ~ , 9) ( s ) e: !_. , ~ { 9::> ( s ) } == 9) ( s ) and 

(18) ~(s) = ~{y(s)~_1(s)} 
for n = 1,2, .•• , _!;hen we have 

(19) 

for lsl < 1 and n = 0,1,2, ••• where 

(20) 

for k = 1,2, ••• ,n and Cio(s) = % = 1 , and 

(21) 

* for k = 1,2, ••• ,n and C\)(s) = % = 1 • ~lynomial Qk(x1, x2,"., xk) 

for k = 1,2, ••• is defined by (4.21) • 

Proof. The proof follows along the sa'Tie lines as the proof of 

Theorem 4.4 • 

If ri:~(s) = 1, then (19) reduces to g (s) = q (s) (n = 0,1,2, ••• ) v ·-n n 

wli..ich is in agreement wi th ( 17) • 
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If we rnultiply (17) by ~n and ~jd for n = 0,1,2, ••• ) then we 

obtain ( 4) or ( 15) for 1 P 1 Il Y 11 < 1 • 

If we rnultiply (19) by pn and add for n = 0,1,2, ••• , then we 

obtain (3) for IPI llYll < l • 

The usefulness of the results of, this section depends on the 

applicability of the transformation IT • In the following two sections 
rvv 

we shall give a method for finding IT{a(s)} for a(s) e: A , and, in 
. tv.. "'"' 

particular, for finding H{log[l-py(s)]} if y(s) e: A and IP 1 !IYll <l • 
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ll. A Representation of IT • If we know 
~ 

(1) 
ClO k 

a(s) = I ~s eA 
k= - 00 N'-

for 1 s 1 = 1 , then we have 

(2) ~ - 21Ti k+I dz 
_ 1 f a(z) 

lz =l z 

for k = o, +l, .:!:_2, ••• and thus 

(3) 

f or !si < 1 is uniquely deterrnined by a(s) • + The funetion a (s} 

is regular in the disc 1 s I < 1 and eontinuous in 1 s 1 ~ l . We can 

obtain a+(s) explicitly by the following theorem. 

· 'Ihéórem 1. If a(s) i:: A , then for 
M-

a+(s) = !
2 

a(l) + lim l-s f a(z) dz 
0 

2Tii 
1 

(1-Z) (s-z) 
E:+ E 

(4) 

where L = {z:z = ei6
, E < e < 21T -e} for 0 < e < lT/2. 

E 

Proof. For O < e < 1T/2 let c+ and c- be closed paths of 
E E 

integration taken in the positive (eounter-clockwise) sense and def'ined 

as follows: The path C+ . fr iE var1es om z = e to 
E 

-iE z = e on the 1onger 

1 1 
-iE iE are of the cirele z = 1 and f'rom z = e to z = e on the shorter 

are of the eircle lz-11 = 2 sin~ • The path 

-ie to z = e on the longer are of the eircle 

C:- varies from 
E 

lzi = 1 and from 

ÏE 
z = e 

-iE: 
z = 

to z = eiE: also on the longer are of the cirele 1 z-1 I = 2sin. ~ • Sirce 

a + (z) is regular inside c; and continuous on the boundary, it fellows 



by Cauchy's integral formula (see e.g. W. F. Osgood [23] p.112) that 

· ·1-s + 
(5) I a (z) + 

211f Îl-z)(s-z) dz :: a (s) 
+ c 
e:: 

f or !si < 1 if e:: > 0 is srria.11 enough. 

+ Since a(z) - a (z) is regular outside C , continuous on the 
e:: 

boundary and la(z) - a+(z)I < 211 a~ for lzl > 1 , it follows by Cauchy's 

integral theorarn (see e.g. W. F. Osgci_od [23]p. 105) that 

(6) 

f or !si < 1 

~;~ f êi:;)c:~~~ dz = o 
c~ 

• For the integral in ( 6) remains unchanged if the path C -
e:: 

is replaced by the circle lzl = R , where R > 1 + e:: • If R-+ 00 , then the 

latter integral tends to 0 . 

(7) 

and 

Let e:: -+ 0 in ( 5) and. ( 6) • rl'hen we obt;ain that 

lim 
e:: -+ 0 

1-s f a+(z) 1 + 
2~i (1-z)(s-z) dz+ 2 a(l) = a (s) 

Le:: 

+ 
(S) 1. 1-s f a(z)-a (z) dz = 0 

e:: ~0 2~i Le:: (1-z)(s-z) 

+ for !si < 1 • Here we used that a (1) = a(l) • If we add (7) and (8), 

then we obta:in a+(s) for lsl < l • This proves (4). Since a+(s) 

.is continuous for !si < 1 , (4) determines a+(s) also for Is! = 1 by 
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continuity. 

(9) 

We note that if a(s) E A is given by (1) and 

l la ICl-E)n < 00 

n n= - oo 

f or some 0 < E <l , then 

(10) + 1-s r 
a (s) - 2ni J 

c+ 
e: 

a(z) dz 
-( 1---z~)(~s-z) ' 

for 1s1 < 1- E. For in this case (6) r'2mains valid if c- is replaced 
E 

by b+ and hence (10) follows by (5). 

(11) 

!E 

1 

If' a(s) E A is given by (1) and ,,,.., 

00 

l la j(l+s)n < oo 
n 

n= - oo 

f or sorne E > 0 , then we have 

(12) + ( 1-s f a (s) = a 1) + ~2 . 
TIJ. 

c; 
a(z) 

(1-z)(s-z) dz 

for !si < 1 . For in this case if we replace c; by C~ in (5), then 

the ri~)l.t-hand side becornes a+(s) - a+(l) • If we add (6) to this 

equation, then we obtain (12). 
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12. The Method of Factorization. If y ( s) e: A and 

then log[l-py(s)] e: A and we can determine iT{log[l-py(s)J} by 
('.~ ""-" 

Theorem 11.1 • We can use also the expanslon 

00 n 
L .II { [y (s) ] 11

} 
n '""" .. 

(1) II{log[l-py(s)]} l 
n=l 

which is convenient if II{[y(s)]n} for n = 1,2, •.• can easily be ,.,,_ 

obtained. In what follows we shall mention another method, namely, the 

rn;thod of factorization. 

(2) 

f or 

and 

(3) 

Let y(s) e: A , IP 1 llYll < 1 and suppose that ,...,. 

+ -1 - py(s) = g (s,p)g (s,p) 

!si = 1 where + g (s,p) satisfies the requirements: 

(a
1

) g+(s,p) is a regular f'Lmction of s in the disc Is[ < l , 

+ g (s,p) is continuous and free from zeros in lsl < 1 , 

satisf'ies the following requirements: 

(b
1

) g-( s, p ) is a regular function of s in the domain 1 s 1 > 1 , 

g-(s,p) is continuous and fre from zeros in !si > 1 , 

lim [log g-(s,p~s = 0 • 
Is 1+ oo 

Such a factorization always exists. For example, 

+c ) II{log[l-py(s)J} g s,p = e""' -

f or 1 s 1 < 1 aYJ.d 
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(4) -( ) __ log[l-py(s)]--II{log[l-py(s)]} g s ,p - e ....... 

for !si ~ 1 satisfy all the requirements. Actually, the above requirements 

+ determine g (s,p) and g-(s,p) up toa multiplicative factor depending 

only on p • This is the content of the next theorern. 

Theorern 1. If y (s ) E: A , 1 p 1 t!Y Il < 1 and 
- IV'--

for + !si = 1 where g (s,p) satisfies 

satisfies (b
1
), (b2), (b

3
) , then 

(6) + II{log[l-py(s)]} =log g (s,p) +log g-(l,p) ,.,,._ 

for Is 1 < 1 • 

Proof. It is sufficient to prove (6) for !si < 1 • For is! = 1 

(6) follows by continuity. Let us define the paths + -Le: , C e:, C e: in the 

sam;; wey as in the proof of Theorern 11.1 • By Cauchy' s ir1tegral formuJ.a 

we can wTi te that 

(7) 1-s f log ~+(z,p) dz =log g+(s p) 
21Ti (1-z (s-z) ' 

c+ e: 
for 1 si < 1 if e: > 0 is small enough, and by Cauchy' s integral theorem 

we can write that 

(8) 1-s f log ~-(z,p) dz _ 0 2rri (1-z (s-z) -
c; 

for 1s1 <. 1 • For the integral in (8) remains unchanged if instead of 

c; we integrate along the circle 1 z 1 = R where R > 1 + e: • If R -+ a:. , 
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then the latter integral tends to 0 • 

If € + O in (7) and (8), then we get 

+ 
(9) 

1-s f log ~ (z,p) 1 + =log g+(s,p) lim 21Ti dz+ 2 log g (l,p) 
€ + 0 1€ 

(1-z (s-z) 

and 

(10) 1-s I log g - ( z 
2 
p ) 1 -

lim 21Ti (1-z)(s-z) dz- 2 log g (l,p) = 0 
€ + 0 L 

€ 

for 1 s·I < 1 • If we add (9) and (10), then we obtain (6) for 1s1 < 1 . 

~bis completes the proef of the theorem. 

By using Theorem 1 we can express Theorem 10.1 also in the following 

wa:y. 

Theorem 2. Let us suppose that y ( s) E f:_ , ~ ( s) E !;_ , and 

,E.{9::l(s)} = ~(s) • Define ~(s) for n = 1,2, ••• by the following 

recurrence f ornrula 

If 1 P 1 1 h Il < 1 and 

for lsi = 1 where g+(s,p) satisfies (a1), (a2) and g-(s,p) 

satisfies_ (b1), (b2), (b
3
), then 

(13) 
00 1 sa<s) 
I ~(s)pn = + II{---} 

n:-=O g (s,p) ,.,,._ g-(s,p) 

for !si < 1 • 
= If, in particular, ~(s) = 1 , then 
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()0 

(14) l ~(s)pn = __ . __ 1 __ 
n=O g + Cs, p ) g-(1, p ) 

for 1s1 < 1 • 

· Proof. If we put (6) into (10.3) and (10.4), then we obtain (13) 

and (14) respectively. 

By_ (13) we obtain that 

(15) 
()0 n ~(s) 

[1-py(s)] l ~(s)p = g-(s,p)IT{ } 
n=O /Ir., g-(s ,P) 

f'or !si = 1 . 

By (14) we obtain that if ~(s) = 1 then 

()0 + 
(16) [1-py(l)] I ~(s)pn = g+(l,p) 

n=O g (s,p) 

for l s 1 ~ 1 , or 

(17) [1-py(s)] Ï ~(s)pn = g=(s,p) 
n=O g (l,p) 

for Is! =l • 

+ -In finding g (s,p) and g (.:;,p) we can usually utilize the foll01'ling 
/ 

particular case of Rouche's theorem: 

If f(z) and g(z) are regular in the disc !.z 1 < 1 , continuous 

in lzl < 1 and jg(z) ! < jf(z) I if lzl = 1 , then f(z) and f(z)+g(z) 

have the sa11e munber of zeros in the disc 1 z 1 < 1 • 
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13. PROBLEMS 

13.1. Prove that the space _! is complete, that is, if 4>n(s) E ! 
for n = 1,2, ... and if li.~ l14>m- 4> !I = 0 , then there exists a 4>(s) E R n ,,...,,.._ 

m + oo 

n -;co 
such that lim !I 4>-4>n 11 = 0 . 

n + oo 

13. 2. Prove that the space A is complete, that is, if a (s) E A for 
~ n ~ 

n = 1,2, ... and if Hm llam- ani!= 0, then there exists an a(s) E!_ 
m + oo 

n + oo 

such that lim 11 a-a 11 = 0 • n n + oo 

13.3. Let o(s) = 1/(l-s2) . Find ~+(s) = T{4>(s)} 
/'Vv. 

13.4. S -·Sm Let <P(s) = (pe + qe ) where p > 0 , q ~ 0 and p+q = l • 

Prove that ~(s) E R and deterrrrine 9+(s) = T{4>(s)} • 

2 
13. 5. Let <P(s) = e8 12 for any complex s . Prove that <P(s) E R 

"""' 
and determine <P+(s) = T{4>(s)} 

,...-

13.6. Let ~(s) be the Laplace-Stieltjes transform of a nonnegative 

random variable and let t.. be a positive constant. Determine T{ ~/..;\ (s)} . 
"""' - s 

13.7. Let <P(s) ER and Re(q) > 0 . Prove that 
l'v-

T{ <1i (s) } = 
r-.,- s - q 

.1. 

if s ~ q and Re(s) > 0 where <P'(s) = T{<P(s)} 
,,,,._. 
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13.8. Let ~(s) 

random variable and let 

13.9. Let ~(s) 

ra~f om variable and let 

be the La.place-Stieltjes transform of a non.negative 

À be a positive constant. Determ:i.ne .... :1{ Api~~) } . 

be the La.place-Stieltjes transform of a normegative 

À be a positive constant. Deterrnine T{~(s)(, À-:-)rn} 
,...,,,_ A-S 

where m is a positive integer. 

13.10. .Let ~(s) be the La.place-Stieltjes transform of a nonnegative 

random 1iariable and let À be a positi ve constant. Determine T{ ('+À )m~ ( -s)} 
M.. /\ s 

where m is a positive integer. 

1 

1 

j 13.11. Let ~(s) and y(s) be La.place-Stieltjes transforms of non-

negat1ve random variables a~d suppcse that y(s) is a rational function of 

s . Firid T{~(s)y(-s)} 
w-. 

13.12. Let .P(s) e: R and let y(s) be the Laplace-Stieltjes trans-
~ 

fonn of a nonnegative random variable. Suppose that y(s) is a rational 

function of s • Find 'I'{ <P ( s )y (-s)} 
""" 

13.13. Let ~(s) and y(s) be La.place-Stieltjes transforrns of non-

negative random variables and uppose that y(s) is a rational function of 

s . Fjnd T{y(s)~(-s)} 
,Nv. 

13.14. Let Ç, be a discrete random variable taking Cil nonnegative 

integers only. Denote by g(s) the generating function of E;. , that is, 

g(s) = E{sÇ,} for lsl ~ 1 . Determine IT{psg(s)/(s--q)} where p > 0 , 
"""" 

q > O and p+q = 1 . 
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13.15. Let s be a discrete random variable takir.g on nonnegative 

integers only. Denote by g(s) the generating function of s , that is, 

Determtne Il{ pg(l/s)} where p > 0 , q > 0 
(V.. 1-qs 

and p+q = 1 . 

13.16. Let s be a discrete random variable taking on nonnegative 

integers. Denote by g(s) the generating function of s , that is, 

g(s) = E{ss} for !si < 1 . Deternûne IT{pmsmg(s)/(s-q)rn} where p > 0 , 
IV>- ,,,.._ 

q > 0 > p+q = 1 and m is a positive integer. 

13.17. Let s be a discrete random variable taking on nonnegative 

integers. Denote by g(s) the generating function of s , that is, 

g(s) = E{ss} for !si ~ 1 . Detenn:ine IT{pmg(l/s)/(1-qs)rn} where p > O , 
,,,...., fVV, 

q > 0 , p+q == 1 and m is a positive integer. 

13.18. Let a(s) and b(s) be generating functions of d.lscrete 

random variables taking on nonnegative integers only. Suppose that b(s) 

is a rational function of s . Deterinine IT{a(s )b(1) } • 
fV'- s 

13.19. Let a(s) a.i.~d b(s) be generating functions of discrete 

random variables taking on nonnegative integers only. Suppose that b(s) 

is a rational function of s • Detennine rr{a(l)b(s)} 
~ s 

13.20. 

state spaee 

Let { s ; n ::. O, 1, 2, . • • } be a hornogeneous Markov chain wi th 
n 

I = {0,1_,2, ..• } and transition pro"oabiJity matrix 
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1 - h0 ' ho ' 
1T = ]_ - ho- hl ' hl ' 

1 - ho- hl- h2 ' h2 ' 

where h0 > 0 , ho+ h1 < 1 , l hj = l , and a 
j=O 

0 
' 

0 ' ... I' 
ho ' 

0 
' 

hl ' ho ' 
... 
••• . . . 
li •• 

= l j h. 
j=O J 

< co • Find 

the distribution of ~ (n = 1,2, ••. ) and the lirniting distribution of n 

~n as n -+ OJ. (See reference [ 37 ] . ) 
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