1. Probability Spaces. If we want to describe a random trial mathematical-

1y then we first define the sample space 9 , the set of all the possible
resulis or outcames of the random trial. We shall denote by w the elements

of 9 .

Each event concerning the random trial considered can be represerted by
a subset of Q@ . The impossible event is represented by © , the empty set,
and the sure event is represented by Q , the whole sample space. In general,

events will be denoted by capital Latin letters A, B, C,... .

l‘f the occw*r*énCe of A Implies the occurrence of B, then we shall
‘ write AL B . The complementary event of an event A will bpe dencted by
K . The simdtaneous occurrence of the events A, B, Cyo.. will be dencted
by ABCF.l.“.V orbdy AARABAC n‘. .« o The event that at least one event occurs

among A, By, C,ev. wWill be denoted by A+ B+ C + ... or by AWV E {YCU...
We define A-B=AB.

We say that {An} is a monotone seguence of everts 1f elther 4, <A C...
Q;AnC.... or AID A2 Tewo ZDAn’,?... « In the first case we define 1im A_ =

© n -+ e

o
) A and in the second case limA = T A .
=1 n+et p=1 "

A class of events A 1is called an algebra if the following two conditic..s

are satisfied:

(1) If AeA, then K e A,

(11) If AeA and Be A , then A+ Be A,



A class of events B 1s called a ov-algebra if the following two

conditions are satisiied:

(1) If AcB ,then feB,

Q1) If A e B for n=1,2,.., then zl A eB.
n:

A class of events M 1s called a menotone class if it satisfies the

following requirement:

a
If An e M for n=121,2,... and {Ar} is.monotone sequence of events,
i

then LimA e M .
n s ol
i

l .
'Iheorem 1. Let A be an algebra of s bsets of @ . Denote by B

the minimal o-algebra which contains A and denote by M the minimal monoton

- class which containg A , Then B and M coincide.

Proof. If {A.ﬂ} 1s a monotone sequence of events and Aﬁ e B, then

lim A e B, that is, B is a monotone class. Thus B 1is a monctone class
In - e

which contains A , This proves that M &B ,
To p:r'o*}e that BCM for each A e M let us define

@) MA={B:BEM,KB5M, AB € M, A+B ¢ M} .

Then MA is a monotone class for each A ¢ M . For if {Bn} is a monoctone
sequence and B e M, , then B ¢ M, ATBH e M, Aﬁne M, A+B e M, and

consequently B=1im B e M, AB = 1im (AB ) ¢ M, AE = 1im (AB ) ¢ #,
n—)con n - o n n >« n

A+B = 1im (A+Bn) e M. Therefore B ¢ MA .

n > o«



Now we shall show that if A e A, then A CZMA and consequently
MA=M¢, If AeA and Be A, thenby (1) Be M, that is, AGQH, .
Since M is the minimal monotone class which contains A , and MA is
a, menotone class which contains A , therefore M CMA . However, by

défi‘ni_tion M‘ﬂ M. Thus MA = M whenever A e A , *

Furthermore, we stall show that My =M forall BeM. If BeM,
thén B e MA = M whenever A e A, Consequently, by symmetry it follows
from (1) that A e MB also h.élds when AeA and B e M. Accordingly,
if AeA,then Aely for BeM. This proves that ACMB for Be M.,
T ‘M < MB holds and by definition we have MB <M . Hence MB =M for
all é e M.

Finally, we shall prove that M 1is an algebra. If A e M and Be M,
then M, =M andby (1) AtBeM. If AeM, then M =M andby (1)
BBeM forall BeM. If B=g, then Be M and consequently A e M .
This proves :thét M'. ‘is an algebfa. "Since M 1s a monotone class, it

follows that M 1is necessarily a o-algebra. Thus B €M . This relation

together with M& B implies that M = B which was to be proved.

If we consider a random trial then we suppose that the class of random
events is a o-algebra of subsets of Q@ . We use the notation B for

denoting this class.

With every event A e B we associate a real number P{A} , the
probability of A . The probability Nli{A} is a nonnegative, o-additive.

and normed set function defined on B , that is, we assume that
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(i) P{A} >0 forall Ac R,
(i1) Pipr=1.

(1i1) If A€ B for n=1,2,... and AiAJ =0 for 1#jJ,

then

(2) P{} A= FPA}.
~np=1 7 op=f "

In 1914 _Q Carathéodory [ 6 1] proved an important extension theorem
in measﬁre thé'er'y‘.‘ This théOr'ém' has many useful applicatlons in the theory
of pr'obxab.j:lity; In whét féllows’ we shall state and prove this theorem in
the' terminology of probadility theory.

Theorem 2. Let A be an algebra of subsets of @ . Let QfA} be

a probability defined on A , that is, Q{A} 20 for A e A, Q(R) =1 and

8

(3 : o

n:

i o>

Al= ) QA}
11 =T B

wheneverA e A for n=l,2;..., JA €A and AA, =0 forfi#j ,
—== n - - _ n=1 0 — 1] =
The probability Q{A} defined on A can uniquely be extended to a

probability P{A} defined en B , the minimal c-algebra over A .

'Proof.  We shall prove that there exists a set function P{A} defined .
on B which sétisfies the conditions (i), (i1), (iii) mentioned above and
that P{A} 1is an extension of Q{A} that is P{A}= Q{A} whenever A c A .
Furthermore, we shall prove that P{A} for A ¢ B is uniquely determined

e

by Q{A) for Ae A . .



For any A< @ let us define

% ® _
€)) P {4} = inf{ Z Q{A }: b Z and A, e A} .
- =1 e x

S %
The set function P {A} satisfies the following properties

" _
(@) P {A} >0 for all A . This follows from the definition (4).
% % :
(b) If A<B, then NE {A} < ;PV {B} . This follows from the fact
that ever'y covering of B is a covering of A too.

{¢c) If A<} A_, then P{ iZ P{A}
n - =
‘ n=1 n=1""
|
To prcfpve this let us observe that for any € > 0 and for each n = 1,2,..
we can choose an infinite sequence of sets B g (J =1,2,...) such that

(<}

B, ¢ A“ A <
n} > n le an and
[~ (; { } * €
(5) Lo QB SR A+
J-—l 2
for n= 1, 2,.‘.. . Since AC )] ¥ B. and B, ¢ A, therefore we
‘ ‘pEl gt W nj ‘
have
(6) E’{A};y I QB b L P{AY +e.

n=l j=1" "y =1

Since e > O 1is arbitrary, this proves (c) .

3 .
Now we shall prove that le_ {A} "is an extension of GQ{A} , that is,

PA} = QEA} if AcA.
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Cbviously P {A} < Q{A} if A e A . On the other hand, iIf A ¢ A
and A C Z A, where A e A, then
k=1

(7 Qiay < T o) .
~ k=17 Ak

This follows from the o-additivity of Q{A} on A . If we form the infimum

of the right-hand side of (7) for all admissible {A

i} » then by (4) we

obtain that
(8) QiA} < P aal .

Hence P {A} = Q{A} for A c A .

o~

R
Now dengte by A  the class of sets S for which for every ¢ > O

we can find an 5 € A such that
o ¥
(9] P{SaA}<e
where S A A = SA + AS , the symmetric difference of S and A .
%
We shall prove that A is a o-algebra which contains A

%
First, we have A<A . For if S e A, then A =S can be chosen,

% % %
and hence P {S A S} =P {0} =0, that 1s, S e A

% — %
Second, if S e A ,then SeA . Now for each ¢ > O there is an

% — - =
AeA suchthat P{SAA}<e. If AeA,then AeA and SAA=

* . *
SAA., ’IhUSE{SAA}=P{SAA.}<e.

Mo

* n
Third, 1f S e A for k=1,2,...,n, then S = ¥ S, €A for
k=1

all n=1,2,... . In this case for every ¢ >0 and k = 1,2,...



AT

o % n
there fsan A, c A suchthat P (5 aA}<e/2%. let A= ] 4

k blk

Then ASA.,V

(10) I |

0) SAAC T (S AA) ' ,
LB A

anci ccmsé,qﬁéntly
. % 2
(1) P{SAA}<§P{SKAA}<E
P’ lNﬁ

which proves the statement.

Acccr‘dirlgly,; A 1s an algebra which contains A . Now we shall
#
prove that A is in fact a o-algebra, that is, if SIC e A for k=1,2,...
¥ —
then S= f ukeA . Since §....5 ; S . eA and S=5+ 5,8, +
pl§283+ ves 1t is sufficlent to prove that if sk € A for k=1

and if S.S

*
1Sy = 0 for 1#Jj ,then S= Z S, ¢ A

Forevery ¢ >Q and k = 1,2,... there is an Ak e A such that
* — -
P {Sk A Ak} < €/2k+l . Obviously Al"'Ak—l Al«' e A for k=1,2,.., and

they are exclugive events. Thus
(12) QA A g A S QALY <

for n=1,2,... . Hence

:ﬁ'MB
'_' Y

=]

(13) [ Q... <1,
k=1 Akl k

and consequently
= ' . o - E_
(18) ] QE..E _JA)<S

if n is sufficiently large.



‘Since

oo

(15) (S A ADS bA)+ R ..A oA
Z 2 (S LC_,%H 17 P B

holds for n =1,2,..., therefore if we choose A, e A (k=1,2,...) 1in

k+1

such a way that P {Sk A Ak} < g/2 and if we choose n so large that

(14) ts satisfled, then by (15) we obtain that

* n = ¥ -
(16) P{Sa) AY <) PSS aAYI+ | ofE...E Al <e
R R Sk & Ay ML R

. n ¥*
Since ! ) Ak e A forevery n=1,2,..., it foliows that S <CA which
y k"‘l

was to be proved.
#
Accordingly A 1is a ov-algebra which contains A .
L . % % :
Now we. shall prove that E {S} is a probability on A . By definition

% v * . Cox , . ‘
P{S} >0 forall SeA andobviously P {@} =1 . It remains to prove

<o

% % #
that P {S} is o-additive on A . Suppose that S= ] S, where § _c A
o | k=1
for k= 1,2,... and SiSj =0 for 1#J. Then SeA andby (c) we
have

* O
a7 P{st< ] P {5} .
™ k=1

We shall prove that (17) holds also with the reverse inequality. Hence it

¥ %
follows that P {&} is o-additive on A .

* #
First we shall prove that if* S1 cA ,8,¢A and S]_S? =0 , then
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C18) PSP S,) < PSS} < P S .

I'et us cheose AleA and AgeA in such a way that NP_{SlAAl}<e

%
and P {82 A A2} < & where € is an arbitrary small positive number.

Since now  we have

7Y c c |
(19) S C A+ (8] 8A)) end S, S A, + (S, 04,),
(20) C AP A IS S, (8] AA)) + (S, AA,)
and
(21) | AA, r;(Sl AA]_) + (82 A A2) s

1t follows that

* *
PSP S} < QA+ Qi) 2 =

(22)°

= QAT A} + QIAALY + 2¢e

¥ *
(23) QA+ A} =P {A+ A < i {8+ 8,} +2¢ ,
and d
*
} -

(24) _Q{Arﬂ*g’ = £ {A1A2} <2 .

By (22), (23), and (24) we have

* ¥ *
{25) P {sl} + P {S,} < P {3

[av

1+ 82} + 6 .

Since e 1is an arbitrary positive number, this proves (18).

By mathematical induction it follows from (18) that



A-10

va

" * * *® *
Aed faa'd [and

1 ol n

holds for n = 2,344 « If n -~

8

in (26), then we obtain that

A

. S S
@7 ) P {8} <P {s}.
k=17 el

* ¥
By (17) and by (27) it follows that P {S} is c-additive on A .

Iet' B be the minimal o=algebra which contains A . Obviously we
: #
have B<A .

%
If we define P{A} = P {A} on B, then P{A} is a probability on the
gralgebra B and P{A} is an extension of Q{A} , that is, P{A} = Q{A}

L
for Ae A,

Now we shall prove that PR{A} is the unigue extension of Q{A} . Tc -

prove this let us suppose that P,{A} and QZ{A}' are both probabilifles

on B and both are extensions of Q{A} , that is, Alr‘l{A}-ﬁ Po{A} = Q{A}

for A € A . We shall prove that MPl{A} =~?2{A} on B
Define
(28) | M= {A :fl{A} = P,{A} and A c B} .
Then A< M‘CB . We can easily see that M 1is a monotone class. Let

{%} be a monotone sequence of events for which An eM . Then A =

lmA e M . For in this case P,{A} =/f,,{Av1} for n=1,2,... and thers-
n -+ o° < i

fore
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(9] PpfAy = 1lim Py{A } = 1im Po7A T = Po{A} .
T > « N > «
By Theorem 1 it follows that M contains the minimal o-algebra over A ,

. . : n v o
that is, B <M, Accordigly M = B, that is, P{A} is the unique extension

of Q{A} to the g-algebra B, This completes the proof of the theorem.

In the mathematical description of a random trial we associate a
probabllity space (Q,‘B,AE), with the random trial where 0 is the sample
space, the set of all the possible outcomes of the random trial, B is a
o%algébfa Of, §ubsets of & , the set of random events, and P 1Is a normed

- measure defined on B , that is, P{A} is the probability of A ¢ B .

Theorem 3. If A e B for n=1,2,..., and if A< A,L... QA ..o,

= 1= "2
then |
(30)" A= limA_= ] A e8B
n>e k=l s
and
(31) P{A} = 1im P{A } .
~ n > «

" Proof., Since Alc,Azc... cAnC... we can write that

(32) A= A1+ AZA1+"'+ AnAn—l +...

where the events on the right-hand side are exclusive events. Thus we have

B{A} 5 P(A)) + PIAA)} 4. 4 PIA R 1} 4. =

(33) DAy} + [P{A,} = PIAJ}T 4o ¢ [PIA L} = PIA 3T+ ...

n-1

Lim P{A }

Y1 > =«
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hecause the n-th partiel sum is \P{An} in the above infinite series.

Theorem 4. If A e

then
(34) A=1ImA = 0 A ¢08B
S =1 k
‘and
(3%) P{A} = 1im P{A_} .
~ n >« n
Proof., Since now A, <A ,<...<h ... and
| .
i
(367 E=1umi = ] &,
n > o« k=1

by Theorem -3 we obtain that

@7 P(R} = lim P(E )
- n-o> e«

and this proves (35).

Note,

then by Theorem 4 we have

(38) lim P{A} = O .

n > «

Bfor n=1,2,... and if

Alg AZD,..DAH::..,

Ir A B for n=1,2,..., A, DA ..5h 5... and

It is interesting to observe that if E{A} is finitely additive on B

and if P{A} is continuous at © , that is, if (38) holds, then P{A} is

o-additive on B . This can be seen as follows:
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et B ¢B8 for n=1,2,... and suppose that

=0 for 1 3
" 7 J

BiBj

. for n=1,2,... . Then A, >4, :DAO*::...

Def‘inéA =B+B 1

n+1 *

[+ 3

and ngl A =0 . Forif weB ,then wfA ,, adif o ¢ n'}—:l B

then wgf’An for any n=1,2,... . Thus by (38)

b

(39) lim P{A_} =

n > «

On the @ther hand A Bl+ B +,..+ B + A +1 and therefore

(bo) g{kzl B} = P{A;} = P{B} + P{By+...+ P{B} + P{A 1)

for n=1,2,... . Since by (39) limE{An+l} = 0 , it follows from (40)
that -

1) PL) Bl= Z PR}
which proves; that Nf{A} is c-additive on B .

Accordingly, we can state that P{A} is a probability defined on B v

if it satisfies the following requirements:

(a) P{A} 20 for Ae3B
(o) P{ar =1
- (e If AeB and Be B and AB =0 , then E{A.,,B} = P{A} +£{B} .

(@) Ir A e B, AP AD...DA >..and T A =0, then
n=1
. 10] - -
lun,}k{An}

n & w

This set of requirements is equivalent to the requirements (i), (ii},
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(311) stated earlier. In barticular, it follows that & nornegative and
normed set function ~13{A} defired on a o-algebie B 12 c-additive if and

énly i (e) and (d) are satisfied.

Now we shall prove a few basic relations for probabilities. First,

we shall prove Boole's Inequality.

| Theorem 5. Iet ('Q,B,Nli) be a probability space and Ay Agsoess Apsess
an infinite sequence of events. Then we have
(42) BT a3 T oPAD .
, k=1 k=1

]
i — — r
M: let B, = Al and B = A ...A 4 A for k= 2,3,0¢» « Then

we have

(3} T a=71 B .
k_}:;l k kzzl'Bk_

S_i‘ncé thé_ events Bl, B2,..., Bk’ are mutually exclusive, it follows that .

(k) Py A= ] PBY <] PAL .
k=1 a =1 A =1 K

Here we used that BkCAk for k=1,2,... .

Theorem 6. Let (Q,B,E) be a probability space and Aq, Aj,eaey Aose..

be an infinite sequence of events. Define

(45) A*=limsupAn=II

Zfik
n -+« n=1 k=n -
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4e) Ay = lim Inf A = I moA .
n->eo n=1 k=n -~
Wé haNé
- .
A7) P{A4} < 1im inf P{A } < lim sup PIA } < P{A'} .
~ n - ~ n -+ « ke -

Proofl. If we apply Theorem 3 to the events T A (n=1,2,...)

then we obtain that
(48) : P{A} = 1m P{ 1T A}

~ n -+ o ken k

and if we apply Theorem 4 to the events - | A n=1,2,...) then we

| k=n
obtain that
- , .
G9) PIAY = LmP{ ] A} .
~ n -+ o ke ~
Since
(50) P{I A} <P{a}
ken kK’ =._""n
for n=1,2,..., by (48) we cbtain that
G P{A¢} < lim inf P{A }
~ n -+ « A~ s
and since
(52) PA} < g{kzn Al
for n=1,2,..., by (49) we obtain that
(53) Lim sup P(A } < P(AS .

n o> o
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By {51) and (53) we obtain (47).

%
We note that if A = Ay , then we say that 1im An exists, and
n -

ki

%
dm A = A = Ay o In this case by (47) we have

n > «

L i 1} =13
(54) JP{lim A Y = lim P{A ) .

n + « i > «

2. Random Variables and Distribution Functions.

Let (Q,B,P) be a probability space. By a real random variable £

we' imderstand a real function £ = £(w) defined for w e @ and measurablie

with respect to B , that is,for every reai x the event {w : £(w) £ x! ¢B

A random variable ¢£(w) may be finite or infinite. If it is not specified
otiierwdse, then by a random variable £ we mean a finite, measurable, real

funetton £(w) defined on Q .

If ¢ = g(w) 1s a real random variable, then {w : £(w) ¢ A} ¢ B for
any: linear Borel set A and u(A) = P{g ¢ A} 1s a probability measure on

the class of Borel subsets of the real line.
If ¢ = g(w) 1is a finite random Variable, then the function

(1) F(x) = P{¢ < x}

fin

defined for -« < x < = 1is called the distribution function of the random

variable. We define F(4+=) = 1im F(x) and F(-=) = 1im F(x) .

X > o X >0

A distribution function F(x) has the following properties: (1) F(x)

is a nondecreasing function of x . (ii) F{4+«) =1 and F(e=) =0
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(1i1) F(x) is continuous on the right, that is, 1im F(y) = F(x+0) = F(x)
L ¥ > X
¥ ypr>x,

Cenvvers'ely;,v 1f F(x) is a real function of x defined for —o < X <
and f P(x) satisfies the conditions (i), (ii), (iii), then F(x) can be
' cbnsi‘dér’éd as the distribution function of a real random variable. W‘e‘shall
pr‘ove that F(x) induces a probability space (@ ,B,N]::”‘) and we shall define

a randem variable & = £(w) such that P{¢ < x} = F(x) .

Theorem 1, lLet P(x) be a distribution function, that is, a real

‘f’lmctibn satisfying the conditions (i), (ii), (iii). Then there exists a

i )
probability space (2,B,P) and a real random variable & such that

P{g < x} = F(x) .

o~

Proof. - Let =R (-=, ») , areal line. ILet B be the class of

7 Bofe_l sets in R . Let us define P{A} for A ¢ B 1in the following way:

If I~ (a,e] where a<b, then let P{I}=F(b) ~-F(a). If I= (a,b)
where a £b , then let P{I} = F(b-0) - F(a) . If I=T[a,b] where & b,
then let P{I} = F() - F(a-0) . If I =[a,b) where a <b ,then let -

E[I} = F(b-0) - F(a-0) . Thus E{I} is defined for intervals I . Now let

us extend the cis:finition bf E{A} for elementary sets A . Aset A 1is
called an elementary set if it can be represented as the union of a finite
rnupper of Intervals. If A 1s an elerentary set, then we can write that A =

I.+ I 4+...+ I where I
1 n

2 r
elementary set A let us define P{A} =PI} + P{L,} +...+ P(T } . We can )

I2""’ In' are disjoint intervals. For the
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easi‘iy see that the class of elementary sets A is an algebra and P{A}
is ﬁniq{lely determined for A e A, that is, P{A} is independent of the
particular representation of A . We have NE’{A} ; QO for each A e A,
E{Q} =1 and P{A} 1s finitely additive, that is, if A e A and A=

At At ot A where AisA for 1=1,2,..., n and AA, =0 for

2 J

1#J, then P{A} = P{A)} + P{A,} +o..+ P{A Y .

Now we shall prove that P{A} is o-additive on A . We shall provide

two proofs of this fact.

i : : ,
First proof. let A e A and A, e A for k=1,2,... and suppose

fAC z A -"I‘hen we have

k=1

that e

o

(2) P{A}< ] P{A}.
. , ~ k=,1.“’j.5k

Tq prove (2) we observe that for every e > O we can find a bounded and
closed elementary set B €A such that P{B} 2 P{A} - & . This can easily
e seen If we take into consideration that every interval I-contains a
bounded and closed interval K such that P{I} -- P{K} is arbitrarily
close to G . For example if I = (a,b) where a <b and K, = [ate, b=c] ,
“then  1lim P{K } = 1im [F(b-e) - F(a*+e-0)] = F(b-0) - F(a) = P{I} , that

e >0v ¢ e >0 -~

is, E{I} -'_P_{Ke} is arbitrarily close to O if € > O is sufficiently

small, In a similar way we can see that for every ¢ > 0 and k = 1,2,...

£

we can find:an open elementary set B 2 A such that. f{Bl{} ;E{Ak} + ‘QIET]' .
Then we have B cz Bk . Since B is bounded and closed, by the Heine-
kET
n

Borel theorem there is an n such that BC-] B . (See e.g. B. Sz. Nogy
k=1
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[ 31 p.39].) Then by the finite additivity of P{A} on A we obtaln

n
that P(B} < ) P{B} . Thus
o~ 1~ -

k=
) P{A} (B} + & 121 PB }+ < Y P{ }+
) P{A} < P{B} + 5 < 1 5 < € o

Since € > 0 1is arbitrary, therefore (2) follows.

If A= ) A where AeA,A

€A for k=12,...and A, =8

J

for i # J , then we have

~18

L

(hy ' P{A ) < PiAY .
k=1. ~

This follows from the relation Al+ A2+, .ot Anc A which Implies that

P{A;} + P{A,} +...+ P& } < P{A} for all n=1,2,... . If n >« , then

2
we obtain (4). By (2) it foliows that (4) holds alsc with the reverse

inequality. Thus

(5) 4 P{A} = ] PIAD,
~ k=1""

that is, P{A} is o-additive on A .

Second proof. Since FP{A} is finitely additive on A , it is

sufficient to prove that P{A} 1is continuous at @ , that i'é, if

Al:;A23...:>An:>... where An eA and lim A_= I An =68 , then
n-=->oo="  n=1 ,

im P{An} =0, This implies that P{A} is o-additive on A . (See the

n-=> o - ~

previous section where we proved this for a c-algebra B .) We shallrpr'cve

that if Al:> Booe.mA ... where A e A and LmPA}2e >0,

nn > «
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then An is not empty.

t = 8

-
EN

1

For each ¢ >0 and n = 1,2,... we can find a bounded and closed elementary

: . - €
st By A such fnab P} 2 PUh) - —p7 -

= _ . F — - - e e
Since Cnc: Bnc:An and Ancn %Bl+"'+ AanCAlBlf...+ Aan , it follows

Let Cn = B1B2.,. Bn .

that
& €
(6) - P -PC) ;kzltgj{sk} -PBH 25 .
Hean
|
| e,
(7) | PCY2PAY-525>0,

that is, Cn is not empty. Thus there exists a real number x € Cn for

= ; < - 3 ~
eacf}, n=1,2,... . Since Cn Cm for n>m, it follows that x € Lm
for n>m, or % e Bm for n>m . Since Bm is bounded and closed

by the Bolzano-Weierstrass theorem {x } contains a convergent subsequence

{Xnk} such that limx ~=xe B for all m=1,2,... . (See e.g.

k » "k

B. Sz. = Nagy [ 21 p.30].) Thus x ¢ A forall m=1,2,... and

consequently I Am is not empty. This proves that le{A} is o—additive
m=1 - ’ ‘
on A,
Since P{A} 1s o-additive on A by Carathéodory's extension theorem
(Theorem 1.2 in the Appendix) we can extend the definition of P{A} to

B , the minimal o-algebra over A , in such a way that P{A} remains non-

" negative, normed and o-additive on B. and the extension is unique.
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Thus we demonstrated that every distribution function F(x) induces
a probability space (Q,B8,P) and if A= {w: w<x}, then P{AX} = F{x)
laad A
for all == < x 5 =,

¢

If we define £ =¢(w) =w for we @, then & 1is a real random
variable and /f{g < X} =£{Ax} = F(x) for all X e (-=,») ., This completes

th,é proof of the theorem.

Now let us suppose that m real random variables «El, 52:-" E'*m are
déﬁ.ned on thé probability space (Q ,B,’E) . We can consider the random
m=iaplés gl, €rseess &, &S the components of a vector random variable
€= (Igl, Eoseees F,m) . Then {uw :,E.(w) e A} ¢ B for any m-dimensicnal
Bo:c’elI set A and Q(A) = le{f~ e A} 1s a probability measure on the clsss

of Borel subsets of the m—-dimensional Euclidean space.
“The function
(8) F(Xys Xpseeey X)) = PLUE] 2%, & SXypeeey & 2% 1

defined for %; e (-=,%) (1 =1,2,..., m) is called the joint distribution

function of the random variables 15 Epseees & o

An m~dimensional distribution function F(Xl’ Xyseees xm) has the
following properties: (1) F(Xl’ Xyyeees xm) is a nondecreasing function

of x, foreach 1=1,2,...,m. (ii) F(xl, Xyseees xm) .,+ 1. if eyer'y

x, >+ L(i =1,2,..., m) and F(x, %y,.e., X ) 0 1f at least one

X; > ~e (1=1,2,00c,m) . (1i1) If X; £y for 1=1,2,..., m and

if y; »x; for 1=1,2,..., m, then F(yl, Yoseses ym) +F(xl, Xyyeees xm) .

(i) If a, < bi for 1=1,2,..., m , then
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1 m—r’l-rg—. - T
T oeeennnns ¥ (-1) Fa tr) (by-a)), a, +
r.=0 r=0 . r=0 -

+ l"2(b2— 8,2),000, 8.m+ ]"m(bm— am)) ;O .

If we evaluate the probability E{al < El < bl’ a, < 52 _i..bg:---, a < gm =<=bm}

by using the method of inclusioni‘righe%xv%g‘ Bt the left-hand side of (9).

Conversely, if a real function F(xl, Xpseees X m) is defined for
% € (-~=,=) (i =1,2,..., m) and if it satisfies the above conditions
(1), (31), (111), (iv), then F(Xl’ Xpseens 'xm) can be considered as the
jointi distribution function of m real random varisbles. We shall prove
that lF(xl, Xpseees xm) Induces a probability space (Q,B,P) and we shall
define m real random variables ¢, = gl(m), £, = Ez(m),..., £, = %;m(m)

such that
(10) CRE a2 E, G 2k, By 2 Xgd = O, X, By
fOl" all Xi € ("‘w,m) (i = 1,2,.00’ rn) -

Theorem 2. lLet F(Xl’ X5se0es xm) be an m-dimensional distribution

function, that is, a real function satisfying the conditions (i), (ii),

(11i), (iv). Then there exlsts a probability space (Q,B,Nli) and m real

random variables 15 Enseees gm such that (10) holds.

Proof. Let & =R/ =4~{(w1’~9’2~"°" W) P me <wg<e for 1=1,2,...,m)
be an m—dimensional Euclidean space. Let B be the class of Borel sets-

in Rm , that is, B 1is the smallest o-algebra which contains all those
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m-dimensional intervals in R, » whose sldes are parallel to the coordinate
axis. Let us define P{A} for A ¢ B in the following way: If I =

. r a . <
1((01, Wryeees wm) Pa; <w <b,

N ; for 1= 1,2,...,m} . Then let P{I} be

the left-hand side of (9) . Let us define in a similar way P{I} for any
m-dimensional interval whose sides are parzllel to the coordinate axis.
Denote by A the class of elementary sets in R, » that is, A is the
class of all those séts in Rm which can be represented as the union of a
finite number of intervals in R, . Let us extend the Gefinition of P from
Intervals to elementary sets in exactly the same way as in the case of one
diinén'sion.‘ Then PiA} 20, PR} =1 and P{A} 1s finitely additive on
A, We can easily see that . A is an algebra. By using‘ the Heine-Borel
theorem or the Bolzano-Welerstrass theorem for the m-dimensicnal Euclidezn
space, 1n exactly the same way as in the one-dimensional case, we can prove
that NEi{A} is O-gddittive on A . Then by Carathe/odor'y's extension theorem
) (Theorem 1.2 in the Appendix) we can extend the definition of FP{A} to B,
the minimal o—algebra over A , in such a way that P(A} remains nonnegative,

normed and c—-additive on ‘B and the extension is unique.

Thus we demonstrated that every m—dimensional distribution function

, \ . 2 . 1 ==
F(xq, X5seee, X ) induces a probability space (2,8,P) and if Axl:xg’""’xm

= {Cwl, wyseees w ) Powy <X for 1=1,2,..., m}, then

( k -
- \ll) /\E{Axl,XZ,.-.,Xm} F(X:'_’ X2’°"’ Xm)

for all x, & (~=,») (L =1,2,...,m) . See also R. Sikorski and B. Znoikiewicz

» 1
[ 28 1.
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’If we éefine £ = E;i(w) =0 for w = (wl, Woseses wm) e @ and

1=1,2,e0., m , then 15 Enseeny & aTE real random variables and

1 . - Df . _ N
(12) ‘3{51 S X5 By SXpseees £ S xm} = BlA, Xn}1 = F.(,xl,xz,.,.,xm)

for all x; € (==,«) (1=1,2,...,m) . This completes the proof of the

theorem.

In generalizing the above results we can consider random variables

belonging to a metric space X .

_ A space X 1s called a metric space 1f for any two points (elements)
X an? y of X there is defined a single-valued real function d(x, y;
thé‘ ﬁstmce from x to ¥y , satisfying the conditions: d(x, y) > 0 ;
d(_x-,i y) =0 ifand only 1f x =y ; d(x, y) = d(y, x) ; and d(x, z) <

d(x, y) + Ay, z) for ay z e X.

- By using the metric d(x, y) we can introduce topological notions in

the space X similarly to Euclidean spaces.

A sequence {xn} in the metric space X 1s called a Cauchy sequence
if and only if for each e > O there is an r such that d(xm, Xn) < g

whenever m>r and nx>r.

The space X 1s called complete if for each Cauchy-sequence {xn} in

X there is a point x € X such that d(x,xn)-*o as n-> e,

.. The,space X 1s called separable if it contains a sequence {xn} which®

1s dense everywhere, that is, if for.every x ¢ X there is a subsequence
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{Xnk} of {xn} such that da(x, Xnk) +0 as k> =,
If xeX and r 1is a positive real number, then the set S(x; r) =
{y : d(x, y) <r ,y e X} 1is called an open sphere in X with ?enter X
and radius. r. The set S*(x; r)={y :dlx, y) <r , ¥y e X} 1is called

a closed sphere in X With center x and radius r .

(s
Aset A in XA\called an open set if each x ¢ A 1s an interior point

of A, that is if for each x ¢ A there is anr > O such that S(x; r) S A .

Aset A 1iIn XZAcalled a closed set if each limit point of A belongs

* * o
to A . Apoint x e¢X 1is a limit point of A 1if there is a sequence
of points X, e A (n=1,2,...) for which x, #x and d(x, Xn) +0 as
% *
n+=, (If xeA andif x 1is not a limit point of A , then x Is

: %
called an isolated point of A .)

Denote by ¥ the smallest o-algebra which contains all the open sets
{closed sets) In X . The elements of F are called Borel sets in X .
If X is separable, then F can also be characterized as the smallest

ag~-algebra which contains all the open spheres (closed spheres) in X .

Let (Q,B%g) be a probability space. By a random variable ¢ taking
on values in a metric space X we understand a fimction £ = g£(w) which
is defined for w ¢ & , which takes on values in X , and which is measurable
with regpect to B , that is, for each open set (closed set) A in X the
set {w : &(w) € A} belongs to B . If the metric space X 1s separable,
-~ then in order that & = £(w) be a random variable it is sufficient to |
require that for each open shpere (closed sphere) S in X the set

{w : g(w) € S} beliong to B . For this requirement implies that
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{w : E(w) € A} ¢ B for every open set (closed set) A in X .

If £ = g(w) is a random variable taking on values in a metric space
X, then {w : &(w) € A} ¢ B for every Borel set A in X . Thus w(d) =
P{¢ ¢ A} is uniquely determined for each A ¢ F . The set function u(A)

is a probability measure on F , the o-algebra of Borel sets in X .
The converse of this last statement is also true.

Theorem 3. ILet X be a complete and separable metric space with

distance function d{x, y) . Let F be the o= algebra of Borel subsets

of X and let u be a probability measure on F . Let @ = (0, 1) ,

(=3

=2

: : gue
B the o-algebra of Borel subsets of @ , and P the Leb€ measure. Then.

-~

there exists a random variable &(w) taking values in X and defined on

«?,B,P) such that

u(S)

ay P(E@w) & S

for SeF.

Proof. We observe that if X = Sl+ 32+... where Sl’ SE"" are
disjoint sets belonging to F and if we define
. 1),
} = S ve ot S , oo
@) g e) = xy for (S .. ulS, 5) < e g a8+ u(s))

(1=1,2,...) where x, isan jlxrzerjvt'point of S, , then
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(15) 2eMy) e 81 = (o)

whenever S belongs to the o-algebra generated by {Si}

Now for each i = 1,2,... let Si =8,, +S,,+ ... where Si

il i2
are disjoint sets belonging to F and define

‘

S,

l, 12’.".

s(?)(u/) = g5 for w(SpH..m(Sy ) +u(S; )+t (S 4 5) <

(16)
| <w (S (S )t “(Si,l)“L'“
whereg %43 is an imner point of Sij . We have

whenever S belongs to the o-algebra generated hy {SiJ

g I

By repeating the abcve procedure countably infinitely many times we

can define a sequence of functions g(l)(w), 5(2)(w},.,

(0, 1) . Denote by dy, dys..

{Si} s {Sij},... respectively. Obvicusly,
(18) a6 W), €M)y < a
ms-

on the interval

. the suprema of the diameters of the sets

for 1,2,... . Hwemm%tmpwﬁﬂms{&},ﬁﬁ}v“inwma
: XL

way that lim d, =0 , then

r <> «

(19) 1m £y = £(0)
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eists for w e @ since X 1is a complete metric space. It is easy to see

that £{w) 1s a random variable and
(20) Ple ) e S}=u(s)

for S e F .

C v e

3. Weak Convergence of Probability Measures. Let Fl(x), Fz(x),...,

F (x),... and F(x) be one-dimensional distribution functions. We say that
the sequence of distribution functions {Fn(x)} converges weakly to the

distribution function F(x) if
|

(1) lim F_(x) = F(x)
n -+

in every continuity point of F(x) . In this case we write that Fp(x):$~F(x)

as n>«.,

ILet un(A) be the probability measure induced by Fn(x) and let u(d)
be the prohability measure induced by  F(x) . The set functions un(A)
(n=1,2,...) and u(A) are uniquely determined by F (x) (n=1,2,...)

and F(x) for each linear Borel set A .

14
For any set A let us denote by A‘C). the closure of A , that is,

A(C) is the set of limit points and isolated points of A , and let us

(1)

-denote by A the interior of A , that is, A(i) - 1s the set of interior

points of A . Obviously ADe aenl®) |

If. u(A(c)) = u(A(i)) for a linear Borel set A , then we say that A

is a continulty set of the measure v .

We can easily see that Fn(x)rﬁ?F%x) if and only if
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(2) . Iim w (A) = u(A)

n-+o®

for every continuity Borel set of u or equivalently for every continuity
interval of u . 1In this case we write W= W and say that the measures u.

convérges/ weakly to the measure u .

Wé note that in general (1) does not imply that (2) holds for any Borel

set A . For example, let us assume that

0 for x <0,

[nx]

{x) = LX) < x <
(3) F (x) = for 0 Zxs 1,
“ 1 for x> 1,
and |
O for x20,
(4) : Fx) = for 0 <x<1,
1 for x21,
then
o) lim F_(x) = F(x)
n-> e

for every x , that is, F (x)=>F(x) as n -« ; however, if A denotes
the set of irrational numbers in the interval (0, 1) , then un(A) =0

for all n =1,2,... whereas u(A) =1.

By Theorem 41,8 we can easily conclude that w,=>u if and only if

(6) Um [h(x)dp, = [h(x)dw
' ' 1o wmoo -~
holds for every continuous and bounded real function h(x) on the interval

(_.oo, oo) °

We can extend the notion of weak convergence of probability measuress
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t o more general spaces than the one discussed above. We can replace the
real line by a finite dimensional Euclidean space or by a metric space.

Now we shall consider the latter one.

Iet X be a metric space and denote by F the class of Borel sets
in X . Let w,(A) (n=1,2,...) and u(A) Dbe probability measures

defined for A e F .

We say that Bh converges weakly to n , that is, un=:> mas n-> e

If and only if

(7). 1im [ h(x)du, = [ h(x)du
n—>ooX

for évéry-continuous and bounded real function h(x) on X . The function

h(x) is continuous on X 1If for every x ¢ X and for every e > O thers

is a’ § » 0 such that | h(x) - h(y)| < ¢ whenever y ¢ X and d(x, y) -

Here d(x, y) denotes the metric in X .

For any set A ¢ F denote by A(C) the closure of A and by A(i)
(1 ' ; ‘
the interior of A . If u(A(c)) = u(A‘*)) for a set A ¢ F , then we say

that A 1is a continuity set of the messure u .

Theorenm 1. [et X be a metric space. lLet F be the o—algebra of

" Borel subsets of X . Let un(A) (n=1,2,...) and u(A) Dbe probability

measures defined for A € F . The measure W, converges weakly to the

measure u if and only if

(8) . C O 1lim un(‘A) = u(4)

N >

2
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for every continuity set A of the neasure u

Proof. If w = 1, then for every A e F and for every e >0

we can find a continuous nomnegative function h(x) such that h(x) =1

for x ¢ A(c) and
O] - u(A(C)) ;3{( h(x)du - €.
HéI’lCé we have

(10) u(A(c)) ; [ h(x)dy - € = lim | h(x)du - ¢ 2 1im sup un(‘A) - €
: X n+eX ' n -+ w

for any e >-0 . This implies that

() 1m sup wy(8) < w(a ()

n -+ «

for'any' A e F. By (11) we can conclude that

(12) u(A(i)) < Um inf p (A) < ldm sup v (A) ;u(A(C))

n > n -+ o

helds for every A e F . If we replace A by X - A in (11), then we
obtain the first half of (12). The second half is precisely (11). If &

is 2 continuity set of u , then (12) implies (8).
Now let us prove the converse statement, that is, that (8) implies

(3 Lm [ h(x)du, = [ h(x)du
n->«X X

for any continuous and bounded real function h(x) on X .. Since the

set of points {c} for which u{x: h(x) = ¢} > 0 1is atmost countabla,
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it follows that for any e > O we can find a finite number of points

Cos Cpseces Cp such that C < S for i=1,2,.0., m,
c < h(x) <c_forevery x , and each set Ci = {x: c;q < h(x) < ci}

Q m

Is a continuity set of u . Then

m

iglu(ci) €.

(14) 1im supl)j; h(x)du, - }f{ n(x)du} < e

n -

Si‘ncé e > 0 1s arbitrary this proves (13).

A sequence of measures {pn} is called weakly compact if every sub-

sequence of {un} contains a subsequence which is weakly convergent.

The following theorem was found in 1956 by Yu. V. Prokhorov [25 1.

See also I. I. Gikhman and A, V. Skorokhod [ 10 pp. 441-b446], and

P Blllingsley [ z  pp. 35-401, [4 1.

~Theorem 2. ILet X be a metric space. Let F be the o-algebra

-of Borel subsets of X . Let {un} be a sequence of probability measurzs

on F. If “for every e > O there exists a compact set K in X such

that

(15) sSup un(X—K) <eg,
1<

then {u } is weakly compact.

- Proof., We recall that a set K 1n the metric space X 1is compact: .
if every open covering of K contains a finite subclass which is also a .

- ecovering of K , or equlvalently, if every sequence of elements in K
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contains a subsequence which converges to some x e K

First, we shall prove the theorem in the case where X 1is a compact
space, If X is a campact space, then it is complete and separable. lLet
X1s -xé,‘... R xz,... be a countable everywhere dense set in X .

Denote by R the set of positive rational numbers. Iet A be the class

of sets which can be represented as finite unions of (disjoint) open spheres
SCXL,I‘) with center X,
is countable and F 1is the smallest o-algebra which contains A .

(¢ =1,2,...) and radius r e R . The class A

Py using the diagonal method we can easily prove that every infinite

subsequence of {u.} contains a subsequence {u_ } such that the limit
n

: Ty
(16) Lim w, (A) = w(a)

) kK »eo K

exists for all A ¢ A .

We can easily see that if A e A and Be A, then A+B e A and.
T(A+B) < w(A) + W(B) . If AB =0, then u(A+B) = w(A) + u(B) , and if

ACB, then u(A) < u(B) . PFurthermore, X e A and u(X) =1 .-

*
Denote by A  the set of closed subsets of X and define

-

(17) u(h) = inf’{mzl (A ) Acmzl A, and A e A}

% %
for A~e A . The class A is obviously an algebra.

*
" The set function u(A) defined on A satisfies the following

4
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properties: (a) wu(A) 20 . (b) If ACB , then wu(A) 2u(®) . (c) If

A< ) A, » then w(d) < ] u(An) . These properties immediately follow
n=1 n=1

from the definition (17). For details see the proof of Theorem 1.2 in the

Appéndik.

Now we shall prove that if A € A and B e A* and AB = @ , then
(18) n(A+B) = u(A) + u(B) .
By property (_'c) , it is sufficient to prové that

a9y u(A+B) > u(d) + u(B) .

i
i
|
| ©
|

Tf we suppose that A & ) A and BC ¥ B, where A e A,

m=1 m=1
B eA and AB =0 for m=1,2,..., then by (16) we have

(20] o owlagF B = @) +uB)
and’ thus

(21)  inf{ ] WA+ B 2 infl § WA} + infl ] W@} .
m=1 ‘ m=1 m=1 o

It is not difficult to see that in defining u(A+B) by (17) we can restrict
ourself to such sums which occur on the left-hand side of (21). By (21)

we get (19).

More generally we can prove that if A e A for k=1,2,...,

and AjAk =0 for J#k, then
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(22) U(A1+ A2+s-~+ AI.‘.) = u(!‘;l) + ‘P"([‘:\,Z)‘-{.'ﬁ"{_ U(An) .

Por n=2, (22) is true by (18), and by mathematical induction it follows

that (22) is true for every n = 2,3,... .

By thé‘ above properties it follows that u(A) 1s a nonnegative and

% ,
o-additive set function on A . To prove this let us suppose that
(23) - A= 7 A

% %
where A e A , Aj e A for J=1,2,... and A_jA{ =0 for j#k . Then
" by (e¢) we have :

(24) wa) £ I wia)
J=1
n
Since ) Ay <A, by (b) and by (22) we have
J=1
n n .
(25) L vy = u( ] Ay) <ua)
J=1 = J=1-:

for n=1,2,,.. . Ifwe let n~+~= in (25), we get

(26) ) u(AJ-) < u(a) .
J=1

A camparison of (24) and (26) shows that

27 w(fy = § u(a,)
=1

which was to be proved.
%
We observe that if A e A , then

(28) p(A) > 1im sup uy’}((A) .

k‘ > A
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To prove this let us suppose that A < Z A, where Am e A, Since A
=l '
is a compact set and Pm (m =1,2,...) are open sets, there is a finite’

n such taht A C 2 A, also holds. Thus it follows that
m—«l

(A) > A ) =1 (8 ) =
L7 2 0w <2 T,
(29)
> ( ) > 1i (a)
—.->°°nkm§lAm k];mwsupuk

always holds. Hence by (17) we cbtain (28).
|
If, in particular, A = X in (28), then we obtain that w(X) > 1 .
%
On the other hard 1t follows from (17) that u(A) <1 forany A e A

This implies that p(X) =

Accord_mgw we proved that u(A) i1s a probability measure on the
‘ algebr’a A « By Theorem 1.2 in the Appendix we car uniquely extend -the .
definition of u(A) to the u-algebra F in such a way that u(A) remains a

probability measure.

By (28), for any set A e F we have

P (C) L) (C) -
(30) (AY7)> 1im sup (AM7) > 1im sup n) .
* u“k S u“k

k » « k> o

If we apply (30) to the set XvA(i’ , then we obtain that

1)y . (1)
(31) u(AYY) k]_lmw*nf unk(A ) klimmlnf‘ unk(A) .
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. By (30) end (31) it follows that if A ¢ F 1s a continulty set of

thé probability measure w , that is, w(h) = u(A(c)) = u(A(l)) , then

(32). _iim (A) = u(a) .
K >« O -

This provés- that if X 1is a campact metric space, F 1is the o-algebra of
Borel sﬁbsets of X, and ‘ {ﬁh} is a sequence of probabllity measures
définéd on F,then {un}- is weakly compact. By a slight change of the
aboVé proof we can séé that the last statement remains vallid unchangeably

if instead of un(X) = 1 we assume only sup un(X) < = for the sequence
13n<e

of measures {un} .

lBy using the ahove result we can easily prove Theorem 2 in the general
ca.sé. Accordingly, let us assume that X 1is an arbitrary metric space and
that (15) is satisfied. In the following proof we may assume that u 1is

not'nécessarily a probability measure, but an arbitrary measure for which

(33} swp u, (X) < =,
lsn<ew &

lLet us choose a sequence of compact sets Kl’ K2 seves K o in X in

such a way that ch_‘.ch::...cKrc... and
(31) sup n (%K) < =

l<n<w n T r
for r=1,2,... . By the previous results we can conclude that the sequence
of measures un(AKr) (n=1,2,...) defined for A ¢ F is weakly campact,
that is, there is a measure u<r)(A) and a sequence of positive integers

nﬁr) (k = 1,2,...) such that
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X . {0}
(35) lim p , ((AK ) = p'\T/ ()
K > ngr’) T
K
(r)

for every contimiity set of u . Let us choose the sequences {nlgr)}

in such a way that {néﬁl)} is a subseguence of {nl({r) } for each
(s)

r=1,2,... . In this case, if s > r ., then the measures u and

ﬁ(r) coincide on Kr , that is,
(36) Bk = WP

for L e F . Since

a1 WS @@ < S @) a) ) e u® o) WPk
it follows that

(38) W@ w2

for AeF and s >r . Thus the limit

39) 1im 13 ) = @)

g =+ @

éﬁsts for AeF and u(A) 1is a measure on F . By (38) we have

(40) ua - Py <2

+3
I

for A e F and 1,2,..s » Furthermcre, by (36) we get that

il

G w(aK ) = n (k)

e

for AefF and r=1,2,... .
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~Now we shall prove that if A e¢ F and if A 1s a continuity set of
w(@) , then

(42} 1im (A) = u(a) .
/ ‘k_ N munék) 1(
If A 1is a continuity set of u(A) , then
(43) Lim gy (K = w08 = Pk = wiaxy)
k > o r]ks

for s > r . ‘Hence by the dlagonal method we obtain that

CLY Him u (AK ) = u(AK
/ . _)ﬂmhnl({k) P n( I’)

|
'
for r=1,2,... « Since

A

(45) lun(AKI,) - un(A)l < uﬂ(X-Kr_) < -;:

for all n=1,2,,.. and r = 1,2,...,and since

H

(46) [u‘(AKI,) - ()} < (%K) <
for r= 1,2;...‘, it follews from (44) that

(47) Lim sup |u (k)(A) - u(d)| <
k_ > nk

for r=1,2,... « If r >« , then we obtain (39). Accordingly, the

2T he]

sequence of measures {un} is weakly compact. This compicies the proof

of the theoremn.

~In conclusion we mention & related theorem which has several useful
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applications in weak convergence of probability measures.

Theorem 3. Let X be a separable metric space with distance

function d(x, y) . Let F be the o-algebra of Borel subsets of X .

Let Hys Hoseess Hpseos and u be probability measures on F . If

w,==uas n~>«, then there exists a probability space (Q’B’}i) and

random variables El’ %;2,..., gn,... and & taking values in the space X

such that

(48) Plg, e A} =u (&) and P{g e A} = u(n)

for A e F, and

I
{
I

(49) Jllima(e , ) =0} =1.

n > «

This theorem was proved in 1956 by A. V. Skorokhod [ 29 p. 281] in

the case when X 1s a complete and separable metric space. R. M. Dudley

[ 9 1] demomstrated that is valid for separable metric spaces X . See

also R. Pyke [ 26 ].VWe can easily prove Theorem 3 by using the
construction in the proof of Theorem 2.3 in the Appendix.

4, Product Probability Spaces. In defining independent random trials

we need the notion of product probability spaces. To introduce this notion
let us consider a family of random trials Gt defined for t € T where T
is a parameter set. Let (Qt s Bt’n?t) be the probability space associated

with the random trizl @ ¢ -

Denote by GT the compound random trial which consists of the performance

of all the random trials c;tv for teT. Let (g, By EBy) be the

probability space associated with the compound random trial éT .
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~We can define the sample space QT in the following way. Since every

outcame of the compournid random trial 651, can be represented by the sanple

element (point) Oy = {mt, t ¢ T} where. W, € O We may assume that
(1) QT‘—‘{mT:mT={wt,’C€T},wtth}.

We shall write

(2) = XQ
\ i
T teT ©
and call QT ‘the product sample space.
If A <9 for tie t ¢ T , then we define Py,
(3) Ap= X A

as the set of sample elements W = {w_, £t € T} such that W € At for
4 . :

t e'T. The;set AT will be called a product set in._QT .

Tet T, = (tl, Toseses tn) be a finite subset of the parameter set

T.
We say that AT is a product cylindér with sides Atl, Ate,..., At
; . : n
ir
() Ap = A XA X...X A X 9
1 2 n n

1 ty Yy
_-then we say that AT is a measurable-product cylinder.:

‘where Atic: @ for 1=1,2,..., n. If A €B for 1 =1,2,..., n,

~ Next, let us define BT » the ¢lass of rendom events in theicompound'
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r andom trial ém . Let CT be the class of all measurable product cylinders

in QT . Denote by AT the class of all finite unilons of disjoint measurable

product cylinders in Qp - Ir AT € AT and BT € AT , then ATBT € AT and
AT— BT € AT . Thus AT is an algebra of sets.

Let us suppose that BT is the minimal o-algebra which contains all

the sets in AT . The o-algebra BT is called the product oc-algebra and

is denoted by

[os]
i
o]
(2]

(5)

i

tel

. . . . = i \ - » )
Definition, let A, <0y and T = (ty, Uoseees t,) be a finite

(6) A’I‘(an) = {mT—T :' Wrp E'AT}

191

as the section of AT 312 Wp .
n

Theorem 1. If Ap e 51., s then AT(mT ) e BT—T .
- n n

Proof. If Ap € CT , then obviously AT(wT ) € C-T‘-T . This implies
n " n

that if Aj e Ap , then AT(“’T Y e AT—’[‘ and consequently AT(wT ) € Bogp -
n n n “n
Iet
(D S = {AT :Ap e BT and AT((uTn) £ BT--T }

n

for some fixed Up € Sp Evidently Ap ©S CBj . Now we shall prove
n n =
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that S is a o-algebra. Since BT is the mirndmal o-algebra over AT s

it follows that S = BT which irplies the thecrem.

First, if Ane S, then Aplup ) e Byn .« Thus Apwp ) e By
n n i n

and this implies that Kf €S .

(o]

g 3 (k) ®) o (%)
Second, if Aj = ) A where Aq - S, then A (wn ) € By o
. k=1 € an € T—’In
Thus

' v (k)
(8) A (w,) = s 7wy € By .
(e kzl Aplug) e 7T

" Consequently, S is indeed a o-algebra. This complebes the proof of the

theorem.

It remains to define the probability N:EI*{A} for A e B’I‘ . We can-

define probakilities in various ways on B, , but the so-called product

i L

probabilities have a speclal inportance. Now we are going to define this

riotion.
Let T, = (b, tyseees t,) be a Finite subset of T and let

(9) Ap=A XA X..X B X<

1 2 n T"Tn

be a measurable product cylinder. Define

(10) P A =P {A_ ¥, {A Y .,.P {A }
~TT By "y et ST ~tn

for any ATeCf
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3]

CIf An e AT then

[

' m

where Aék) (k = 1,2,..., m) are disjoint sets belonging to Cj . Define

T (k)

(12) LplAg} = Z plbp )

for AT £ AT . We can easily see that A;’T{AT} is independent of the particular

representation (11), 1t is uniquely determined by Ap .

- - . 1 3 3 3 3 3
. ;I'hc set function ET{AT’ is finitely additive on AT ’W.PT{AT} >0

and {SzT} =1,

_ Theorem 2. The set function Pn{A;} 1s o-additive on the algebra A[

Proof We shall prove that N?T{AT} is continuous at © -, that is,.

1 2 k
- .Lf AT fOl" k=l,2’0IQ,AT(\)DAT(|?)... )Aé )D cees arld
1im 1-‘.T = H Aék) =0 , then lim P {ATk)} = 0 . Equivalently, we c¢an prove
K »e- k=1 k - oy
that if 11m 3 {ATk)} >0, then T Aék) is not empty. Finite additivity -

k=1

and continuity imply o-additivity on AT .

Accordingly, let us assume that Aék) € AT for k=1,2,..., Aé\l) ]
.AéZ) Do.- - (k)'D a6 arld
(13) AT } >e >0

for k=1,2,... . We shall prove that I Aé,k) is not empty.
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For each k = 1,2,... we can write that

%
where Agy € Ap and Ty is a finite subset of T . Let
k k :

(S

[+

, * %
(15) T = U T .
k=1

*
Then T 1s a countable set, and we can write that

(16) | A =0 oy g

where Aqy € Ay o (IF T = , then AT AT*

U A

%
(;et T = {tl, t?,...} . Thus it is sufficient to prove that if
)
A,%g)x-,A,I,* for k = lZ,...,A%)D (313...314%)3... and
(1 P02 e 50
- for k=1,2,..., then I Aéf) is not empty, that is, there exis ts an v
k=1

element (poirt)
(18) Upe = (i, B seeed e al0)
for all k= 1,2,cee &

* ) :
If T = {ty} , then the statement is trivial because P, {A} is
‘1

%

o-additive on At . Thus let us suppose that T contains more than one
1 ,

element.

Let
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= )
(19) le‘* = {uo, :MP‘F*—{t }{"A“T;’:‘ (wt ) > -5. l.

. (K)o v s , o
: : 2 s >
Since Brg” 1s the finite union of sets belonging to At therefore

(
B@i) e A, . Ve have
[¥3
1

(k) :
0 <e < Ppulbps’} =/ Sréogp f

1 "M
(20) &y
P ()17 € (k)
=[1-p {B iag= +~?tl{BT% '
Hénceu
(21) R {a(k)}

for k=1,2,e0¢ &

1 : ’
Accordingly, B.(k\ € Atl for k = 1,2,.0e, B\%;)D (2>:3:33¥,§);::

and since P, {A} 1is o-additive on At , by (21) we have

1 1
(22) Lim P, {BTI;)}—P (n 81,550,
k¥ = U1 51 k=1
Consequently, | a{,ﬁﬁ) is not empty,uhat is, there is a point m s; B,g,f)c 2,
1 b,
for k = 1,2,... and
(23) {A(k) (w, )} > £50
- R {L } t =2 -

for all k = 1,2,... .

. )
If T contains more than two elements, i1f we replace (ig} by
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(k) (i, )

and if we take into consideration that P, {A} 1s oc-additive

ertz
on At , then by repeating the previous argument we obtain that there
2
exists a point E’c e @ such that
2 2
(k) £

* -
. proof of the theorem in the case when T. 1is a finite set.

*._',r
Ir T _"tl PYREE

n=12,..., and

} is an infinite sequence, then (25) holds for - .

By continuing this procedure we obtain that as long as (tl, Cosenes tn)
% - -
is a proper finite subset of T , there exist points w_ e Q_ ,0ee, 0w, €
tl tl tp t
such that
{
|
(25)2 P k)( )}>—>O
; MT*-‘{tl,o.o’t }A.‘T* t 200> 21'1
* i
If T = {tl, t2,..., tp} where p > 2 , then (25) holds for n=p <~ 1,
- The ‘sets A%;:)_(E seoes U, Y e A form a decreasing sequence of sets.
T, t t
1 p-1 p :
Since N}?t' {A} 1is o-additive on A we have
P D
(26)  ump %@, RIS (nal0G, .E et
K > & O -1 p k=1 p-1 2P~
Consequently.there is an w, € ©,_ such that w A,gg )@ R w, )
% t t t 2
, D D p-1
that is, (5%1,..., 6£ ) € Aé§> for all k = 1,2,... . This completes the
. p
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. == - k)
(27) (w. 3 w Hreo0 ) € (
tl t2 .*
for all k= 1,2,... . To prove this)for each k = 1,2,..., let us write
(28) A%{) ?tf) er R X X
1 2’ n n+l n+2
where n 1is some positive integer. By (25) A,%z) , - w ) is not
tn
empty, and by (28). it is necessarily equal to Qt X 9, Xeeo « Thus
‘ n+l nt+2
we nave
- —_ k) -
(29) @ Lm0 en® @ w5
6 a1’ o’ St (g eees 0

which implies (27). Accordingly (27) holds for all k = 1,2,... . This

 completes the proof of the theorem.

P Ll

By Theorem 1.2 in the Appendix we can extend the definition of PT{AT"
to the o-algebra BT The e}ftensmn is unique and P, {AT} is a pr’obabl“w

measure on B We shall call {AT} tIre product pr'obablllty measure and

(2 s T’ T) the pfoduct pv*obabj 11ty space.

The product probability P {AT} has the property that f‘o; any finite

set Tn— (t t2,...,t )T and for any A eBt (i=l,2,...,n)

T,

b
1 i i

(30) PfA, XA, X...X A X 0.} =P, (A} P, {A }...P, {A }.
N.TAtl ty At.n. ol T B Nl At2 <t e

 Conversely, :T{AT} is uniquely determined for B‘I’ by this property.

In particular, we have
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(31) P{A, X @ }= P {A, }
S T T

[V €.

for A_ ¢ B and thus (30) can be expressed as follows:
i 1 :

n
(32) B {A X...XA X8 . }= TP X }.
SLAN R S S T

Accordingly, if the compound random trial C")’T is described by the

product probability space (.QT, B., Pn) , then the following n events:

T ~T
G results in A ,...,6, Tesults in A will be mitually independent
1 . 1 n n
events in dT for any n = 2,3,... and At. 3 Bba . Furthermore,any event
i i .

A,C £ Bt , Wwhere t ¢ T , has the same probability in the compound random

trial Gq as in the constituent random trial CHR

- 1If the probability space associated with the compound random trial @T
- 1s the product probability space _(QT, BT’“E’T) -, then we say that the- .

constituent random trials ("5 (t € T) are mutually independent. .

£

Conversely, 1f we consider a f‘amily of random trials G (t e T) N

t
and if any outcome of any random trial has no influence on the outcome of
any other random trial, then we assume that the ran&om trials are mutually
independent and with the compound random trial we associate the product

probsbility space.

Let @t = (szt, B, P ) (t € T) be a family of mutually independent
. random. trials and let Et(“’t) (t ¢ T) be random variables defined on @ -

(t €.T) . If we define the random variables gﬁ(wT.);: gt(wﬁ) ~fort e T =

- on the product probability space GT = (QT, BT, AE’T) , then gt(mT) (t e TY
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will be mutually independent random variables.

The existence of a product probability space for an arbitrary family
of random trials was proved in 1939 by B. Jessen [ 12 J. In the partacum
case when each Qt is the real line and Bt is the class of linear Borel
sets, the exlistence of a product probability space follows from a more

general theorem found in 1933 by A. N. Kolmogorov [ 19 J. ( Theorem

b7.1.) See also J. v. Neumann [ 24 pp. 122-148], S. Kakutani [ 13 ]

and E. S. Andersen and B. Jessen [ 2 ]. Actually, the general existence

theorem was stated in 1934 by Z. fomicki and S. Ulam [ 22 1, but their

=

proof contains an error which was pointed out in 1943 by S. Kakutani [ 1z s

and in 1946 by E. S. Andersen and B. Jessen [ 2 1.

5. Conditional Probabilities and Conditional Expectations. “The general
notions of conditional probsbilities and conditional expectations were

- introduced -in 193'3 by A. N. Kolmogorov [ 49 1 . These notions are

based on the integral in an abstract space and on the Radon-Nikodym theorem.

Let (9, A, P) be a probability space, A e A , and E(s) , a real

random variable defined on © . If the series?’

(1) ' L 3P0 < £(w) g (GH1)r and w € A}

J::
is absolutely ccnvergent for some A > O , then it is convergent for every
A >0 and has a finite Jim.t as A » 0. This limit is, by definition,

o .,;the:»integr’dl of the random variable £(w) over A , and 1s denoted by

@ QW) = [ £(w)a .
A
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is
~If Q(e) exists, then it Acalled the ecpectation of the random variable

which we denote by E{g} .

It Q(n) exists, then Q(A) exists forevery A e A, and Q(A) is
' a finite and o-additive set function, that is, if A = A+ Ajt...+ A +...

where AkeA for k=1,2,... and AA, =0 for 1 #J ,then

i

(3) | QM) = [ Q)
and the right-hand side 1is absolutely convergent.

The se‘c functlon Q(A) 1s absolutely continuous with respect to P{A} ,

that : is, if Ae A and P{A} = O, then Q(A) =

|
'Ihe celebrated Radon—N:Lkodym theorem stateq that if Q(A) possesses
the mentioned properties, then it can be represented in the form ( 2) and

_g(w‘) ~1s determined up to an equivalence. More precisely we have the:

following result,

Theorem 1. ‘let @ be an (abstract) set, A a o-algebra of subsets

of Q, E{A} , & probability measure defined on A . Let Q(A) ‘be a

“finite and o-additive set function defined on A . Suppose that Q(A)

P{A} = O _1_1_@}1 | &(A) = 0 . Then there is a random variable £(uw)

defined on © , and integrable over ! such that

for all A.e A . If n(w) is another random variable which is integrable
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over  and for which

(5) Q(A) = [ n(w)dP ,
~~r A A

and if D = {w : n(w) # £€(w)} , then P{D} =0 .
For the proof of this theorem we refer to P. Halmos [ 11 ]
Theorem 1 makes possible the following definitions.

Let (Q,A%E) be a probability space, A e A anevent, and B a

- o-algebra of sets belonging to A (o-subalgebra of A ) . The conditional
probagility of A relative to B , denoted by P{A[B} , iévdefinédhas any
functgon of w which is measurable with respect to B and which satisfies

~.the equation
6). [ P{A|B}dP = P{AB}

for al: B e B . By Theorem 1 it follows that such a function exists,

 P{A|B} is a random variable, and is determined up to an equivalence.

Ir x =x{w) 1is a real and finite-valued random variable, then
&?{A!X} is defined as any one version of,ﬁg{AiB} where B ' is the o-algebra
géneratedvby % s that_is; ‘B -1is the smallest o-algebra which contains the
sets {w : x(w) £x} for all x . In this case P{A|x} 1is a Balre-function

of x and we use the notation P{A|lx = x} = P{Alx}l .
~ ~ x(w)=x

The foilowing formula

(1) P} = [PLA]x = x)APIK < x)

-
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is called the theorem of total probability.

Let (Q,A{E) be a probabllity space, n a real and finite-valued
random variable whose expectation exists, and B a o-algebra of sets
belonging to A . The conditional expectation of n relative to B ,
denoted by hg{n[B} , 1s defined as any function of w which is measurabie

with respect to B and which satisfies the equation
(8) [ E{n|B}dP = [ naP
Bz»— B [N

for all B e B . By Theorem 1 it follows that such a function exists,
rr;,E{n|Bﬁ i1s & random variable, and is determined up to an equivalence..

?Ifx

x{w) 1s a real and finite-valued random variable, then
E{n}x} is defined as any one version of AE{nlB} where B 1is the v-algehra
generated by x . In this case E{n|x} is a Baire-function of x and we

use the notation E{n|x = x} =-E{ﬂlx%&w)=x .
The following formula

- (9) E{n} = [Eln|x = x}dP{x < x}

-0

is called the theorem of total expectation.

‘6. Wald's Theorem. Let E1s Epseees be a séquence of real

n,ooo

or complex random variables. Write Z, = £1+ £2+...+ En for n=1,2,...
.and €o.?,Q.f The results of this section are concerned with the random . -
- -variable ¢ where v is a discrete random variable taking on positive *

integers only. We shall assume that one of the following conditions is =
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satisfied:

(A) For every n = 1,2,... the event {v = n} depends only on the
random varlables il, 62,..., En, that is, the indicator variable of the

event {v = n} 1is a Baire-function of the randoum variables &ys gg,.;., €, -

(B) For every n=1,2,... the event {v = n} and the random variables
€n+1’ €n+2"" are independent, that is, the indicator variable of the event

{v = n} and the random variables are independent.

n#12 Cne2o e

Obviously, condition (A) implies (B), whereas the converse is not true.
This Fan be illustrated by the following exanple. ITet al,-gzg;}‘,ean,@,*
be muﬁually independent and identically distributed random variables for
‘Whicg ;?{En = l}r=ﬁf{£n = -1} = 1/2 and define v = (£1g2+;3)/2 . Then

(A) is not satisfied, whereas (B) is satisfied.

 In 1944 A, Weld (41 1, [ 42 1 considered the case where {f } is
a sequenéevof mutually independent and identiéally distribufed real random
variables andvdefined vb as the smallest n for which Zh does not lie
in the interval (a; b) ; He deduced a-fundamental identity fof thé random
variable Zy and this identity made it possible to find the distribﬁtion

and the moments of Sy . Actually, Wald's main interest was to find the

distribution aﬁd the moments of v ,

The following theorems are generalizations of somé of Wald's results.

; Theorém 1. Iet us supposé thét '{En}"is a sequence‘of real raﬁdom

variables for which E{En} = a exists and is independent of n. If (8
—— ~ S U — : - R
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is satisfied, E{v} < = aad

(1) I Elle [Py ant <=,
. n:lm b e

then

(2) ' E{Cv} = a E{v} .

Proof. let us define ¢ 1 if vxn and Gn = 0 otherwise.

n

Then we can write that

{3) z

v ! Enan: *

n=1_~
Since by assumption gn and the event {v < n} are independent, 1t

follows that ¢, and the event {v >n} are also independent. Thus & n

and & , are independent random variables ang -

% - Bl =aBlg )} =aPvzan)

for k n = 1,2 seee o Accor'dingly,byi (3) We:obtajh ”tha“c‘

(5) E{z )} = J Blgs}=a | Plvznl=aBb}.
o~ n=1"™ ‘ n=1""- o~

In (3) we can form the expectation tve‘rm' by term because

(6) Bl |} < § A
: _ ~ . 1™

es |} = Y E{(]g|®fviont <=.
n= n-n :nzl’*‘_n _

This proves (2).

_For the proof of (2) see also D. Blackwell [33 ], J. Wolfowitz [ 44 7,

A. N. Kolmogorov and Yu. V. Prokhorov [ 37 ] and N. L. Johnson [36 1.
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- Theorem 2. Let us suppose that { gn} is a sequence of mutually

independent real random variables for which E{E,n} = a and Var{gn} = o0

A

exist and are independent of n . If (A) is satisfied, E{v} < = , and
po —
7 Y.pi»zay B{lf - @Dal]v2n}< o,
L o -

n=1 4
then 2 P
B E{(Cv-a\))}=oE{v}.

Proof. In proving this theorem we may assume that a =0 . If a#0,
then instead of {En} we can consider the sequence {En— al . lLet us
define the random varishles § a (n=1,2,...) in exactly the same way as
oin thefprevious proof. Then 61 =1 and cSn depends only on ‘E_,l-, &2;..-.,..

gn_li for n=2,3,... . Let us write

|

2
{ =

for. n=1,2,... . We note that Ly = 0 . Then ci = x

n= 1,2,...‘ and

(10) L, = n_g_l X8, -
By (9) we have

-2 s ‘
(11) E(xs} = E(EIE(S } + 28(g JE(c .6} .

For €n and Sn are independent random variables, and also En and

T 6n "are independent random variables. 'Sincé E{«En} =0, by (11)

we obtain that
@2 Elx.6} = o%BL6 } = 0Py 2 1)

for n=1,2,... . Thus by (10) we have
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} = c'g Z P{v > n} = 0'2E{v} .

(13) E{z
~ n=1

"In (10) we can form the expectation term by term because
(1) Btle e, e,y = B(le DE{|e 8},
o _1/2
E{Isnl};[g{an}] =g <, and

(15) nzlf{lcn——llsn} - nzl E{Gn - l}E{lcn—ll 'Gn =1t <~
by '(7';)’ .

}

t

!
We note that if in Theorem 2 we replace the condition (A) by condition
(B), then (8) is not valid anymore. This was demonstrated by J. Seitz and

K. Winkelbauer [ 29 ] when they pointed out that several results are.

erroneous in the paper of A. N. Kolmogorov and Yu. V. Prokhorov [57 1.

Indeed, if we consider the example mentioned at the beginning of this

©=1,E(z} =2 and E{v}=%;that 1s, (8) is

not satisfied. For the proof of (8) see also N. L. Johnson (36 1. The

section, then a =0, o

higher moments of Z, have been investigated by J. Wolfowitz [ 44 ] and

K. Winkelbaver [ 43 ].

In 1949 A. N. Kolmogorov and Yu. V. Prokhorov [ 37 ] considered the

cas€ When &, = (’r;r(ll), sga)) (n=1,2,...) are independent vector random

i)

variables. ILet ':1'(11): Eii)+...'+ gr(l for n=1,2,... and i = 1,2, and

z;((jl):-— O for 1= 1,2.
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Theorem 3. Let £ = (E.(l), 5512)) (n=1,2,...) be mutually independent

vector random variables for which E{g(l)} al s E{c‘:(2)} and

a
B fll) a)(e?) - ) -

oy, exist and are independent of n . If (A)

is satlsfied, E{v} <= , and

(16) z P{v > n}E{IC(l) - (n—l)a1|+|c(2i - (n—l)aZIiv >n} <o,
n=1"

then

(17) G- 2P s = o )

Proof. Without loss of generality we may assume that a; = =0.

a2
If we define Gn in the same way as in the previous proofs and if now

(8) = ) @) L (1) (2) (2)

. (1)
L N
for n = 1,2,..., then we can write that
. o W @)
(19) (D ¢ Z 5
VIR = L nth
If we form the expectation of (19), then we obtain that
(20) eV (2)} o1 I E(s) = oy, B0}

=1
In a similar way as in the proof of Theorem 2 we can easily see that if

(16)- is satisfied then we can form the expectation term by term in (19).

Further gemréjj.zations of' the above results have been glven by

K. Winkelbauer [ &3 1.
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" 6. Interchangeable Random Variables. In generalizing the notions

of independent events and independent random variables in 1930 B. De Finettil

[52 1,053 J,[5% 1, [ 557, [5% ] introduced the notions of inter;-

changeable events and interchangeable random variables.

We say that Al’ Az,... s A n are interchangeable events if
\ =
(1) 'E{Aj‘l Ai2 Aij} N?{Al A2... Aj}

holds for all 1 ;il < i2 <ewa < ij <in , and we say that AI’ ’AZ"“’ Ai”"

. is an infinite sequence of interchangeable events if (1) holds for:all.
i

n = ]—:,2 s L L]
|
We have several classical examples for a finite number of interchangesble -

events. See e.g. reference [ 77 ]. In 1923 E. Eggenberger and G. Polya

[59: ] found an interesting example for an infinite sequence of intérchangeablé.

events.

‘We say that E’l’ 52,...,- £ n are interchangeable random- variables if -
~all the n!- permutations of (gl, 52,..‘.,‘ gn)' have the same joint distribution.
If 51, 52,..., £ n e real random variables, then they are interchangeable
if and only if

(2) E{Ei; X5 &g

S Koseeasbs X} = PLEL S X0y E5 2 XggeaasE <X}
1 5 2 in n o 1 1° =2 2 n n

holds for all the n! permtations . (il, 1oseees in)~ of (1,2,..., 1)

and for all X175 Xpgeees X oo
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We say that él, 52,..., Ei,... is an infinite sequence of inter-
chahgeable random variables, if (gl, Enseees t:n) are interchangeable
random variables for all n = 2,3,... . An infinite sequence of real random
variables £1, 52,...,’61,‘.. form a sequence of interchangeable random

varigbles if (2) holds for all n = 1,2,... .

Iet us define the indicator variable of an event Ai by Xy > that

is, Xy = 1 if A; occurs and Xy = 0 1if Ai does not occur. If A, ,..., A

1 n

are interchangeable events, then X1s Xoseee 5 X, are Interchangeable random
variables, and if Al,..., Ai,... is an infinite sequence of interchangesble
- events, then ‘xl, Xgseees Xys+-+ 18 an infinite sequence of interchangeable

random variables.

By generalizing the notion of homogeneous processes with independent
increments we can introduce the notion of sﬁoohastic”processes with inter-
chaﬁgeablé'iﬁcrémehts. We say that the process {E(u), O‘ggujizt}’ has

interchangeable increments if for all n = 2,3,...

. -y =120

~ are interchangeable random variables.  The process {&{u), O < u < «} is
said to have interchangeable increments if the random variables (3) are

interchangeable random variables for all finite ¢t .

If we choose m points at random on the interval (0, 1) in such a
Wéy éﬁat ihdependentiy of the others each poiht'has a unifonﬁ'diétribuﬁion ‘

on the interval (O; 1), and if vm(u) denotes the number of points in the
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‘interval (0, u) , then {v (u) , G zu <1} 1is a stochastic process with

interchangeable increments.

In 1930 B, De Finetti [ 52 ] discovered that an infinite sequence of

interchangeable random events can be represented as the outcomes of a sequence

of randomized Bernoulll trials. In what follows we shall prove this result.

Let us suppose that Al, AZ’”" Ai’“‘ is an infinite sequence of
interchangeable events. Denote by x, the indicator variable of the event
Ai . Let v, = Xt xotee.t )fn » that is, v, | 1s the number of ¢vents

oceurring among Al’ A?,..., A .

un -
Iet o =1 and
(1) omy =Pl Ayl A
for. § = 1,2,... .
Since
i \)n 4
(5) (j) = -z Xj. Xi se e Xi
: ’ ’ ) ¥, '1___5__.11‘(3.-“2..(0 L] o<i_-l;n 1 N 2 k: f 4 'j

for 0<Jj <n , we obtain that the j-th binomial moment of v is

. . ' \) ; ) - .
s Ny, _ /A
(6) | B,(n) = E((;")} = (D,

for Jj =0, 1,..., n . If we take into consideration that



<n , then we obtain easily that

n . . n s
-k \ NI -k n-k
(8) Plv =kb= ] (DTGB = ) ) (DT,
J=k J=k
for 0k <

The following theorems are due to B. De Finetti [ 55 1.

See also
A. Ya. Khintchine [69 1, ['70 ], W. Fellelj_ [ 60 p. 225-227], and D. G.
Kendall [ 68 ].

Theorem 1.

There exists a distribution function F(x) such that
i . , > s
F(x) =0 for x<0,Fx =1 for x=1, and
|
|
I \V
(9) 1im P{=2 <x} = F(x)
o n ==

n >«
in every continuity point of F(x) . The distribution function F(x) -is
uniéuely determined by

(10)

1
r, = [ xar(x)
J 0
for § =0,1,2,00. .

Proof. First we note that

(11)

x

r X
% 'CHES L
r=1 ° r
for every x and J = 1,2,... where @g (L x£r<3) are Stirling nixmbers .

of the second kind. Hence by (6) we obtain that.

(12) By = ) ®T

n ¥
- i r! (T)ﬂr‘
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\
[

f‘or j=1,2,se.and n=1,2,,,. . Since C% =1 for j>21, it

T Ca,

follows from (12) that

(13) lim h{(—-) } =
n - oo

for j =0,1,2,... . The sequence {nj} satisfies the following properties:

To = 1 and

(14) z 1) EC)n

. >0
j=k JJ;

for 0 <k <n . This last inequality is a consequence of (8). Thus by a

theorem of F. Hausdorff [65 ], [ 66 ] we can conclude that there exists

a distm‘_b\ition function F(x) on the interval [0, 1] such that (10)
holgs for J = 0,1,2,... and F(x) is uniquely determined by (10). Hence

(9) follows by Theorem 41.1). . This completes the proof of the theorem.

Fram (8) and (10) it follows that

1 .
(15) Py, = K} = [ () (- ar (x)
~ 0
for 0 <k <n . From (15) we can also conclude that (9) holds.

Now let us suppose that (Q,A,E) is a probability space and Aq, Ay,...rAq,..
Is an infinite sequence of interchangeable events such that Aie B for

i=1,2,... and define i by (4) and F(x) by (10). Denocte by Bn the

L2

minimal o-algebra which contains the events An, A and let

n+1,..u

@©

(16) g = () g

n=1 n

be the so~called tail o-algebra.
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Theorem 2, There exists a random variasble g defined on the

probability space (,A,P) such that

vy,
(a7) P{lim =98} =1.

A ¢ BRI

Proof. We shall use formula (12) and we shall need the Stirling

mmbers ©) for 1cr < ¢4 . These are given in Tble I.

G]

rigl 2.3 4
; ]
| 1
1 1

=
H
-3

(@)
-

Table I,

ﬁf n>1l and q > 1, then by (12) we obtain that

VoV, 2 _ q(nl— 1T2)
(18) E{(F— 171_+§l) b= ntq) = Inlnig)  °

If @+~ and n -+ « , then the extreme right member in (18) tends to © ,
and therefore we can conclude that there exists a random variable 9 - such

‘that

n 2
(19) 1im E{(= - )} = 0 .
n -»>

By (02) wé' can also prove that
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S \Y
se s 11
(20) 1im *\%{(ﬁ-—- -

y N T .
Xmﬂ\a} w(31r2--61r3+ 3“&“ + (T’l 77r2+ J.21r3 61.L!)n E
s -7 )
q-> e n HL} 16 n“
for n>1 . Thus b y (20) we have
AY
N
(21) E{ (= - 6)™") <._;17§
~ 16 n
]
for 211 n>1 . Since for every e > 0
(22)  PU - o] > e} £k B(R - o)) « —3
: ~m~ o n =T oA\ L2 Lh s
; € 16n"e

it fo:llows that

|

i
) T BCR - ol [ o2

(23) P{|=—=~- 8| >e}< S <
ne1™ 0 1667 n=1n2 . 8t
and-this implies (17) by Lemma 43,1 .

Qbwvicusly O < o <1 with probability

1
*
measurable with respect to the tail o-algebra B , that is, {e
for every x .

and the random variable 6

¢

By (9) and (17) (or (19)) it follows that necessarily
(24) Plo 2 x} = F(x) .

’Ihé@rem 3. Wé have

(25)

| - Y
AE{A1A2...A3|6} = @
with probability 1
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‘_ Proof. Since
(26) E{AlAg...AJ.[e} =..E{X1X2‘”XJ'|9}
for j = 1,2,..., it follows from (5) that
@7 ' PAA,.. A [0} = - B((.P)|0}
) ~o 12 J (n)m J

J

for 1L <j<n. If n- =, then the right-hand side of (27) converges

to E{e?|e} = ¢ with probability 1 . This completes the proof of the

theorem.
By (25) we have
(28) my = E{od}

for j =0,1,2,... « This proves once again that TTJ. ~can be represented

n the form (10).

By (8) and (28) we can write thét
S ; _ _ n, .k n-k
(29). f{vn = k} —-NEE{ (k)e (1-6)" 7}

for 0 zk <n . This formula reflects the result that an infinite sequence
off interchangéable events Al’ Az,..., Ays... can be represented in the
fdllewing way: We perform an infinite sequence of Bernoulli trials with
probability 6 for success where 6 1is a random variable with distribution
function F(x) and Ai denotes the event that the i-th trial results in

SUCCESS,

We note that, in general, for a finite number of interchangeable events
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Ayy Byseesy A, the probabllities m; (0£J <n) camot be represented

in the form (10).

- The above results can also be expressed by using the indicator variables

Xl’ X2""3 Xi,... .

If A, Aqseey Ai"" are interchangeable events, then Xl’ Xoseees Xyseoe

12 2 i

are Interchangeable random variables. By (17) we have

+ v+
X1 x2---+x

I =

(30) ~ P{ lim

Il >

Ir B denotes the o-algebra generated by the random variable ‘8 , then

* :
BC@ and

k
(31) Plxg =eqs Xp = Epseens X = ele} = 121“§{Xi = ei]B}
holds for all k = 1,2,... and ¢, =0 or e =1 (1=1,2,...,k with
probability 1, In (31)

(32) P{x; = eiIB} =Plx; = ¢
with probability 1 .

-Accordingly, we can represent le’ Xossees Xyseee @S @ Sequence of
conditionally independent random variables with a common distribution. This
last result can be extended for more general sequences of interchangeable -

- yandom variables as was demonstrated in 1937 by B. De Finetti [756 L

‘Se.é' a,leoE B Dyrkin [ 58 ], E. Hewitt and L. J. Savage [:67 ], and
M. Loéve [71 pp. 364-365, and p. L0OJ.
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~Theorem 4. If (32,A:,£) is a probability space and & (1=1,2,...)

is an infinite sequence of interchangeable real random variables, then there

exists a nontrivial o-subalgebra B of A such that

(33)  PlEy 2%y &y S Xg5een, & < %, |BY = 2

for all k =1,2,... and x,, X5seee5 X, With probability 1 , and in (33)

4 ; 4
(34) Ple, __<__xi|B} = Plg; < xi]B}

for all 1= 1,2,... with probability 1 .

Proof . We can reduce the proof of this theorem to the results proved

atove., let us define

it

35 x; ()

for 1=1,2,... and

"

(36) Vo) = xg (W) + xy (@) +aet x (W)

for n=1,2,.., and all u . Since in this case {x;(u)} are inter-
' changeable indicator variébles)by Theorem 2 for every u there exists a
- random variable 6w such that
' v'n(u)

[
n- e

With probability 1 , the random variable e(u) 1is a nondecreasing function
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of u, 6w ~1 as u~r«~,and 6(u) 0 as u~>-=. We can chocse
o(u) such that for every w e Q the function 6(u) = 6(u; w) is a

distribution function in u .

Denote by B the minimal o-algebra generated by the random variables

‘{6(1'1), ~o <y < =} ., Then we have

(38) Pley < %[BY = By (x)|BY = £ Ev (x)|B)

for any 3 = 1,2,.¢. and n=1,2,... . If n- =, then by (37) the right~
hand sidé convérg,es to o(x) with probability 1 . Thus we have

(39 Pig

< x|B} = 6(x)
. for 1 =1,2,... and every x with probabllity 1 . This proves (34). -
- In a similar way we obtain that

E{gl ; Xl"", gk -<_- xle} =E{Xl(xl)oo- Xk(xk) |B} = N :
(40)

= “"—‘E{ z Xi (Xl) see Xi (Xk) IB}

(ﬁ) i l_<_=il<12<. .o <ik_<=n 1 k

for n>k . If n > », then the right-hand side of (40) has the limit

(41) - nl-i;mm -(—i—-)-f{vn(xl)vn(xg)... vn(xk)IB}: 0(x;)0(x,) . 0(x)
k

with probability 1 . Accordingly,

b2y P{gl SXys By S Xgseees B S Xy ]B}_ = e(xl)e(x2)...6(xk)
~ - k
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with probability 1 . By (39) and (42) we obtain (33) which was to be

proved,

Finally, we mention that in 1960 H. Bﬁh}g@gﬁ_[ 50 ] demonstrated that
a stochastic process {g(u) , O < u < =} with interchangeable increments
can be represented as a homogeneous stochastic process with conditionally

independent increments.

Accordingly, if (Q’Aiz) is a probability space and {&(u) , O < u < «}
Is a stochastic procéss with interchangeable increments, then there is a
nontpivial o-stbalgebra B of ‘A such that with probability 1 the
procéss"{g(u) s O < u < »} is homogeneous and has independent increments

|

withfréspect to B .

8. 'Slowly Varying Functions. A real function L(x) defined for x > a

where a 1s same positive number 1s called a slowly varying function at

X >« 1f 1t is positive for x > a , measurable on any finite interval in
la, =) and if

(1) | 1im LX) -

X > o

1
for every w > 0,
An example for slowly varying functions is
T ¢ 2 ‘n
w(2) I L(x) =w(lpg 3) (Iogyx) “...(log x)

where log,x = log log x and logkx = log log;k_1 x for k = 3,4,... and

“Cys Cpseces C are real numbers.
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Slowly varying functions play an imporvtant role in mathematics in
proving various limit thecrems. In particular, they have important
applications in the theory of probability in obtaining various Iimiting

distributions.

As early as 1904+ A, R:ing‘sh.ﬁi*n[lOB]was concerned with monotone slowly

E.;:IH daul97 1,
varymg functions een'a.lso G. Polyd (102 1, [103% ], G. Po/‘lga and G.

Szego [ 104 pp. 67-69], and R. Schmidt [ 107 ]J. In 1930 J. Karamata [92 ]
found the most general form of a continuous slowly varying function. In 1949

J Kor'evaar T van Aarderne-Ehrenfest and N. G de BI’U.lJn [96 ] studied

pos:Ltivp measurable functlons L(x) satn fylng (1)

We have the following representation theorem.

Theorem 1. If L(x) 1s a slowly varying function, then there exists

- some positive constant a such that

X

(3) : L(x) = c(x)e !

for x > a where c(x) and e(x) are bounded measurable functions on the

interval [a, ») and satisfy the conditions 1limc(x) = c where c¢ is a
X+

positive constant and lim e(x) = 0 .
X > ®

This theorem was found in 1930 by J. Karamata [ 92 1, [ 94 ] for

continuous L(x) , in 1949 J Kor'evaar T. van Aardemne-Ehrenfest, and

N G. de Bruijn [96 ] proved it for the case when log L(x) dis integrable

on ever'y oompact subinterval of [a,oo) and 1n 1959 N. G. de Bru:LJn [84 ]

proved 1t f‘or mea,surable L(x)
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Theorem 2. If L(x) is a slowly varying function, then (1) holds

Suniformly for o € [al, a,] where [al, a2]is any finite subinterval of

(0, =) .

For continuous L(x) this theorem has been proved by J. Karamata

[92 1, [ 94 ] and for measurable L(x) by J. Korevaar, T. van Aardenne-

Bhwenfest, and N, G. de Bruijn [ 96 J. See also G. H. Hardy and W. W.

Rogosinski [ 90 ], H. Delange [ 85 ], W. Matuszewska [ 99 ], [ 100l, and

R. Bojanic’ and E. Seneta [ 82 .

iI_t is Interesting to mention the following result which was found in

1967 jby CV. C. Heyde [ 91 1. See also B. A. Rogozin [ 106 1.

Theorem Z. Let Oy Gnseses Opsese be a sequence of nor’megafa,ive,b .

' numbers. If

- . . ot ottt o
) lim ——2 D o=
n > « n

. where g is a finite nonnegative number, then R SCEa S

A © v
(5) exp{-nzl -n—n- X} (l—x)o‘L(ﬁ—};

as x » 1-0 where L(x) is a slowly varying function of x at x> =,

In (5) the left-hand side is asymptotically equal to the right-hand

side, .that is, the ratio of the two sides tends to 1 as x > 1+0 ..
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. The following theoram was found in 1956 by N. G. de Bruijn [ 84 1.

Theorem 4, If L(x) 1is a slowly varying function, then there exists

.)e
a slowly varying function L (x) such that

(&) 1im L*(XL(X))L(X) =1
X > o«
and
€7) lim LG O (x) = 1 .
’ X > oo

Moreover, L (x) 1is asymptotically uniquely determined by L(x) .

%
iIn several cases we can easily construct a function L (x) occurring
in Theorem 4 by using the following procedure of A. Békéssy [ 79 ]. Let

,,kl(x)_::_ 1/L(x) and define kz(x), k3(x),.,.,;_. recursively by the. formula
®) K4y (1) = Ky (x k() .

If kn-l-l\X) " kn\x) for'some "n as” X'+ « , then L (x) ~ kn(x) as

The notion of slowly varying functions is strongly related to the

notion of regularly varying functions. See R. Schmidt [ 107 ].

A real function U(x) defined for x > a where a is some positive

nuber is called a regularly varying function at x -+ « if it is positive

‘for x » a , measurable on any finite interval in [a, ) and if

(9) | 1im T

for every w > O where ¢ 1is a constant.
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- We can easily see that U{x) is a repularly varying function if and

only if it is of the form
(10) ’ U(x) = x3n(x)
where L(x) 1s a slowly varying function.

We note that instead of (9) it is sufficient to require only that the

Jmit 1im U(wx)/U(x) = V(w) exists for w > 0 and V(w) #0 . Since

X > o

V(a w,) = V(wl)V(w2) for any wy > 0 ard wy > 0 , and since V(w) is
measurable on (0, =) it follows by a resulf of G. Hamel [ 89 ] (see alsc

B Blumberg [81 1) that V(w) = o where q is some real constarnt.

In conclusion we mentlon one problerﬂ i);rhich frequently occurs in the
théor‘y’éf probability. ILet T(x) be a Sléle vafying function defined on
themtewal [a,. w) where a >0 . Let a be a positive real ,number*;
The problém is to find a ﬁmc’cion B(x) which satisfies the requirements

1im B(x) = = and

X - o
(11) 1im xT(B(x)) _
X » =[B(x) 1"
If we wrifte
(12) L(x) = [T(x)]"i/“
and .
(13 ¥y = B,

X

then by (11) we obtain that
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(1h) 1im L(RL*(ij*(X) =1 .

x>
Since obviously L(x) 1is a slowly varying function, it follows from
: %
Theorem 4 that L (x) 1is also a slowly varying function of x and is

asymptotically uniquely determined by L(x) .

‘ _ 1/a _ _
let kl(x) = [T(x)] and kn+1(x) = kl(xkn(x)) for n=1,2,.0. .
: %
j:f kh+1(x) ~ kn(x) for some n as x>« , then L (x) ~ kn(x) as

X > o
Finally, by (13) it follows that
*
(15) B(x) = /%L (/%)

satisfies all the requirements, and furthermore B(x) 1is asymptotically

untquely determined by (11).
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- 9. Abelian and Tauberian Theorems. The Abelian and Tauberian

theorems for power series and for Laplace-Stieltjes transforms mentioned

in this section have many useful applications in the theory of probability.

The Abelian theorems for power series are concerned with a ‘sequence

of real or complex numbers 83> 815eces Bpsaee o et us define

[os]

(1) f(z) = nZO a 2"

as the generating function of the sequence '{an} .

- First, in 1826 N. H. Abel [ 108 p. 314] proved the following theorem.
| _ —
fTheorem 1. If the series

) , E a

n=0 I

is convergent, then the power series (1) is convergent in the unit circle

|z| <1 and

lim f =
¥ z ->1-0 2) ngo "

whenever =z approaches 1 through the real axis in the unit circle |z| <1 .

In 1875 Q. Stolz [ 224 ] demonstrated that if (2) is convergent, then
(3) hoids whenever =z approaches 1 through a straight line lying in the

circle rz| <1l.

In 1920 G. H. Hardy and J. E.,Littlewoodl:lss ] remarked that if (2)

is convergent, then (3) holds whenever =z approaches 1 through a Jordan

curve which lies between two chords of the unit circle, meeting at z = 1 .
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However, (4) does not necessarily hold even if 2z approaches 1 through
a Jordan curve wnich lies in the unit circle and which possesses a
continuously turning tangent at every point except z =1, but

arg(l-z) tends either to #/2 or =-n/2 .

If we apply Theorem 1 to the sequence ans a;- ag? a2_ 8y yee > then we
obtain the following version of Theorem 1 .

Theorem 2. If the limit

(4) lima, = A
rn“+oo

exists, then (1) is convergent in the unit circle [z] <1 , and

(5) 1im (1-z)f(z) = A .
o 7 1= 0

ln 1880 G Probenlus [21)7 ] demonstrated thaL in Theorem 2 the
conditlon (M) could.be replaced by the weaker condltlon

at+ta+...t+a

(6) 1im 0 1 n = A
n -+ o n

In 1878 P. Appell [ 113:]proved the follewing generalization of

.. Theorem 2.

Theorem 3. If the limit

(7) 1im ﬁa.n= A
AR C . n->-° .o .P(’oE-J%l)

exists for some o >~1 , then (1) is convergent in the unit circle [z| <1
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atl
(8) Jim (1-z) f(z) = A

z+1-0

ra

In 1901 A. Pringsheim [ 211 ] proved that if in Theorem 3 we replace

the condition (7) by the weaker condition

ata+...+a
9) lim Q1 n

o3
n-> o n

for a >-1 , then we have

i
]

(10) 1im (1-z) “£(z) = A

! z > 1-0

We note that Theorem 3 remains valid for complex

T Tatl)

o with Re(o) > -1 .

. Theorem 3 does not cover the case o = =1 } however, if
(11) limna =3B,
n-e

then by a result of E. Lasker [ 194 ] we have

(12) : 1n - 2
z +1-0 ].Og’f_—g

We can generalize Theorem 3 1in the following way.

~ Theorem 4,  If the limit

a

-= B

w 1m —2— = A
SR n-> o nL(n) .

T(atl)

exlists for some a >-1 where L(z) is a slowly varying function of =z
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at z - », then (1) 1is convergent in the unlt circle |z| <1, and

(l—Z)a+1
L(1/(1-2))

flz) .y,

(14) 1im
7, +1-0

In 1901 E. Lasker [ 1947 proved that Theorem 4 is true if

o

_ 1 %2 “p
(15) L(z) = (log 2) (1og2 Z) e (logr z)
where g5 az',. ey O, arbitrary real nurbers. He also proved that if

1 na
(16) lin 8 =B

| ne
where _L(z)‘ is given by (15) with o = @2 o= g 0= -1 and o -1

(l;k;r),then

-0 -1 -0, -0, ,
. 1K 1\ ik 1Ty . B .
an Un Qog 1) © (ogyy 1) - (ogp 1) 1) = gy

In 1904 A. Pringsheim [ 212 ] proved Theorem Y for increasing and

decreasing slowly varying functions L(z) .

By ado;ﬁting Lasker's method and by referring to Theorem 8.2 in the
Appendj;x we can easily prove Theorem U4 in the general case. We shall
only sketch a proof. If z - 1 through real nubers <1 , then by (13)
we have - e

.

(18 N f(z) q, el L(n)nuz " .I_‘_(-o;%jj ﬂ L(u)uOLzu du

n=a
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where a is some positive mumber. Iet us put z = (p~-1)/p and u = pv

in (18). If z-> 1, then p > » , and by (18) we have

1 PV
0oy AL 7 L(pv) 1 a

(19)
™t v o1 AL(l-l-z)
Y T (at]) cf)e viav = AL(p)p™ " = ° )a-*'-l :
-2

This proves (14). We note that Theorem I remains valid for complex o

with Re(a) > -1 .

The Tauberian theorems for power series are concerned with the converse

of the Abelian theorems.
First, in 1897 A. Tauber [2%6 ] proved the converse of Theorem 1 .

' Theorem 5. If the series

(20) f(z)= ] az
: n=0 T -

is convergent for |z] <1, if the limit

(21) lim £(z)
z »+1-0 -

exists as z > 1 through real nurmbers < 1 , and if

' ‘ n
B N T g
(22) lim = § =0,
] By
then - - o ’
(23) ) a
" n=0 "
is convergent and is equal to the limit (21)
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. The example ay = 1, a, = -1, &, = 1, a,% = -1,... shows that the

converse of Theorem 1 is false without making some additional restrictions
on the sequence {an} . Actually A. Tauber proved that the conditions in
Theorem 5 are necessary and sufficlent. If (23) is convergent, then by

Theorem 1 (20) is convergent for |z| < 1 ,and the limit (21) exists

and by a theorem of L. Kronecker [ 187 ] (22) is satisfied too.

I we apply Theorem 5 to the sequence 8y @1~ 8y a2- Byseces then

we obtain the following version of Theorem 5.

Theorem 6. If the series

(24) @)= ] az
n=0

is convergent for |z| <1 , if the Limit

- (25) lim (l-z)f(z) = &
' : z +1-0 :

exists as z + 1 through real numbers < 1 , and if

a-t a+...+ g

(26) - lim (2 L B_a)=0
n > o .
then
27) lima = A .
n—>oon

fo'bviously (26) 1s satisfied if

(28) 1im n(an- a .,)=0.,

nos o =1
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" In 1900 A. Pringsheim [ 210 ] proved that in Theorem 6 the condition

(26) can be replaced by the condition that &1 S 2y for n=1,2,... .

In 1911 J. E. Littlewood [ 195] proved that in Theorem 6 5‘(26) can

be replaced by the condition that
(29) In(a -2 ;)| <K
for n=1,2,... where K 1is some positive constant. The condition (29)

was suggested in 1910 by G.H. Hardy [ 144 p.308].
In 1912 G. H. Hardy and J. E. Littlewcod [ 151] remarked that in

Theorem 6 the condition (26) can be replaced by the hypothesis that

0,1,2,...) are real and

&,

4

(30) ,_ n(a-a ;) > K

for' n=1,2,... where K is some positive constant. This was already
observed in 1910 by E. Landezu {191 1.
For this last result a simple proof was given in 1930 by J. Karamata

[ 1721. (See also E. C. Titchmarsh [238 pp. 227-229].) For other proocfs

see H, Wielandt [ 242 ] and S. Izumi [169 ] .

Further generalizations of Theorem 6 have been given by E. Landau
[ 192 ] and R. Schmidt [ 222 ]. In 1925 R. Schmidt [222 1] proved that in
Theorem 6 the condition (26) can be replaced by the hypothesis that a,

(n=0,1,2,...) are real and
(31) lim inf(a - a_) 2 0

when n>m and m and n tend to infinity in such a way that m/n > 1 .
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See also T. Vijayaraghavan [ 239 1.

In 1914 G. Hardy and J. E. Littlewood [ 153 ] proved the following

converse of Theorem L.

Theorem 7. ILet us suppose that a_ (n=0,1,2,...) are real

numbers, the series

(=]

(32) ‘ f(z) = ) anzrl
n=0

is convergent for |z] < 1 , and the 1imit

e ' . <1—Z~)C1+1 £(z) _ ,
(33) AP v/ = il

exists as z » 1 through real numbers <1 for some o > O where L(z)

is a slowly varying function of =z at z v ™,

ifeiﬁher_
,.(34) T A R

n “n-1=

“for n=1,2,’..and o >0, or

A . A . - =)D - o7
(35) = o n(a-a ;) > -Kn'Ln)

for n =.1,2,.“, a >0 and K 1is a positive constant, then

| N a
(36) lim — 23— =
: n —lr maL(n)

A
I'(atl) °

In proVing this theorem G. H. Hardy and J. E. Littlewood [153% ]

assumed ‘thét the function L(z) " is’of’fﬁévf‘orm of (15). Howe\}er, their
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proof can easily be extended to the general case.

Abelian and Tauberian theorems have been proved for Dirichlet's

series too. In his studies in the theory of numbers P. G. L. Dirichlet

[125 1, [127 p. 252 and pp. 371-379] encountered the following type
of series
(37) u(s) = § a_e °

where {An} is an increasing sequence of nonnegative real numbers for
which lim A, =@ and s 1is a complex number. If An =n, then u(s)
reducesnt; Z power series in e ° . If Ay = log(n+l) , then (37) is
called an ordinary Dirichlet's series. For the theory of Dirichlet's
series we refer to E. Landau [ 190 pp. 721-882] and G. H. Hardy and

M. Rie'sz [160 ].

By the investigation of E. Landau [ 188 ], [ 190], J. E. Littlewood

[ 1951, and G. H. Hardy and J. E. Littlewood [153 1, @54 1, [1561,
s9 ] and others we have several Abelian and Tauberian theorems for

Dirichiet's series.
Theorem 1 has the following extension for Dirichlet's series.

Theorem 8. If the series

(38) | 1 a

is convergent, then (37) is conVe”r*gént in the half-plane Re(s) > 0 and
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(39) 1im u(s) = ) &
5 -»40 n=0 ™
whenever s approaches 0 through positive real numbers or through

complex numbers lying in the sector {s = relq’

:r >0, |¢|<ci<%}.

For the proof of this theorem see R. Dedekind ([ 127 p. 3741),

E. Cahen [122 ] and E. Landau [190 pp. 737-742].

The converse of Theorem 8 is not valid without making some restrictions
on the sequence {a n} . As an extension of Theorem 5 we have the following

resuljt .
I

I

Theorem 9. If the series (37) is convergent for Re(s) > 0 , if the

1imit  1imou(s) = A exists as s > O through positive real numbers , if &

s~++0
1lim » =@ gnd if
B n PR
n - o
. - Ana
(40) .. 1im -0,
. ; A - A )
n+e™m ‘n-1
" then
CID ) a

is convergent and is equal to A.

This theorem is due to E. Landau [188 ]. In 1911 J. E. Littlewood

[ _',195] proved that (40) can be replaced by the conditions ..1lim. }‘ﬁ—l/}‘rl‘z" 1

n > o
and
gy A A
) . : —_— =4
(42) - Ja, | <K .

for n=1,2,... where K is a positive constant. In 1914 G.H. Hardy and J.E.
Littlewood (153 1,[154 ] proved that if {a,} is a sequence of real numbers, then
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in Theorem 9 the hypothesis (41) can be replaced by lim A 1/An =1 and

n+oon—
' AdT Al
(43) I
n
for n=1,2,... where K 1is some positive constant.

Further generalizations of Theorem 9 have been given by E. Landau

[ 192] and R. Schmidt [ 222].

Theorem 4 and Theorem 7 have also analog extensions for Dirichlet's

series.

“We can consider the Dirichlet's series (37) as a particular Laplace-

t
|

Stie]itjes integral. If we define

. B 0 for x < A6‘kr
(k) m(x) = :

ata+...+4a. for A <X
n n =

ot &1 n-= 0,1{2,...

< }‘n+l’ (
then (37) can be expressed as

W) u(s) = (j)'e_sx an(x) .

Most of the Abelian and Tauberian theorems valid for step functions

m(x) can be extended to more general functions m(x) .

In what follows we assume that m(x) is a real function defined on
the interval [0, =) and is of bounded variation in every finite interval.
In this case the integral
(46) ‘ u(s) = [ e dm(x) = s [ e m(x)ax

-0 0

is called the Laplace-Stieltjes transform of m (x) .
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- For the ILaplace-Stieltjes transform u(s) we have the following

Abelian and Tauberian theorems.

Theorem 10. If

(47) limm(x) = A

X > o

exists, then wu(s) 1s convergent for Re(s) > O and

(48) : 1im p(s) = A
s > 40

whenever s approaches O through positive real numbers or through

i¢:r>0, |¢!<c<%}.

complex numbers lying in the sector {s = re

This theorem is analogous to Theorem 1 and is an easy extension of -~

Theorem 8. More generally we have the following theorem. L

Theorem 11. If

- . m(x) _ A
(49). Xlimm & T TI'(otl)

exists for some o > -1 , then wu(s) 1is convergent for Re(s) > 0 and

(50) 1im s™u(s) = A
s>+
whenever s approaches O = through positive real numbersor through complex

nurbers lying in the sector {s = re’® i r >0 , 1o < e < g" }o o

This theorem is an eagy extension of Theorem 3. For its proof see

G. H. Hardy and J. E. Littlewood [159 p.27], D. V. Widder [247 p. 182]
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ad G, Doetsch [ 131 p. U56].

Theorem 4 has the following extension for Laplace- Stieltjes trans-

forms. (See G. Doetsch [131 p. 460].

Theorem 12. If

. m(x) _ A
(51) Xl_liloxa L) T T(atl)

exists for some o > -1 , where L(x) is a slowly varying function of

X at x - « , then ﬁ(s) is convergent in the domain Re(s) > 0 , and

a

) . s u(s) _
(52) S Lsy CA

whenever s approaches 0 through positive real numbers or through complex

numbers lying in the sector {s =re? : v >0, |4 <c < —g— }.

specific
If we make someArestrictions on the function m(x) then the converse

of Theorems 10, 11, and 12 is also true. In what follows we shall consider
only the case when m(x) is a nonnegative and nondecreasing function of

X .

Theorem 13. If m(x) (0 < x < «) is a nonnegative and nondecreasing

function of x , 1f wu(s) is convergent for Re(s) > O , and if for some

@20

63 o um 5% u(s) = A
s > 40

whenever s approaches O through positive real numbers, then
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m(x) _ A

(54) 1im = Tt

¥ > ™ Xa

This theorem was proved in 1907 by E. Landau [ 188 1 in the particular
case where o= 0 . See also E. Landau [ 193 ]. In 1914 G. H. Hardy ard

J. E. Littlewood [153 1, [ 154] proved this theorem in the case where

m(x) dis given by (44) where a., a;> a are nonnegative real numbers

o SYERE
and 1im }‘n+l/>‘n =1 . In 1921 G. Doetsch [ 128 1 proved Theorem 13 for

n->

a=1. Fr*orﬁ the above mentioned results of Hardy and Littlewood in 1927

E. C. Titchmarsh [ 237 ] draw the conclusicn that Theorem 13 is generally

tr'ue.f This was proved in 1929 by O. Szasz (229 ], [230 ] and in 1930 by

G. H. Hardy and J. E. Littlewood [159 ]. O. Szdsz [ 230 ] demonstrated

‘also that -if we assume only that
(55) lim inf [m(y) - m(x)] 2 0

when y > x and x and y tend to infinit¥ in such a way that y/x + 1
then Theorem 13 remains valid unchangeably. For the proof of Theorem 13

" see also D. V. Widder [ 241 p. 192].

In 1931 J. Karamata [174 ] generalized Theorem 13. As a particular
case of Karamata's theorem we have the following result. See also G. H.

Hardy [ 148 p. 166] and G. Doetsch [ 131p.5111].

Theorem 14. If m(x) (0 < x < =) is a nonnegative and nondecreasing

function of x , if wu(s) 1is convergent for Re(s) > 0 , and if




(56) 1im 25 .
. S _) +O ‘i

exists as s approaches O through positive real numbers for some a > O

where L(x) is a slowly varying function of x at x » « , then

Loomx) _ A
(57) 1im " I'(atl)

[165 ] proved a useful Tauberian theorem which, according to N. Wiener
(246 pp. 44-45] and S. Bochner [ 1171, can be formilated in the following

Way_’ S

Theorem 15. If m(x) (0 < x < =) 1is a nommegative and nondecreasing

function of x , if wu(s) 1is convergent for Re(s) > 1 and if there

exists a cdnstant A such that the function

(58) u(s) - 2

approaches a finite 1limit uniformly on every finite interval of the line

Re(s) =1 as Re(s) 1+ 0, then

(59) 1m B2,
S m Ty A

[ 2491, D. A. Raikov [213 ] and’N. I. Achieser [_109 p. 238].

In 1928 N. Wiener [244 7 introduced a -new method for -proving Tauberian

theorems. His fundamental theorem is as follows:
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Theorem 16. Let f(x) be a bounded measurable function, defined

over (-=, ») . Let Kl(x) be a function in I, and let

(60) feiux K, (x)ax # 0

0O

for every real u . Let

(61) lim ff(u)Kl(u-x)du A le(u)du .

X > © - -0

Then if K2(x) is any function in Ll ,

i
i o
i 1im ff(u)K2(u-x)du

X -» © 0o

(62)

A fK?(u)du .

Conversely, let K, (x) be a function of L, , and let

(63) - JK (x)ax # O .

Let (61).imply (62) whenever K2(x) belongs to L, and f(x) is bounded.
Then (60) holds.
See N. Wiener [246 p. 25]. For some extensions and applications .

of Theorem 16 see H. R. Pitt [ 2011, [ 202 1, (203 1, [ 204 ], [ 206 ].

10. ‘_Rouché 's Theorem and Lagrange's Expansion.

. In 1861 E. Rouché [ 267 ] found a .very useful theorem in the theory - -

- of camplex variables which we present here in a slightly more general form.
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- Theorem 1. If f(z) and g(z) are regular functions of z ina

dorain D (open connected set), continuous on the closure of D and

satisfy |g(z)| < | £(z)| on the boundary of D , then f(z) and f(z) + g(z)

have the same number of zeros in D .

For the proof of this theorem we refer to S. Saks and A. Zygmund [ 269

p. 157] and E. C. Titchmarsh [272 pp. 116-1171.

In 1768 J. L. Lagrange [ 261 ] proved the following expansior.

Theorem 2. Let g(z) be a regular function of z in the domain

D and continuous on the closure of D . Let a be a point of D and

|
let 'w be such that the inequality

n lwe(z)| < |z-a

is satisfied on the boundary of D . Then the eguation

(2) z =a + wg(z)

regarded as an equation in ¢ , has exactly one root in D . If f(z)

is a regular function of z in D , then we have

L . . o ) n—l ' i,
(3) £(2) = £(a) + ] _Vﬁ e @) e

=1 n dan—-l

For the proof of this theorem we refer to E. T. Whittaker -and G. N. . .

Watsor’;.[iz 3 132]. Some generalizations of thils theorem were given in 1799

by H. Burmarn [262 ] and in 1900 by F. G. Teixeira [271 ]. See also

C. A. Dixon [ 2561, H. Bateman [ 250 1, and E. T. Whittaker and G. N.

Watson [ 27% pp. 128-133].
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. Finally, we mention the following simple but useful theorem.

Theorem 3. If f(z) is_regular for all finite values of 2z and

(=)

(&) lim =

2| >z

=0

for some k > O , then f(z) is a polynomial of degree < k .

Las71],
The above theorem was found in 1892 by J. Hadamard [258 pp. 118-1191.
/\

See also E. C. Titchmarsch [ 292 pp. 85-86]. This theorem is a generalization
of the following theorem: If a function is regular for all finite valuec

of £ and is bounded, then it is constant. This latter theorem was found

|
in 1844 by A. Cauchy [ 254 1. C. W. Borchardt [ 252 ] named it Liocuville's

“theorem because he heard it in a lecture of J. Liouville in 1847. See alsc

»A;CaxﬁllféSSJ.
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