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Abstract

A review of the results concerning random walk in a fluctuating in time random
environment is given. The results concern the validity of the central limit theorem
and the behaviour in time of the correlations.

1 Introduction.

The seminar will concern with random walk in fluctuating (in time) random environment.
Everybody knows the basic model of the random walk. The classical example (see

Figure 1)
P(Xt = Xt−1 + 1) = p P(Xt = Xt−1 − 1) = q, Xt ∈ Z (1.1)

with p and q positive numbers such that

p + q = 1. (1.2)

The symmetric case is p = q = 1
2
. This is one of the fundamental model in the study of

probability.
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Figure 1

The model can be made more complicated in different ways. For example one can
consider not only first neighbor jumps (see Figure 2), with the condition

q1 + q2 + p1 + p2 = 1. (1.3)
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Another way to complicate the model is to consider the motion in higher spatial
dimension d, for example in d = 2 (see Figure 3), with the condition pi ≥ 0 and p1 + p2 +
p3 + p4 = 1. In general in Z

d the symmetric nearest neighbor case is

P(X1 = ej |X0 = 0) =
1

2d

where ej = (0, · · · , 0, 1, 0, · · · , 0) is the unit vector of the j−direction. It is also possible
to have transition probabilities which allow to jump to any distance (long range).

p1p2

p3 p4

Figure 3

Another way to complicate the model is to introduce a family of positive numbers
{px,y}, where px,y is the probability to jump from x to y. This means that the random
walk is not homogeneous in space. It is also possible consider random walks which are
not homogeneous in time.

An interesting class of models is the case in which the particle jumps with a transition
probabilities depending on some random field i.e. random walk in random environment.
A classical example in d = 1 is

P(Xt = u +1|Xt−1 = u, ξ) =
1

2
+

ǫ

2
ξ(u) P(Xt = u− 1|Xt−1 = u, ξ) =

1

2
− ǫ

2
ξ(u) (1.4)
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where Xt ∈ Z and the field {ξ(·)} is a family of i.i.d. random variables defined as:

ξ(x) =






1 with probability 1
2

−1 with probability 1
2

(1.5)

These kind of models has been studied intensively by many authors. Among which Sinai,
Bricmont, Kupianin, Boulthausen, Sznitzman, Zeitouni,.... Obviously there is a lot of
literature on this topic.

Another class of model is the situation in which the environment evolves in time. In
this talk I shall discuss this situation.

2 The model.

Let us start with some general considerations.
Let ξ = {ξ(t, x), t ∈ Z

+, x ∈ Z
d} be a collection of random variables depending on

time and space (environment). Let us consider a random walk with transition probabilities
depending on ξ, i.e.

P(Xt = x|Xt−1 = y, ξ) ≡ p(x − y; ξ). (2.1)

We define
P0(x − y) ≡< p(x − y; ξ) >ξ (2.2)

where the mean is taken with respect to the environment (in space and time) distribution.
Obiously P0(·) is a transition probability of an homogeneous random walk. Now we can
write

P(Xt = x|Xt−1 = y, ξ) = P0(x − y) + c(x − y; ξ). (2.3)

The function c(·, ·) represents the infuence of the random field on the random walk. From
(2.3) the following properties follow

∑

u∈Zd

c(u, ·) = 0 (2.4)

< c(·, ξ) >ξ= 0. (2.5)

After this short introduction we want to specify our mathematical model. In order to do
this we need to specify the environment ξ. People consider three different situations:

1) The field ξ is a collection of i.i.d. random variables in time and space.
2) The field ξ is an independent in space copy of a Markhov chain in time.
3) The field ξ is as in 2) except for the fact that there is a dependence in space.

We consider a particle performing a random walk in Z
d in interaction with an envi-

ronment, which evolves in an independent way or according to a Markov rule.
¿From the discussion above we can say that given a history ξ of the environment we

define the transition probabilities in the following way

P(Xt = x|Xt−1 = y, ξ) = P0(x − y) + c(x − y; ξ), (2.6)
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where P0(·) (probability distribution on Z
d ,unperturbed random walk) and c(·, ·) satisfy

the following assumptions:
1)

∑
u c(u, ξ) = 0 ∀ξ , < c(·, ξ) >ξ= 0

2) 0 ≤ P0(u) + c(u, ξ) ≤ 1 ∀ξ ∀u ∈ Z
d;

3) Finite range,i.e.: ∃ D > 0 such that P0(u) = c(u, ξ) = 0 ∀u ∈ Z
d; with |u| > D ∀ξ;

4) P0(·) satisfies the hypothesis for the validity of the local limit theorem.

Cosider the quantity
P(Xt = x|X0 = 0, ξ), (2.7)

i.e. the probability to be in x ∈ Z
d at time t fixed ξ. We will study the long time

behaviour of
P(Xt = x|X0 = 0) ≡< P(Xt = x|X0 = 0, ξ) >ξ, (2.8)

the so called ”annealed” model; and also the long time behaviour of (2.7) the so called
”quenched” model.

3 The annealed model.

Here we report briefly one of the main results for the annealed model. In order to state
the result we need to specify better the function c(·, ·) and the Markov evolution of the
environment. Now ξ(t, x), x ∈ Z

d is a Markov chain in time taking values in a finite set
S, i.e. ξ(t, ·) ∈ SZ

d

. Our model is given by the joint Markov chain:

(ξ(t, ·), Xt) (3.1)

with infinite state space Ω = SZ
d ×Z

d and conditionally independent transition probabil-
ities, i.e.

P(Xt = x, ξ(t, ·) ∈ A |Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) ) =

(3.2)

P(Xt = x |Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) ) P(ξ(t, ·) ∈ A|Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) ).

The assumptions on the random walk transition probabilities are the same as in the
previous paragraph. The only thing we need to specify is the nature of the dependence
of the function c(·, ·) on the field.

P(Xt = x |Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) ) = P0(x − y) + c(x − y, ξ̄(y)). (3.3)

The meaning of (3.3) is that the jump of the particle depends on the value of the envi-
ronment at the starting point.

Now we come to the assumptions on the environment.
The distribution

P(ξ(t, ·) ∈ · |Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) )

is a product measure for the independent (in space) variables {ξ(t, x), x ∈ Z
d} each of

them distributed according to the law:
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P (ξ(t, x) = s |Xt−1 = y, ξ(t − 1, ·) = ξ̄(·) ) =






q0(ξ̄(x), s) if x 6= y

q1(ξ̄(y), s) if x = y

(3.4)

where q0 and q1 are transition probabilities such that

q1(s
′, s) = q0(s

′, s) + q̄(s′, s)

where q̄ verifies ∑

s

q̄(s′, s) = 0 ∀s′ ∈ S

We denote
Q0 = ((q0(s, s

′))) s, s′ ∈ S (transfer matrix)

and we assume that:
Q0 can be diagonalized and there is a non-zero mass gap in its spectrum,i.e.

1 ≡ µ0 > |µ1| ≥ |µ2| ≥ · · · ≥ |µ|S|−1|

where µi are the eigenvalues of Q0.
These conditions imply that the Markov chain with state space S and transition prob-

abilities q0(s
′, s) is ergodic. We denote with π0 the unique invariant measure.

Under these hypothesis we have

Theorem 3.1 (local limit theorem)(BMP 1994).
For fixed P0, Q0 and any initial distribution Π of the environment the following asymp-

totics holds, for c(·, ·) and q̄(·, ·) small enough

P (Xt = x|X0 = u) =
C√

(2πt)d
e

1

2t
(A(x−u−bt),x−u−bt)(1 + O(1))

where b ∈ R
d (drift) is a vector, (·, ·) is the usual scalar product in R

d. A is a positive
definite matrix and C =

√
det A.

The asymptotics is uniform w.r.t. x ∈ Z
d if

|x − u − bt| < t
1

2
+γ γ ∈ (0,

1

6
).

The proof of Theorem 3.1 is in
[BMP 1994] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Central limit theorem

for the random walk of one or two particles in a random environment ”, Advances of Soviet
Mathematics, 20 : ”Probability Contributions to Statistical Mechanics”, R.L.Dobrushin,
ed. , 21-75 (1994).
Remark 1 The matrix A in Theorem 3.1 is not equal to the matrix related to the local
limit theorem for P0.
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Remark 2 The initial distribution Π can be a δ function concentrated on some configu-
ration of the environment.

In the paper [BMP 1994] the case of two interacting particles performing a random
walk on the lattice Z

d in a fluctuating (in time) random environment was also considered
and a central limit theorem in the case of d ≥ 3 was proved.

Other results concerning the annealed case are related to the decay of correlations.
We will consider this problem in the last section.

4 The quenched model.

A natural question concerns the behaviour for large T of the quantity in (2.7),i.e.

P(XT = x|X0 = 0, ξ). (4.1)

The simplest model to consider is the case in which the field ξ is given by a collection of
i.i.d. random variables.

In this case the transition probabilities are given by

P(Xt = x|Xt−1 = y, ξ) = P0(x − y) + c(x − y, ξ(t− 1, y)). (4.2)

We denote

b =
∑

u

uP0(u) ci,j =
∑

u

(ui − bi)(uj − bj)P0(u) C = ((ci,j)).

Let us introduce the conditional average displacement

ET (ξ) =
∑

x∈Zd

x P(XT = x | X0 = 0, ξ)

and, given k = (k1, · · · , kd), the centered normalized moments:

M̂
(k)
T (ξ) =

∑

x∈Zd

(
x1 − ET

1 (ξ)
√

T
)k1 · · · (

xd − ET
d (ξ)

√
T

)kdP(XT = x | X0 = 0, ξ).

Under the hypothesis for P0(·) and c(·, ·) of Section 2 we have:

Theorem 4.1 (BMP 1997,BBMP 1998 ) For all d ≥ 1, if c(·, ·) is small enough ,then

lim
T 7→∞

M̂
(k)
T (ξ) = mk

where mk is the corresponding moment of the centered gaussian measure on R
d with

correlation matrix C.

The proof of Theorem 4.1 is, for d ≥ 2, in
[BMP 1997] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Almost-sure central

limit theorem for a Markov model of random walk in dynamical random environment ”,
Probability Theory Rel.Fields 109, 245-273 (1997)

6



and, for d ≥ 1, in
[BMP 1998] M.S. Bernabei, C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Almost-

sure central limit theorem for a model of random walk in fluctuating random environment
”, Markov Processes Rel.Fields 4, 381-393 (1998)

Remark 3 Theorem 4.1 implies that the C.L.T. holds for a.a. ξ with the same covariance
matrix of P0(·).
Remark 4 The limit gaussian distribution is not affected by the field ξ. This is due to
the independence of ξ.

In the paper [BMP 1997] the corrections to the central limit theorem were also studied.
In order to do this it is better to write the quantities in a different way.

Let f be a regular function on R
d, then we define the quantities:

µ
ξ

T (f) =
∑

x∈Zd

P(XT = x | X0 = 0, ξ)f(
x − bt√

T
),

µ0
T (f) =

∑

x∈Zd

P T
0 (x)f(

x − bt√
T

)

and

µ(f) =

√
C

(2π)
d
2

∫

Rd

e−
1

2
A(u)f(u)du

where A(u) =
∑

i,j aijuiuj,with A = ((aij)) inverse of the covariance matrix of P0(·).
Theorem 4.1 can be reformulated in the following way

Theorem 4.2 For all d ≥ 1, if c(·, ·) is small enough then

µ
ξ

T (f) 7→ µ(f) as T 7→ ∞ ∀f ∈ C0 ξ − a.e.

To understand the behavior of the first correction to the C.L.T. we introduce the quantity

ΦT (f |ξ) ≡
√

T (µ
ξ

T (f) − µ(f)),

then we have

Theorem 4.3 (BMP 1997) For all d ≥ 3, if c(·, ·) is small enough then

ΦT (f |ξ) 7→ Φ(f |ξ) ξ − a.e.

where
Φ(f |ξ) = µ(E(ξ) · ∇f) + µ(Q1f)

where
E(ξ) ≡ lim

T 7→∞
ET (ξ) = lim

T 7→∞
(E(XT |ξ) − bT )

which also exists ξ − a.e. for d ≥ 3.
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It is also possible to look at the second correction. To do this we need to consider the
quantity:

ΨT (f |ξ) ≡ T (µ
ξ

T (f) − µ(f) − 1√
T

Φ(f |ξ)),

then we have

Theorem 4.4 (BMP 1997) For all d ≥ 5, if c(·, ·) is small enough then

ΨT (f |ξ) 7→ Ψ(f |ξ) ξ − a.e.

We have an explicit expression for the functional Ψ(f |ξ).
Remark 5 These results show that, in the independent case, the influence of the field ξ

is in the corrections terms.
Remark 6 Theorem 4.2 is a law of large numbers. In fact from the independence in time
and space of ξ(t, x) and the assumption (2.5) it follows that

Eξ(µ
ξ

T (f)) = µ0
T (f).

Then we can write
µ

ξ

T (f) = Eξ(µ
ξ

T (f)) + IT (f |ξ).
where

IT (f |ξ) 7→ 0 ξ − a.e..

A natural question concerns the possibility to remove the smallness condition on c(·, ·).
Let us assume for our random walk the hypotheses 1),2),3) and 4) of §2 and the

independence of the field ξ. Moreover, introducing the Fourier transform of P0(·) and
c(·, ·);i.e.

p̃0(λ) =
∑

u∈Zd

ei(λ,u)P0(u) c̃(λ, ·) =
∑

u∈Zd

ei(λ,u)c(u, ·), (4.3)

we assume the following non-degeneracy condition:

5)

∫

T d

< |p̃0(λ) + c̃(λ, ·)|2 >ξ

dλ

(2π)d
< 1,

where T d is the d-dimensional torus. Then we have

Theorem 4.5 (BMP 2004) For all d ≥ 1, if assumptions 1-5 are satisfied, there is a
subset Ω′ ⊂ SZ

d+1

of full measure such that ∀ ξ ∈ Ω′ the random variable

XT − bT√
T

tends in distribution to the centered gaussian variable with correlation matrix of P0(·) .
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The proof of Theorem 4.5 is in
[BMP 2004] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Random walks in

quenched i.i.d. space-time random environment are always a.s. diffusive”, Probability
Theory Rel.Fields 129, 133-156 (2004)
Remark 7 There are no assumptions concerning the smallness of c(·, ·).

Now we consider the case in which the evolution of the environment is given by a
Markov chain.

Consider an ergodic and reversible Markov chain ζ = {ζt : t ∈ Z
+} with finite state

space S.
The state space of the space-time environment is Ω̂ = SZ

d+1

where for each site x ∈ Z
d

we have an independent (in space) copy of ζ .
Our random walk is the Markov chain (ξ(t, ·), Xt) with transition probabilities

P(Xt = x, ξ(t, ·) ∈ A |Xt−1 = z, ξ(t − 1, ·) = ξ̄(·) ) =

(4.4)

(P0(x − z) + c(x − z; ξ̄(z)))P (ξ(t, ·) ∈ A| ξ(t − 1, ·) = ξ̄(·) )

At the hypotheses 1)-4) of §2 and at the hypotheses on the stochastic matrix Q0 of §3
we need to add an hypothesis which relays the free random walk and the velocity of
convergence to equilibrium of the Markov chain, i.e.

min
λ∈T d

|p̃0(λ)| > |µ1| (4.5)

where µ1 is the second eigenvalue of Q0. Then we have:

Theorem 4.6 (BMP 2000) For all d ≥ 3, if c(·, ·) is small enough then

µ
ξ

T (f) 7→ µ̄(f) ξ − a.e.

where µ̄ is the gaussian measure with covariance matrix given by the gaussian distribution
in Theorem 3.1.

Theorem 4.7 (BMP 2000) For all d ≥ 3, if c(·, ·) is small enough then

lim
T 7→∞

√
T (µ

ξ

T (f) − µ̄(f)) = Φ(f |ξ)

where the convergence takes place in L2(Ω̂,P).

The proof of Theorem 4.6 and 4.7 is in
[BMP 2000] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Random walks in fluc-

tuating random environment with markov evolution”. On Dobrushin’s way. From prob-
ability theory to statistical physics. Amer. Math. Soc. Transl. Ser. 2 198, 13-35
(2000)

For the independent model there is the paper:
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I. Berard: ” The almost sure central limit theorem for one-dimensional nearest-
neighbour random walks in a space-time random environment”. Journal Appl. Prob.
41, 83-92 (2004).

In this paper a particular model in dimension d = 1 is considered.
In the paper
F. Rassoul-Agha, T. Seppalainen:”An almost sure invariance principle for random

walks in a space-time random environment” Probability Theory Rel.Fields 133, 299–314
(2005)

is considered the problem of the invariance principle.
For the markovian case there is an alternative proof of the quenched C.L.T., always

for c(·, ·) small and d ≥ 7, in the paper:
A. Bandyopadhyay, O. Zeitouni:” Random walk in dynamic markovian random envi-

ronment ” ALEA Lat. Am. J. Probab. Math. Stat. 1, 205-224 (2006).
Recently in the paper:
D. Dolgopyat, P. Keller, C. Liverani: ” Random walk in markovian environment ”. In

press on Annal. Probability (2007),
under the same condition of c(·, ·) small, a C.L.T. a.e. in ξ for d ≥ 1 is proved. In the

model also a spatial interaction is considered.

5 Asymptotic of correlations.

An interesting question both from a mathematical and physical point of view is to un-
derstand the behaviour in time of correlations. Obviously this question concerns models
with Markov evolution. Our random walk is as in §3. We need to add a condition relating
the characteristic function of P0(·) with the second eigenvalue of the transition matrix
Q0(·, ·), namely

min
λ∈T d

|p̃0(λ)| > |µ1|. (5.1)

We take two functions fi(·), i = 1, 2 which depend on the values of the field ξ at two

points xi, i = 1, 2 of the lattice Z
d. We define, as usual,

< ·, · >=< ·· > − < · >< · >

As is to be expected the time asymptotics of correlations depends on whether b = 0
or b 6= 0 where

b =
∑

x∈Zd

xP(X1 = x|X0 = 0). (5.2)

We have the following results

Theorem 5.1 (BMP1 1994) If the conditions above are verified, if c(·, ·) is small and
b 6= 0, then

| < f1(ξ(t, x1), f2(ξ(0, x2) > | ≤ Cθt (5.3)

where θ ∈ (0, 1).
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If a symmetric condition on random walk is added, i.e.

P0(u) = P0(−u) c(u, ·) = c(−u, ·)

which implies that b = 0, then we have

Theorem 5.2 (BMP1 1994) If the conditions above are verified, if c(·, ·) is small and
b = 0, then

< f1(ξ(t, x1), f2(ξ(0, x2) >=
C

t
d
2
+1

(1 + o(1)) t 7→ ∞. (5.4)

The proof of Theorems 5.1 and 5.2 is in:
[BMP1 1994] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Interacting Random

Walk in a Dynamical Random Environment. I. Decay of correlations”. Ann.Inst. Henri
Poincaré. Probabilités et statistiques 30,n. 4, 519-558 (1994).

An object which plays an important role in the study of the properties of the random
walk in random environment is the so called field from a point of view of the particle,i.e.

η(t, x) := ξ(t, Xt + x). (5.5)

ηt, t ∈ Z+, contains complete information: under some general conditions of aperiodicity,
if one knows a trajectory {ηt : t = 0, . . . , T} of the field from a point of view of the particle,
one can almost-surely recover the trajectory of the joint process {(ξt, Xt) : t = 0, . . . , T}
with X0 = 0.

If Π0 is an initial measure we denote by Πt its evolution by the ηt process.
The first non-trivial problem with the process ηt is that of finding a stationary measure

for it. Such a measure will not be translation invariant, but it is to be expected that
far away from the origin (i.e., from the position of the random walk) it is close to the
stationary measure Π of the process ξt.

Theorem 5.3 (BMP2 1994) Let Π0 be an arbitrary initial distribution on Ω, and let
F be a cylinder function on Ω, i.e., a function measurable with respect to the σ-algebra
generated by the variables η(x) : x ∈ Γ, for some finite set Γ ⊂ Z

ν . Then the following
assertions hold.

i) There are positive constants CF and κ, CF depending only on F and κ independent
of F and of the initial measure Π0 such that

|〈F 〉Πt
− 〈F 〉bΠ| ≤ CFe−κt. (5.6)

ii) There are positive constants C ′
F and q ∈ (0, 1), C ′

F depending only on F and q

independent of F and Γ such that

|〈F 〉bΠ − 〈F 〉Π| ≤ C ′
F qd(Γ,0), (5.7)

where d(Γ, 0) is the distance of the set Γ from the origin in Z
ν.

iii) The probability measures Πt tend weakly, as t → ∞, to the measure Π̂, which is
stationary for the process ηt : t ∈ Z+.
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The proof of Theorems 5.3 is in:
[BMP2 1994] C. Boldrighini, R. A. Minlos, A. Pellegrinotti: ” Interacting Random

Walk in a Dynamical Random Environment II. The environment from the point of view
of the particle”. Ann.Inst. Henri Poincaré. Probabilités et statistiques 30,n. 4, 559-605
(1994).

Another interesting question is the following. Let ∆t = Xt−Xt−1 denote the increment
of the random walk at time t. If f1, f2 are bounded function on Z

d, we consider the
correlation

< f2(∆t), f1(∆1) >PΠ0,0
(5.8)

between the first increment and the increment at time t. We want to understand the time
behaviour of (5.8).

We look at this problems in a concrete model. Let us assume that the environment is
given by a local field which takes two values ξ(t, x) = ±1 . Denote by ξ = {ξ(t, x), t ∈
Z

+, x ∈ Z
d} the history of the environment and by ξ

t
= {ξ(t, x), x ∈ Z

d} the configura-
tion of the environment at time t.

For the pair (ξ(t, ·), Xt) we take, as before, the conditional independence, i.e. for any
choice of ξ

t
and Xt the conditional distribution of Xt+1 and ξ

t+1
are independent with

transition probabilities:

P(Xt+1 = x| Xt = y, ξ
t
= η) = P0(x − y) + ac(x − y)η(y)

(5.9)

P(ξ(t + 1, x) = s| ξ
t
= η) = q(η(x), s), x ∈ Z

d, s = ±1.

Here, as before,P0(·) is a non degenerated random walk on Z
d, a ∈ (0.1) is a fixed number

such that P0(u) ± ac(u) ∈ [0, 1) ∀u ∈ Z
d. As before

∑

u∈Zd

c(u) = 0.

Q = (q(s, s′), s, s′ = ±1) is the transition matrix of an ergodic Markov chain, which we
assume symmetric. We assume exponential decay for the transition probabilities. We
take also P0(·) even and c(·) either even or odd. Hence the Fourier transforms

p̃0(λ) =
∑

u∈Zd

ei(λ,u)P0(u), c̃(λ) =
∑

u∈Zd

ei(λ,u)c(u), λ ∈ T d,

where T d is a d-dimensional torus, are analytic. Obviously p̃0(λ) is real. We also assume
p̃0(λ) > 0 and

min
λ∈T d

p̃0(λ) > |µ1|,

where µ1 is the second eigeinvalue of the matrix Q.
We have the following result:

Theorem 5.4 (BMNP ’07) Let be d ≥ 1. Under the assumptions above the correlation
(5.8) has the following asymptotics as t 7→ ∞
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(i) If a < a0, with a0 > 0 small enough, we have

< f2(∆t), f1(∆1) >PΠ0,0
=

µt
1

t
d
2

(1 + O(
ln t

t
)) d even

< f2(∆t), f1(∆1) >PΠ0,0
=

µt
1

t
d
2

(1 + O(
1

t
)) d odd

(ii) If a condition on parameters holds then there is some a1 > a0 such that for a ∈ (a0, a1)

< f2(∆t), f1(∆1) >PΠ0,0
= ce−αt

m∑

k=1

pk(t) cos(θkt)(1 + O(e−δ1t))

Here 0 < α < − ln(|µ1|), pk(t) is a polynomial of order k = 0, · · · , m − 1, the constants
δ1 and m depend on the transition probabilities.

The proof of Theorem 5.4 is in:
[BMNP 2007] C. Boldrighini, R. A. Minlos, F.R. Nardi, A. Pellegrinotti: ” Asymp-

totic decay of correlations for a random walk on the lattice Z
d in interaction with a Markov

field” In press on Moscow Mathematical Journal (2007).
The case d = 1 was studied in the paper:
[BMNP 2005] C. Boldrighini, R. A. Minlos, F.R. Nardi, A. Pellegrinotti: ” Asymp-

totic decay of correlations for a random walk in interaction with a Markov field.” Moscow
Mathematical Journal 5, n. 3, 507-522, (2005).
Remark 8 This result says that a transition in the asymptotic behaviour of correlation
(5.8) may occour. To find a concrete model in which the behaviour ii) of Theorem 5.4
occors looks difficult.
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